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The Bayesian HDI+ROPE decision rule is an increasingly common approach to testing null parameter values. The decision procedure involves
a comparison between a posterior highest density interval (HDI) and a pre-specified region of practical equivalence (ROPE). One then accepts
or rejects the null parameter value depending on the overlap (or lack thereof) between these intervals. Here we demonstrate, both theoretically
and through examples, that this procedure is logically incoherent. Because the HDI is not transformation invariant, the ultimate inferential
decision depends on statistically arbitrary and scientifically irrelevant properties of the statistical model. The incoherence arises from a
common confusion between probability density and probability proper. The HDI+ROPE procedure relies on characterizing posterior densities
as opposed to being based directly on probability. We conclude with recommendations for alternative Bayesian testing procedures that do not
exhibit this pathology and provide a “quick fix” in the form of quantile intervals.
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The crisis of confidence in psychological science has reinflamed
historical controversies surrounding the enterprise of statistical
hypothesis testing. Classical null hypothesis significance testing
(NHST) has been the target of the majority of these criticisms,
including that it is overly dichotomous (Gibson, 2021), easily “hack-
able” (Simmons, Nelson, & Simonsohn, 2011), it can only reject
and not accept the null hypothesis (Rouder, Speckman, Sun, Morey,
& lverson, 2009), that null hypotheses are false a priori (Cohen,
1994; McShane, Gal, Gelman, Robert, & Tackett, 2019), and that
it answers the wrong question because estimation is more useful
(Cumming, 2014).

Alternative methods have been proposed. One prominent exam-
ple is the so-called HDI+ROPE decision rule (henceforth, HRDR)
introduced by Kruschke (2011, 2013) as a superseding alternative
to classical NHST.

While we are strong proponents of the Bayesian statistical
paradigm (Etz & Vandekerckhove, 2018; Vandekerckhove, Rouder,
& Kruschke, 2018) in which HRDR is based, we will argue here
that HRDR is flawed and should be avoided, on grounds similar
to the above objections to NHST. Specifically, HRDR can lead to
inconsistent inferences that depend critically on highly arbitrary
choices that must be made by the analyst about how to represent
the model.

In what follows we will first informally describe the HRDR with a
fictional scenario that highlights its problematic nature. The exam-
ple will demonstrate that multiple researchers using the HRDR can
come to different conclusions despite employing mathematically
equivalent models, priors, and data.

aDepartment of Psychology, University of Texas, Austin; °Department of Cognitive Sci-
ences, University of California, Irvine; °Department of Statistics, University of California,

Irvine; dDepartment of Logic and Philosophy of Science, University of California, Irvine
All authors contributed to the final draft.

'Correspondence concerning this article should be addressed to Joachim Vandekerck-

hove (joachim@uci.edu).

This work was supported by National Science Foundation grants #1658303, #1850849,

and #2051186. The authors declare no conflicts of interest. This work is based on a
part of AE’s doctoral dissertation at UC Irvine. A version of it was previously published
on PsyArXiv Preprints with DOI 10.31234/osf.io/5p2qt.

To give insight into why inconsistent inferences using the HRDR
occur, we will discuss the formal decision-theoretical properties of
the method. The crucial flaw we highlight is that mathematically
equivalent representations of a hypothesis test do not necessarily
lead to equivalent inferences. We show that this pathology is
due to the HRDR’s reliance on probability density to determine
which parameter values are “most plausible.” However, unlike
probability proper—which requires that equivalent sets must have
equal probabilities—probability density values depend on how we
label the parameters of a model. Differently put, sets of parameter
values with high density in one representation of the model may
have low density in another. As a result, HRDR can simultaneously
conclude that the null hypothesis is and is not to be rejected, which
is logically incoherent.

We provide multiple examples of statistical models with arbitrary
parameterizations that can lead to incoherence if the HRDR is
applied. Finally, we propose an easy-to-implement modification
of the HRDR that resolves the current pathology and achieves
coherence. The solution is to use a test that is based on probability
rather than probability density.

Introduction to the HRDR

The HRDR is similar in procedure to the broader category of equiva-
lence tests (Berger & Hsu, 1996; Lindley, 1998; Rogers, Howard, &
Vessey, 1993), which can be characterized as extensions of point-
null tests into tests of regions of practical equivalence (ROPEs).
However, the HRDR only uses the ROPE as a means to test a
point null and does not entail acceptance or rejection of the entire
region. The HRDR is therefore more similar in logic and application
to other point null tests.

The HRDR is conducted as follows (Kruschke, 2011). First,
determine a parameterized model for the data and specify prior
distributions for all parameters. Then, specify the null hypothesis
of interest as one particular parameter value: some specific value
of the parameter that is considered especially important, such
as a correlation being zero. Then, specify a “region of practical
equivalence” (ROPE) around the null value, containing those pa-
rameter values that are considered only negligibly different from it



for practical purposes. Then, collect data and obtain the posterior
distribution of the parameter of interest. For this step, it is neces-
sary to choose a parameterization of the model to be used for the
test. From this posterior, then construct a (100«)% highest-density
interval (HDI), which is an interval in which every value has higher
posterior density than any outside the interval and which contains
(100c)% of the posterior mass.

Then, finally, if the HDI and ROPE do not overlap, reject the null
hypothesis for practical purposes. If the ROPE encompasses the
entire HDI, accept the null for practical purposes. If the ROPE and
HDI partially overlap, reserve judgment about the status of the null
hypothesis.

A fictional example

Avery, Blair, and Cassidy are triplets who are training their pet
hamster to detect by smell whether a piece of cheese is safe to eat
or not. After months of training they have decided to run a rigorous,
blinded experiment, in which they will present their hamster with
cheese and record how many it identifies correctly.

To determine if their hamster has been successfully trained to
detect the safety of cheese, the triplets decide to implement an
HRDR as outlined above for their analysis. They specify that the
success or failure of a given cheese identification is modeled as
an independent Bernoulli trial with probability of success 6. The
three decide to to use a uniform distribution from 0 to 1 as their
prior distribution for 6, a default specification suggested by Jeffreys
(1961).

