
Practical web security testing: Evolution of web
application modules and open source testing tools

Mohammed Ali Kunda, Izzat Alsmadi
Department of computing and cyber security

Texas A&M, San Antonio
San Antonio, USA

E-mail: mkunda@tamusa.edu, ialsmadi@tamusa.edu

Abstract—Web application security testing is vital for prevent-
ing any security flaws in the design of web applications. A major
challenge in web security testing is the continuous change and
evolution of web design tools and modules. As such, most open
source tools may not be up to date with catching up with recent
technologies. In this paper, we reported our effort and experience
testing our recently developed website (https://mysmartsa.com/).
We utilized and reported vulnerabilities from several open-source
security testing tools. We also reported efforts to debug and fix
those security issues throughout the development process.

Index Terms—Security Testing and Automation, Web applica-
tions, Security , Security tools, OWASP ZAP, SoapUI, Penetration
Testing tools

I. INTRODUCTION

Web applications became a popular and useful tool in this
internet era as businesses could easily reach their target audi-
ence regardless of the time and location for exchange of goods
or services. This made communication easier between both
parties, and made convenient for customers and businesses as it
automates the whole process However, security is a significant
concern. Web applications are target of attacks as they are
available to the public all the time, and with a couple of scripts,
attackers can gain access to sensitive information, causing
serious security and liability concerns if the web application
is not secure. As such, the security of web applications cannot
be overlooked. Web application security threats such as SQL
injection, and Cross-Site Scripting are well known and can
easily be detected by security tools. However, with new tech-
nologies, software libraries, operating systems, and hardware
changes, developing applications become complex and large.
This can result in many new loopholes for security threats and
issues. Robust security testing practices should be required for
producing reliable and secure software applications.

II. TYPES OF TESTING

Table I provides a general classification of the security test-
ing tools selected on the basis of efficiency, accuracy, different
testing options available and paid or open source. From an
environment or platform perspectives, security testing tools
are available in command-line interface applications, Web
applications, and desktop applications. Functional, security
and performance testing are the three main testing goals we
focused on.

TABLE I
COMPREHENSIVE ANALYSIS OF THE CHOSEN SECURITY TESTING TOOLS,

[5]

Tools Name Type Functional Security Performance Paid/free
Burp Suite Desktop Yes Yes Yes Open-Source,Paid version

ImmuniWeb Web No Yes No Open-Source,Paid version
Metasploit Command Line No Yes No Open-Source
Netsparker Desktop No Yes No Open-Source, Paid version

OWASP ZAP Desktop No Yes Yes Open-Source
PractiTest Desktop Yes No No Paid version

Proxy Sniffer Command Line No No yes Open-source
SoapUI Desktop Yes Yes Yes Open-Source,Paid version

Vega Desktop No Yes No Open-Source
Wapiti Command Line Yes Yes No Open-source

A. Security Testing Workflow

In security testing, there are numerous tasks and methods
that could be used, however, it can be made simplified using
the following steps:

• Identify testing goals and scope: First, determine what
should be tested, taking into account the organization and
the requirements of customers. It must be made clear
which application, network system, or code will be put
to the test, and a plan for how it will be carried out will
be laid down.

• Search for and Select most relevant suitable tools: after
identifying the testing parts, decide which tools will be
well suited for the testing, taking into consideration the
feature of the testing tools.

• Perform cycles of security and vulnerability testing
Perform vulnerability scans and break down the tasks in
terms of which one is more important, using the tools
specified earlier. Check that the tool scans for vulnerabil-
ities such as SQL injection, Cross-Site Scripting (XSS),
Session Management, and file inclusion vulnerabilities .

• Check and Validate testing results Manually verify
scanner results to see what matters in the context of
the application and company by viewing the application
through the eyes of a potential hacker .

• Report results, document and repeat until reaching
testing goals: Organize your findings into a formal
security assessment report. Because each company or
security testing project has its own set of requirements,
a sensible approach to web application security testing
should include most, if not all, of these phases.

2022 International Conference on Intelligent Data Science Technologies and Applications (IDSTA)

978-1-6654-9960-6/22/$31.00 ©2022 IEEE 152

20
22

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 In

te
lli

ge
nt

 D
at

a
Sc

ie
nc

e
Te

ch
no

lo
gi

es
 a

nd
 A

pp
lic

at
io

ns
 (I

D
ST

A
) |

 9
78

-1
-6

65
4-

99
60

-6
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
ID

ST
A

55
30

1.
20

22
.9

92
31

30

Authorized licensed use limited to: Texas A & M University - San Antonio. Downloaded on December 24,2024 at 17:53:21 UTC from IEEE Xplore. Restrictions apply.

