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Quantifying evidence for—and against—Granger
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Testing for Granger causality relies on estimating the capacity of dynamics in one time series to forecast dynamics in another. The canonical

test for such temporal predictive causality is based on fitting multivariate time series models and is cast in the classical null hypothesis

testing framework. In this framework, we are limited to rejecting the null hypothesis or failing to reject the null – we can never validly

accept the null hypothesis of no Granger causality. This is poorly suited for many common purposes, including evidence integration, feature

selection, and other cases where it is useful to express evidence against, rather than for, the existence of an association. Here we derive

and implement the Bayes factor for Granger causality in a multilevel modeling framework. This Bayes factor summarizes information in the

data in terms of a continuously scaled evidence ratio between the presence of Granger causality and its absence. We also introduce this

procedure for the multilevel generalization of Granger causality testing. This facilitates inference when information is scarce or noisy or if we

are interested primarily in population-level trends. We illustrate our approach with an application on exploring causal relationships in affect

using a daily life study.

Granger causality | Bayes factor | multilevel vector autoregressive modeling

Technological advances are making multivariate, intensive longi-

tudinal data increasingly prevalent. The general upsurge of such

intense multivariate data affords new insights: We can now closely

examine within-person dynamics, with unforeseen potential for

addressing complex questions related to human behavior. When

zooming in on within-person dynamics, we are often interested in

the predictive capacity of our variables: can we predict current val-

ues of one time series from past values of another? For instance,

does a parent’s soothing behavior during a child’s anger episode

calm the child, aggravate the behavior, or have no effect? Or if an

individual’s emotional arousal increases, would they in turn also

feel more or less pleasant?

Statistical inference can be performed on such predictive asso-

ciations over time by testing for predictive causality, often called

Granger causality (Granger, 1969). The idea behind this infer-

ence is that if over time, changes in some variable X “Granger

cause” changes in variable Y , then past values of variable X
should contain information that helps predict Y , above and be-

yond the information already contained in past values of Y alone.

Certainly, Granger causality does not necessarily represent truly

causal relations due to the possibility of omitted variables, but the

inclusion of previous measurements of the variable itself enables

this framework to provide more information on possible causal rela-

tions than simple correlational measures. That is to say, predictive

causality analysis is limited in terms of inferring actual causality,

and the causality concept here refers specifically to the forecasting

of variables. All in all, Granger causality testing is a useful tool to

determine whether a set of variables contains useful information
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for improving the predictions of another set of variables.

Granger causality testing in time series analysis is routine in,

for example, the field of econometrics. For the social sciences, it

has been Peter Molenaar’s work that emphasized the usefulness

of this approach and extended it to better fit the typical goals of

social science research. Velicer and Molenaar (2013) gives a

broad overview of time-series analysis methods for psychologi-

cal research and highlights the utility of Granger causality testing

within this framework. Molenaar and Lo (2016) summarizes gener-

alizations of Granger causality testing by scaffolding on standard

and structural vector autoregressive (VAR; see later) models, and

includes approaches for handling heterogeneity and nonstation-

arity. Liu and Molenaar (2016) further adds to this by tackling

challenges related to nonlinearities between frequency domain

measures. Moreover, Molenaar (2019) describes a data-driven

approach for unifying standard and structural VAR models in order

to consolidate conclusions from Granger causality testing in these

two VAR variants, and emphasizes how these causal relationships

can be exploited for designing intervention studies.

Granger causality testing is typically done in the classical (fre-

quentist) inference framework (for some recent exceptions using

financial models, see Droumaguet, Warne, & Wozniak, 2016; Woz-

niak, 2016; Sen, Majumdar, & Sikaria, 2022). The classical hypoth-

esis test for predictive causality, the Wald test (see, e.g., Lütkepohl,

2005, p. 102) can only ‘reject’ or ‘fail to reject’ the null hypothesis

of no predictive causality. This means that we can only have binary

conclusions, and cannot quantify degrees of evidence in our data

in favor or against predictive causality. Even in terms of binary

conclusions, we can never ‘accept the null’ of no Granger causality.

