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ABSTRACT For the development and deployment of upcoming 6G systems, propagation channel
measurements in new scenarios, new frequency bands, and for new antenna arrangements will be required.
The diffuse multipath component (DMC) contains a non-negligible portion of the channel impulse response,
and thus must be considered in channel evaluations and modeling. Previous work observed that multiple
DMC clusters exist, which are associated with specular multipath component (MPC) clusters, yet the
widely used Kronecker assumption for the delay/angle structure of these DMC clusters rarely holds in
reality. In this paper, we propose an estimation algorithm for a parametric multi-cluster DMC model that
more accurately models the connection between delay and angular parameters for each cluster, assuming
that the Kronecker model is only valid within each cluster instead of for the whole channel. This avoids
creating ghost modes that would reduce the DMC covariance matrix estimation accuracy. Our proposed
algorithm is incorporated into the framework of the RiMax algorithm, an iterative maximum-likelihood
estimation scheme. The effectiveness and correctness of the proposed algorithm are verified on synthetic
channels, since they have a known ground truth. Simulations demonstrate improvements not only in the
accuracy of the DMC, but also the associated specular MPC compared to the state-of-the-art uni-modal
DMC model. Furthermore, the application of this algorithm to real-world sub-THz channel measurements
is demonstrated.

INDEX TERMS Channel estimation, covariance matrix estimation, diffuse scattering, high-resolution
parameter extraction algorithm

I. INTRODUCTION

WHILE fifth-generation (5G) systems are being de-
ployed all over the world, researchers have started

to move their focus to Beyond 5G (B5G, often called 6G),
systems. Demand for new applications, such as transmission
of high-fidelity holograms, increased efficiency for connec-
tivity of things, and support for extremely latency-sensitive
applications motivate new research from the physical layer to
the network layer [1]. The B5G networks will operate in new
frequency bands (e.g., upper midband and sub-THz), new
environments (e.g., drone-mounted “flying base stations”),
and sport new antenna arrangements (e.g., ultra-massive
multiple-input multiple-output (MIMO)). Since both the fun-
damental performance limits and the practical performance
of any wireless system are determined by the characteristics
of the channels, we need new channel models that are valid
in these new settings.

Any channel model needs to be based on, or verified by,
accurate measurements (i.e., channel sounding). However,

each channel sounding system, regardless of the hardware
details or the sounding signal design, is normally limited in
its Fourier resolution - the inverse of the bandwidth is the
delay resolution and the antenna beamwidth is the angular
resolution. High-resolution parameter estimation (HRPE) al-
gorithms are capable to overcome this limitation and achieve
higher resolution, by postulating a parametric model for the
propagation channel and estimating the parameters from the
received signals. The most common assumption is that the
signal at transmitter (Tx) and receiver (Rx) can be described
as a sum of planar waves. With the given signal model, it
is possible to evaluate the channel parameters, often in an
iterative manner, such as in the widely used CLEAN [2],
SAGE [3], and RiMax algorithm [4]. It is obvious that the
accuracy of HRPE depends on the validity of the postulated
parametric model [5], [6].

While the “sum of plane waves” model is a popular
description of multipath channels, it is not the most general
one. Plane waves arise from a far-field representation of
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waves undergoing specular reflections. However, other signal
contributions might arise from diffuse scattering on rough
surfaces, and are known as DMC. Furthermore, other weak
signals, including contributions from small objects such
as leaves, and possibly even wavefront curvature, might
be subsumed into the DMC as well [7]. Considering the
large amount of the aforementioned weak signals, the DMC
is modeled as a statistical process. Based on the Central
Limit Theorem, the impulse response is assumed to follow
a complex circularly symmetric Gaussian distribution with
zero mean and specific covariance matrix. Various measure-
ments have shown that diffuse scattering not only exists,
but contributes a significant portion of the communication
channel, e.g., [7]–[10], ranging from 5% to 50% of the total
channel power, with that percentage higher for indoor and
industrial rich scattering environments, e.g., [11], [12].

Since the DMCs compose an important part of the chan-
nel, a model for them should be incorporated into parameter
estimation. Among the widely used HRPE algorithms, only
RiMax actually does so. Specifically, it enables the esti-
mation of the DMC parameters iteratively: given estimated
(specular) MPC parameters, the residue (measured signal
minus signal created by the estimated MPCs) is modeled by
a parametric DMC model, and its parameters are evaluated.
Similarly, the MPC parameter estimation can be improved
based on the fitted DMC. Both the MPC and DMC descrip-
tions are optimized in an iterative, alternating manner. Thus,
the performance of MPC and DMC are interdependent—bad
estimation of the DMC not only leads to inaccurate DMC
model parameters, but also reduces the accuracy of the
specular MPC parameters, and vice versa. Therefore, it is
crucial to design methods for accurate DMC covariance
matrix estimation and reconstruction [5], [6], [13]–[16]. This
in turn requires both finding an accurate generic model for
the DMC [16], and designing parameter estimation methods
for it.

A. STATE OF THE ART
The first model for DMC, proposed in [4], was a single-

sided exponential decay in the delay domain and uniform
distribution in the angular domain (both at Tx and Rx). The
base delay, which corresponds to a sharp onset of the single-
sided exponential, is equal to or larger than the line-of-sight
distance between the Tx and Rx. The decay time constant is
related to the coherence bandwidth of the channel.

An improved model for the angular distribution, namely a
von Mises distribution, was used in [9], [17], [18]. The von
Mises distribution is equivalent to a normal distribution in
the angular range [−π, π]. It is described with two param-
eters—(i) the average direction, and (ii) the variance or the
degree of spread. Depending on the choice of the variance, its
shape can range from highly concentrated around the mean
direction, to uniformly distributed over all angles.

In [19], [20], the angular distributions are further modeled
as multi-modal distributions, motivated by observations from
several measurement campaigns [21]–[24]. Similar to the

specular components, the DMC might occur in clusters.
Thus, there might exist multiple local maxima in the angular
spectrum, which deviates from the von Mises distribution
that has only one single maximum. These papers there-
fore establish a multi-modal von Mises distribution (i.e.,
a weighted sum of a set of von Mises distributions with
different means and possibly different variances). Moreover,
the weights are normalized to sum to unity. The joint delay-
angle distribution has a Kronecker structure: in other words,
the delay behavior is a single-exponential decay common to
all clusters.

However, the Kronecker model usually does not hold for
channels with well-separated clusters [4]. In practice, the
relationship between propagation delay and angular infor-
mation is of significant importance. When there are multiple
separate clusters, the Kronecker model creates clusters for
any combination of measured cluster delay and cluster angle;
some of those combinations have no correspondence in the
actual (measured) channels and are thus “ghost” clusters.
The accuracy of the MPC parameter estimation is heavily
influenced by the knowledge of the DMC covariance matrix.
These ghost clusters introduce inaccuracies in the inversion
of the covariance matrix, resulting in the sub-optimal es-
timation of the MPC parameters, exemplifying the above-
mentioned interdependence between the estimation of DMC
and specular MPCs.

To remedy these issues, multiple-cluster DMC models
have been proposed. In [25], multiple DMC clusters are
observed after the removal of specular components estimated
by SAGE algorithm; a strong correlation between specular
and diffuse clusters is also observed. However, no iterative
refinement between the estimation of DMC and specular
MPCs is done. Independent multi-modal DMC models are
also mentioned in [26], [27], but no corresponding estimator
that can be incorporated into an iterative solver like RiMax
was developed.

B. OUR CONTRIBUTIONS
This paper deals with a multi-cluster, non-Kronecker-

based DMC model. The main contribution is the develop-
ment of the gradient-descent estimation algorithm for such
a model that efficiently extracts parameters of this model
within RiMax’s framework. Based on the observations in
the literature, we propose a multi-cluster frequency-angle
DMC model. Each cluster center has a distinct combination
of delay, direction of departure (DoD), and direction of
arrival (DoA). The Kronecker model is only assumed to be
valid within each cluster to formulate the joint distribution
from each domain, while the total covariance matrix does
not have a Kronecker structure. Note that the Kronecker
model within a cluster, while mathematically convenient,
may also not be strictly fulfilled, as, e.g., single-scattering
processes still lead to a unique coupling between DoA,
DoD, and delay. However, the error introduced by this
assumption is significantly lower than the error caused by
the Kronecker assumption for the total channel. Furthermore,
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the base delay and the average direction of arrival/departure
generally coincide with the corresponding MPCs/clusters,
yet the model can also account for DMC-only clusters.

Exploiting the fact that the starting delay and mean
direction of the DMC cluster coincide with one of the MPCs,
the raw channel observation can be used to initialize DMC
parameters with a larger dynamic range and better robustness
against noise; alternatively, we propose a modified second-
order derivative method for determining cluster start times.
The parameters for each separate DMC cluster can then be
estimated with the gradient descent method of [4], [20].
The total covariance matrix for the full channel is inverted
through a whitening method that avoids the numerically
expensive inversion of a correlation matrix for which the
Kronecker assumption does not hold, but rather performs
inversion separately for each dimension (delay, DoA, DoD).
The DMC estimation method can be seamlessly integrated
into the framework of RiMax [4].

The correctness and effectiveness of the proposed DMC
estimation are verified in synthetic channels, which allows
assessment against a “ground truth”, and also comparison of
the algorithm versus the Cramér-Rao lower bound (CRLB).
A real-world example is also provided, demonstrating the
application of the proposed DMC estimation algorithm to
outdoor measurements in the 145 GHz frequency band.

C. PAPER ORGANIZATION
This paper is organized as follows: The description of

the signal model and the frequency-angle DMC model are
presented in Section II. In Section III, we derive our new
gradient-descent-based parameter estimation algorithm for
this DMC model. Section IV conducts the numerical verifica-
tions of DMC estimation and joint estimation of specular and
diffuse components in the synthetic and measured scenarios,
followed by concluding remarks in Section V.