Next, the triplets need to determine their null hypothesis and
ROPE. A natural null hypothesis in this case is that the hamster is
responding at chance level: § = .50. After deliberation, the triplets
agree that their hamster would be considered “practically guessing”
if its success rate is within 3% of chance. Thus, they specify a
ROPE that spans from 6 = .47 to 8 = .53.

During the experiment, the hamster correctly determines the
safety of a piece of cheese z = 32 times out of V = 47. When the
triplets are ready to present their results, however, they disagree
about how that should be done...

The psychologist. It turns out that Avery is a psychology researcher,
and feels that the most intuitive scale for the results is the probabil-
ity scale 6. Avery produces the plot in Figure 1(a), showing that the
HDI for the posterior of § spans .542 to .800 and does not overlap
with the ROPE. Thus, argues the psychologist, the null hypothesis
can be rejected with room to spare. Their hamster really can tell
when cheese is safe to eat!

The biostatistician. Blair and Cassidy take issue with Avery’s pre-
sentation of the results. Blair is a biostatistician with extensive
experience interpreting log-odds in the context of clinical trials.
Thus, to Blair, it seems obvious that the results should be pre-
sented on the scale of logit(¢) = log (%), shown in Figure 1(b).
In this parameterization, the test value would be 0, with a ROPE
ranging from logit(.47) = log (4Z-) ~ —.12to logit(.53) ~ .12.
The lower bound of the HDI for the posterior of logit(6) is just
outside the ROPE: This version of the test allows one to reject the
null hypothesis, if only just barely. Maybe the evidence is not so
strong after all, concludes the biostatistician.

The physician. Cassidy is a practicing physician, and is used to

presenting the uncertainty of diagnoses to patients using odds
of occurrence. Thus, to Cassidy, it seems only natural to present
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the results on the scale of odds(#) = 1Z;, shown in Figure 1(c).

In this parameterization, the test value would be 1, with a ROPE
ranging from 0.887 to 1.128. The HDI for odds(#) spans 1.02 to
3.61, intersecting with the ROPE. It seems clear to Cassidy that
more data is still needed — and so the physician concludes that
judgment should be withheld about their hamster’s abilities.

This example serves to highlight the critical weakness of the HRDR:
whether the null hypothesis is rejected depends on what is essen-
tially an historical and cultural accident. That is, if the individuals
who collected the data had come from a different tradition then the
same data would have led them to different conclusions. Avery and
Blair are able to reject the null hypothesis due to their statistically
arbitrary preference for a parameterization in terms of probability
or log-odds of success, respectively, but Cassidy must withhold
judgment owing to their preference for framing results in terms of
odds of success. With the same model, the same prior information,
and the same data, the triplets come to different conclusions. In
other words, their conclusions do not cohere.

It is important to emphasize here that incoherence is a constant
property of the HRDR. Even in cases where one chooses and
stays with a single parameterization of the model—that is, one
never transforms parameters from one space to another—the
issue persists: Any choice of parameter space is statistically
arbitrary and conclusions from the HRDR depend critically on that
choice.

While the hamster scenario is of course a fiction, this is not an
unusual or selectively presented pattern of data — the numerical
values in this section were taken from Figure 1 in the paper that
first described the HRDR procedure (Kruschke, 2011).

Formal description of the HRDR

The HRDR is informally described as an assessment of how two
intervals overlap. In order to describe the HRDR’s problem of
incoherence more precisely, we will use the language of statistical
decision theory. We will begin this section with a brief introduction
to decision-theoretic ideas and then discuss how these ideas apply
to the HRDR.

Using the language of statistical decision theory, a hypothesis
testing procedure is a type of decision rule in which the decision
is a choice between one of the candidate hypotheses. If we use
o to represent the decision made for test T', then the value of dr
corresponds to the hypothesis chosen. For example, in the classic
Neyman-Pearson testing framework one sets up a test to choose
between the null hypothesis Hy and the alternative hypothesis H.
A test statistic (X), acceptance region (Ro) and rejection region
(R.1) are defined. If the test statistic falls in the predefined rejection
region, then éyp = 1 and we choose Hji; if the test statistic falls
in the acceptance region, then dxp = 0 and correspondingly we
choose Hy.

The HRDR is fundamentally a hypothesis testing decision pro-
cedure and thus it can also be represented as a decision process.
With the HRDR we have the same hypotheses as usual: Hy states
that the parameter is (practically) equal to a postulated null value
0o; H, states that the parameter takes some value other than 6,.
To test these hypotheses using HRDR we define the ROPE, then
carry out estimation of the parameter and examine if its posterior
density function shows considerable overlap with the ROPE. If
the areas of high density mainly lie within the ROPE, H, is ac-
cepted. If the areas of high density are largely outside the ROPE,
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Fig. 1. An illustration of the HRDR. The shaded region indicates the ROPE, and the dashed line indicates the 95% HDI of the respective posterior distributions. (a) 6
parameterization. The test value is .50, with a ROPE from .47 to .53. The HDI does not intersect the ROPE, leading to rejection of the null hypothesis. (b) logit(6)
parameterization. Test value is logit(.50) = 0, with a ROPE from logit(.47) ~ —.12 to logit(.53) & .12. The HDI does not intersect the ROPE, leading to rejection of the
null hypothesis. (c) odds(0) parameterization. Test value is odds(.50) = 1, with ROPE from odds(.47) = .887 to odds(.53) = 1.128. The HDI intersects the ROPE,

leading to withheld judgment.

H, is accepted. The intuition behind this procedure is seemingly
straightforward: If the most plausible parameter values are practi-
cally equivalent to the null value, then it makes sense to accept it
for practical purposes. Likewise, if the most plausible parameter
values are not practically equivalent to the null, then reject it.

The overlap of the ROPE and the posterior distribution is for-
mally determined by constructing a 95% highest density interval
(HDI) for the test parameter. An HDI is a set consisting of 95% of
the posterior mass, with the specific property that every parameter
value in the interval has higher posterior density than any value out-
side the set. Formally, an HDI consisting of 100a% of the posterior
mass is defined as the set

HDI, = {0 : p(8|D) > ka} (1]

with k. chosen such that P(HDI.) = « (Druilhet & Marin, 2007).
Formally, we define the decision rule associated with the HRDR

as follows:
1 if HDI N ROPE = 0

—1 if HDI ¢ ROPE
0 otherwise.

o=

In the HRDR decision rule, 6 = 1 corresponds to rejection of
Hp : 0 =6y and § = —1 refers to its acceptance. § = 0 refers to
the case there is partial overlap of the sets and one must withhold
judgment about the status of the null hypothesis and (if possible)
collect more data until one of the other conditions is met.