The Bayesian approach we introduce here allows researchers

to quantify the evidence for or against Granger causality with a

single number. The direct quantification of evidence is crucial

for a number of purposes, including the support of incremental

science – that is, allowing small amounts of hard-to-obtain evi-

dence to stack across publications. Similarly, the ability to quantify

support against an association can be essential in practice. As
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an example, in studies of problematic child behavior, it is critical

to know how much evidence we have that certain factors do not

aggravate an undesirable outcome. More broadly, in the era of

big data, it becomes increasingly important to be able to make

informed decisions regarding which variables are worth monitoring,

necessitating an informed metric for evidence in favor of or against

predictive causality.

We introduce a Bayesian hypothesis test, using the Bayes

factor (Jeffreys, 1961), in order to quantify evidence in favor or

against Granger causality between variables changing over time.

Our proposed Bayesian approach performs simultaneous infer-

ence on predictive dynamics on both the group and the individual

level from multivariate time series data of multiple people. For

more information on Bayesian hypothesis testing in general see,

inter alia, Dienes (2016), Etz, Haaf, Rouder, and Vandekerckhove

(2018), Mulder and Wagenmakers (2016), Rouder, Haaf, and Van-

dekerckhove (2018), and Vandekerckhove, Rouder, and Kruschke

(2018). This Bayesian approach can help applied researchers

make decisions based on substantive goals – an applied example

using core affect measurements in experience sampling settings

is given in the Application section. Our work represents an initial

step towards developing a novel way of making inference about

Granger causality, with a proof-of-concept illustration. We have

made scripts and data accessible to carry out the inference fea-

tured in the Application section of this paper on the Open Science

Framework (OSF).1

Granger causality testing in vector autoregressive

models

We start by specifying the time series model on which our Bayesian

hypothesis test will be based. Define the temporal evolution of a

single random variable y over time t as a univariate autoregressive

model, specified as yt = ν + α1yt−1 + . . . + αlyt−l + ut, with ν
representing a possibly nonzero intercept; ut some forecast error;

and αl the dependencies on past observations of the variable

quantified in terms of autocorrelation coefficients, at different lags

l. Lagged relationships have important value for forecasting, as

some variables of interest only change gradually, so that current

and past data can reliably predict future trends.

Certainly, more still can be learned by studying the joint dy-

namics among multiple phenomena. The vector autoregressive

(VAR) model extends the predictive framework of the autoregres-

sive model by also accounting for interdependencies among time

series of multiple related variables evolving over time. This way

each variable’s temporal evolution is not only predicted from its

own past values, but also by past values of related variables. In this

project we limit our attention to linear dependencies in the standard

VAR model. Formally, a K-dimensional VAR(L) is specified as2:

yt = ν + A1yt−1 + . . . + ALyt−L + et, [1]

where yt = (y1t, . . . , yKt)
′ is a (K × 1) vector, ν = (ν1, . . . , νK)′

is a (K × 1) vector of possibly nonzero intercepts, et =
(e1t, . . . , eKt)

′ is a K-dimensional white noise or innovation pro-

cess, which in its simplest form can be represented as a sequence

of independent and identically distributed random K-vectors with

zero mean vector and covariance matrix Σ. Finally, each Ai is a

K × K coefficient matrix of the lagged and cross-lagged effects at

1
https://osf.io/qr82d/?view_only=8bb143074543486fa231f122a62e4d4e

2
We will only deal with the time-domain representation of the VAR model.

lag l. Specifically, Σ and Al are defined as

Σ =






σ2

1,1,e . . . σ1,K,e

...
. . .

...

σK,1,e . . . σ2

K,K,e






and

Ai =






α1,1,l . . . α1,K,l

...
. . .

...

αK,1,l . . . αK,K,l




 .

Let us consider a two-dimensional (K = 2) lag 1 (L = 1) VAR

as an example. This is a special case of Equation 1 (i.e., the

bivariate VAR(1) model) specified as:
[

y1,t

y2,t

]

=

[
ν1

ν2

]

+

[
α1,1 α1,2

α2,1 α2,2

][
y1,t−1

y2,t−1

]

+

[
e1,t

e2,t

]

[2]

where ν1 and ν2 represent the two elements of the intercept vector

ν, α1,1 and α2,2 are the autocorrelations in the two dimensions, re-

spectively, and parameters α1,2 and α2,1 are cross-lagged effects.