Notation: scalars are written as normal-face letters, vectors
as non-cap bold letters, and matrices as capital bold letters.
Capital letters with calligraphic font, e.g., H, represent
matrices with higher dimensionalities. Roman subscripts are
descriptors (e.g., “n” for noise), while italic subscripts are
indices (e.g., n indexing discrete MPCs). Superscript (·)T
is transpose and (·)† stands for its Hermitian (complex
conjugate) transpose. The transformation matrix of discrete
Fourier transform (DFT) with proper dimension is expressed
as F. The operator with subscript, E(·), denotes the expec-
tation applied over a variable or an index.

II. SIGNAL MODEL
The raw measured channel transfer functions are the ratio

of the received signal divided by the transmitted (sounding)
signal. Assuming excitation from a suitably designed multi-
carrier signal [4], [28], the sounding signal magnitude is con-
stant over the bandwidth of interest, so that the division by it
does not change the noise statistics. Under our data model,
the measured channel, Hmea(fk), at a certain subcarrier
frequency fk can be regarded as a sum of the superposition

of Npath planar waves, the DMC NDMC(fk), and additive
white Gaussian noise (AWGN) N(fk). Thus, the MIMO
channel between the NT and NR antenna elements at the
Tx and Rx end, respectively, can be expressed as

Hmea(fk) = H(fk) +NDMC(fk) +N(fk) ∈ CNR×NT

=

Npath∑
n=1

γng̃R(ΩR,n; fk)g̃
T
T(ΩT,n; fk)e

−j2πfkτn

+NDMC(fk) +N(fk), (1)

where the second equality relates the MIMO channel matrix
to the parameters of the double-directional channel model
[29] that we wish to extract: γ is the complex amplitude,
τ refers to the propagation delay, and ΩR and ΩT stand
for the DoA and DoD, respectively, of the n-th MPC. The
complex Tx and Rx antenna element pattern, g̃T ∈ CNT×1

and g̃R ∈ CNR×1, are measured as function of direction and
frequency point, e.g., in an anechoic chamber.

Note that our model ignores the fact that (in the farfield)
the MPCs as well as the DMC consist of two orthogo-
nal polarizations. We adopt this approach for two main
reasons: (i) it simplifies notation, and (ii) it is in line
with many measurements especially at high frequencies
that use single-polarized (usually vertical-to-vertical impulse
responses only). It is important to acknowledge, though, that
neglecting of the polarization may reduce the accuracy of
the estimates even of the chosen polarization [6]. Inclusion
of dual polarization into the DMC model in our algorithm
does not pose fundamental problems because the DMC
cluster structure is generally assumed (based on physical
motivations) to be the same for all polarization combinations,
with just the power being different.

The full description of the measured MIMO channel can
be expressed as a three-dimensional (3D) matrix, Hmea ∈
CNf×NR×NT , in which the first dimension is the subcarrier
frequencies; however, such 3D matrices are complicated
to handle. For the sake of simplification in the following
discussion and analysis, we introduce the vector form of the
measured channel, hmea, as

hmea ≜ [[Hmea]1,1,1, · · · , [Hmea]Nf ,1,1, · · · · · · ,
[Hmea]Nf ,NR,1, [Hmea]1,1,2, · · · · · · ]T

= h+ nDMC + n ∈ CNfNRNT×1, (2)

where [Hmea]i,j,k denotes the (i, j, k)-th element in the 3D
channel observation matrix, Hmea. Similarly, the vector form
of the contribution from specular MPC, DMC, and additive
noise are thus defined as h, nDMC and n, respectively.

The analysis in this paper is based on the following
assumptions:

a) the additive noise is assumed to be an i.i.d. zero-mean
circularly symmetric complex Gaussian process;

b) the DMC contribution can be modeled as zero-mean
complex Gaussian process with specific covariance ma-
trix;
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c) each DMC cluster is independent of other DMC clusters
and noise.

Assumption a) corresponds to the standard model of ther-
mal noise. The noise is assumed to be a random realization
at each Tx-Rx antenna combination.1 Due to the identical
design for each radio frequency chain, the distributions are
identical with zero mean and the same variance, also known
as the noise level; it is independent of all signal components.

Assumption b) comes from the superposition of a large
number of small contributions with independent complex
amplitude. Based on the Central Limit Theorem, the DMC
process can be modeled as a zero-mean circularly symmetric
process due to the superposition of many complex vectors
with uniformly distributed random phases. The structural
covariance matrix will be discussed in the next section. Both
assumptions a) and b) are standard in the DMC literature [7].

Assumption c) corresponds to the independence of diffuse
contributions stemming from interactions with different clus-
ters of objects, which leads to independence in distributions.

A. FREQUENCY/DELAY DOMAIN CHARACTERIZATION
OF THE DMC

The traditional model for the DMC in the literature
is a single-sided exponential decay in the delay domain.
Specifically, the parametric Power Delay Profile (PDP) of
the DMC process, ζDMC(τ), can be modeled as

ζDMC(τ) =


0 , τ < τd
1
2α , τ = τd

αe−βd(τ−τd) , τ > τd

, (3)

where α is the maximal power of the DMC in the delay
domain, and τd stands for the base delay. Equation (3)
incorporates a Heaviside step function since the diffuse
scatterings always add extra delay to the base delay τd. The
coherence bandwidth is βd. The Fourier transform of (3) can
be expressed as

ψ(fk) =
α

βd + j2πfk
e−j2πfkτd . (4)

Based on the aforementioned assumption, the statistical
description of the DMC in the delay domain can be modeled
as a random vector that follows the multivariate complex
Gaussian distribution. The covariance matrix of an arbitrary
transfer function vector at each Tx-Rx antenna combination
from the observation, u(f) ∈ CNf×1, can be expressed as

Rf ≜ E
[
u(f)u†(f)

]
(5)

=


ψ(0) · · · ψ(−(Nf − 1)∆f)
ψ(∆f) · · · ψ(−(Nf − 2)∆f)

...
. . .

...
ψ((Nf − 1)∆f) · · · ψ(0)

 ,
where E [u(f1)u

∗(f2)] = ψ(f1 − f2) holds due to the
stationarity of the process. The equal frequency spacing,

1This is because in channel sounding different Tx antennas are excited
on orthogonal resources.

∆f = BW/Nf , is the frequency separation between two
adjacent frequency points within the bandwidth, BW.

In contrast, in our model we consider the PDP to be
the sum of different DMC clusters, each of which has a
single-sided exponential decay with different base delays
and possibly different decay constants. The base delay for
a cluster can be modeled as the same delay as the corre-
sponding MPC that gives rise to the DMC cluster. From the
assumption c) on independence between any DMC clusters,
the DMC covariance matrix in the frequency domain can be
reconstructed by the summation from each single DMC delay
cluster. With the consideration of the additive Gaussian noise
in the channel, the total covariance matrix of the random
processes (noise and DMC) can be written as

Rf =
∑
i

Rf,i + σ2
nI = toep(v(θ),v†(θ)), (6)

where σ2
n is the noise power level. The matrix, Rf,i, denotes

the covariance matrix for each DMC cluster appearing in the
delay domain. The Toeplitz operator is defined as

toep(x,y) = toep


 x1...
xM

 , [y1, · · · , yM ]



=


x1 y2 · · · yM

x2 x1
. . . yM−1

...
. . .

. . .
...

xM xM−1 · · · x1

 , (7)

where the first elements are real-valued and equal, x1 = y1.
The covariance matrix with the special structure is a Toeplitz
matrix [13], where its generating vector can be expressed as

v(θ) ≜ σ2
ne0 +

∑
i

αi

 1

βd,i
, · · · , e

−j2π
Nf−1

Nf
τd,i

βd,i + j2πNf−1
Nf

T

,

(8)

where the descriptive parameter vector is defined as θ =
[αT , τT

d ,β
T
d , σ

2
n]

T . The vector e0 ≜ [1, 0, · · · , 0] is used to
generate the identity matrix with Toeplitz structure.

B. ANGULAR DOMAIN CHARACTERIZATION OF THE
DMC

The antenna correlation can be used to characterize the
angular domain distribution. According to several channel
measurements and investigations, a multi-modal von Mises
distribution [20], [24] is a suitable description for signals
arriving at the Rx from different directions forming different
clusters, which is expressed as

fm−VMD(φ) =
1

2π

∑
i

wi
eκi cos (φ−µi)

I0(κi)
(9)

with the constraint wi ≥ 0, ∀i and
∑

i wi = 1 on the weights.
The average direction is denoted by µi for a certain cluster.
κi is the parametric description of how dispersed the cluster
is—a larger value corresponds to a higher concentration in
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distribution. A set of the first kind of modified Bessel func-
tion with order zero, I0(κi), is introduced for the purpose
of normalization. Thus, the antenna correlation matrix at the
Rx can be written as

RRx =
∑
ϕ

g̃R(ϕ)g̃
†
R(ϕ)fm−VMD(ϕ) = GRKG†

R, (10)

where K is a diagonal matrix whose elements correspond
to PDF value fm−VMD(ϕ). The matrix G ∈ CNR×Nϕ is
the aggregation of array pattern g̃R(ϕ) from Nϕ different
directions into columns. In our examples, we adopt Nϕ = 36,
corresponding to the angular sampling spacing of 10 degrees
for a rotating horn antenna (this sampling spacing will be
used in the real-world measurement in Sec V.F).2 Note that
for the MIMO case, a similar definition can be used for the
Tx.

The Rx correlation matrix is an implicit function of the
angular distribution fm−VMD. Besides, the correlation matrix
suffers from the limitation that the resolution cannot be better
than the antenna array beamwidth. Therefore, the angular
description of the DMC clusters in the channel can be
acquired from the angular power spectrum (APS), which can
be expressed as

APS(ϕR) =
1

Nf

Nf∑
k=1

|[H]k,nR |2

=

∫
ϕ

|g̃R,nR(φ− ϕR)|2fm−VMD(φ)dφ (11)

≈ |g̃R,nR
(ϕR)|2fm−VMD(ϕR),

where [H]k,nR denotes the (k, nR)-th element in the 2D
observation matrix H ∈ CNf×NR . It is assumed that the
channel observation is conducted using a rotating horn
channel sounder. The horn antenna rotates and steers towards
the direction ϕR, acting as the nR-th antenna in the array
during the measurement. The approximation error is small
when the DMC cluster angular spread is larger than the
antenna beamwidth—there is less variation in the angular
spectrum within the beamwidth so that the sample at ϕR can
characterize its distribution. The APS can be approximately
regarded as the diagonal entries of correlation matrix RRx

with antenna angular sampling {ϕR}. The local maxima
in the angular power spectrum indicate the horn steering
direction that is closest to the directions of the impinging
signals at the Rx end.