Let us now revisit the hamster example using this new language.
In presenting their results, Avery showed that the HDI and ROPE
did not intersect for testing 6 = .50, and thus made the decision
6 = 1 and rejected the null hypothesis. Blair came to a similar
conclusion for testing logit(#) = 0, but the evidence did not ap-
pear as conclusive. Cassidy concluded that the HDI and ROPE
partially overlapped for testing odds(f) = 1 and thus made the
decision 6 = 0 and withheld judgment. Thus, despite having the
same information, the triplets come to different conclusions about
logically equivalent hypotheses. In the next section, we will provide
some critical background on probability theory and use it to explain
why the HRDR leads to such instances of incoherence.

Why is the HRDR incoherent?

We will now explain the cause of the incoherent behavior exhibited
by the HRDR. A central idea is that the procedure requires the user
to find a set of parameters with “high” posterior density, but that
there is no unique set of parameter values with the highest density.
Density is a property that is determined by the parameterization
of the model, which is an explicit choice made by the user of
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the test. Indeed, as Bernardo (2005) points out, “any feature
of the posterior which is not invariant under reparametrization is
completely illusory, since the parametrization is arbitrary” (p. 374,
emphasis original). As we have seen in our examples above,
different choices of parameterization lead to different regions of the
model with high density, which in turn leads to different conclusions
from the procedure.

To understand why this happens, we will first review the fun-
damental relationship between probability and probability density.
Then, we will show the difference in the way probability and proba-
bility density behave when converting from one parameterization
to another. Finally, we will return to the HRDR and show how it is
affected by these considerations.

Density and probability. As an illustrative example, imagine that
we are testing whether the mean of a normal distribution is equal
to zero or not. The posterior distribution we obtain for 6 from
our analysis happens to be the standard normal distribution. The
cumulative distribution function (CDF) for a standard normal is
shown in Figure 2(a). This function tells us for any given candidate
0, the posterior probability that the “true” 8™ is less than 6. For
example, for 8 = 0, we have P(0* < 0|D) = .50. This is seen in
the graph by the height of the CDF curve for # = 0 being at .50.
We will use F'(0|D) as notation for the CDF.

Recall that probability theory is fundamentally a collection of
rules for assigning numbers between 0 and 1 to various sets. The
CDF tells us how much probability is associated with the set of
values that fall below a candidate 6. Using this function, we can find
the probability of other sets; the probability that 6 is between any
two limits 61 and 02 (61 < 62) can be obtained by finding how much
the CDF increases as we move from 6; to 62; we subtract F'(6,|D)
from F'(62|D) to get P(61 < 6 < 62|D). For instance, we take
02 = .6 and 0; = .4, then F(.6|D) = .73 and F(.4|D) = .66,
giving P(.4 < 6 < .6|D) = .07.

When the parameter space is continuous, the probability of
any individual point is zero. We can then look at the probability
density, which tells us how much probability is concentrated “near”
a given parameter value. The idea of probability density is directly
analogous to physical concepts of density, in that it tells us how
much (probability) mass exists in a given region of some space.
Consider our example with the standard normal posterior for 6. We
could take a small window A6 around each 6 that spans .1 below
and .1 above, and find the probability that 6* is between those
limits. Some examples are drawn on Figure 2(a). Regions that
have more probability around them have greater density.

“Near” § = —1, there is 5% of our total probability. “Near” § = 0
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Fig. 2. An illustration of how transformation affects the CDF and PDF. Thin red lines show tangent vectors at the given points. Brackets indicate the change in the CDF within
the neighboorhood of the highlighted parameter values. (a) The CDF of a normally distributed 6. (b) The CDF resulting from applying the transformation exp(6). (c) The PDF
of a normally distributed 6. (d) The PDF resulting from applying the transformation exp ().

there is 8% of our total probability. This distribution is symmetric
around 0, so “near” § = 1, there is again 5% of our total probability.
If we take these amounts and divide them by the length of the
window A6, we have an idea of how densely the probability is
packed around each of these values. We can compute the density
of these windows around —1, 0, and 1 to be .25, .4, and .25,
respectively.

Thinking in terms of the CDF, how dense a region is around a
parameter corresponds to how steeply the function rises near that
point. The idea of probability density follows this line of thinking into
the limit of smaller and smaller windows around € values; we look
at how much the CDF’s value is changing with an infinitesimally
small change around the parameter value. In other words, we can
look at the slope of the CDF at a given parameter value to find its
density. Thus, the posterior density function is the derivative (slope,
or rate of change) of the cumulative distribution function. In this
way, an individual parameter value can have a non-zero density,
which critically distinguishes probability density from probability.

To summarize, the density of candidate parameter values is
determined by first defining a window length to be applied to the
regions of 0 (i.e., A#), finding the probability mass within that
window, and then passing on to a limit. This results in taking the
derivative of the CDF, telling us how much probability exists in a
very small window “near” each candidate 6 value. As we can see
for our standard normal example, the highest-density point (i.e.,
the mode) is at # = 0 and the density gradually and symmetrically
decreases in either direction.

The difference in the way transformations act on probabilities
and probability densities is central to our argument. Equivalent
sets of parameters must naturally have equal probabilities, but their
densities can be quite different.

Reparameterization and transformation of variables. Probability
density quantifies how much probability mass is “near” a point in
the support of a probability distribution. When the probability
distribution is a prior or posterior distribution of a parameter, it is
tempting to think of the density as a measure of how “plausible”
each parameter value is. However, this line of thinking fails when
we realize that a parameterization of a model is merely an indexing
system of a family of distributions that could have generated the
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data (Bernardo, 2005). Usually when we talk about inference, we
make reference to parameter values such as 6, but what is being
tested is the data generating process for the data, f(z|f). For
example, in a t-test we may make an inference on whether the
difference between group means w1 and u2 equals zero, but this
is merely an expedient way of determining whether f(xz|u1) is the
same function as f(z|u2). Parameters do not exist outside of a
model for some data generating process.