The last part denotes innovation errors, e1,t and e2,t, which can be

assumed to be bivariate normally distributed with mean zero and

covariance matrix Σ. This 2 × 2 matrix Σ contains the residual

variances for the two time series, σ2

1 and σ2

2 , in its diagonals, while

the off-diagonal element σ1,2 = σ2,1 expresses contemporaneous

association: the residual covariation between the two time-series.

While the contemporaneous association must be symmetrical, the

cross-lagged effects are not. The α1,2 and α2,1 coefficients quan-

tify the predictive power of one time series component on the other,

after controlling for past history of this latter component, hence

capturing the directionality of predictive dynamics.

As an illustration, we generated two sets of time series data from

the bivariate VAR(1) model described by Equation 2, with different

settings for the cross-effect parameters. These simulated time

series are depicted in the panels of Figure 1. For the bivariate set

in the left panel, we set the cross-effect parameters by assuming

no lagged dependency between the time series (α1,2 = α2,1 =
0), while in the right panel the time series were simulated with

predictive association: past values of Series 2 are predictive for

Series 1 (α1,2 6= 0, α2,1 = 0). The contemporaneous association

σ1,2 is equal to 0 in both sets. As can be seen, in the left panel

there does not appear a systematic dependence between changes

in the two time series, while in the right panel, changes in Series 2

(upper trajectory) are followed by similar changes in Series 1 (lower

trajectory).

Granger causality testing in the classical framework. Granger

(1969) defined a concept of causality in the context of VAR models

that built on the idea that a cause cannot come after the effect.

Based on his work, predictive causality or Granger causality testing

was developed into a statistical tool to infer whether one time series,

y1,t, can be used to forecast another, or more specifically if past

and current values of time series y1,t contain additional information

on future values of another time series y2,t, above and beyond

what is already contained in past and current y2,t alone. The idea

behind predictive causality testing is that having nonzero cross-

lagged effects (e.g., α1,2 6= 0 or α2,1 6= 0) decreases the error

variation (σ2

1,1,e or σ2

2,2,e), meaning that the prediction becomes

more precise. Currently, significance testing using the Wald test is

the default method for assessing predictive causality on the time

domain, and the test tool is limited to a single subject design (see,

e.g., Lütkepohl, 2005; Liu & Molenaar, 2016).

2 of 8 Oravecz et al.
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Fig. 1. Two sets of generated bivariate time series. The time series in left panel are independent, while the time series in the right panel have predictive dependence: Changes

in Series 2 at time t are followed by similar changes in Series 1 at time t + 1.

Bayes factors for Granger causality

To recapitulate our goals, we will derive and apply Bayes factors

for Granger causality testing in order to quantify relative evidence

in favor or against the predictive association of one time series

forecasting the other. In this section we provide a general introduc-

tion to the Bayes factor and derive its specific cases for single and

multilevel VAR models.

Defining the Bayes factor. One way of comparing competing

models in the Bayesian probabilistic inference framework is to

use Bayes factors (Jeffreys, 1961). The Bayes factor derives

immediately from Bayes’ rule as follows: Let H1 and H2 be two

competing accounts (i.e., hypotheses or models) for the data X,

and let p(X | H1) and p(X | H2) be the likelihood of X under

these accounts. By Bayes’ rule, the posterior probability of H1

(Hypothesis 1, which may be a “null” hypothesis but need not be)

is then:

p(H1 | X) =
p(X | H1)p(H1)

p(X)
. [3]

As can be seen, the posterior probability of Hypothesis 1, p(H1 |
X), is calculated by multiplying the likelihood of the data, p(X |
H1), with the prior probability of Hypothesis 1, p(H1), and dividing

this by the marginal likelihood, p(X). We can replace H1 with

H2 for the posterior probability of Hypothesis 2 (an alternative

hypothesis or model).

To obtain the relative posterior probability of H1 and competing

account H2, given the data, we need to formulate Equation 3 once

for H1 and again for H2 and then divide each side of the equiv-

alence. Conveniently, the marginal likelihood p(X) then cancels

out, resulting in:

p(H1 | X)

p(H2 | X)
︸ ︷︷ ︸

Posterior ratio

=
p(H1)

p(H2)
︸ ︷︷ ︸
Prior ratio

×
p(X | H1)

p(X | H2)
︸ ︷︷ ︸

Bayes factor

. [4]

Here we have already re-grouped remaining factors into the prior

ratio (relative prior probability of the accounts before seeing the

data) and the Bayes factor (relative evidence in the data), which

multiply to obtain the posterior ratio (relative probability of the

accounts after seeing the data). Equation 4 can be restated again

as follows:

p(X | H1)

p(X | H2)
︸ ︷︷ ︸

Bayes factor

=
p(H1 | X)

p(H2 | X)
︸ ︷︷ ︸

Posterior ratio

/
p(H1)

p(H2)
︸ ︷︷ ︸
Prior ratio

[5]

Table 1. Descriptive labels for certain Bayes factors.