The above description was for the Rx side; for ease of
exposition, much of the following section will deal with the
single-input multiple-output (SIMO) case. For the multiple-
input single-output (MISO) and MIMO case, we need equa-
tions for the Tx, which are completely analogous to the
Rx case. Furthermore, for the MIMO case, we will use the
assumption that within each cluster, the angular distribution

2While it is not strictly necessary to choose Nϕ equal to the sampling
spacing of measurements, it does mitigate the impact of potential calibration
errors in the horn antenna pattern.

of the DMC at the Tx and Rx ends are independent of
each other—in other words, the Kronecker model only
holds within each cluster. The angular covariance matrix
for each DMC cluster Rang ∈ CNTNR×NTNR can be thus
decomposed into the Kronecker product

Rang = RTx ⊗RRx, (12)

where RTx ∈ CNT×NT and RRx ∈ CNR×NR stand for the
Tx and Rx correlation matrix, respectively. Note however
that the DoAs and DoDs of the overall channel do not fulfill
this Kronecker condition; this will be further discussed in
Sec III.F.

C. FREQUENCY-ANGLE DMC MODEL
Multiple MIMO channel measurements [21], [25], [30]–

[33] have shown that each DMC cluster can be typically
associated with a specular cluster. The physical interpretation
of this phenomenon could be attributed to the fact that DMC
stems from rough surfaces that give rise to both specular and
diffuse components, or from interactions with smaller objects
surrounding larger specular clusters. For example, if one of
the MPCs corresponds to the reflection from a building exte-
rior, there might exist more weak reflections coming from the
same building, e.g., from the rough surfaces, corners, glasses,
metal door/window frames, etc. The delays and directions of
the weak components are similar to the specular components
since they come from the same building.

Based on observation from those measurements, each
DMC cluster in the delay domain shows an exponential-
decay behavior (as opposed to the conventional model as-
suming only one exponential decay of the total DMC PDP).
Especially if the clusters are well-separated, the resulting to-
tal channel cannot be described by a Kronecker model: there
is a clear relationship between the base delay of a cluster
and its angle (related to the object creating the scattering),
while the Kronecker model is based on the assumption of
independence among different parametric domains—delay,
DoA, and DoD.

For this reason, in the multiple DMC cluster model, only
the individual DMC clusters follow the Kronecker model.3

In a SIMO scenario as an example:

R =
∑
i

RRx,i ⊗Rf,i + σ2
nI, (13)

where RRx,i and Rf,i stand for the DMC covariance matrix
in DoA and delay domain, respectively. The independence
between DMC clusters and the noise results in the summa-
tion of covariance matrices, while the covariance matrix for
each DMC cluster is expressed by the Kronecker product.

III. DMC ESTIMATION
The covariance matrix of each DMC process in (13) is a

square matrix with NfNR dimensionality. It is almost infea-
sible to solve the problem of fitting a parametric description

3This behavior is similar to the model for the MPCs in the COST 259
model [34].
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to it with limited computational resources. We thus perform
fitting sequentially in the two dimensions, frequency/delay
and angle. Since delay filtering can be implemented more
easily than spatial filtering, the estimation first focuses on
the delay domain. We first estimate the cluster start times,
and then use delay gating to isolate the contributions of
this cluster, whose corresponding DMC angular descriptions
can be evaluated consequently. Thus, the full description of
DMC clusters with appropriate combination of the delay and
angular parameters is built up. Note that even though we
are treating the two domains sequentially, we do not make
a Kronecker assumption; the angular characteristics can be
different for each estimated delay cluster. This strategy is
demonstrated in Sec III.A in delay cluster identification
and initialization. The delay parameters of the DMC are
then estimated via the gradient descent method, which is
reproduced from [4] for the sake of convenience in the
later discussion, in Sec III.B, and the angular estimation is
developed in Sec III.D.

The number of DMC processes will be determined in the
initialization by the detection of the number of peaks, se-
quentially in PDP and angular spectrum. Since the estimated
DMC (i.e., residue after subtraction of the specular MPCs
from the channel) has a lower dynamic range, we use the raw
total average Power Delay Profile (APDP) as the basis for
the estimation. This is justified by the fact that the locations
of specular and DMC clusters usually coincide, while at the
same time, it retains the capability to identify strong DMC
clusters that are not associated with a specular component
(e.g., originating from vegetation).

Algorithm 1: DMC delay cluster parameter estima-
tion

1 function DMC_delay_est(H, Ĥsp)

// DMC delay cluster initialization

// Focus on raw channel observations H

2 Compute APDP ζ(τ), (16);
3 Detect all local maxima outside clear-out regions, {τc}, (14);
4 Initialize {ᾰ}, {τ̆d}, {β̆d}, σ̆2

n, (17).
// estimate DMC delay parameters

// Focus on extracted observations

Hr = H− Ĥsp

5 while non-convergence do
6 Compute residual APDP, ζr(τ), (19);
7 Compute Jacobian matrix, (24);
8 Calculate the error function, (26);
9 Gradient-descend parameter update, (27);

10 return {α̂}, {τ̂d}, {β̂d}, σ̂2
n

A. DELAY CLUSTER IDENTIFICATION AND
INITIALIZATION

Since later computation steps (gradient descent method)
do not provide the ability to add or remove DMC clusters,

it is essential to detect all possible DMC clusters in the
initialization. The basic detection mechanism is based on
the observation that at the base delay of each DMC cluster,
there is a sudden change in the PDP. In order to provide ro-
bustness, and exclude the impact of the time-decay constant
of the cluster, we base the identification on the peaks of the
second-order derivative of the original PDP [35]. The set of
the selected delay indices, S, is thus

S ≜

{
τc

∣∣∣ − d2

dτ2
ζ(τ)

∣∣∣
τ=τc

≥ pthresh

}
, (14)

where τc refers to the base delay candidates, and pthresh
is the threshold value. The second-order derivative of the
discrete PDP can be approximated by

− d2

dτ2
ζ(τ)

∣∣∣
τ=τc

≈ 2ζ(τc)− ζ(τc −∆τ)− ζ(τc +∆τ)

∆τ2
,

(15)

where ∆τ is the spacing between two adjacent delay sam-
ples. The average PDP of the raw channel observations is
defined as

ζ(τ) ≜ Eℓ

[
|F†hℓ|2

]
, (16)

where hℓ ∈ CNf×1 stands for the frequency domain sam-
pling at ℓ-th antenna port.

It is possible that some of the detected peaks do not corre-
spond to starts of new clusters, but rather arise from ripples
in the PDP that are either caused by the fact that real-world
PDPs might not decay in a strictly monotonic way, or even
if they do, their estimates suffer from random fluctuations.
Thus, to avoid the over-estimation of the number of clusters,
we create a clear-out region: once the earlier cluster is
detected, the next detection is forced to occur at least several
delay bins later. While this could prevent separating two
closely spaced DMC clusters, it is often preferable anyway
to regard two such close clusters as a “merged” DMC cluster
and only determine the first base delay. The size of the clear-
out region should be on the order of the typical cluster decay
constant. Note that if two clusters have similar delays but
different angles, they will be separated in the subsequent
steps.

Based on this cluster identification, the initialization of
the parameters is conducted. The detected local maxima
correspond to the base delay for each DMC cluster, and
their height to the maximum power of the exponential decay.
The decay parameter, βd, can be initialized by fitting the
PDP between the base delay of the current cluster and its
following one. Assuming {τc} are sorted in the ascending
order and τc,i stands for the i-th component from the
detection, the initialization can be expressed as

ᾰi = ζ(τc,i)

τ̆d,i = τc,i

β̆d,i =
ln ζ(τc,i)− ln ζ(τc,i+1)

τc,i+1 − τc,i

σ̆2
n = ζ̄0,

(17)
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where (̆·) refers to the initialization of parameters, and the
average noise level can be estimated, e.g., from measure-
ments where no signal power is present, denoted by ζ̄0. The
summary of the initialization can be found in Alg. 1.

B. DELAY PARAMETER ESTIMATION

Based on the assumption mentioned in Sec II, the DMC
process and noise are both modeled as multivariate complex
Gaussian distribution. A maximum-likelihood estimator is
employed to estimate the descriptive parameters in the chan-
nel under the assumptions. The log-likelihood function of the
DMC clusters in the delay domain can be expressed as

L(θ|H) =−NRNf lnπ −NR ln det(Rf(θ))

−
NR∑
ℓ=1

(hℓ − ĥsp,ℓ)
†R−1

f (θ)(hℓ − ĥsp,ℓ). (18)

The reconstructed contributions of the specular MPCs at the
same antenna combination, ĥsp,ℓ, is built up based on either
initialization or the estimation from the previous RiMax
iteration. Thus, the APDP of the DMC calculated from the
residue after the MPC removal, ζr(τ), can be written as

ζr(τ) = Eℓ

[
|F†(hℓ − ĥsp,ℓ)|2

]
= diag

[
F†RfF

]
, (19)

where the covariance matrix in the delay domain is the resid-
ual averaged over all “realizations” based on the definition,
Rf ≜ Eℓ

[
(hℓ − ĥsp,ℓ)(hℓ − ĥsp,ℓ)

†
]
. The APDP can be

obtained from the diagonal elements of the Fourier transform
of the covariance matrix of the total channel.

