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The HDI+ROPE decision rule is logically
incoherent but we can fix it
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The Bayesian HDI+ROPE decision rule is an increasingly common approach to testing null parameter values. The decision procedure involves

a comparison between a posterior highest density interval (HDI) and a pre-specified region of practical equivalence (ROPE). One then accepts

or rejects the null parameter value depending on the overlap (or lack thereof) between these intervals. Here we demonstrate, both theoretically

and through examples, that this procedure is logically incoherent. Because the HDI is not transformation invariant, the ultimate inferential

decision depends on statistically arbitrary and scientifically irrelevant properties of the statistical model. The incoherence arises from a

common confusion between probability density and probability proper. The HDI+ROPE procedure relies on characterizing posterior densities

as opposed to being based directly on probability. We conclude with recommendations for alternative Bayesian testing procedures that do not

exhibit this pathology and provide a “quick fix” in the form of quantile intervals.
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The crisis of confidence in psychological science has reinflamed

historical controversies surrounding the enterprise of statistical

hypothesis testing. Classical null hypothesis significance testing

(NHST) has been the target of the majority of these criticisms,

including that it is overly dichotomous (Gibson, 2021), easily “hack-

able” (Simmons, Nelson, & Simonsohn, 2011), it can only reject

and not accept the null hypothesis (Rouder, Speckman, Sun, Morey,

& Iverson, 2009), that null hypotheses are false a priori (Cohen,

1994; McShane, Gal, Gelman, Robert, & Tackett, 2019), and that

it answers the wrong question because estimation is more useful

(Cumming, 2014).

Alternative methods have been proposed. One prominent exam-

ple is the so-called HDI+ROPE decision rule (henceforth, HRDR)

introduced by Kruschke (2011, 2013) as a superseding alternative

to classical NHST.

While we are strong proponents of the Bayesian statistical

paradigm (Etz & Vandekerckhove, 2018; Vandekerckhove, Rouder,

& Kruschke, 2018) in which HRDR is based, we will argue here

that HRDR is flawed and should be avoided, on grounds similar

to the above objections to NHST. Specifically, HRDR can lead to

inconsistent inferences that depend critically on highly arbitrary

choices that must be made by the analyst about how to represent

the model.

In what follows we will first informally describe the HRDR with a

fictional scenario that highlights its problematic nature. The exam-

ple will demonstrate that multiple researchers using the HRDR can

come to different conclusions despite employing mathematically

equivalent models, priors, and data.
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To give insight into why inconsistent inferences using the HRDR

occur, we will discuss the formal decision-theoretical properties of

the method. The crucial flaw we highlight is that mathematically

equivalent representations of a hypothesis test do not necessarily

lead to equivalent inferences. We show that this pathology is

due to the HRDR’s reliance on probability density to determine

which parameter values are “most plausible.” However, unlike

probability proper—which requires that equivalent sets must have

equal probabilities—probability density values depend on how we

label the parameters of a model. Differently put, sets of parameter

values with high density in one representation of the model may

have low density in another. As a result, HRDR can simultaneously

conclude that the null hypothesis is and is not to be rejected, which

is logically incoherent.

We provide multiple examples of statistical models with arbitrary

parameterizations that can lead to incoherence if the HRDR is

applied. Finally, we propose an easy-to-implement modification

of the HRDR that resolves the current pathology and achieves

coherence. The solution is to use a test that is based on probability

rather than probability density.

Introduction to the HRDR

The HRDR is similar in procedure to the broader category of equiva-

lence tests (Berger & Hsu, 1996; Lindley, 1998; Rogers, Howard, &

Vessey, 1993), which can be characterized as extensions of point-

null tests into tests of regions of practical equivalence (ROPEs).

However, the HRDR only uses the ROPE as a means to test a

point null and does not entail acceptance or rejection of the entire

region. The HRDR is therefore more similar in logic and application

to other point null tests.

The HRDR is conducted as follows (Kruschke, 2011). First,

determine a parameterized model for the data and specify prior

distributions for all parameters. Then, specify the null hypothesis

of interest as one particular parameter value: some specific value

of the parameter that is considered especially important, such

as a correlation being zero. Then, specify a “region of practical

equivalence” (ROPE) around the null value, containing those pa-

rameter values that are considered only negligibly different from it
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for practical purposes. Then, collect data and obtain the posterior

distribution of the parameter of interest. For this step, it is neces-

sary to choose a parameterization of the model to be used for the

test. From this posterior, then construct a (100α)% highest-density

interval (HDI), which is an interval in which every value has higher

posterior density than any outside the interval and which contains

(100α)% of the posterior mass.

Then, finally, if the HDI and ROPE do not overlap, reject the null

hypothesis for practical purposes. If the ROPE encompasses the

entire HDI, accept the null for practical purposes. If the ROPE and

HDI partially overlap, reserve judgment about the status of the null

hypothesis.