When we think of parameterizations as indices of data gener-
ating processes, it becomes clear that we have to make a choice
of which index to use in any given case. It may be that we choose
based on convention or ease of interpretability, but we must make a
choice; there is no God-given parameterization. And in making our
choice, we must recognize that other analysts may make different
choices. That is, we may prefer to think of the model in terms
of a 6, but someone else may prefer to think in terms of ¢ that
is some function of . For example, in the case of generalized
linear models we estimate parameters on one scale and interpret
them on another. In the case that this function is bijective (both
one-to-one and onto), we can say that v is a reparameterization of
the model based on 6.

Let us now consider what happens to our standard normal pos-
terior distribution when we reparameterize the model in terms of
exp (6). This transformation is commonly applied to the output of
generalized linear models to ease interpretation of the parameters.
The top right panel shows the CDF of the posterior distribution for
this new parameterization, known as the log-normal distribution.
Note that the only change is to scrunch and stretch the axis in
different regions. The height of the curve has no need of adjust-
ment. Naturally, the probability that 6 < 0 is just the probability that
exp (f) < 1. This makes sense, as all we have done is assigned a
new labeling scheme for the model, going from f(z|0) to f(z|).
For example, the data generating processes that have a 6 smaller
than 0 are precisely those that have a 1 less than 1.

In contrast to the simple way probability is maintained through
transformation, the new density is not as straightforward. Recall
that density is telling us how much probability is “near” different
parameter candidates, and what is considered “near” a parameter
value is defined as a window of width A. The critical problem for
thinking about plausibility in terms of density is this: data generating
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processes that are “near” one another in terms of & may not be
nearby in terms of 1.

Consider the three 0 values of —1, 0, and 1. In this space
(represented by the horizontal axes in Fig. 2(a) and 2(c)), the
data generating process correspondingto 8 = —1 and 0 = 1 are
equally far from the one corresponding to ¢ = 0. But the data
generating process corresponding to ¢y = exp (0) = 1 is now
much closer to the one corresponding to ¢ = exp (—1) = .37 than
itis to ¢ = exp (1) = 2.7. However, critically, the probability mass
of this interval must stay the same, as equivalent sets must have
equal probabilities. Thus, the probability mass in the smaller region
of 1) between exp (—1) and exp (0) must be more dense than the
equally probable but more spread out region between exp (0) and
exp (1). This is the central idea of density: the same amount of
mass in a smaller region is more dense.

The story is the same as we shrink the window A in the limit
to find the density function. Because the probability mass has
been stretched and scrunched differently in different regions of
parameter space, some data generating processes that had high
(low) density when expressed in terms of § may have low (high)
density when expressed in terms of ¢. From the 1) perspective,
the densest region of parameter space is at exp (—1). The data
generating process corresponding to ¢ = exp (—1) has the most
probability “around” it.

So far we have given an intuition of the idea of how posterior
density changes when we transform our parameterization or rep-
resentation of the model. Essentially, we have to ensure that we
account for the differential stretching being done to the parame-
ter space; regions that stretch out must become less dense, and
regions scrunching up must become more dense. In the limit, as
we look at smaller neighborhoods around the parameter values,
we have to make finer grained adjustments to the density. The
limiting adjustment is a factor called the Jacobian, and it takes
a central role in our argument here. The Jacobian corrects the
density up or down to the extent that the neighborhood around the
given parameter is shrinking or expanding.

The Jacobian (described in more detail in the subsection “The
Jacobian and coherence”) is generally going to be a function of
the new parameter, and can have a drastically different effect
on different regions of the new parameter space depending on
the transformation. It is perhaps instructive to see how the Jaco-
bian works for a few points in the transformation of the parameter
spaces for Avery and Cassidy from our hamster example earlier.
In transforming from 6 to odds(6), calling v = 6(1 — )™, the
Jacobian is (1 ++) 2. The point § = .50 for Avery goes to the new
point v = 1 for Cassidy, and in doing so it undergoes a density
adjustment factor of (1 4 1)~2 = 1/4. The point § = .70 for Avery
goes to the point v = 7/3 for Cassidy, with a Jacobian adjustment
of (14 7/3)72 = .09. Finally, the point # = .90 goes to the new
point v = 9 with a Jacobian adjustment of 1/100. The Jacobian is
acting more strongly on the larger values of the parameter because
the transformation of the space becomes more exaggerated as
we approach the boundary of 6. Consider that § = .9 goes to
v=9,0=.95goestoy =19,and 0 = .99 goes to v = 99. The
probability around these points is being stretched across larger and
larger regions of odds, so the density must be adjusted downwards
accordingly. This differential adjustment due to the Jacobian will
generally lead to a different set of parameter values having the
highest density.

Critically, if we were to make the mistake of thinking of plausibil-
ity in terms of probability density (rather than probability proper),
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we would have to interpret the transformation from one parameteri-
zation to another as providing some new information — it would be
as if the Jacobian were another source of data. But of course the
adjustment due to the Jacobian does not introduce any new infor-
mation; its sole purpose is to ensure that the probability density
function integrates to 1.

The Jacobian and coherence. We now give a formal definition of
the Jacobian and demonstrate it in the context of the log-normal
example above. If a univariate random variable X has probability
density function fx (z), then the density function of the random
variable Y = g(X), for a smooth function g with inverse X =
h(Y),is
() = fx(hy) 1T W) [2]
The factor J(y) = dh(y)/dy is the Jacobian of the transformation,
and rescales the density function to ensure that the probability
density function integrates to 1. The Jacobian factor is a function
of the new parameter, meaning that its value depends on where
in the parameter space we are; neighborhoods that are shrinking
will have a Jacobian greater than 1, and neighborhoods that are
expanding will have a Jacobian less than 1.
Let us continue with our example of transforming from a normal
random variable to a log-normal. Let X follow a normal distribution
with mean u and variance o2, that is, X ~ N(u, o?). The density

function of X is
! ex {—L(m — )2}
ool Y 202 12 )

fx(z) =
for —oo < & < oo. The mode of this distribution is that value of =
that maximizes exp{—(z — u)?}, which is = .