Conversely, the log-likelihood function can be rewritten
by approximating the covariance matrix Rf using the APDP
vector, ζ(θ). Note that the parametric APDP is denoted by
ζ(θ), while the channel residual APDP is denoted by ζr(τ).
Consequently, the log-likelihood function can be expressed
as (20) on the next page, where ζk(θ) and ζr,k(τ) denote the
reconstructed APDP and residual APDP for the k-th delay-
domain sample, respectively, and (19) is used. A compu-
tationally efficient method to reduce matrix multiplications
and simplify the expression is introduced as

ζ(θ) = F†(W1v(θ) +W2v
†(θ)), (21)

using the weight matrices W1, W2 defined in [4, p. 135]
and v(θ) is the generating vector to the Toeplitz matrix (8).

The APDP is now expressed as a function of DMC
parameters in a vector, v(θ). The gradient descent method
requires the partial derivative with respect to each parameter
to optimize the estimation. Since W1 and W2 are not a
function of any DMC parameters, the first-order derivative
of (21) with respect to DMC parameters can be expanded as

∂

∂θq
ζ(θ) = F†(W1

∂v(θ)

∂θq
+W2

∂v†(θ)

∂θq
), (22)

where θq refers to an arbitrary DMC parameter. The first-
order derivative of the Toeplitz generating vector with respect
to parameters, ∂

∂θq
v(θ), can thus be expressed as (23). The

vector derivatives can be obtained using the chain rule by
substituting (23) into (22).

The modified Jacobian matrix, D(θ), which is the aggre-
gation of 3NDMC+1 vectors (NDMC is the number of DMC
clusters) of the first-order derivatives with respect to DMC
parameters in the delay domain, is defined as

D(θ) =diag[ζ(θ)]−1·[
∂

∂α
ζ(θ),

∂

∂τd
ζ(θ),

∂

∂βd
ζ(θ),

∂

∂σ2
n

ζ(θ)

]
, (24)

where the matrix inversion of the diagonal matrix whose
elements are the reconstructed parametric APDP comes from
the derivative of the log-likelihood function (20) as

∂

∂θq
L(θ|H) = −NR

Nf∑
k=1

[
1

ζk(θ)
− ζr,k(τ)

ζ2k(θ)

]
∂ζk(θ)

∂θq

= NRD
T
q (θ)

[
diag[ζ(θ)]−1ζr(τ)− 1Nf

]
,

(25)

where Dq(θ) stands for the q-th column in the matrix
and 1Nf

refers to the all-one vector with dimensionality
Nf . A detailed proof that the estimator is unbiased and
approximation of Hessian matrix with the modified Jacobian
matrix can be found in [4].

The term within the square brackets in (25) can be re-
garded as the difference between the reconstructed DMC and
the residual PDP (after removing specular MPCs). Therefore,
the error function is defined as

ϵ ≜ diag[ζ(θ)]−1ζr(τ)− 1Nf
. (26)

The estimated DMC parameters are the solution to
∇θL(θ|H) = 0, which are also the minimizer to the error
function.

In this paper, we adopt a Gauss-Newton method for
all gradient descent steps due to its simplicity. Thus, the
estimated parameters update, ∆θ, along the gradient descent
direction is computed as [4]

∆θ̂{p+1} = argmin
∆θ

∥D(θ̂{p})∆θ − ϵ{p}∥2F, (27)

where the superscript (·){p} refers to the estimated pa-
rameters in the p-th iterative loop. The update for the
next iteration, ∆θ̂{p+1}, is based on the Jacobian matrix
D(θ̂{p}) and the corresponding error function ϵ{p} with
the evaluated parameters from the previous iteration. The
update of the parameters is added to the previous estimation,
θ̂{p+1} = θ̂{p}+η∆θ̂{p+1}, with a step size variable η. The
step size is chosen to satisfy L(θ̂{p+1}|H) > L(θ̂{p}|H)
so that the convergence and the convergence speed can be
guaranteed. The parameter estimation with proper update
will be iterated until convergence, which could be judged to
be reached either due to relative update magnitude falling
below a threshold, or a maximum number of iterations
performed. The pseudo-code of the iterative gradient-based
method can be found in Alg. 1.
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L(θ|H) ∝ −NR ln det(Fdiag[ζ(θ)]F†)−
NR∑
ℓ=1

(hℓ − ĥsp,ℓ)
†Fdiag[ζ(θ)]−1F†(hℓ − ĥsp,ℓ)

= −NR

Nf∑
k=1

[
ln ζk(θ) +

ζr,k(τ)

ζk(θ)

]
, (20)

∂

∂α
v(θ) =

 1

βd

e
−j2π 1

Nf
τd

βd + j2π 1
Nf

· · · e
−j2π

Nf−1

Nf
τd

βd + j2πNf−1
Nf

T

∂

∂τd
v(θ) =

α

Nf

0 −j2πe−j2π 1
Nf

τd

βd + j2π 1
Nf

· · · −j2π(Nf − 1)e
−j2π

Nf−1

Nf
τd

βd + j2πNf−1
Nf

T

∂

∂βd
v(θ) = −α

 1

β2
d

e
−j2π 1

Nf
τd

(βd + j2π 1
Nf

)2
· · · e

−j2π
Nf−1

Nf
τd

(βd + j2πNf−1
Nf

)2

T

∂

∂σ2
n

v(θ) = e0,

(23)

C. DELAY-ANGLE CLUSTER IDENTIFICATION
To estimate the angular distribution corresponding to a

particular delay cluster, it is crucial to reduce the “interfer-
ence” from other clusters. Each estimated delay cluster is
captured by delay gating, based on which the corresponding
angular spectrum will be analyzed. In other words, the
angular descriptions are evaluated for each estimated DMC
cluster in the delay domain. The delay gating can thus be
expressed as

Hgate = F
[
wini ⊙ F−1Hr

]
, (28)

where ⊙ denotes the Hadamard product and the concentra-
tion window, wini ∈ RNf×1, is defined as

wini =

{
1, τ̂d,i ≤ τ < τ̂d,i+1

0, otherwise , (29)

where τ̂d,i stands for the base delay for i-th DMC cluster
which has already been estimated. The rectangular window
function is employed to isolate the DMC cluster from the
others based on the estimated delay parameters. Note that the
rectangular window is applied for the purpose of isolating
clusters only.

The angular information of the delay-gated channel ob-
servation described by the APS, ντ (ϕ), is obtained by
substituting H with Hgate in (11) and sampling at the horn
antenna steering direction, {ϕ} = {ϕR}. The contribution
from previous estimated DMC clusters whose “tails” fall into
the current delay gate is excluded as

ντ,i+1(ϕ) = ντ (ϕ)−
i∑

j=1

pjντ,j(ϕ), (30)

where pj = ∥wini+1 ⊙ F−1ĤDMC,j∥ is the reconstructed
DMC “leakage” power and ĤDMC,j is the reconstructed
DMC cluster using its estimated parameters.

The angular parameters are initialized from the delay-
gated observations. The local maxima of the angular spec-

trum, {ϕc}, can be found by

{ϕc} ≜
{
ϕs

∣∣∣ντ (ϕs) > ντ (ϕs−1)∩

ντ (ϕs) > ντ (ϕs+1) ∩ ντ (ϕs) > pthresh} . (31)

From the assumption of the DMC angular model, i.e., the
multi-modal von Mises distribution, the APS is proportional
to the probability density function. The detected local max-
ima correspond to the mean directions of the DMC angular
cluster when clusters are well-separated; the peaks are shifted
from the direction of the cluster center towards each other
if the clusters overlap. The initialization of κ does not have
an explicit solution, so we consider using an empirical value
[36]. The mixture weights, wi, are proportional to the total
power ratio. Consequently, the initialization can be expressed
as

µ̆i = ϕc,i

κ̆i = 5

w̆i =
|ντ (ϕc,i)|∑
j |ντ (ϕc,j)|

.

(32)

However, there exists the possibility that two or more
clusters have similar yet non-identical delays and different
angular information.4 With the delay initialization and es-
timation mechanism mentioned in Section III.A and B, the
clusters are erroneously modeled to have a single delay that
is then estimated. This reconstruction error dominates the
total estimation performance especially when those clusters
are relatively strong compared to other clusters.

Although the clusters are merged in estimation, it is still
possible to determine the distinct clusters in angular-delay
power spectrum (ADPS), which is computed by

ADPS(τ ,ϕ) ≜ |F−1Hr|2 ∈ RNf×Nϕ . (33)

4Identical delays and different angular information can be seen as a
special case.
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Algorithm 2: DMC angular cluster parameter esti-
mation

1 function DMC_angle_est(H, Ĥsp, {τ̂d})
2 s = 1, r = 1, ncluster = |{τ̂d}|;
3 for s ≤ niter do
4 for r ≤ ncluster do

// DMC delay-angle cluster

initialization

// Focus on extracted channel

observations Hr = H− Ĥsp

5 Compute residual ADPS, (36), smoothed residual
ADPS with safety margin, (34,37), and local
maxima, (35)

6 if one local maximum then
7 Delay-gate observation, Hgate, (28);
8 Compute angular spectrum, ντ (ϕ);
9 Detect all local maxima ,{ϕc}, (31);

10 Initialize {µ̆}, {κ̆}, {w̆}, (32).

11 else
12 Determine antenna/beam subset, A;
13 Re-evaluate delay parameters;
14 Delay-gate observation, Hgate, (28);
15 Compute angular spectrum, ντ (ϕ);
16 Detect all local maxima ,{ϕc}, (31);
17 Initialize {µ̆}, {κ̆}, {w̆}, (32);
18 ncluster ← ncluster + 1.

// estimate DMC angular parameters

// Focus on extracted channel

observations Hr = H− Ĥsp

19 while non-convergence do
20 Compute Jacobian matrix, (39);
21 Calculate the error function (40);
22 Gradient-descend parameter update;

23 r ← r + 1;

24 s← s+ 1;

25 return {µ̂}, {κ̂}, {ŵ}

In order to remedy the above-mentioned defect in the esti-
mation mechanism, it is necessary to determine the locations
of the clusters in the joint delay-angle spectrum. Moreover,
each delay-angle bin may have different fading status, which
causes difficulties in the detection of start delay and mean
direction of the DMC cluster in ADPS. Therefore, averaging
in a local region is used to smooth the fading dips. The
smoothed ADPS is computed by

ÃDPS =
1

IJ
ADPS ⊛2 1I×J , (34)

where the operator ⊛2 denotes the two-dimensional (2D)
circular convolution. 1I×J is the all-one matrix with dimen-
sionality I × J , where I and J are the window length of
moving average in delay and angular domain, repectively.