Label B2:1 p(H2|X)∗

Data strongly support H2 10 91%

Data weakly support H2 3 75%

Data provide ambiguous information 1 50%

Data weakly support H1
1/3 25%

Data strongly support H1
1/10 9%

∗: p(H2|X) is the posterior probability of H2 assuming prior

equiprobability between H1 and H2. Adapted from Etz and Van-

dekerckhove (2016).

If we assume prior equiprobability between the hypotheses,

p(H1) = p(H2), the prior ratio cancels out and the Bayes factor

equals the relative posterior probability (i.e., posterior probability

ratio) of H1 over H2. More generally, the Bayes factor expresses

the degree to which the data cause this probability ratio to shift. In

our notation, we will indicate by subscripts which probability ratio

is being shifted: B1:2 will refer to the ratio of Hypothesis 1 over

Hypothesis 2, while B2:1 will refer to the inverse. Note that these

two are just reciprocal transforms of each other, B1:2 = 1/B2:1,

so that we may choose either one to state our results – whichever

is more convenient.

If the Bayes factor of H1 over H2 is large, meaning much

greater than 1 (see Table 1 for indicative values), then the relative

probability of H1 over H2 increases. If instead it is small, meaning

less than 1 and closer to 0, then the relative probability of H1

over H2 decreases (or, equivalently, the probability of H2 over H1

increases). Since the Bayes factor expresses, in a single number,

the degree to which a rational observer should change their belief

in one hypothesis over another, we interpret the Bayes factor as

the amount of evidence provided by the data (Evans, 2014).

The Savage-Dickey density ratio estimator for single-level

VAR. We now derive the Savage-Dickey density ratio estimator

(Dickey & Lientz, 1970; Wagenmakers, Lodewyckx, Kuriyal, & Gras-

man, 2010) for the predictive causality Bayes factor for a simple

single-level VAR model. Generally speaking, the Savage-Dickey

density ratio provides straightforward estimation of the Bayes fac-

tor for testing an equality constrained hypothesis against an un-

restricted alternative. Let us first split the parameters of the VAR

model, θ, into two subsets: θ = (δ, ε). δ will denote the parame-

ters of interest for the predictive causality test, while ε will denote

other parameters of the model that are not currently of interest

for testing. As a concrete example, consider the two-dimensional

Oravecz et al. Cognition and Individual Differences lab | University of California, Irvine | cidlab.com | May 18, 2023 | 3
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Fig. 2. Posterior and prior densities of α1,2 based on the data displayed in Figure 1. Circular markers indicate the heights of the densities at 0.

VAR with at most one lag (L = 1), as shown in Equation 2. When

we test the predictive causality of time series 2 on time series

1, the parameter of interest is the cross-effect parameter, so we

choose δ = α1,2, while ε will contain the remaining parameters:

ε = (α1,1, α2,2, α2,1, ν, Σ). The null hypothesis, or null model of

no predictive causality, H0, is then specified by α1,2 = 0, and the

alternative model/hypothesis, H1, is α1,2 6= 0. The conditional

density (denoted by p0(·) to indicate conditioning on H0 and p1(·)
to indicate conditioning on H1) of α1,2 is continuous at 0, so that

lim
α1,2→0

p1(ε | α1,2) = p0(ε). Hence there is no difference between

the priors of the other parameters in the null and the alternative

model, that is p1(ε | α1,2 = 0) = p0(ε). Accordingly, the marginal

likelihood under the null model of no predictive causality is

p0(yt) =

∫

p1(yt | ε, α1,2 = 0)p1(ε | α1,2 = 0)dε

= p1(yt | α1,2 = 0).