Table 1 shows the Jacobian for many common transformations.
The change of variable Y = exp(X) corresponds to the fourth
row of the table with @ = 1. Thus, we have inverse X = log(Y")
and a Jacobian equal to 1/Y. Equation 2 tells us that the density
function of Y is given by

\/%exp {%ig((log(y)) - M)Z} :

- exp {—1 (log(y) - u) 2}

yvV2mo? 202 ’

for 0 < y < oo. It can be shown that the mode of this new density
isaty = exp (u — o?).

If we were to incorrectly interpret density as an indication of
“plausibility,” then the point with highest density should be con-
sidered the “most plausible” value of a random variable (i.e., the
mode). We would then have to simultaneously believe that the
most plausible value of X is u, but that the most plausible value
of Y = exp (X) is not exp (u), but the potentially very different
exp (1 — o). These two beliefs are contradictory, so treating den-
sity as a measure of plausibility leads to logical absurdity and is
not a coherent system of reasoning.

Y

Iy (y)

Issues with the density-based HRDR. As shown in our discus-
sion of density and transformation, regions of parameter space
having “high” or “low” density depends on how we choose to pa-
rameterize the data generating process. The relative ordering of
density can change drastically across reparameterizations of the
model, meaning any inferences based directly on density are es-
sentially artifacts of a statistically arbitrary parameterization choice.

The HRDR relies on the determination of overlap between a
high-density region and an “equivalency” region of the parameter
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Table 1. Some common transformations and their corresponding
Jacobian factors. The first column lists various transformations in
the form Y = g(X). The second column lists the inverse functions,
X = h(Y). The third column lists the Jacobian factors correspond-
ing to each transformation, obtained by taking the derivative of the
corresponding inverse function (see the explanation in the main text).
Note that @ is the normal CDF and ¢ is the normal PDF. Finally, the
rightmost column indicates whether the transformation is linear or
nonlinear — the scale dependence of the HRDR occurs only with
nonlinear transformations.

Transformation Inverse function Jacobian Linear
— _ — dh(Y)
Y = g(X) X =h() JY) ==
Y =aX +b X=X=2 Jy)=1 Yes
Y = X X=yl/a J(Y) =Ly No
Y = Xt/ X=Y¢° J(Y)=aYe 1 No
Y = eX X = Llog(V) JY)= % No
Y = alog(X) X =e¥/e J(Y) = %ey/a No
_ X _ Y _ 1
= 1})( = ? J(Y) = arve No
1
Y = 1+X X=1¥ J(Y) = (1,y}22 No
— X _ 1 _ e”
Y log(l_x) X =1 J(Y) = vz No
1 _ Y _ 1
Y= —Ls X=log(1X%) JO) =375 No
Y =0"1(aX +b) X=200=0 J(Y)=Le(Y) No

space. The issue with the procedure is now apparent: regions of
parameter space can have high density in one parameterization
and low density in another, meaning the location of the HDI relative
to the ROPE is dependent on an arbitrary parameterization choice.
Thus, the inference one draws from the HRDR is not invariant to
reparameterization of the model.

In fact, the non-invariance of the HRDR to reparameterization
suggests that the way we have written the decision rule associated
with the procedure in the earlier section is incomplete; the entire
decision process should be indexed by the parameterization choice
made. Thus, the HDI should be explicitly HDIly, the ROPE should
explicitly be ROPEy, and the decision rule should be explicitly dg.
Thus, in terms of decision theory, the problem with the HRDR is
that with the same data and prior, it is not the case that the decision
d¢ will necessarily be equal to the decision 4., associated with a
reparameterization of the model. Different analysts with the same
information can come to different conclusions based solely on their
choice of parameterization. Note that the incoherence problem
does not involve moving from one parameterization to another
— the changing choice of parameters simply serves to illustrate
the fact that the results of the HRDR depend on this statistically
arbitrary choice.

Computational demonstration of transformation incoherence.
To help develop a deeper understanding of these technical points,
we will now demonstrate how the transformation incoherence of the
HRDR can be seen in practice using modern computational tools.
Modern Bayesian analysis is done using computational tools such
as MCMC (van Ravenzwaaij, Cassey, & Brown, 2018). These com-
putational methods are able to generate samples from a posterior
distribution, which can then be used to draw inferences from the
data. We can obtain the posterior samples from a reparameterized
version of a model by applying the transformation directly to the
original posterior samples (treating them as derived parameters).
For example, if we can obtain samples from the posterior distri-
bution of a binomial rate 6, and we wish to draw inferences about
some transformation g(6), we can simply apply the transformation
to each sample from the original posterior to obtain the posterior
samples for the derived g(0).
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ROPE
= Quantile Interval
=== HDI

Fig. 3. A computational illustration of transformation incoherence. The distribution
at the top contains samples of the posterior distribution over the rate of success
6, while the inverted distribution at the bottom contains samples of the posterior
distribution over the transformation logit (). The connected points (open circles)
highlight the uneven shrinking of the logit transformation, as does the gray polygon
marking the ROPE limits in both scales. The 95% HDI, indicated with dashed black
lines, switches from non-overlapping in the original € scale to overlapping after the
logit transformation. By contrast, the 95% quantile interval, shown with solid black
lines, must retain its original overlap with the ROPE since the relative order of the
posterior samples is preserved due to the monotonicity of the logit transformation.

Suppose we have 1000 posterior samples for 6, denoted 0y,
for k =1,2,...,1000, ordered from smallest to largest. The 95%
highest-density interval for 6 can be found in two steps. Start by
taking the first sample and the 950th sample and check the length
of the interval they form, 6950 —61. Then, check 951 — 02, Og52 — 03,
and so on in sequence until the length of all such possible intervals
are computed. The shortest such interval will be the highest density
interval.