The local maxima detected from the smooth ADPS, ÃDPS,
is expressed as

LM ≜{(τLM, ϕLM)|

ÃDPS(τ, ϕ) > ÃDPS(τ ±∆τ, ϕ±∆ϕ)}, (35)

where ∆τ and ∆ϕ is the delay and angular bin spacing,
respectively.

If several local maxima within a certain delay gate are
observed, it indicates the existence of several clusters that
can be separated. For each candidate cluster, it is feasible
to select a subset of the steering antennas/beams, A, that
isolates the cluster from others by limiting the receiving
angular range. This angular isolation enables the DMC delay
parameter estimation for each cluster without interference
from other clusters in this gating interval. Therefore, the
delay estimation algorithm can be employed to re-evaluate
its parameters. The initialization is τ̆ = τLM − I/2, in
which τLM is the detected delay of local maximum from
the smoothed ADPS; the start delay deviates by a half of
the 2D convolution window length to the local maximum,
which is compensated in the initialization.

To further eliminate the “inter-cluster” interference, each
cluster contribution is removed from the ADPS after its
estimation, giving the residual ADPS

ADPSres,i = ADPS −
∑
j ̸=i

ÂDPSj , (36)

where ÂDPSj denotes the ADPS reconstructed from its
estimation. However, the removed ADPS is the estimate of
the statistical average, while the actually observed signal
includes the fading status. This might lead to imperfect
subtraction and introduce “ghost” clusters. Thus, a safety
margin is added in the removal, so that only a cluster above
the safety margin is determined as a distinct cluster. This
can be expressed as

ADPSsm
res,i = max(ADPS −

∑
j ̸=i

ÂDPSj · ξ, 0), (37)

where ξ is the safety margin. The safety margin is defined
similarly to the fading margin and is introduced to ensure
that the detected peaks correspond to actual clusters rather
than spurious fading peaks. The determination of the safety
margin relies on two key factors: the statistical distribution
and the admissible false alarm probability. Since each ADPS
bin is assumed to follow Rayleigh fading, the average over
multiple delay-angle bins follows the Nakagami-m distri-
bution, which effectively captures the amplitude statistical
characteristics. Since the antenna sampling interval (10 de-
grees) is close to the 3-dB beamwidth (13 degrees), J = 1 is
selected. If the angular sampling in the channel observation
is denser, a different value of J can be chosen. The false
alarm probability is set to 1%.

It may require several iterations niter to let the estimation
converge to stable results. It is worthwhile to mention that
at the first iteration, s = 1, it is impossible to remove the
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contribution from clusters in the j > i gating interval, which
are therefore ignored on the computation of ADPSres,i. The
summary of the initialization can be found in Alg. 2.

D. ANGULAR PARAMETER ESTIMATION
Based on (10), the first-order derivative of the antenna

correlation matrix with respect to angular parameters can be
expressed as

∂

∂µi
fm−VMD(φ) = wiκi sin(φ− µi)

eκi cos (φ−µi)

2πI0(κi)

∂

∂κi
fm−VMD(φ) ≈ wi cos(φ− µi)

eκi cos (φ−µi)

2πI0(κi)

∂

∂wi
fm−VMD(φ) =

eκi cos (φ−µi)

2πI0(κi)

, (38)

where the normalization I0(κi) is regarded as a constant
when taking the derivative, resulting in a simplified (though
approximate) expression.

The modified angular Jacobian matrix, D(θ), which is the
aggregation of the first-order derivative vectors with respect
to angular cluster parameters, is defined in (39). The linearity
property of the diagonalization operation—the derivative of
the diagonal matrix is equivalent to the derivative of the
diagonal elements, ∂

∂θq
K = diag( ∂

∂θq
fm−VMD)—is used.

The variable, θ, is extended to include arbitrary angular
parameters describing DMC clusters.

The estimation method is analogous to the estimation of
DMC parameters in the delay domain. The error function of
the angular distribution is defined as

ϵϕ ≜ diag(ντ (θ))
−1ντ (ϕ)− 1NR , (40)

where ντ (θ) denotes the reconstructed APS with the es-
timated angular parameters and ντ (ϕ) corresponds to the
actual APS to be fitted. With the gradient descent method, the
error function is minimized to provide the parameter update
on estimation.

E. COVARIANCE MATRIX RECONSTRUCTION AND
INVERSION

The computational complexity of matrix inversion or
reconstruction goes approximately with the third power of
the matrix dimensions. In the existing RiMax DMC models,
the DMC covariance matrix inversion and reconstruction take
advantage of the Kronecker product property—the inverse
of the covariance matrix can be decomposed into the inverse
of matrices with smaller scales. Specifically, instead of a
direct inversion of a square matrix with the dimensionality
of NfNR, inversion of square matrices with dimension Nf

and NR is done instead. However, since the Kronecker model
does not hold for the more accurate DMC model used here,
this complexity saving cannot be achieved.

Consequently, we use a subspace (the term “subspace”
refers to the parametric domains) whitening method with
proper normalization to deal with the structural covariance
matrix [4], where whitening is performed sequentially in
the different parametric domains. The DMC clusters in the

delay domain can be whitened, creating a flat process in the
frequency domain. Moreover, it is also possible to whiten the
APS in both Rx and Tx spectra. Therefore, all the diffuse
scattering processes can be whitened, which renders the
covariance matrix for each DMC cluster an identity matrix.

Based on the independence assumption between different
DMC clusters, the approximation of the total covariance
matrix in the delay domain is the summation of each
component as in (6). Then the angular covariance matrix
is written as

R̂Rx ≈
∑
i

PiR̂Rx,i, (41)

where the power for each reconstructed DMC cluster in the
delay domain is given by

Pi = trace
(

diag(R̂f,i)
)
, (42)

in which R̂f,i is the reconstructed covariance matrix for
DMC cluster i. A lower triangular matrix, L, which is
obtained from Cholesky decomposition of the covariance
matrix in a certain parametric domain, e.g., R̂f = LfL

†
f ,

with proper dimension can be applied to the channel residue
to whiten the process. Once the delay/frequency domain has
been whitened, the angular covariance matrix of the total
channel is altered, as described by the following:

R̃Rx ≈
∑
i

P̃iR̂Rx,i ∝
∑
i

R̂Rx,i, (43)

since the power for each DMC cluster in the delay domain
is whitened and normalized as

P̃i = trace
(

diag(L−1
f R̂f,iL

−†
f )

)
≈ const. (44)

With our proposed DMC estimation algorithm, it is possible
to avoid the duplicate consideration and account for the
change of total covariance matrix due to the subspace
whitening in other parametric domains. The estimation, not
relying on the Kronecker model, can provide R̂Rx,i to
incorporate potential covariance matrix changes from R̂Rx

to R̃Rx. If the approximation works ideally, the whitening
will show a flat spectrum in both delay and DoA domain.
Thus, the flatness of the whitening results can be regarded
as a measure for the accuracy of the matrix inversion
approximation.

F. GENERALIZATION TO THE MIMO CASE
We now discuss the extension of DMC estimation from

SIMO to MIMO scenarios, assuming that multiple clusters
start at the same delay, though with different DoDs and
DoAs. This assumption of an identical base delay for multi-
ple clusters simplifies the subsequent discussion, as it avoids
the need for angular isolation and the re-evaluation of the
base delays, but of course incorporation of different base
delays is easily possible according to the above-outlined
procedure.

On one hand, a 2D gradient-descent method aiming at
the estimation of the joint angular spectrum has high com-
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D(θ) =diag(fm−VMD)
−1·[

diag(Gφdiag(
∂

∂µ
fm−VMD)G

†
φ) diag(Gφdiag(

∂

∂κ
fm−VMD)G

†
φ) diag(Gφdiag(

∂

∂w
fm−VMD)G

†
φ)

]
. (39)

plexity. On the other hand, the traditional decomposition of
this joint spectrum into a Kronecker product of DoD and
DoA spectra will create ghost clusters in the reconstruction.
Consistent with the key idea of the current paper to avoid
the “ghost modes” from the Kronecker product in channels
with multiple clusters, we propose the following method to
generalize to MIMO channels.

First, the (marginal) DoD and DoA spectra are generated
separately from the observation. With the same procedure
and techniques from initialization to estimation, the pa-
rameters are estimated accordingly for both Tx and Rx
side—average direction {µ̂D}, spread {κ̂D}, and weights
{ŵD} for DoD spectrum, and average direction {µ̂A}, spread
{κ̂A}, and weights {ŵA} for DoA spectrum, respectively. A
Cartesian product creates all element combinations between
two sets, {µ̂D} and {µ̂A}, though this now includes ghost
clusters.

Using the smoothed 2D joint APS, computed from 2D
spectrum ν(ϕD, ϕA), using 2D moving average, it is possible
to eliminate the ghost clusters. The true angular cluster’s
location coincides with the local maximum of the 2D joint
spectrum above a certain threshold. The joint APS at the lo-
cation of ghost clusters either does not exhibit local maxima
or exhibits such low power that it falls under the threshold.
Therefore, the angular cluster locations {(µ̂D,m, µ̂A,n)} are
determined by filtering according to the aforementioned
conditions.

Another problem is to allocate proper weights to each
cluster from two estimated sets of weights, {ŵD} and {ŵA}.
With the determined cluster centers, {(µ̂D,m, µ̂A,n)}, the
APS contribution from each cluster, ν̂i,j , can be constructed
with the corresponding spread, κ̂D,i and κ̂A,j . The actual
APS is the weighted sum of all angular clusters,

ν(ϕD, ϕA) =
∑

{(i,j)}

wi,j ν̂i,j(ϕD, ϕA), (45)

which can be solved by a linear estimator as ŵ = Â+a,
where a = vec(ν(ϕD, ϕA)) is the vectorized 2D joint APS.
The pseudo-inverse of the matrix, Â, whose columns are the
vectorized reconstructed APSs, vec(ν̂i,j(ϕD, ϕA)), is applied
to solve the linear problem.