Now by applying Bayes’ rule we get

p0(yt) =
p1(α1,2 = 0 | yt)p1(yt)

p1(α1,2 = 0)
. [6]

To obtain the Bayes factor, we divide p0(yt) by p1(yt), as in Equa-

tion 4. This gives the Savage-Dickey density ratio—the ratio of the

posterior and prior ordinates, evaluated at the test value—which is

a simple estimator for the Bayes factor:

B(α1,2)0:1
=

p1(α1,2 = 0 | yt)

p1(α1,2 = 0)
. [7]

As can be seen, this is the ratio of the posterior for the parameter of

interest under the alternative model evaluated at 0, divided by the

prior of that parameter under the alternative model evaluated at 0.

Inverting the right hand side of the expression in Equation 7 gives

us B(α1,2)1:0
, the Bayes factor in favor of predictive causality.

Example results from a single-level VAR model. Figure 2 shows a

graphical representation of some of the results from fitting a VAR

model for the two sets of bivariate time series depicted in Figure 1.

In both panels of Figure 2, smoothed posterior densities of α1,2 are

displayed in orange, and the prior on α1,2, which was a standard

normal distribution in our example, is shown in grey. The circular

markers indicate the heights of these densities at α1,2 = 0, which

we need for testing the hypotheses of α1,2 = 0 or α1,2 6= 0.

Per Equation 7, to get the Bayes factor of no predictive causality

we divide the height of the posterior density by the height of the

prior density at 0. For the set of time series shown in the left panel

of Figure 1, this gives 13.7, which indicates strong evidence for

no predictive causality from Series 2 to Series 1. Evidence in

favor of predictive causality can also be calculated for this pair of

time series by dividing the height of the prior by the height of the

posterior at 0, which gives 0.07 (the reciprocal of 13.7).

By contrast, in the right panel of Figure 2, there is strong evi-

dence in favor of predictive causality of Series 2 for Series 1: there

is approximately 27.8 times more support for predictive causality

than for no predictive causality, based on the prior and posterior

densities. This BF corresponds to the same time series data as in

the right panel of Figure 1.

The multilevel VAR case. Bayesian vector autoregressive models

are popular in economics (e.g., Litterman, 1986; Wozniak, 2016)

and natural sciences (e.g., Lee, Chapman, Henderson, Chen, &

Cane, 2016), where it is often possible to measure variables with

high precision. Due to the different focus of these applications

they do not typically incorporate multilevel designs. In social and

behavioral sciences, however, we are often left to contend with

fewer observations and noisy data. While this means less informa-

tion about each individual of the analysis, in social and behavioral

research it is common to measure multiple subjects who are jointly

representative of some population. By relying on multilevel mod-

eling techniques, we can then pool information across subjects

and increase estimation accuracy for subjects with more noisy

data (e.g., Baribault et al., 2018; Vandekerckhove, Verheyen, &

Tuerlinckx, 2010). Moreover, this framework helps us explore

group-level trends. For an overview, rationale and implementation

of the two-dimensional multilevel VAR model with a social and

behavioral science focus, see Li, Wood, Ji, Chow, and Oravecz

(2022).

The multilevel VAR(L) model can be defined as follows:

yp,t = νp + A1,pyp,t−1 + . . . + AL,p(yp,t−L) + ep,t, [8]

ep,t ∼ N(0, Σp).

The above equation represents the within-person model – that is,

it describes the time-dynamics for each person p. Specifically, νp

is a K × 1 vector of person-specific intercepts; Al,p with (l =
1, . . . , L) is a K × K person-specific coefficients matrix of the

lagged and cross-lagged effects at lag l; and ep,t is a K × 1 vector

of random innovations following a multivariate normal distribution

with a person-specific covariance matrix Σp. Matrices Al,p and

Σp have the same structure as defined for the single-level case.

4 of 8 Oravecz et al.
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Fig. 3. Results on the group-level Bayes factor. Aggregating over participants, the Bayes factors support the null hypothesis of no Granger causality in both directions

(Arousal-to-Valence nor Valence-to-Arousal).

Here we limit our focus to the stationary VAR(1) process, with

stationarity defined for each person’s time series as all the roots of

the determinant of matrix D − A1,pyp,t−1 having moduli greater

than 1 (Lütkepohl, 2005), with D denoting the identity matrix.