Consider the reparameterization logit(d) = log (%;). To
obtain posterior samples from logit(6), we simply apply the trans-
formation to each 6. The reparameterization will not change the
rank order of the samples, it will simply put them into a new scale.
The effect of this transformation is shown in Figure 3. Here we are
implementing the HRDR to test § = .5 with a shaded ROPE of
(.40, .60). The top panel shows the posterior distribution of 1000
samples taken from a beta(10, 2) distribution. The bottom panel
shows the distribution of the posterior samples after applying the
logit transformation. The lines connecting the two panels show
how values of 6 are mapped into the space of logit(#). Notice that
equally spaced values of 8 do not remain equally spaced after the
reparameterization: values near logit(#) = 0 are closer to each
other than points at the extremes. The effect of the reparameteri-
zation on the ROPE is shown by the shaded region connecting the
panels.
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When we obtain the HDI for the reparameterization, the pro-
cedure operates the same way on the transformed samples. But,
critically, the relative distances between the transformed samples
will not be preserved due to the fact that samples near the middle
of the scale are now closer to each other than samples near the
extremes. This means that some intervals that were relatively
longer in the original parameterization may be shorter in the new
one, and vice versa. The effect of this transformation is shown by
the dashed lines connecting the two panels of Figure 3. Notice the
shearing effect when compared to the rest of the traced lines. This
shearing force is the Jacobian in action.

Because the HDIs must account for the density adjustment
due to the Jacobian, they transform at a different angle. The
transformation incoherence of the HRDR is demonstrated where
the lower bound of the HDI crosses into the ROPE area.

The thick solid lines connecting the two panels show the 2.5%
and 97.5% quantiles of the posterior distributions, which together
form a central 95% quantile interval. As we explain below, quantiles
are based on probabilities and therefore inherit coherence. The
transformation coherence of quantile intervals can be seen by them
operating at the same angle of the rest of the transformation. The
quantile interval lines cross with the sheared HDI lines because
the quantile intervals are unaffected by the Jacobian factor.

Kruschke (2010) provides code to produce HDIs from MCMC
output and produce figures summarizing the results. In Figure 4 we
provide code that can be used to replace the HDIs with quantile-
based intervals. This simple fix brings the procedure back to
a state of coherence while allowing the user to continue using
the computational framework provided by Kruschke (2010) with
minimal interruption.

QIofMCMC <- function(sampleVec,credMass=0.95){
# Computes the quantile interval from
# (1-credMass)/2 to 1-(1-credMass)/2,
credMass is the target percentage of
posterior samples to be included in the
interval.

The typical value credMass=0.95 results in
an interval from the 2.5% to the 97.5%

# quantile.

alp <- (l1-credMass)/2

lim <- quantile(sampleVec,probs=c(alp,l-alp))

return(lim)

where

H H H HH

Fig. 4. R code to compute quantile intervals instead of HDIs. This function has the
same interface and can be used in the same way as the HDIofMCMC function provided
by Kruschke (2010, p. 628-629).

Additional examples

Recognizing that it is possible to expose the scale sensitivity of
the HDI by deriving the Jacobian of the transformation, we can
now easily show other examples of models used in psychological
science that are susceptible to incoherence if HRDR is used. In
this section, we provide additional examples of statistical models
whose varying parameterizations lead to incoherence.

Three parameterizations of the Rasch model. The Rasch model
(Rasch, 1960) is one of the most common models in item response
theory, with many useful applications and theoretical results well
known to psychometricians. Its most typical parameterization is
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one where the probability of person p answering correctly on item
1 is a logistic function of the difference between p’s ability ,, and
's difficulty B;:

P(X=1)=[14e @]
However, at least two other parameterizations exist and have their
own specific use cases (see, e.g., Batchelder, 1998; Crowther,
Batchelder, & Hu, 1995):

Q

PX=1)=—2
( ) o+ 0,

and b
P(X=1)= OpDi

apbi + (1 — ap)(l — bl) '

Here, the parameters map to one another in the following ways:
0; = eBP, ap = eep, ap = [1 + 6797’] 71, and b; = [1 + eiﬁi]fl.
The Jacobians associated with these transformations are shown
in Table 1. Since the associated Jacobians are a function of the
parameters themselves (i.e., the stretching of the scale is not
constant everywhere but depends on the value of the parameter
itself), these transformations distort the scale in a way that causes
incoherence when using the HRDR. Hence, making the innocuous
switch from one of these parameterizations to another, keeping
everything else the same, can cause a switch in the statistical
decision that results.

Kimura phylogenetic model. Stepping outside of the field of psy-
chology, a second example concerns DNA evolution. Models of
DNA evolution can be thought of as descriptions of the process
of nucleotide substitution (Zwickl & Holder, 2004). One family
of DNA evolution model known as the “Kimura family model” as-
sumes that all four nucleotides will be equally common, that the
eight types of transversions will occur at one rate, and that the four
types of transitions will occur at a second rate. Within the con-
fines of these assumptions, the Kimura model family can generate
predictions ranging from all substitutions being transversions to
all being transitions. A key parameter in this model family is the
transition/transversion rate ratio «, which is used to describe this
range of possibilities. The two ends of the spectrum of predicted
substitution patterns are specified with x = 0 (all transversions)
and x = +oo (all transitions). An alternative parameterization of
this model family instead characterizes the proportion ¢ of sub-
stitutions that are transitions. This parameter can be written as a
function of x: ¢ = k(2 + k) ~'. The Jacobian corresponding to
this reparameterization is J(¢) = 2(1 — ¢) 2, which is again not
a constant but a function of the parameter ¢.

The circular drift-diffusion model. The circular drift-diffusion
model (CDDM) is a process model used to describe response
and response time data collected in tasks where the decision
space is a circle (Smith, 2016). The model belongs to the broad
category of sequential sampling models that assume that individu-
als accumulate information about the stimuli presented from the
moment the trial starts until they are ready to input a response.
There are two common parameterizations of the model: one
that describes the drift vector in terms of drift angle 6 and drift
length §, and the other describing it in terms of horizontal drift .,
and vertical drift 1. Moving between these two parameterizations
involves transforming between Cartesian and polar coordinates:

e = dcos(h)
Hy = 0dsin(h).
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The case of reparameterization with multiple interdependent pa-
rameters is slightly more complicated than our previous examples.
We do not go into further detail here, but the scaling factor that we
need is the absolute value of the determinant of the transformation,
which is:

Opx Opa
— 00 00
| |‘]| | - Ay Oy
e o0
9b cos b ddcos b
= 25%n0  95%me
a5 o6

|[cos(8) - & cos(0)] — [—dsin(B) - sin(0)]]| = 6.