III. GOALS AND APPROACHES

Security testing and development in this project were ac-
complished in parallel. Such test-driven or early testing ap-
proaches can eliminate any vulnerabilities in the initial stages
which is best practice to avoid any major issues in the future.
Our developed website (https://mysmartsa.com/) can help San
Antonio public transportation commuters navigate local and
public transportation information,i.e. arrival time, number of
seats available, current location, etc.
Open-source tools such as OWASP ZAP (stands for Open Web
Application Security Project Zed Attack Proxy) and SoapUI
are used in the security testing for our web application. These
tools do not require extensive knowledge of the target website
and usually just proving the URL can be enough. We will
report in the next sections, our efforts using OWASP ZAP
and SoapUI.

A. Summary Of Security Testing Using OWASP ZAP And
SoapUI

1) OWASP ZAP: The first report generated from the
ZAP detected the following 8 types of vulnerabilities.
For details on those vulnerabilities, The following mate-
rials are available to readers and relate to those security
testing tools, for ZAP alerts documentation, must visit:
https://www.zaproxy.org/docs/alerts/

• CSP: Wildcard Directive, Risk: Medium, Count: 2
• X-Frame-Options Header Not Set, Risk: Medium, Count:

9
• Absence of Anti-CSRF tokens Risk: Low, Count: 2
• Cross Domain JavaScript Source File Inclusion, Risk:

Low, Count: 10
• Information Disclosure – Debug Error Messages, Risk:

Low, Count: 1
• Server Leaks Information via ”X-Powered-By” HTTP

Response Header Field(s). Risk: Low, Count: 27
• X-Content-Type-Options Header Missing, Risk: Low,

Count: 24
• Cookie No HttpOnly Flag, Risk: Low, Count: 1
• Information Disclosure - Suspicious Comments, Risk:

Informational, Count: 7
2) SoapUI: The first report generated from the SoapUI

detected 1 vulnerability. For details on those vulnerabilities,
reader can find available resources related to those security
testing tools

• HTTP method fuzzing, Count: 12
colorlinks=false, pdfborder=0 0 0

B. Security Testing: Debugging and fixing security alerts

In this section, we report our effort to debug and fix the
security issues mentioned previously. Typically, to be able
to do that, we have to properly understand the alerts from
the report. References can be a good start to understanding
the alert and when it is typically triggered. This can provide
security testers with the exact information that they will need
to identify the issue and why it was triggered. We will

examine the vulnerabilities of web applications created using
the Express and later Django frameworks.

C. Dealing with OWASP ZAP Security Alerts

This section provides the possible solution/fix for the secu-
rity bugs found in the web application in section III-A1 for
OWASP ZAP.

• Content Security Policy (CSP) Header is Not Set: This
alert got triggered because the content security policy
header not set. which is a layer added for security which
detects and prevents attacks like cross-site scripting and
data injection attacks.So to setup the header, testers had
to check with the framework documentation for CSP
headers as there are many ways to configure it.One must
set up your web server to return the Content-Security-
Policy HTTP Header and provide its values in order to
regulate what resources the browser is permitted to load
for your page in order to resolve the Content Security
Policy (CSP) Header Not Set.

– The Syntax is:
Content-Security-Policy:policy-directive

where:
policy-directive

consists of: ¡directive¿ ¡value¿ with no internal
punctuation.
Example:
Content-Security-Policy: default-src ‘self’

http://example.com;
For a full list of possible directives and more
examples please check
https://developer.mozilla.org/en-
US/docs/Web/HTTP/Headers/Content-Security-
Policy.

1) X-Frame-Options Header Not Set: This alert was
triggered because the X-frame option header was not
set and the web pages can be embedded within any
other website with no restriction. This issue can be
solved in different methods. In this case, we installed a
package called Helmet.js. The package can help securing
express apps by setting various HTTP headers. After
complete installation and configuration of this package,
this alert was resolved and X-frame option was configured
properly.
2) X-Content-Type-Options Header Missing: Similar to
the previous alert, in this alert X-content-type options
header was missing or was not set properly. This issue
was also fixed using Helmet.js package. It provides us
with tools to set no-sniff option

– Code for Express framwork:
∗ app.use(helmet.nosniff())

– Code for Django framwork in settings.py:
∗ SECURE CONTENT TYPE NOSNIFF = True

3) Absence of Anti-CSRF tokens: With any forms on
the website, it’s very important to have security in place
to protect those forms from XSS attacks. The reason

2022 International Conference on Intelligent Data Science Technologies and Applications (IDSTA)

153
Authorized licensed use limited to: Texas A & M University - San Antonio. Downloaded on December 24,2024 at 17:53:21 UTC from IEEE Xplore. Restrictions apply.