All within-level parameters were person-specific and come from

joint level-2 (i.e., group-level or population-level) or between-person

distributions. Specifically, elements of the A matrix were also

assigned normal distributions with population mean and population

standard deviation estimated as αk1,k2,p ∼ N(µαk1,k2
, σαk1,k2

),
for all subscripts k1 and k2, where these subscripts refer to the

pair of dimensions connected by coefficient α. Furthermore, the

person-specific intercepts were assumed to be normally distributed

with group mean and standard deviation estimated from the data:

νk1,p ∼ N(µν,k1
, σν,k1

).

The multilevel VAR model was cast in a Bayesian framework,

where all model parameters are required to have prior probability

distribution. For the person-specific parameters, the above defined

level-2 (population) distribution function as priors. In case of the

parameters of these level-2 distributions, the intercept parameters

were assigned normal hyperprior distributions, with slightly wider

range for the intercept’s population mean µν,k1
∼ N(0, 10) than

for the population mean of elements of the A matrix µαk1,k2
∼

N(0, 1). The corresponding population standard deviations, σν,k1

and σαk1,k2
had standard half-normal priors assigned to them

(i.e., a standard normal distribution truncated to the positive real

line to ensure that these parameters cannot take negative values).

Finally, the Σ matrix was Cholesky decomposed, with priors set to

default values suggested in the Stan manual (Stan Development

Team, 2017). All these prior settings codify our a priori uncertainty

regarding the exact values of each parameter.3

For the multilevel VAR case, we will test Granger causality

both at the p-individual level and at the population level. For each

participant in a study, we may compute the evidence for (or against)

the hypotheses that αk1,k2,p = 0, and/or we may evaluate the

population-level hypothesis that µαk1,k2
= 0.

Parameter estimation for the multilevel VAR. The Bayesian statisti-

cal inference framework offers flexible tools for implementing com-

plex multilevel models, such as a multilevel extension of the VAR.

Markov chain Monte Carlo methods (Robert & Casella, 2004) pro-

3
Each of these is only one of many possible prior distributions for its parameter. These distributions

capture the relative plausibility of different values before taking into account the data, and in our

case involve some amount of theoretical commitment to the implications of these choices. Other

prior distributions are possible, and might encode slightly different models and research questions

(Etz et al., 2018).

vide for efficient estimation of high-dimensional parameter spaces

and the resulting posterior distributions of the model parameters

can be used to make probabilistic statements about quantities of

interest.

Li et al. (2022) implemented a one-step estimation for the two-

dimensional multilevel VAR model in JAGS (Plummer, 2003), Stan

(Carpenter et al., 2017) and Mplus (Muthén & Muthén, 1998-2017).

Here we follow their steps and use a one-step estimation of a multi-

dimensional VAR model implemented in Stan. The Stan software

is a generic Bayesian inference engine and can be interfaced for

example with R (R Core Team, 2016) or MATLAB (Baribault &

Collins, 2021; Matzke, Boehm, & Vandekerckhove, 2018). These

features together will lead to a tool that is easily adaptable for the

needs of complex behavioral science applications. We have devel-

oped and tested Stan code to estimate a single-level VAR model

with K dimensions and L lags with an R wrapper that includes the

Bayes factor calculations. Alternatively, there has also been an R

package developed (Epskamp, Deserno, & Bringmann, 2016) that

can estimate multilevel VAR models; however the estimation ap-

proach implemented in this package relies on post-hoc estimation

of the residual covariances and it is primarily non-Bayesian (but

can call Mplus for Bayesian estimation).

Application

We demonstrate inference for Granger causality with Bayes factors

using data from a 28-day long experience sampling study. Partici-

pants (N = 52) were asked to provide momentary self-reports on

various aspects of their psychological states in their everyday life

environments. All procedures were approved by the local Internal

Review Board (protocol 00001017). Our analysis will focus on their

reported core affect (CA; Russell, 2003). CA is a two-dimensional

psychological construct that captures how pleasant and how ac-

tive/aroused a person feels at any given moment. CA is assumed

to fluctuate over short time scales time due to the influence of

internal and external factors and its in the core of all our emotional

experience (Barrett, 2016). These two dimensions are theorized to

represent independent features of emotional experiences.