Again the Jacobian is a function of a parameter.’

The three examples above serve to illustrate the ubiquity of non-
linear reparameterizations possible for scientific models across
psychology and related fields. Despite a popular preference to
represent models using certain “canonical” parameterizations (e.g.,
Kruschke, 2018), ultimately the epistemic content of a model is
not in its parameters but in the distributions it generates over data
(Villarreal, Etz, & Lee, 2023). There is always an alternative param-
eterization that could be meaningfully understood; good methods
should give us the same conclusions across them all.

Broadening our scope from these example models, we conclude
by pointing out that the ubiquitous framework of generalized linear
modeling relies on the frequent application of “link functions” that
map parameters between scales — often from one scale that is
natural for the parameter (e.g., a probability that lives between
0 and 1) to one that is convenient for regression (e.g., its logit
transform that lives on the full real line). All nontrivial link functions
are nonlinear, and hence the HRDR will be incoherent in those
common cases.

Coherent alternatives to the HRDR

The incoherence of the HRDR lies entirely in the choice of the HDI
as a reference to compare with the ROPE. Because the HDI is
defined with regard to the specific parameterization of the posterior
distribution, and because density of any given data generating
process can be high or low depending on parameterization, the set
that we end up comparing to the ROPE depends on a statistically
arbitrary choice. This means that any conclusions we draw from
our hypothesis testing procedure depends critically on a choice of
how the model is described.

The transformation incoherence we have highlighted here can
only occur when sufficient posterior mass lies inside or outside of
the ROPE. By definition, a 95% HDI is a set of parameter values
with probability .95. This probability will remain inside/outside the
ROPE no matter how we choose to reparameterize. Thus, we
cannot have a case where the conclusion from an HRDR flips from
rejection to acceptance — the maximum extent of the incoherence
is to change a rejection or acceptance into an inconclusive result
(or vice versa). This is still not very comforting, because any op-
portunity for inferences to change arbitrarily based on statistically
irrelevant choices indicates a fundamental weakness of a proce-
dure. In the remainder of this paper we will suggest some changes
that could be made to the HRDR test to achieve coherence.

"The multidimensionality of the CDDM leads to additional complications. We could continue and
derive the multidimensional posterior distribution corresponding to the new parameterization, but
how to conduct the HRDR at that point is less immediate. We suspect most researchers would
prefer to perform the HRDR using the marginal posterior of the parameter of interest. This involves
integrating out any other non-focal parameters, such as §. This adds more layers of complexity to

the transformations involved, and we do not discuss them further here. Suffice it to say that the
multiparameter HRDR is fraught with nonlinear relationships.
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The HRDR suffers from transformation incoherence precisely
because it uses density-based interval estimates. As we have
demonstrated, the regions of parameter space with high density
in one parameterization can have low density in another. This
weakness can be overcome with a simple modification of the pro-
cedure: transitioning to probability-based decision rules. Because
probability theory itself is coherent, methods derived directly from
it will inherit that coherence.

Quantile intervals. The simplest transition to probability-based
inference is to use quantile intervals, which already happen to be
a very common output in Bayesian software. These intervals are
constructed by taking the inner 100a% of the probability mass of
the posterior distribution, leaving (FT‘*)% of the mass outside the
interval on either end.

Quantile-based intervals will naturally be transformationally co-
herent, because they are based directly on probability. Using the
CDF, a quantile interval can be constructed by finding the parame-
ter values with heights equal to .025 and .975. As we have seen,
the only change that occurs in a CDF during a transformation is
to stretch and scrunch the points along the x-asis — the function
values at those points remain unchanged. Thus, tests based on
quantile-interval endpoints will be transformationally coherent.

Transitioning to probability-based intervals is an easy fix to the
problem of transformation incoherence because they are already
in broad use. Most software that performs Bayesian inference,
such as JAGS (Plummer, 2003) and Stan (Carpenter et al., 2017),
will by default produce these intervals in a model summary. These
are computationally easy to produce because all one needs to
do is note which posterior samples correspond to the appropriate
sample quantiles. Almost no software is producing density-based
intervals by default, probably because it involves additional compu-
tational steps to find the shortest such interval.

Posterior mass in the ROPE. Once we move to a quantile-based
interval for use in the HRDR test, an even easier alternative solution
presents itself. Why not simply compute the posterior probability
that the parameter is in the ROPE? The interval comparison re-
quired by the ROPE test is superfluous at this point. Recall that
a 95% quantile interval is constructed by taking 2.5% and 97.5%
quantiles of the CDF. But most posterior distributions are unimodal,
meaning this interval is generally going to be a contiguous set of
parameter values. Thus, for the interval to not intersect the ROPE,
the probability the parameter is in the ROPE must be at most 2.5%.
Thus, we could simply use a decision rule that rejects the null
hypothesis when the probability it is in the ROPE is sufficiently low,
and accept it when it is sufficiently high.

Indeed, directly computing a probability is the natural Bayesian
approach to such a problem (Wellek, 2002). If we look back at our
example with the triplets and their hamster, the set of parameters
in the HDIs changed across the three parameterizations. However,
the probability of the ROPE is approximately .02, sufficiently small
to cast doubt on the null hypothesis regardless of one’s choice of
parameterization. We will next present an example of how this
approach would impact the conclusions of a recently published
result in the next section.

Alternatively to estimating the size of the parameter of interest,
one may still be interested in evaluating the statistical evidence
for or against the nullity of the parameter. To this end, one can
compute the Bayes factor associated with the hypothesis that the
parameter is inside versus outside the ROPE. Such a Bayes factor
would compare the posterior odds that the parameter is inside the
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ROPE to the corresponding prior odds, which is computationally
convenient if the posterior is obtained via sampling.? This Bayes
factor would tell us the extent to which the data are making us more
or less confident that the parameter is inside the ROPE. Critically,
this Bayes factor would be based on probabilities and thus would
trivially maintain coherence.

Solution example. Newton et al. (2018) present a cluster random-
ized trial of the efficacy of an intervention program designed to
reduce cannabis usage among Australian high school students.
A total of 2190 students were randomly assigned to one of three
possible intervention conditions or a control condition, with mea-
sures related to cannabis usage, related harms, and knowledge
taken at baseline, and 6-9 months, 12, 24, and 36 months after the
baseline (i.e., post-intervention measures).