When elevation is incorporated into the SIMO case, the
algorithm can be generalized by using a similar step as
for the generalization from (azimuth-only) SIMO to MIMO.
Specifically, the DoA-DoD azimuthal joint spectrum will
then become a DoA azimuth-elevation joint spectrum, while
the core estimation process and weight assignment remain
unchanged. This method can also be applied to the more
general scenario where both azimuth and elevation angles
are incorporated in MIMO channel measurements.

IV. NUMERICAL RESULTS
To verify our proposed algorithm, this section presents

numerical results based on a synthetic channel model, which
ensures that the ground truth is known. Unless stated oth-
erwise, we assume that the sounding system measures the
transfer function by scanning over 101 frequency points
within a 1GHz bandwidth. The sounding system is equipped
with rotating horn antennas at Tx and Rx ends with
beamwidth of approximately 13 degrees; measurements are
taken with the horns rotating in 10-degree steps. For ease of
explanation, we first show the results of a SIMO system, with
parameters chosen to emulate a rotation-horn setup at the Rx
end; an omnidirectional antenna is deployed at the Tx end.
MIMO angular estimation results are shown in Sec IV.C.
Note that Figs. 1–9 show results for a particular realization
of the DMC, which serve to illustrate the specifics of the
evaluation. The results of statistical evaluations in Figs.
10–12 are based on 200 synthetic pure DMC channels. Fig.
13, which presents the estimation accuracy, then takes the
ensemble average over 50 synthetic channels with 20 DMC
and noise realizations each. For the sake of convenience, the
PDP’s horizontal axis is expressed in terms of propagation
distance, which is equivalent to the time delay multiplied by
the speed of light.

The propagation channel is assumed to have five MPCs
(widely separated, so that each specular MPC “cluster”
consists of just a single component) and five corresponding
DMC clusters, as shown in Fig. 1. The channel parameters
are randomly generated and shown in Table 1. The base
delay and mean direction for each DMC coincide with the
corresponding MPC’s delay and DoA. The two closest (in the
delay domain) MPCs and their corresponding DMC clusters
have a runlength difference of 0.5 m, which is higher than the
Fourier delay resolution of 0.3 m. The CLEAN algorithm is
used to initialize the estimation of the specular components,
which are then used as input to the RiMax algorithm. Also
shown in this figure are the MPCs estimated with CLEAN
when 25 discrete MPCs are assumed; the estimated MPCs
contribute to the main peak in each cluster. The CLEAN
algorithm tends to account for the residue from imperfect
subtraction, as well as the DMC contribution that is not in
the signal model, by placing more specular components in
the solution. The number 25 is empirically selected such that
the detection of all MPC clusters is guaranteed.

The CLEAN algorithm is commonly employed for the
initialization of MPC parameters in RiMax, due to its
simplicity in implementation. By applying the principle of
successive interference cancellation, the estimated contri-
bution of each MPC is subtracted after being determined.
The residue, remaining after MPC extraction from the chan-
nel observation, is considered as unexplained by specular
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components and is thus used for the initialization of the
DMC. Both the initialized MPC and DMC cluster parameters
are fed into RiMax for parameter estimation enhancement
under its algorithmic framework, with our proposed DMC
estimation algorithm integrated into the process. In RiMax,
the optimization of MPC and DMC parameters proceeds
alternatingly—DMC estimation is performed using the pre-
estimated MPCs, followed by updating the MPC parame-
ters based on the reconstructed covariance matrix of DMC
clusters and the noise and adjusting the residue accordingly.
If the ratio between the MPC power error bound and its
power falls below a predefined threshold [4], the MPCs are
excluded from the solution.

If consecutive snapshots (with potentially small move-
ment of Tx and/or Rx) are available, the MPC and DMC
parameters exhibit minor variations across snapshots. As a
result, RiMax can be executed for the first snapshot, with
the initialization provided by the CLEAN algorithm. For
the subsequent snapshots, the previously estimated MPC
and DMC parameters can serve as the initialization, being
considered no longer requisite for the CLEAN algorithm in
the later snapshots.

Figure 1 illustrates the estimated MPCs using CLEAN un-
der the assumption of 25 discrete MPCs, where the estimated
MPCs correspond to the main peaks within each cluster. The
CLEAN algorithm tends to account for the residuals from
imperfect subtraction, as well as for the contribution of the
DMC, by introducing additional specular components, also
known as ghost MPCs, into the solution. The selection of
25 MPCs is made empirically to ensure the detection of all
clusters. The residue after the subtraction, which cannot be
ascribed to specular MPCs, is used to initialize the DMC
contribution.

TABLE 1: Synthetic channel parameters

1 2 3 4 5

MPC
τ [m] 2.5 7.7 14.3 14.8 22.1
ϕ[◦] 175.2 4.8 177.6 -20.9 -55.9
γ[dB] 10.1 3.3 0.1 -2.1 -6.9

DMC
α -8.8 -16.6 -15.5 -20.9 -22.4
βd 0.3 0.4 0.4 0.3 0.2
κ 5.9 2.8 4.4 4.5 5.5

A. DMC ESTIMATION IN DELAY DOMAIN
The first step is cluster initialization. As discussed in Sec

III.A, its second-order derivative may suffer from dynamic
range reduction, as illustrated by the blue solid line in the
lower subplot in Fig. 2, so that noise fluctuation may lead
to false alarms and missed detections of cluster starts.

As shown in Fig. 2, the modified second-order derivatives
are much stronger, with peak magnitudes increased by at
least 15dB, and thus much less sensitive to noise. The
location of the local maxima in the derivatives could be used
in the determination of the DMC base delay, which shows
a good match to the rising slopes in the synthetic channel.
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FIGURE 1: The APDP comparison between synthetic chan-
nel observation (blue solid line) and the estimation from
CLEAN algorithm with 25 MPCs: estimated MPCs (red
dashed line) and residue (yellow dotted line).
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FIGURE 2: The initialization and estimation of DMC delay
clusters. Upper subplot: comparison of APDP of resid-
ual channel observations (blue solid line) and its estimate
(red dot-dash line) is shown. Lower subplot: second-order
derivatives with (red dot-dash) /without (blue solid) MPC
contribution.

Estimation of base delay, peak power, and decay constant is
done as described in Sec III.B.

In the upper subplot in Fig. 2, four DMC clusters in
the delay domain are estimated, and their parameters are
refined by the gradient-descent method; results are plotted
with the red dashed line to compare with the residue from
extracted channel observation to be fitted as DMC clusters
in Fig. 2. Note that two clusters in the delay domain are
merged—while their associated MPCs are separated more
than a Fourier width, the DMC clusters overlap, and thus
the cluster identification in the delay domain considers them
as a single cluster. Furthermore, the total covariance matrix is
reconstructed with the estimated parameters. The whitening
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of the channel residue, using the reconstructed covariance
matrix, shows a flat process (green dotted line in Fig. 2).
The flatness of the whitening result illustrates the accuracy
of the reconstruction.

B. DMC ESTIMATION IN ANGULAR DOMAIN
In the delay-gated fourth DMC cluster starting at 14.8

meters, the angular spectrum, normalized to its maximum,
has two peaks at -20 and 180 degrees, which corresponds to
its ground truth and the interference from the third cluster.
To accurately identify clusters, it is crucial to incorporate
interference cancellation of the other clusters in the cluster
identification. Otherwise, ghost peaks may occur, where a
late contribution from a cluster that was already identified in
a previous delay gate is counted as another cluster. In Fig.
3, only one local maximum, closer to -20 degrees, should
be detected from the angular spectrum. However, there is
another peak close to 180 degrees, which can be attributed
to the tail from the third cluster falling into the current delay
gate, manifesting as interference. The contribution from this
cluster can be removed properly based on the estimated
delay and angular parameters, shown as black solid line.
The estimation, denoted by the red dot-dash line in Fig. 3,
shows a good match to the delay-gated angular spectrum,
indicating faithful covariance matrix reconstruction.

In the delay-gated third DMC cluster starting at 14 meters,
two clusters are well-separated with DoA at -20 and 180
degrees. With our proposed angular cluster isolation method
in the cluster identification and initialization, it is possible
to separate the clusters that are merged in the PDP and re-
evaluate parameters for each cluster. As shown in Fig. 4, the
third and the fourth cluster are separated and show different
start delays, as opposed to Fig. 2.
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FIGURE 3: APS of the fourth DMC cluster. The angular
spectrum after the removal (black solid line) is compared
with the estimation (red dot-dash line).

In Fig. 5, the total DoA APS of the residual channel
observation is represented by the blue solid line. Using
the estimated angular and corresponding delay parameters,

reconstructed DMC ADPS
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FIGURE 4: Reconstructed DMC ADPS with estimated pa-
rameters.

converted to power weights based on equation (43), the total
Rx covariance matrix can be reconstructed. The red dot-dash
line shows the power-weighted APS reconstruction using all
estimated angular parameters. The angular estimation closely
matches the angular power spectrum, which can serve as a
validation of the angular parameter estimation. The flatness
of the whitening, indicated by no more than a 2 dB variation
in the green dotted line, is used as a metric for the quality
of the estimation.
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FIGURE 5: The comparison of the angular spectrum between
the residual observation and the reconstruction from the
estimated DMC angular parameters. The “whitening expec-
tation” refers to the ideal performance of whitening, i.e., flat
angular spectrum

C. MIMO GENERALIZATION
In order to test the correctness and effectiveness of the

proposed generalization to the MIMO case, a joint angular
spectrum is generated. We use a different synthetic channel
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FIGURE 6: The joint angular spectrum and its DoD and
DoA spectrum. The spectrum and the joint spectrum are
normalized to their maximum.
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FIGURE 7: The reconstruction of the estimated joint angular
spectrum and its DoD and DoA spectrum. The spectrum
and the joint spectrum are normalized to their maximum.
The reconstructed spectrum estimated from gradient-descent
method (black dot-dash line) in each marginal spectrum for
comparison.

compared to that used in the previous examples, with angular
parameters listed in Table 2; all clusters are assumed to
be observed within the same delay gate. As shown in Fig.
6, there are four angular clusters in the joint spectrum,
with two of them having similar DoAs around 60 deg and
having equal weights. Thus, there are three peaks in the
DoA spectrum, while four peaks can be observed in the
DoD spectrum. Furthermore, we confirm that our estimation
method eliminates the ghost components of the Kronecker
assumption. The estimation of DoD and DoA spectrum can
be seen in Fig. 7. Instead of the 12 combinations between
DoAs and DoDs that one gets under the Kronecker model
assumption, there are only four estimated clusters. The
estimated angular parameters for all four clusters are shown

TABLE 2: MIMO synthetic channel parameters

1 2 3 4
µA[deg] 60 65 210 270
κA 3.73 5.19 4.56 2.46

µD[deg] 120 300 40 180
κD 2.70 3.89 2.35 4.21
w 0.25 0.25 0.25 0.25

TABLE 3: Estimated MIMO parameters

1 2 3 4
µ̂A[deg] 60 60 210 270
κ̂A 4.68 4.68 4.04 5.31

µ̂D[deg] 122 300 40 182
κ̂D 3.22 4.92 2.86 4.95
ŵ 0.256 0.245 0.246 0.253

in Table 3. The final estimated weights are almost identical
among the four clusters, which shows a good match to the
ground truth.