Under this theoretical framework, we would not expect the av-

erage valence experience one day to Granger cause the daily

average arousal experience the next day, or vice versa (i.e., the

theory predicts a lack of predictive causality). The existing classical

inference framework would not allow us to quantify evidence in fa-

vor of such a theoretical position. By contrast, we will demonstrate

that the Bayes factor allows us to summarize evidence favoring the

Oravecz et al. Cognition and Individual Differences lab | University of California, Irvine | cidlab.com | May 18, 2023 | 5
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absence of Granger causality (for more discussion on the differ-

ences between Bayes factors and null hypothesis testing, see, i.a.,

Dienes & McLatchie, 2018; Vandekerckhove et al., 2018; Wagen-

makers et al., 2018). To recapitulate, we do not only test for the

presence of an effect (Granger causality) here, but also directly

for a null effect (absence of Granger causality). This goes beyond

supporting a null hypothesis by “failing to reject” it, as is routinely

done in the classical inference framework. Moreover, the magni-

tude of evidence in favor or against Granger causality will also be

quantified.

Because our focus here is on introducing and illustrating Bayes

factors for Granger causality, we simplify our analysis for ease of

exposition. First, we only fit a bivariate VAR(1) model – that is, we

restrict our focus to lag=1 effects. This model is reasonably for our

data given that we work with daily aggregates of two dimensional

core affect measures. Second, we removed data from three par-

ticipants who did not have complete data on all 28 days, as well

as from one participant whose data did not meet our criterion for

stationarity in their time series.4

We fit the above specified multilevel VAR model to the data

of the remaining participants (N = 48) in R and Stan using the

package rstan (Stan Development Team, 2016). We called Stan

from R and ran 6 chains in parallel with 1,000 warm-up and 10,000

iterations each, resulting in a final posterior sample size of 60,000

for each parameter. We found no issues with convergence (all R̂
below 1.1; Gelman et al., 2013) and quality of sampling (effective

sample size was more than 1000 for 90% of the parameters and

at least 150 for each). For the Savage-Dickey approximation of the

Bayes factor, we used the polspline package (Kooperberg, 2020)

to kernel smooth the posterior distributions of relevant parameters

(Wagenmakers et al., 2010).

Results. We start by looking at group-level results. We used the

Bayes factor to infer whether (a) changes in arousal predict (i.e.,

Granger cause) changes in valence and whether (b) changes in

valence predict (i.e., Granger cause) changes in valence. To obtain

the Bayes factor for (a), we calculated the heights of the prior and

posterior densities of µα,1,2 at 0. To obtain the Bayes factor for

(b), we calculated the heights of the prior and posterior densities

of µα,2,1 at 0. We found around 12 times more support for no

Granger causality for arousal predicting valence than for Granger

causing it, and 27 times more support for no Granger cause as

opposed to Granger cause for valence predicting arousal. Results

are displayed in Figure 3. They represent strong evidence on the

group level for no predictive causality between the two core affect

dimensions.

Next we look at the person-level results. We test the same

propositions as above, but now for each person separately. For cal-

culating the evidence for each person in terms of a Bayes factor for

whether (a) changes in arousal Granger cause changes in valence,

we calculated the heights of the prior and posterior densities of

α1,2,p at 0. For calculating the evidence for each person in terms of

a Bayes factor for whether (b) changes in valence Granger cause

changes in arousal, we calculated the heights of the prior and pos-

terior densities of α2,1,p at 0. The person-level results mirror the

group level: almost all participants show evidence against Granger

causality and none show evidence for Granger causality.

The person-level results are visualized in Figure 4. The mark-

ers are person-level point estimates of the cross-effect parameters

4
We examined stationarity by first detrending each person’s time series data via Hodrick-Prescott

filtering using the mFilter package in R (Balcilar, 2019) and then running the Kwiatkowski-Phillips-

Schmidt-Shin (KPSS) test from the tseries package (Trapletti & Hornik, 2022).
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Fig. 4. Person-level estimates of the cross predictive parameters α1,2 and α2,1,

color-coded based on their corresponding Bayes factor. Each marker represents

a participant’s α values. The lines in both dimensions indicate 3-support intervals,

which are constructed such that the posterior density for values inside the interval is

at least 3 times higher than the prior density. Orange marks evidence for no Granger

causality for both directions, purple and green for one direction only, based on Bayes

factors being larger than 3.

