Check for
Updates

Demo Abstract: SmartSAT - A Customizable Secure App

for San Antonio Transit Pilot Project

Jeong Yang Young Lee
Dept. of Computing & Dept. of Computing &
Cyber Security Cyber Security
Texas A&M University- Texas A&M University-

San Antonio
San Antonio, TX, USA
ylee@tamusa.edu

San Antonio
San Antonio, TX, USA
jyang@tamusa.edu

ABSTRACT

The purpose of this demo abstract is to present a pilot SmartSAT
project, a customizable mobile web app for San Antonio Transit to
make critical services available for transit users. SmartSAT app
provides real-time bus arrivals, seat capacity information, and
instant alert messages on schedule changes. The app also securely
collects data and feedback from riders on their commute experience.
Researchers and students from diverse disciplines (sociology,
computer science, cyber security, & information science) work
collaboratively for developing this tool, collect commuters’ feedback,
and deploy data to improve the quality and inclusivity of transit
service. The development efforts demonstrate that SmartSAT is a
customizable tool with not only provides transportation information
to the riders but also collects their commute behaviors and
experience feedback toward improving the public transportation
system in San Antonio, TX.

CCS CONCEPTS

« Software and its engineering « Software and application security
« Information systems applications

KEYWORDS

Smart city, Smart mobility, Transit, Google map, Google Maps API,
Django, Cloud SQL, Real-time arrivals, GPS, Google Cloud

ACM Reference format:

Jeong Yang, Young Lee, William Noonan, & Anoop Abraham . 2022. Demo
Abstract: SmartSAT - A Customizable Secure App for San Antonio Transit
Pilot Project. In Proceedings of the 20th ACM International Symposium on
Mobility Management and Wireless Access (MobiWac '22), October 24-28, 2022,
Montreal, QC, Canada. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3551660.3560910

MobiWac '22, October 24-28, 2022, Montreal, QC, Canada
© 2022 Copyright is held by the owner/author(s).
ACM ISBN 978-1-4503-9480-2/22/10. https://doi.org/10.1145/3551660.3560910

This work is licensed under a Creative Commons
Attribution International 4.0 License.

123

William Noonan Anoop Abraham
Dept. of Computing & Dept. of Computing &
Cyber Security Cyber Security
Texas A&M University- Texas A&M University-

San Antonio
San Antonio, TX, USA
aabraham@tamusa.edu

San Antonio
San Antonio, TX, USA
wnoonan@tamusa.edu

1. BACKGROUND

Public transportation connects people to their jobs, schools, medical

and recreational facilities, friends, and family. Public transportation
users in most American cities have disproportionately lower
incomes than commuters who use automobiles [1]. San Antonio
(SA) follows this trend, with 67% of SA’s VIA Transit users falling
below the poverty line. Providing reliable and accessible public
transit will benefit all transit users and, therefore, promote the
upward mobility, health, and wellness of all San Antonians.

To improve the reliability of transit information and the quality of
the rider experience, many transit authorities have developed
smartphone apps [2, 3]. Indeed, the public demand for public
transportation smartphone apps is increasing in many urban areas
[4, 5, 6], particularly among people in lower income brackets who
primarily the through their smartphones
[7]. However, maintaining sustainable, high-quality service and
information on these apps is challenging [4, 5]. Some smartphone
transit apps can collect users’ GPS-tagged and Quality of Service
(QoS) data to evaluate on-time arrival and rider experience, but these

access internet

apps often fail to characterize trips, neglect to consider the impact of
social factors like race/ethnicity and socioeconomic status and lack
privacy protection and decision support systems [1].

To serve the needs of VIA Transit riders, especially those who are
lower income, a smartphone transit app must provide reliable
information about the arrival and seating capacity of buses, which
can reduce wait time, reduce travel time, and ensure accessibility [8,
2, 9]. Furthermore, an app must provide a secure platform to collect
rider information and feedback so that this information can be used
by city planners to make data-driven decisions about transit
allocation and service improvements that will benefit all San
Antonians.