A fictional example

Avery, Blair, and Cassidy are triplets who are training their pet

hamster to detect by smell whether a piece of cheese is safe to eat

or not. After months of training they have decided to run a rigorous,

blinded experiment, in which they will present their hamster with

cheese and record how many it identifies correctly.

To determine if their hamster has been successfully trained to

detect the safety of cheese, the triplets decide to implement an

HRDR as outlined above for their analysis. They specify that the

success or failure of a given cheese identification is modeled as

an independent Bernoulli trial with probability of success θ. The

three decide to to use a uniform distribution from 0 to 1 as their

prior distribution for θ, a default specification suggested by Jeffreys

(1961).

Next, the triplets need to determine their null hypothesis and

ROPE. A natural null hypothesis in this case is that the hamster is

responding at chance level: θ = .50. After deliberation, the triplets

agree that their hamster would be considered “practically guessing”

if its success rate is within 3% of chance. Thus, they specify a

ROPE that spans from θ = .47 to θ = .53.

During the experiment, the hamster correctly determines the

safety of a piece of cheese z = 32 times out of N = 47. When the

triplets are ready to present their results, however, they disagree

about how that should be done...

The psychologist. It turns out that Avery is a psychology researcher,

and feels that the most intuitive scale for the results is the probabil-

ity scale θ. Avery produces the plot in Figure 1(a), showing that the

HDI for the posterior of θ spans .542 to .800 and does not overlap

with the ROPE. Thus, argues the psychologist, the null hypothesis

can be rejected with room to spare. Their hamster really can tell

when cheese is safe to eat!

The biostatistician. Blair and Cassidy take issue with Avery’s pre-

sentation of the results. Blair is a biostatistician with extensive

experience interpreting log-odds in the context of clinical trials.

Thus, to Blair, it seems obvious that the results should be pre-

sented on the scale of logit(θ) = log
(

θ
1−θ

)

, shown in Figure 1(b).

In this parameterization, the test value would be 0, with a ROPE

ranging from logit(.47) = log
(

.47
1−.47

)

≈ −.12 to logit(.53) ≈ .12.

The lower bound of the HDI for the posterior of logit(θ) is just

outside the ROPE: This version of the test allows one to reject the

null hypothesis, if only just barely. Maybe the evidence is not so

strong after all, concludes the biostatistician.

The physician. Cassidy is a practicing physician, and is used to

presenting the uncertainty of diagnoses to patients using odds

of occurrence. Thus, to Cassidy, it seems only natural to present

the results on the scale of odds(θ) = θ
1−θ

, shown in Figure 1(c).

In this parameterization, the test value would be 1, with a ROPE

ranging from 0.887 to 1.128. The HDI for odds(θ) spans 1.02 to

3.61, intersecting with the ROPE. It seems clear to Cassidy that

more data is still needed – and so the physician concludes that

judgment should be withheld about their hamster’s abilities.

This example serves to highlight the critical weakness of the HRDR:

whether the null hypothesis is rejected depends on what is essen-

tially an historical and cultural accident. That is, if the individuals

who collected the data had come from a different tradition then the

same data would have led them to different conclusions. Avery and

Blair are able to reject the null hypothesis due to their statistically

arbitrary preference for a parameterization in terms of probability

or log-odds of success, respectively, but Cassidy must withhold

judgment owing to their preference for framing results in terms of

odds of success. With the same model, the same prior information,

and the same data, the triplets come to different conclusions. In

other words, their conclusions do not cohere.

It is important to emphasize here that incoherence is a constant

property of the HRDR. Even in cases where one chooses and

stays with a single parameterization of the model—that is, one

never transforms parameters from one space to another—the

issue persists: Any choice of parameter space is statistically

arbitrary and conclusions from the HRDR depend critically on that

choice.

While the hamster scenario is of course a fiction, this is not an

unusual or selectively presented pattern of data – the numerical

values in this section were taken from Figure 1 in the paper that

first described the HRDR procedure (Kruschke, 2011).

Formal description of the HRDR

The HRDR is informally described as an assessment of how two

intervals overlap. In order to describe the HRDR’s problem of

incoherence more precisely, we will use the language of statistical

decision theory. We will begin this section with a brief introduction

to decision-theoretic ideas and then discuss how these ideas apply

to the HRDR.

Using the language of statistical decision theory, a hypothesis

testing procedure is a type of decision rule in which the decision

is a choice between one of the candidate hypotheses. If we use

δT to represent the decision made for test T , then the value of δT
corresponds to the hypothesis chosen. For example, in the classic

Neyman-Pearson testing framework one sets up a test to choose

between the null hypothesis H0 and the alternative hypothesis H1.

A test statistic (X), acceptance region (R0) and rejection region

(R1) are defined. If the test statistic falls in the predefined rejection

region, then δNP = 1 and we choose H1; if the test statistic falls

in the acceptance region, then δNP = 0 and correspondingly we

choose H0.