The data analysis presented by the authors focused mainly
on the differences between the control group and all intervention
conditions. The primary statistical analysis was conducted using
multilevel mixed-effects linear models that incorporated individual
and school-level random effects. Using a classical hypothesis test,
Newton et al. found no statistical differences in cannabis usage
and related harms between the control and intervention groups.
The authors then implemented an HRDR to quantify how much
evidence the data provided in favor or against the null hypothesis.
They defined a test value for the odds ratio # = 1 and a ROPE
of [0.9,1.1]. The authors note that the HDI for the odds ratio
overlapped partially with the ROPE and concluded that their initial
non-significant results were ambiguous and not indicative of a lack
of true effect.

The data in this real-world example allow us to contrast the
HRDR results with those achievable through using a direct proba-
bility approach. Table 2 presents results reported by Newton et al.,
their Table A2, using a collection of alternative probability-based
measures corresponding to the data collected at each moment in
time. In Table 2, the second column presents the median odds
ratio and the range of the 95%HDI as reported by the authors;
the third column lists the probability that the odds ratio value is
contained in the ROPE P(ROPE); the fourth column shows the
probability that the odds ratio is smaller than 0.9 P(6 < 0.9); and
the rightmost column shows the probability that the odds ratio is
larger than 1.1 P(# > 1.1). Summing the fourth and the fifth
columns we obtain the probability that the odds ratio falls outside
of the ROPE (i.e., being either smaller than 0.9 or larger than 1.1),
which by the complement rule of probability theory is the same
as 1 — P(ROPE). Probability-derived measures are coherent by
definition.

As we can see, there is a decline over time in the probability that
the odds ratio coincides with the ROPE. More specifically, by 24
months, the probability that the odds ratio is practically equivalent
to 1 is only .061, and at 36 months, the probability is only .04.
Critically, we note that despite the wide HDIs found at 24 and 36
months, we are relatively confident that the odds ratios at these
times are outside the ROPEs.

This real-world example helps to illustrate the advantages of
working with direct probability measures, which preserve the in-
tuitive reasoning of the HRDR while also guaranteeing logical
coherence.

2Note that the odds in question are equal to P (ROPE) / P(—ROPE). If one obtains the posterior
by simulation, this would correspond to the proportion of posterior samples inside versus outside
the ROPE.
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Table 2. A selection of results of the logistic regression analysis from
Newton et al. (2018). The key statistic is the odds ratio 6.

Time Median 6 (95% HDI) P(ROPE) P(0<0.9) P(6>1.1)
6m 0.87 (0.74 t0 1.02) 351 646 003
12m  0.76 (0.54 to 1.02) 138 851 011
24m  0.58 (0.27 to 1.01) .061 913 026
36m  0.45(0.1210 0.99) .040 929 031

Conclusion

We have highlighted a critical flaw with the HDI+ROPE or HRDR
method: transformation incoherence. This flaw can lead differ-
ent researchers with the same priors and data to draw different
conclusions because they have arbitrarily chosen different param-
eterizations of the problem. We have shown that the root cause
of this incoherence lies with the choice of using highest density
intervals in the test. Because these intervals are constructed with
reference to a specific density function from one specific parameter-
ization, the change from one chosen parameterization to another
causes the set of highest density points to change; where the orig-
inal set may have excluded the ROPE, the new set may intersect
with the ROPE.

We are not the first to point out the problems with thinking of
density as a measure of “plausibility.” However, most discussion
tends to focus on the consequences this thinking has on coherent
specification of priors. Perhaps the most famous objection to this
line of thinking was made by Fisher (Lehmann, 2011), who argued
against the use of uniform priors to represent ignorance because
they will only be uniform in one parameterization of a model (for
a thorough demonstration see Ly, Marsman, Verhagen, Grasman,
& Wagenmakers, 2017). Zwickl and Holder (2004) provide a clear
illustration of the problem with taking uniform priors to represent
ignorance in the context of the General Time-Reversible Model,
in which it common to reparameterize in terms of either x or ¢ =
/(2 + k). Uniform priors in either  or ¢ lead to highly informative
priors on the other scale.

Similar considerations led Jeffreys (1946) to develop the now
famous invariant Jeffreys prior rule. Druilhet and Marin (2007) pro-
pose a class of prior densities that lead to invariant highest density
sets, avoiding transformation incoherence of the HDI. However,
their solution imposes specific choices of Jeffreys-type priors that
may not be desirable or may not even exist in practice for models
with sufficient complexity. This led Druilhet and Pommeret (2012)
to develop new invariant conjugate families of priors that can be
applied when the model is a member of the exponential family.

In addition to issues in prior specification, issues with using
density-based intervals in estimation and testing have been pointed
out by others (Bernardo, 2005; Garcia & Oller, 2006; Robert, 1996;
Shalloway, 2014). For instance, Bernardo argues against using
density-based intervals in favor of a parameterization invariant
“intrinsic” intervals based on the structure of the likelihood function.
Our argument may be interpreted as an extension of Bernardo’s to
the specific case of the HRDR test. However, we prefer probability-
based intervals over “intrinsic” intervals, if for no other reason
than that they are computationally and conceptually simpler and
thus easier to adopt in practice. More broadly, for the reasons we
discuss in this paper and those presented by Bernardo and others,
we do not believe HDIs are useful tools for Bayesians.

We have focused primarily on the simplest case where this
problem arises, namely, models with a single parameter. The
potential for incoherent inferences only increases when considering
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models with simultaneous hypothesis tests of multiple parameters,
as the multivariate Jacobian factor must account for stretching and
scrunching across all dimensions of the parameter space.

Critically, all parameterizations of a model are equally valid—
there is no “one true parameterization” for any model—so the
inference from the HRDR test critically hinges on what may be
considered an arbitrary choice made by the researcher. We sug-
gest a change to the HRDR test to remedy this incoherence: use
probabilities instead of densities. A direct probability approach is
both conceptually and computationally simpler than one based on
densities. Probabilities, by their very construction, must lead to
coherent inferences.
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