Google Maps provides public transit information, including route
planning and bus arrival and departure times for transit agencies
who partner with Google Transit [10]. However, its utility falls
short in many other respects that are important for riders (Table 1).
Using Google Maps API, other transit authorities have developed
smartphone apps that offer enhanced services.

Ro

ute, | i
Ocation, destinarion info,
Arri |

Val time Seat avajly alert mes;, ges
),
Vi Y, m
bility t a,

T S e

) Google Cloud

Maps Java script API

* Location visualization

€edback g comm, k] Sr.nart SAT * Map styling &markers
N‘ T Django + * Street view
s o
Gunicorn * Display routes

Dri i Real-time \ocation Web Server Distance Matrix API

river vailability :

Sea * Distance

‘Location I * Arrival times with real-time

Tracker traffic

Dev. Team

CloudsQl for
PostgreSQL

Storage
Locations,
routes, arrivals,
rider’s info &
feedback, &

Directions API

* Show routes based on travel
I time and modes

Places & Geocoding API

* Address location

details

Figure 1: Mobile Web App Architecture

For example, California’s Orange County Transportation Authority
(OCTA) launched a Transit app in 2020 to provide real-time bus
capacity so riders can check enough available seats [2, 3]. The Los
Angeles County Metropolitan Transportation Authority partnered
with the Transit to improve customer experience by providing
accurate real-time bus arrival information [3, 15].

The NSF-sponsored Pitt Smart Living project developed a platform-
integrated information system to improve public transportation
service with real-time information on arrival and utilization of
relevant options of public transit [16, 18]. AC Transit for the Bay
Area in California provides real-time bus arrival and bus capacity
information and has a platform for accepting rider’s feedback [17].
Apps developed by these other transit authorities indicate a demand
for enhanced transit information beyond what Google Maps
provides.

This demo presents a customizable secure SmartSAT app for San
Antonio’s Transit pilot system. The app has been designed and
developed with the goal of providing real-time bus arrivals and seat
capacity information, sending instant alert messages on schedule
changes and other important messages to riders, and securely
collecting data and feedback from the riders on their commute
experience.

2. PROPOSED WORK

SmartSAT is a customizable mobile app for the San Antonio (SA)
Transit to make critical services available for San Antonian transit
users. While Google Maps and others such as Moovit and Transit
provide similar services [10], SmartSAT is designed to build a
mobility network with a focus on improving the transit experiences
of lower-income people who depend on the SA’ VIA Transit because

Table 1. Transit app service comparison between SmartSAT and Google Maps

SmartSAT Google Maps
To i th i d rid i for all . . .
© tmprove the setvice and ricer experience for a To provide the best route options for driving,
Purpose San Antonians who depend on transit for work, . . .
. . taking transit, walking, etc.

education, leisure, and other purposes.
Target Users SA VIA riders, specifically those in poverty Everyone including travelers & visitors
Real-Time Bus arrival times on all stops for rider’s route Bus arrival times for major stops only
Information Bus capacity with limited seats available No service
Feedback Rider specified comments & survey on trip | General options to provide feedback about

experience for social impact research crowdedness, temperature, accessibility
Alert Service Instant text messages to riders & alerts on maps Alerts on maps

MobiWac’22, October 24-28, 2022, Montreal, QC, Canada

HTTP URLS
Request . (urls.py)
[
Forward request to
appropriate view
Model read/write View HTTP Response
(models.py) data > (views.py) (HTML)
Template
(<filename>.html|
Figure 2: Django Framework

Bus Driver Group

Name:

Permissions:

Available permissions @

Q Filter

admin | log entry | Can add log entry
admin | log entry | Can change log entry
admin | log entry | Can delete log entry
admin | log entry | Can view log entry
auth | group | Can add group

auth | group | Can change group

auth | group | Can delete group

auth | group | Can view group

auth | permission | Can add permission
auth | permission | Can change permission
auth | permission | Can delete permission
auth | permission | Can view permission
auth | user | Can add user

Jeong Yang, Young Lee, William Noonan, & Anoop Abraham

Django administration WELCOME, ADMIN. VIEW SITE / CHANGE PASSWORD / LOG OUT

Change group

Bus Driver Group

bus | bus driver | Can access bus driver pages.