D. INCORPORATION IN RIMAX FRAMEWORK
In order to test the impact of the improved DMC esti-

mation on the specular MPCs, we integrate the algorithm
into our existing RiMax program and use it to evaluate
the synthetic channel. Results are shown in Fig. 8. The
red square markers stand for the parameters of the specular
MPCs in the delay-power description, where there are five
MPCs in the synthetic channel. The green circle and black
cross markers denote the estimation from the initialization
process and RiMax, respectively. Since the parameters are
randomly generated and not located on the search grids for
the initialization (which is done by CLEAN), the imperfect
estimation leads to residue after the “actual” MPCs have
been successfully removed from the channel observation.
This results in ghost paths, which are the reason for the over-
estimation of the number of MPCs, as well as errors in the
delay and angular parameters and the complex amplitude.

RiMax takes DMC into account in both the signal model
and the estimation. With a proper DMC covariance matrix
reconstruction, it is possible to eliminate (or at least greatly
mitigate) the ghost paths [4, (4.100)], according to the
ratio between MPC magnitude error bound and its power
magnitude, var(|γ|)/|γ|2 < 1 as the criterion; otherwise, the
“over-estimation” remains in the solution. With the proposed
covariance matrix estimation, the redundant 15 MPCs are
eliminated in the iterations, as shown in Fig. 8, showing
that the DMC estimation is successful and the accuracy is
satisfactory. As a comparison in Fig. 9, an implementation of
DMC estimation [20] with the state-of-the-art DMC model
(one single exponential decay in delay and multi-modal von
Mises distribution) is used to evaluate the same synthetic
channel. However, due to the model mismatch, the ghost
paths are not eliminated, and a larger error occurs in the
MPC magnitude estimation as well.

14 VOLUME ,



0 5 10 15 20 25 30
distance [m]

-30

-20

-10

0  

10 

20 
p

o
w

er
 [

d
B

]
RiMax estimation

MPC groundtruth

initialized MPC

RiMax estimated MPC

noisy observation

RiMax MPC reconstruction

residue after MPC extraction

RiMax DMC reconstruction

2.48 2.5 2.52
10

10.05
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E. STATISTICAL EVALUATION—DMC
To measure the algorithm’s performance in terms of

DMC parameter estimation, Monte Carlo simulations are
conducted with pure DMC synthetic SIMO channels, whose
parameters are generated based on a Saleh-Valenzuela model
[37]. The DMC cluster arrival rate is modeled as a Poisson
arrival process with a fixed rate Λ for a particular synthetic
channel. The ray arrival rate is assumed to be so high that
each resolvable delay bin is Rayleigh fading; the power of
the bins as a function of the delay from the cluster start
is exponential with the DMC cluster decay βd. The mean
of the DMC cluster magnitude shows an exponential decay
with a constant Γ. An independent, uniformly distributed (on

a dB scale) random attenuation is multiplied with the mean
magnitude of each cluster. The noise level is fixed at -25 dB.
The detailed model parameters can be found in Table 4.

TABLE 4: Parameter setup based on Saleh-Valenzuela
model.

parameter distribution range
1/Λ uniform [20,40]
Γ uniform [0.04,0.07]
βd uniform [0.2,0.5]

σ2
n [dB] - -25
µ [rad] uniform [0,2π]
κ uniform [2,4]

To evaluate the goodness-of-fit between the DMCs, shown
in magenta dotted line, and its estimation, shown in blue
dashed line in Fig. 8, we consider to use the correlation
coefficient as the metric. To measure the fitness of DMC
estimation in both delay and angular domain, the ADPS is
evaluated. The correlation coefficient between two ADPSs is
expressed as

corr coef ≜
|vec(ADPSu)

T vec(ADPSv)|
∥vec(ADPSu)∥∥vec(ADPSv)∥

, (46)

where ADPSu/v ∈ RNf×Nϕ with Nϕ different directions
is vectorized, with the defined operator vec(·), to convert
into a longer vector. A larger correlation value means the
estimation is closer to the goal.

We compute the correlation coefficient between the esti-
mation of the DMC and the experimentally observed DMC
contribution, to measure the algorithm estimation accuracy.
There are two types of error sources in the DMC estimation.
The first type of error is that the expectation of the DMC
ADPS reconstructed from the channel estimation deviates
from the “ground truth” expectation due to the noise and
errors in the estimation procedure. Secondly, errors come
from the fact that the experimental observations provide
us with individual realizations of the DMC. The power
of such a realization in each delay or angle bin might
deviate considerably from the expectation of the DMC power
in this bin. If we only have a single observation of the
fading state, this deviation will be especially pronounced
and impact the DMC parameter estimation. Consequently,
there are two types of ADPSs regarded as the baseline—one
is the ADPS generated directly from the generating or
estimated covariance matrices of DMC clusters describing
the expectation of DMC, corresponding to “ideal DMC”
and “est DMC”, respectively; the other is the particular
realization of the DMC, namely “DMC rea”, also known as
the instantaneous channel state of the DMC contribution. The
ADPSs generated directly from DMC covariance matrices
can be approximated by averaging over adequate number of
snapshots. Thus, the correlation between estimation based
on 10 snapshots and the ideal DMC case in 200 different
synthetic channels shows a consistent level of goodness of
fit as shown in Fig. 10. Smaller correlation is observed
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in estimation based on 1 DMC realization, indicating a
larger difference between the actual (fading) DMC and the
estimation of the ADPS, which tries to reconstruct the
average ADPS. With multiple snapshots, the gap between
blue line and red line becomes smaller, which verifies our
statement that an adequate number of ADPSs can be used
to approximate the generating covariance matrix.
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FIGURE 10: DMC ADPS goodness-of-fit. The correlation
coefficient empirical CDF between ADPS of multiple DMC
clusters from either 1 realization (solid lines) or average over
10 snapshots (dashed lines) with its generating covariance
matrix ADPS (blue lines) and DMC realization ADPS (red
lines) is shown.

As the correlation coefficient may lose some detail in-
formation about the estimation error, we then measure the
spectrum reconstruction error, comparing between uni-modal
and multi-modal DMC model. The maximal deviation in
ADPS, PDP, and APS on a logarithmic scale are defined,
respectively, as

∆ADPS(τ, nR) ≜ |ÂDPS
(dB)

(τ, nR)− ADPS(dB)(τ, nR)|
dADPS = max

τ,nR

∆ADPS(τ, nR)

dPDP = max
τ

1

NR

∑
nR

∆ADPS(τ, nR)

dAPS = max
nR

1

Nf

∑
τ

∆ADPS(τ, nR),

where ÂDPS
(dB)

and ADPS(dB) denotes the reconstructed
and “ground truth” ADPS in dB with delay and antenna
index of τ and nR, respectively. The maximal deviation in
ADPS, dADPS, captures the largest discrepancy in the delay-
angle plane, while dPDP and dAPS represent the difference in
the separate parametric domains. These maximal deviations
serve as alternative indicators for measuring the goodness-
of-fit. The cumulative distribution function of the maximal
deviation across 200 synthetic pure DMC channels, each
with 10 different snapshots to mitigate the “fading” effect, in
ADPS (blue lines), PDP (red lines), and APS (magenta lines)

is shown in Fig. 11. Compared to the uni-modal (dashed
lines), the deviations in the reconstruction in the multi-modal
(solid lines) DMC model are significantly reduced, as the
model mismatch is alleviated. The statistical metrics—the
mean and the standard deviation—of the maximum deviation
in the spectra are summarized in Table 5.

However, the absolute values of the reconstruction error,
i.e., up to 15dB in ADPS, in our proposed multi-modal
DMC model appear very high and thus seem to be in
contradiction to the good agreement shown by the correlation
coefficient in Fig. 10. A closer comparison of the ADPS
reveals that the larger deviations typically occur in weak
delay-angle bins, and the use of a logarithmic scale may blur
the actual power level information.5 To better understand the
deviations’ distribution, we computed the mean and standard
deviation of the reconstruction error at varying relative power
levels, shown in Fig.12. The relative power level is the
delay-angle bin power, ADPSrel(τ, nR), normalized by the
maximum power in the ADPS. The relative power bin with
step size of 5dB collects the bins whose relative power level
falls into the range centered at the power level, i.e., -10dB
relative power bin collects the bins within [−12.5,−7.5)dB.
In Fig. 12, the deviation in uni-modal case, whose mean and
standard deviation is denoted by blue dashed lines and their
error bars, respectively, shows almost uniform mean value
among different power levels, indicating that the deviation
may occur in each delay-angle ADPS bin due to the DMC
model mismatch. In contrast, the power difference recon-
structed from multi-modal DMC model in red solid line,
shows mean and standard deviation of the reconstruction
error decreasing with increasing relative power, i.e., stronger
delay-angle bins tend to have less reconstruction error. Since
the stronger delay-angle bins make the larger contributions to
the correlation coefficient, this also explains the good match
of that coefficient.