this alert got triggered is that since there was no CSRF
token validation. Packages like CSURF creates a middle-
ware for CSRF token creation and validation. Using
this package to create a middle-ware, the anti-csrf token
worked and the anti-csrf token alert was solved.
4) Cross-Domain JavaScript Source File Inclusion: This
alert was triggered because ZAP detects that there were
external JavaScript files that were used in the project such
as Bootstrap, Google API font, etc. This alert is triggered
to notify the security tester to check if the sources are
trust-able. After careful examination, all the JavaScript
files and sources were verified to be genuine.
5) Information Disclosure – Debug Error Messages:
Generally for documentation, developer teams create
comments in the code which ZAP identified as debugging
messages that can help the attacker. This alert was fixed
by removing the comments so that ZAP doesn’t identify
it as a debugging message. Comments are important for
developers in future releases to make code more readable
and maintainable. However, from a security perspective,
comments should not exist to give hints for attackers who
can reverse engineer applications and retrieve original
code.
6) Information Disclosure - Suspicious Comments: Sim-
ilar to the previous one, this alert got triggered because
some comments were too detailed and gave information
about storing the data in the database. Website’s code
extraction is typically simple; comments can be viewed
by anyone using inspect element or view source code.
7) Cookie No HttpOnly Flag: A cookie has been
established without the HttpOnly flag, which allows
JavaScript to access the cookie. To prevent this alert,
Tester has enable the HttpOnly settings, as this web-
site is built using Django, here is how it can
be fixed using this line of code in settings.py :
(” ‘CSRF COOKIE HTTPONLY = True’. ”).
8) Server Leaks Information via ”X-Powered-By” HTTP
Response Header Field(s): This alert notifies the tester
that while making HTTP requests, the server name is
leaked which can be helpful for attackers. To fix this in
express, we used this piece of code which can disable and
hide the section where HTTP request shows the server.

– app.disable(x-powered-by’)

D. Dealing with SOAPUI Security alerts

Referring to section III-A2, the following solution has
been suggested in this section to address the vulnerability
discovered as well as how it was initially triggered in soapUI.

• HTTP Method Fuzzing: The approach is to block HTTP
methods, GET and POST as these two methods are
defined in the API. The attacker should not be able to
overwrite data on a server or get data that shouldn’t be
revealed to clients by unexpected HTTP methods

E. Penetration testing tools and usage

Thanks to the open-source community’s contributions, there
are numerous penetration tools publicly available. In this
research paper we will evaluate three of those tools: Jok3r,
SQLmap, Nikto as this tools provides the most of the testing
functions which is need for the security testing like network
infratructure and web black-box testing, SQL injections, http
headers, Cross site scripting, etc.

F. Jok3r, [1]

Jok3r [1] is a Python-based CLI program which is designed
to assist penetration testers with network infrastructure and
web black-box security tests, [2]. The tests below summarized
our testing activities and results:

• After installing the tool, create a database first that will
contain all of the test results.

• Choose the different options which is suitable for your
web application security testing. Check all the various
features for testing using the -h option.

• Run the attack with custom scripts for a particular type
of testing.

• To view the test results, open the database used to store
scan results.

• Test scan results:
– robots.txt is not found or empty.This text file indi-

cates the need for search engine crawlers to know
which URLs are accessible and which are blocked.

– SSLv2 & SSLv3 not offered: These secure sockets
layers, which have versions 2 and 3, maintain the
safety and security of internet connections but they
aren’t provided.

– Null ciphers, anonymous null cipher (no authentica-
tion), export ciphers are not offered.

– Strict transport security is not offered: This is the
layer in charge of making sure websites connect
to HTTPS (This layer does not exist in the tested
application).

G. SQLMap’ [3]

SQLMap ([3]) is an open-source penetration testing tool
that automates the process of finding and exploiting SQL
injection vulnerabilities and controlling database servers, [4].
The tests below summarized our testing activities and results:

• Start the offensive test on the target website with the
payload you wish to use to test the database for SQL
injection vulnerabilities.

• Scan: If there is no secure layer in between to protect the
database from SQL injection, SQLMap tools locate and
display the information obtained from the database.

• Test results may include user name and password, ta-
ble names from the database, column names from the
database, create tables, update & retrieve information,
delete users, delete tables, etc.

2022 International Conference on Intelligent Data Science Technologies and Applications (IDSTA)

154
Authorized licensed use limited to: Texas A & M University - San Antonio. Downloaded on December 24,2024 at 17:53:21 UTC from IEEE Xplore. Restrictions apply.