Choose all © @ Remove all

Hold down "Control”, or *Command” on a Mac, to select more than one.

SAVE

they cannot afford to drive or lack a driver’s license. Through the
analysis of actual bus arrival times, the research team will determine
the accuracy of current scheduled times and if they need to be
changed. We will also assess rider satisfaction and the quality of
transit experience, with a focus on those who live at the poverty
level. The SmartSAT app is being systematically tested for all aspects
of security attacks and to protect rider data privacy and
authentication.

The developed app has the following four major functionalities:

1)

Providing real-time bus tracking and arrival times at each
bus stop for six piloted VIA routes

2) Providing seating availability alerts for buses

3) Sending instant alerts to registered riders about important
updates, schedule and route changes, and ridership
reminders.

4) Collecting direct information on riders’ wait time and

feedback about their transit experience to better
understand the quality of transit service.

3. DEVELOPMENT

The backbone of the SmartSAT app is Web Architecture. All
designed interfaces respond to different screen sizes of devices and
different browsers and run well on any mobile phone, tablet, laptop,
and desktop.

3.1 Architecture and Framework

Figure 1 presents a system architecture. The app is being developed
on a Django + Gunicorn web server that is deployed on Google
Cloud using a Docker container. Django is a Python web framework
that follows the model-template-views architectural pattern as

Figure 3: Creating Groups and User Permissions

125

shown in Figure 2. Django was designed to work with relational
databases. The default database is SQLite. When we create a model
in Django, which is a Python class that inherits from a built-in
Django class, Django automatically sets up an SQLite database table
based on the model. “Template” in “model-template-views” refers to
HTML templates. We can make Django substitute the values of
Python variables into an HTML template before it is sent to a
browser to be rendered by using Django’s built-in templates engine
syntax. “Views” refers to the functions that render the template.

If there is an HTML template called “template.html”, then you could
create a view function to render this template. When we request the
associated URL, Django executes this function and substitutes the
values of the keys in the dictionary called “context” for its keys
where they exist in the template inside double curly braces. Before
running the server, you must associate a URL with this view
function. When the server is running and somebody visits a valid
URL, the server sends the data from the browser in an object called
“request” to the associated view function as an input argument.

Django is hosted on a Gunicorn server being run by Google Cloud
Platform’s Cloud Run service. It is connected to a PostgreSQL
instance created in the Google Cloud Platform. User data, bus data,
and route data such as associated bus stop locations and scheduled
times are stored in our PostgreSQL instance. When a user interacts
with our map, data is communicated with our server via AJAX
executions. AJAX is an asynchronous tool that requests a URL in the
background allowing the user to interact with the map without
having to reload the page. We created special URLs where our server
handles requests from AJAX executions on the front end. Google
Maps APl is used to calculate various things like the transit distance
and duration between the coordinates of a bus and the coordinates
of a given bus stop.

SmartSAT-A Customizable Secure App for San Antonio Transit Pilot System

Route 51 Madia Transit Center — Navarro Opposite Vila - o

et

Figure 4: Real Time Arrivals

There are some key features of Django administration deployed for
this application such as creating groups and user permissions and
displaying and customizing navlinks based on user permission. For
example, to create groups and user permission, we add custom
permission to the Meta class of (any) Django model by setting the
value of the Django keyword “permissions” (code below). This will
make the permission available on the administration site.

class BusDriver(models.Model):
user = models.OneToOneField(User, on_delete=models.CASCADE)

class Meta:
permissions = [
("access_busdriver_pages", "Can access bus driver pages.")

1

def __str__(self):
return self.user.username

In the administration site, we create a custom group with special
permissions. As shown in Figure 3, a group is created called “Bus
Driver Group” with the custom permission created. And then we add
a user to a group to give them the permissions defined for that group
and add Django’s built-in login_required and permission_required
decorators to a view function to restrict the access of a webpage to
only those users who are logged in and hold the appropriate
permissions (code below).