α1,2 and α2,1. The intervals in both dimensions are 3-support

intervals (Etz, Dablander, Gronau, & Wagenmakers, 2020): they

contain those values of the cross-effect parameters whose proba-

bility density increased by at least a factor of 3 due to the data. In

other words, if these intervals contain 0, then the null hypothesis

for the cross-effect parameter is supported by a Bayes factor of at

least 3. The intervals were color coded based on these intersec-

tions with 0, with the orange crosses indicating evidence against

Granger causality in both directions. Out of 48 participants, 30

showed substantial evidence for the absence of causality in both

directions (orange, B(α1,2,p)0:1
and B(α2,1,p)0:1

both larger than

3), and all showed substantial evidence for the absence of causal-

ity in at least one direction (purple if B(α1,2,p)0:1
≥ 3 and green if

B(α2,1,p)0:1
≥ 3). None showed substantial evidence in support

of predictive causality in either direction (all B(α1,2,p)1:0
≤ 3 and

B(α2,1,p)1:0
≤ 3).

Discussion

We have introduced a novel inference tool, a Bayes factor for

Granger causality testing, which can simultaneously evaluate evi-

dence in favor and against Granger causality in multivariate time-

series data. Moreover, the ratio of evidence for these two com-

peting hypotheses can be quantified on a continuum. This means

that for example we can state how much more evidence we have

for a null hypothesis of no Granger causality in our data than for

an alternative hypothesis of Granger causality (or vice versa). We

have illustrated how useful such flexibility in inference can be with

an example where the underlying theory suggested no predictive

causality between affect qualities on a day-to-day timescale.

We derived the Bayes factor to perform inference on both the

6 of 8 Oravecz et al.
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group and the individual level. This is especially important for

applications in the social and behavioral sciences, where aggrega-

tion of data over participants or groups is often critical in order to

amass enough evidence. However, we note that not all the Bayes

Factors calculated in this analysis are independent of one another.

This makes it improper to combine Bayes factors for compound

statements (e.g., α1,2 > 0 and α1,2,p > 0). For such statements a

new model comparison would need to be set up to test the com-

pound proposition directly. We also briefly demonstrated the use

of B-support intervals, which allow for a visual test of many null

hypotheses at once.

Our work presents an introduction of Bayes factors to infer-

ence on Granger causality in social science. This work represents

an initial step towards developing a rigorous novel way of testing

Granger causality, with the aim of providing a proof-of-concept il-

lustration. Below, we detail certain simplifications and assumptions

that underlie our approach. Future research could evaluate the

tenability of these simplifications and assumptions.

We made didactic simplifications in our modeling approach,

including only discussing the lag=1 case, and not modeling missing

data in our time series. The latter extension can easily be made by

consulting Li et al. (2022). The former could be a straightforward

extension in a future research project.

We would like to emphasize that this initial implementation of the

Bayes Factor test for Granger causality is based on assumptions

that may limit the generalizability of our results. First, all inference

is conditional on the presented AR model specification and the

corresponding priors on the parameters, and on our choices of

measuring the modeled variables, in our case valence and arousal.

For example, we used a single variable measure of valence, but

the dynamics might actually be different on its positive end of the

scale versus the negative end of the scale. Second, we did not

examine whether the lead-lag relationships between valence and

arousal change over time, but assumed that it would not fluctuate.

If a lead-lag relationship oscillates over time, this could lead to

estimates of zero cross-effect when inappropriately aggregated

over time. Third, our conclusions are limited to the timescale we

chose, in this case day-to-day, and are based on the assumption

that this is a sufficient rate to discover cross-coupled dynamics.

Finally, we note that the classical significance testing framework

for predictive causality provides a static testing environment: it is

typically performed only after the data collection is concluded (or

else multiple testing corrections need to be worked out). In the

Bayesian framework sequential updating of evidence is the stan-

dard mode of operation and is straightforward (Oravecz, Huentel-

man, & Vandekerckhove, 2017). The Bayes factor approach we

introduced presents a tool for inference involving sequential up-

dating of evidence, for example when time series data is being

acquired in real time. With continuous streaming of information

becoming increasingly accessible (e.g., via passive sensing with

wearables, see e.g., Brick, Mundie, Weaver, Fraleight, & Oravecz,

2020), our new Bayesian approach has great potential for preven-

tion science.
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