TABLE 5: Maximum deviation statistics in spectrum.

[dB] uni-modal multi-modal
d̄ADPS 24.92 10.44

std(dADPS) 4.06 2.46
d̄PDP 11.49 5.01

std(dPDP) 3.18 1.60
d̄APS 9.83 4.10

std(dAPS) 2.04 1.09

F. STATISTICAL EVALUATION—MPC
To further verify the algorithm’s correctness and perfor-

mance, Monte Carlo simulations are conducted on 50 dif-
ferent randomly generated synthetic channels with 20 DMC
and noise realizations each. The Cramér-Rao lower bound

5However, use of a linear scale would over-emphasize the reconstruction
of the strongest bins only, which is why we use the dB scale here.
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(CRLB) of the parameter estimation root mean square error
(RMSE) [4] for the average over all MPCs are computed and
regarded as the benchmark. The heights of DMC clusters are
controlled by scaling them with the same constant such that
the DMC power percentage from the channel varies while the
other DMC parameters and the noise level stay unchanged.
The DMC power percentage is defined as

DMC% ≜
PDMC

PH
=

∥NDMC∥2F
∥Hmea∥2F

× 100%, (47)

where PDMC is the total power from the diffuse components,
and PH stands for the total channel power. Note that for the
purpose of estimating the specular MPCs, the DMC acts like
colored noise [4, (4.16)], even though it does carry signal
information. The derivation starts with the log-likelihood
function as shown in equation (18).

We found in our examples that the estimation error is
about 2–3dB above the CRLB, see Fig. 13, for DMC power
percentage below 20%. Furthermore, the results show that

our method has lower parameter estimation error compared
to the state-of-the-art DMC model [20] (“uni-modal” is
named after the single exponential decay in the delay do-
main). This is consistent with the expectation from theory
that a reduced model mismatch leads to reduction of the
MPC parameter estimation error.
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FIGURE 13: Average RMSE of MPC delay parameters (not
the base delay error for estimated DMC) from all synthetic
channels in unit of normalized delay (in short ‘nd’), defined
as τnd = τ · BW. CRLB (solid line), estimation error with
multi-modal (dashed line) and uni-modal (dotted line) for all
MPCs.

G. EVALUATION OF OUTDOOR MEASUREMENT
To further validate the proposed DMC estimation and

its compatibility with the RiMax algorithm scheme, we
performed one example evaluation of a MIMO channel
measurement in the sub-THz regime. The measurement is
performed in an outdoor device-to-device setup with line-
of-sight (LOS) connection between transmitter and receiver,
which are separated by 2.4 meters. The sounding system
measures the transfer function over a 1GHz bandwidth
centered on 145.5 GHz by scanning over 1001 frequency
points with a Vector Network Analyzer. A horn antenna is
rotated in 10-degree steps, similar to the setup previously
discussed for the simulations. The detailed measurement
scenarios and the channel sounder descriptions can be found
in [38].

Fig. 14 shows, as the blue dotted line, the raw measured
PDP. After estimation and subtraction of the contribution
of the specular MPCs (green cross markers), the residue
(red solid line) indicates the presence of multiple clusters.
Using the proposed DMC estimation algorithm, seven DMC
clusters are detected and analyzed. It is worthwhile to notice
that five out of seven clusters, located within 30 meters,
are associated with MPCs. The remaining two clusters, one
starting at 35 meters and the one at 70 meters, are fitted for
the unexplained components, modeled as two stand-alone
DMC clusters.
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The identified DMC clusters, for example, the first stand-
alone DMC cluster between 35 meters and 70 meters, may
exhibit a shape that deviates significantly from the expected
exponential model. Since we have only a single observation
of the fading behavior of these clusters, it is difficult to
determine whether this deviation is due to fading or to a
model mismatch, where the actual physical clusters have an
average PDP that differs from the assumed exponential form.
With the proposed multi-cluster DMC estimation method, the
RiMax algorithm successfully eliminates most of the ghost
paths; this is indicated by the fact that while 250 MPCs are
detected in the initialization procedure (which assumes an
absence of DMC), the final result identifies only 22 specular
MPCs in addition to the 7 DMC clusters.

FIGURE 14: APDP and MPC parameters evaluated from
LOS measurement: noisy channel observation (blue dotted
line), residue after MPC extraction (red solid line), and
DMC estimation (black dot-dash line). Estimated MPCs are
denoted by green discrete markers. The two shaded area
stand for two delay gatings.

In Fig. 15, the DoA-DoD joint angular spectrum of the
residue, after the extraction of MPCs from the noisy channel
observations, is presented. The LOS cluster is positioned at 0
degree for both DoA and DoD domain, for simplicity written
as the tuple (0,0). In the joint spectrum, five strong clusters
are observable, each corresponding to a distinct MPC cluster.
The residuals from the channel observations can be used to
validate the non-applicability of the Kronecker model. The
magenta and yellow color-shaded regions in Fig. 14 represent
two different delay gates, whose respective DoA-DoD joint
angular spectra are shown in Fig. 16 and 17. In the first
delay gate, it contains the LOS cluster, and part of another
cluster centered at (340,120). The second delay gate includes
two clusters with nearly identical DoAs, centered at (90,
90) and (90, 270), respectively. Residuals from the other
three clusters—LOS cluster, cluster centered at (0,180) and
(340,120)—are also observable, as their weak tails, decaying
gradually and thus still partly falling into the delay-gate
region, contribute to their “visibility”.

The reconstruction of the DMC ADPS is demonstrated in
Fig. 18. The five dominant DMC clusters are evaluated and
reconstructed, though several small and weak clusters are
not fully detected. Notably, the ADPS reconstruction avoids
the creation of ghost clusters. The correlation coefficient
between the reconstruction and the original ADPS is 0.8079,
which is not in contradiction with the blue solid curve in
Fig. 10, (though it must be remembered that Fig. 10 is
based on a different, idealized channel), as the ADPS of
the experimental observations provides us with individual
realizations of the DMC, namely “DMC rea” by definition.
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FIGURE 15: The DoA-DoD joint angular spectrum for
residue after the MPC extraction.
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FIGURE 16: The DoA-DoD joint angular spectrum for
residue after the MPC extraction in delay gate 1.

For comparison, Fig. 19 shows the results of implementing
the uni-modal DMC model from [20], as mentioned for Fig.
9, on the same real-world outdoor measurement campaign.
Due to mismatch in the DMC model, ghost paths are not
effectively eliminated, leaving over 200 MPCs after the con-
vergence of the RiMax algorithm. Consequently, the residue
after MPC extraction is higher than the residual APDP shown

18 VOLUME ,



0 50 100 150 200 250 300 350

DoA [deg]

0

50

100

150

200

250

300

350
D

o
D

 [
d

eg
]

DoA-DoD joint angular spectrum, delay gate 2

-130

-125

-120

-115

-110

-105

-100

-95

-90

-85

-80

FIGURE 17: The DoA-DoD joint angular spectrum for
residue after the MPC extraction in delay gate 2.

0 50 100 150 200 250 300 350

DoA [deg]

0

50

100

150

200

250

300

350

D
o

D
 [

d
eg

]

DMC estimated joint spectrum

-170

-160

-150

-140

-130

-120

-110

FIGURE 18: The DoA-DoD joint angular spectrum recon-
structed from DMC estimation.

in Fig. 14. Additionally, Fig. 20 depicts the joint DoA-
DoD spectrum reconstruction under the Kronecker model
assumption. Due to model mismatch and inaccuracies in
the delay domain, the reconstructed spectrum significantly
deviates from the objective, i.e., the residual ADPS shown
in Fig. 15. This leads to the creation of ghost clusters and a
pronounced deviation in the ADPS, resulting in a correlation
coefficient of less than 0.3.

V. CONCLUSIONS
The phenomenon of multiple diffuse scattering clusters’

existence in the wireless channel has been observed from
measurements, but has up to now not been included in pa-
rameter estimation algorithms. Rather, the Kronecker model
is widely adopted, which however creates ghost clusters that
do not correspond to physical reality. This paper considers
high-resolution parameter estimation with a multi-cluster
frequency-angle non-Kronecker DMC model that better de-
scribes the diffuse scattering clusters. Key points of the algo-
rithm include (i) initialization for DMC parameters from the
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FIGURE 19: LOS measurement RiMax estimation with uni-
modal DMC model [20]. The lines and markers are defined
as in Fig. 14.
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FIGURE 20: The DoA-DoD joint angular spectrum recon-
structed from uni-modal DMC estimation.

total channel response due to the association between MPC
and DMC, (ii) sequential estimation of the different DMC
clusters, where the gradient-descent method is deployed to
improve the parameter estimation, and (iii) use of dimension-
by-dimension computation of the DMC parameters, using
spectral whitening, to improve computational efficiency. Our
proposed algorithm improves not only the estimation of the
DMC itself, but also the specular MPCs. The RMSE of the
estimated parameters are within a few dB of the CRLB in
the considered examples as long as the percentage of the
DMC energy is within 20% of the total signal energy.

The accurate extraction of the DMC forms the basis of
better MIMO channel modeling. Since experiments have
shown DMC energy to be a significant percentage of the
total signal energy, its proper incorporation is important. This
is all the more the case as DMC can significantly impact
system performance: generally, DMC impacts the skew of
the eigenvalue distribution of the channel Grammian, and
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thus the MIMO capacity. The amount of this change depends
significantly on the modeling of the angular structure. On the
other hand, the DMC can impact the interference to other
users, and thus the multi-user capacity in particular when
analog beamforming is used. The Kronecker assumption
in the angular domain leads to an over-estimation of both
of these effects. Furthermore, the delay-angle Kronecker
assumption might distort the assessment of analog beam-
forming (which can only create beams that are independent
of delay/frequency) compared to digital beamforming.

Investigation of these system implications will be part of
our future work. Furthermore, we will apply the proposed
multi-cluster DMC model to the evaluation of real-world
channel measurements with the RiMax algorithm.
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