MobiWac’22, October 24-28, 2022, Montreal, QC, Canada

]

| d

Less than 20 minutes

)oes your employer pr

No Seats Available

Less than 3 seats Available

More than 3 seats Available

126

Figure 5: Rider’s Feedback Survey

@login_required

@permission_required('bus.access_busdriver_pages', raise_exception=True)
def busdriver_view(request):
context = {'allRoutes': commons.helper.getAllActiveRoutesDropDown()}
return render(request, "bus/busdriver_2.html", context)

3.2 Functional Requirements

The app is designed to be the main connection point between riders,
drivers, and administrators/development teams. There are four
functional requirements for the app using the following
implementation approach. As for the architectural part of the app, it
was developed using the Django web framework, which is written
in Python and uses the GUnicorn web server, which is a Python

WSGI HTTP server.
3.2.1 Providing Real-Time Bus Arrivals

This is implemented with Google Maps Platform web services.
Google Maps JavaScript API is the main APIs to retrieve the latest
Maps and Routes in the development, where real-time traffic
conditions are constantly updated with routes [11]. Directions for
transit are obtained by Direction API, and Distance Matrix API is
used to calculate travel times based on real-time traffic and distance
for multiple stops on a route. Utilizing these APIs, we can
conveniently build customized transit maps to fit our project
needs. With some exceptions, the mobile web app routes are
considered faster and cheaper than the native iOS or Android mobile
app routes that use iOS or Android SDK [12, 13].

MobiWac’22, October 24-28, 2022, Montreal, QC, Canada

The Javascript APl is also chosen for this part of the implementation
because of its capability to enable map controls and gestures for any
mobile devices running on web browsers, to provide directions
services with real-time traffic information using a form of public
transit, and their exclusive support of transit layer with public
transport routes, and easy integration with other transit web sites
[11, 12]. There would be no installation needed on the user(rider)
side as the app is ready to be used through web browsers, but still,
be a native app available on google play and apple stores. No updates
and registrations are needed on Google Play Store and Apple Store
on the developer side. Figure 4 displays a rider's view of a prototype
with real-time arrival information for a selected stop on a rider's
route on a mobile device.

3.2.2 Providing Bus Capacity with Limited Seats

A bus driver monitors seats and notifies the system when limited
seats (<3) are available. This is done with an easy-to-use interface on
a touchscreen tablet attached to a dashboard area of the bus. The seat
information is instantly provided in the rider’s app as soon as the
driver triggers the seat information.

As explained in the figure of Django’s model-template-view
architecture, communication between a bus and the cloud occurs by
using HTTP requests sent to the server via jQuery-AJAX calls made
from the client (front end) side. We set up unique URLs on the server
where we send such HTTP requests, and these HTTP requests
contain various data that we want to send to the server like GPS data
and seat availability data, etc. A cellular network is used for the
communication from the mobile user with the app's back-end hosted
on google cloud as well as from the bus to the cloud implemented.

3.2.3 Alerting Important Announcement & Schedule
Changes

Currently, when SA VIA services are detoured, changed, or canceled,
alerts are posted on the VIA website, or riders can call customer
service. In extraordinary circumstances, service may change without
notice [14]. SmartSAT app sends instant alerts to registered riders
about schedule changes, route changes, and other unexpected
changes.

3.2.4 Collecting Rider’s Feedback

SmartSAT app created a comprehensive survey system to collect
direct information on riders’ wait times and feedback about their
transit experience (Figure 5). This is to better understand the quality
of service provided by the current SA Transit service. To address the
social impact of poverty and racial/ethnic status in the use of current
VIA Transit systems, the project will assess riders’ experiences and
focus on how SmartSAT will make engagement with VIA’s transit
system more efficient for riders.