H. Nikto, [7]

Nikto ([7]) is a open source web application scanner. It runs
thorough testing on web servers for a variety of things like
potentially harmful files and applications, checks for out-of-
date versions on more than 1250 servers, and version-specific
issues on more than 270 servers, [6].
The tests below summarized our testing activities and results:

• Run the vulnerability scanner with specific test options
on the web application.

• Scans results:
– The anti-click-jacking X-frame-options header is not

present, There is a potential danger of a click-jacking
attack on the web application since the anti-click-
jacking X-frame-options header is missing.

– The X-content-type-options header is not set, the
browser will be able to perform MIME type sniffing.
The browser will determine what type of content
is present and how to handle it when it receives a
response from the server.

– The X-XSS protection header is not defined. Any
pages on this website may be vulnerable to an XSS
attack because the server is not set up to return a
’X-XSS-Protection’ header.

Here is a summary of ZAP and Soapui security alerts and
our debugging efforts:

• Content Security Policy (CSP) Header Not Set: Set-
ting the content security policy header by consulting
the framework documentation for syntax and using the
inspect tools is helpful since it enables debugging of
resources that were omitted from the header and allows
for their addition to the content security policy.

• X-Frame-Options Header Not Set: Depending on
which framework is used for building the web appli-
cation, tester should refer to framework documentation
for syntax, the X-frame-option can set, in express frame-
work, install helmet.js package and configure the X-frame
header which will fix this issue and secure your web
application

• Absence of Anti-CSRF tokens: Whenever we use forms
in web application, its important to make it secure
with tokenization, its simply validation the data was not
changed. There are many was to generate anti-csrf token,
you can generate token on server side and validate on
client side but different frameworks have their unique way
of validating forms with tokens.

• Cross Domain JavaScript Source File Inclusion: Make
sure all the external javascripts are from credible sources
or load those JavaScript file locally which means have
javascript code in the project locally.

• Information Disclosure – Debug Error Messages:
Remove any debugging message during https request
which can help attacker to gain inside information.

• Server Leaks Information via ”X-Powered-By” HTTP
Response Header Field(s): Hide the server name in the
HTTP request which used for building web application,in

express we can hide the server name on server side by
using ‘app.disable(‘x-powered-by’)’

• X-Content-Type-Options Header Missing: X-content
option can be set by enabling the nosniff mode,in frame-
work require a line of code which set the value of nosniff
to true.

• Cookie No HttpOnly Flag: Enable Httponly flag for
all cookie, In Django, you can accomplish this via
‘CSRF COOKIE HTTPONLY = True’.

• Information Disclosure - Suspicious Comments: Make
sure to remove the comments in the code which provides
important and critical information about storing the data,
functionality, etc.

• HTTP Method Fuzzing: Configure https methods so
that attacker should not able to overwrite data by sending
unexpected HTTP methods

IV. CONCLUSION

In this paper, we reported our experience to test a recently
developed website for security issues or vulnerabilities. As
a show case, we reported in this paper, using two desktop
and three command-line interface open source security testing
tools. We also reported our efforts to debug and fix those
security issues as well as comparison of open-source providing
an overview of the kind of testing the tools can perform as well
as the application type whether it is desktop, web or command-
line interface interface and further demonstrated a five-step
security testing work cycle. Lastly, we wanted to demonstrate
in this paper what vulnerabilities can exist, why they were
triggered, and how to fix the security issues to make web
applications secure.

ACKNOWLEDGMENTS

This material is based upon work supported by the Na-
tional Science Foundation (NSF) under Grant No. 2131193.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and
do not necessarily reflect the views of the National Science
Foundation.

REFERENCES

[1] Jérémy Brun-Nouvion. Jok3r - network web pentest automation frame-
work, 2019.

[2] Jérémy Brun-Nouvion. Jok3r - network web pentest automation frame-
work, 2019.

[3] Bernardo Damele and Miroslav Stampar. Sqlmap, 2022.
[4] Bernardo Damele and Miroslav Stampar. sqlmapproject/sqlmap, 2022.
[5] Martin Lněnička and Jan Capek. Classification and evaluation of cloud-

based testing tools: The case study of web applications’ security testing.
Acta Informatica Pragensia, 7:40–57, 06 2018.

[6] Chris Sullo and David Lodge. Nikto, 2022.
[7] Chris Sullo and David Lodge. sqlmapproject/sqlmap, 2022.

2022 International Conference on Intelligent Data Science Technologies and Applications (IDSTA)

155
Authorized licensed use limited to: Texas A & M University - San Antonio. Downloaded on December 24,2024 at 17:53:21 UTC from IEEE Xplore. Restrictions apply.