4. CONCLUSION

This demo paper presents a SmartSAT mobile web app that provides
real-time bus location information, bus seating capacity, instant alert
messages, and a secure platform for collecting rider feedback. The
SmartSAT plays a connection point between riders, drivers, and
administrators: 1) A rider uses the app to choose a route and ride

127

Jeong Yang, Young Lee, William Noonan, & Anoop Abraham

from a bus stop and a destination stop and checks real-time bus
arrivals, 2) A bus driver monitors seats and notifies the system when
three or fewer seats are available, 3) The administrators deploy alerts
about emergencies and schedule changes that are instantly pushed
to riders’ phones, and 4) Rider experience data is collected through
a secure survey.

In the future, we hope that the SmartSAT project will provide more
accurate bus arrival times to improve rider experience. From the
collected feedback data from riders, we will determine how social
class and race/ethnic backgrounds shape a rider’s ability to engage
the public transit system and whether this access can be improved
through a more robust transit data delivery system. Collecting and
analyzing the experiences of ridership provides a direct assessment
of their interpretations of the usefulness of SmartSAT to improve
the overall riding experience and improve the lives of riders through
reliable transit data delivery.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science
Foundation’s Grant No. 2131193. Any opinions, findings,
conclusions, or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the
National Science Foundation.

REFERENCES
(1]

Fan Jiang, Bus Transit Time Prediction using GPS Data with Artificial Neural
Networks, 2017, Machine Learning CMU report.

[2] Real Time Infor to Help Riders with OC Bus Capacity. https://www.metro-
magazine.com/10124680/real-time-info-to-help-riders-with-oc-bus-capacity.

[3] Transit, Go Your Own Way, https://transitapp.com/.

[4] Smartphone Applications To Influence Travel Choices: Practices and Policies, US
Department of Transportation, Publication # FHWA-HOP-16-023, Last modified
May, 2020.

[5] A.Arman,P. Bellini, P. Nesi, & M. Paolucci, Analyzing Public Transportation Offer
wrt Mobility Demand, TESCA'19, 2019, New York, NY, USA,
https://doi.org/10.1145/3364544.3364828.

[6] T.Jimbo & K. Fujinami, Detecting Mischoice of Public Transportation Route based
on Smartphone and GIS, UbiComp/ISWC ’15 Adjunct, September 7-11, 2015,
Osaka, Japan, http://dx.doi.org/10.1145/2800835.280090.

[7] Marler, Will. “Accumulating Phones: Aid and Adaptation in Phone Access for the
Urban Poor.” Mobile Media & Communication 7, no. 2 (May 2019): 155-
74. https://doi.org/10.1177/2050157918800350.

[8] Carlos Romero, Andrés Monzén, Andrea Alonso, Raky Julio, Added value of a
customized transit app for metropolitan bus trips, Transportation Research
Procedia, Volume 47,2020, Pages 513-520, ISSN 2352-1465,
https://doi.org/10.1016/j.trpro.2020.03.126.

[9] Rajput, P, Chaturvedi, M., and Patel, P. 2019. “Advanced Urban Public
Transportation System for Indian Scenarios,” Proceedings of the 20th International
Conference on Distributed Computing and Networking, pp. 327-336.

[10] Google Transit Basics, About Google Transit,
https://support.google.com/transitpartners/answer/1111471?hl=en&ref_topic=352
1043.

[11] Google Maps Javascript AP,
https://developers.google.com/maps/documentation/javascript/overview.

[12] Brainsmiths Blog, https://blogs.brainsmiths.com/post/2020/06/26/developing-
mobile-web-applications-when-why-and-how.aspx.

[13] Mobile ~ Website ~vs Native App vs. Mobile Web App,
https://www.bluefountainmedia.com/blog/mobile-app.

[14] VIA Service Alerts, https://www.viainfo.net/service-alerts/.

[15] Metro Magazine, https://www.metro-magazine.com/.

[16] Pitt Smart Living Project. https://pittsmartliving.org/.

[17] AC Transit, https://www.actransit.org/.

[18] Bushman, Kristi and Labrinidis, Alexandros. "Utility-based scheduling for public

displays with live content,” Proceedings of the 8th ACM International Symposium
on Pervasive Displays - PerDis'19, 2019.