The HRDR is fundamentally a hypothesis testing decision pro-

cedure and thus it can also be represented as a decision process.

With the HRDR we have the same hypotheses as usual: H0 states

that the parameter is (practically) equal to a postulated null value

θ0; H1 states that the parameter takes some value other than θ0.

To test these hypotheses using HRDR we define the ROPE, then

carry out estimation of the parameter and examine if its posterior

density function shows considerable overlap with the ROPE. If

the areas of high density mainly lie within the ROPE, H0 is ac-

cepted. If the areas of high density are largely outside the ROPE,
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Fig. 1. An illustration of the HRDR. The shaded region indicates the ROPE, and the dashed line indicates the 95% HDI of the respective posterior distributions. (a) θ

parameterization. The test value is .50, with a ROPE from .47 to .53. The HDI does not intersect the ROPE, leading to rejection of the null hypothesis. (b) logit(θ)

parameterization. Test value is logit(.50) = 0, with a ROPE from logit(.47) ≈ −.12 to logit(.53) ≈ .12. The HDI does not intersect the ROPE, leading to rejection of the

null hypothesis. (c) odds(θ) parameterization. Test value is odds(.50) = 1, with ROPE from odds(.47) = .887 to odds(.53) = 1.128. The HDI intersects the ROPE,

leading to withheld judgment.

H1 is accepted. The intuition behind this procedure is seemingly

straightforward: If the most plausible parameter values are practi-

cally equivalent to the null value, then it makes sense to accept it

for practical purposes. Likewise, if the most plausible parameter

values are not practically equivalent to the null, then reject it.

The overlap of the ROPE and the posterior distribution is for-

mally determined by constructing a 95% highest density interval

(HDI) for the test parameter. An HDI is a set consisting of 95% of

the posterior mass, with the specific property that every parameter

value in the interval has higher posterior density than any value out-

side the set. Formally, an HDI consisting of 100α% of the posterior

mass is defined as the set

HDIα = {θ : p(θ|D) > kα} [1]

with kα chosen such that P (HDIα) = α (Druilhet & Marin, 2007).

Formally, we define the decision rule associated with the HRDR

as follows:

δ =







1 if HDI ∩ ROPE = ∅
−1 if HDI ⊂ ROPE

0 otherwise.

In the HRDR decision rule, δ = 1 corresponds to rejection of

H0 : θ = θ0 and δ = −1 refers to its acceptance. δ = 0 refers to

the case there is partial overlap of the sets and one must withhold

judgment about the status of the null hypothesis and (if possible)

collect more data until one of the other conditions is met.

Let us now revisit the hamster example using this new language.

In presenting their results, Avery showed that the HDI and ROPE

did not intersect for testing θ = .50, and thus made the decision

δ = 1 and rejected the null hypothesis. Blair came to a similar

conclusion for testing logit(θ) = 0, but the evidence did not ap-

pear as conclusive. Cassidy concluded that the HDI and ROPE

partially overlapped for testing odds(θ) = 1 and thus made the

decision δ = 0 and withheld judgment. Thus, despite having the

same information, the triplets come to different conclusions about

logically equivalent hypotheses. In the next section, we will provide

some critical background on probability theory and use it to explain

why the HRDR leads to such instances of incoherence.

Why is the HRDR incoherent?

We will now explain the cause of the incoherent behavior exhibited

by the HRDR. A central idea is that the procedure requires the user

to find a set of parameters with “high” posterior density, but that

there is no unique set of parameter values with the highest density.

Density is a property that is determined by the parameterization

of the model, which is an explicit choice made by the user of

the test. Indeed, as Bernardo (2005) points out, “any feature

of the posterior which is not invariant under reparametrization is

completely illusory, since the parametrization is arbitrary” (p. 374,

emphasis original). As we have seen in our examples above,

different choices of parameterization lead to different regions of the

model with high density, which in turn leads to different conclusions

from the procedure.

To understand why this happens, we will first review the fun-

damental relationship between probability and probability density.

Then, we will show the difference in the way probability and proba-

bility density behave when converting from one parameterization

to another. Finally, we will return to the HRDR and show how it is

affected by these considerations.

Density and probability. As an illustrative example, imagine that

we are testing whether the mean of a normal distribution is equal

to zero or not. The posterior distribution we obtain for θ from

our analysis happens to be the standard normal distribution. The

cumulative distribution function (CDF) for a standard normal is

shown in Figure 2(a). This function tells us for any given candidate

θ, the posterior probability that the “true” θ∗ is less than θ. For

example, for θ = 0, we have P (θ∗ < θ|D) = .50. This is seen in

the graph by the height of the CDF curve for θ = 0 being at .50.

We will use F (θ|D) as notation for the CDF.

Recall that probability theory is fundamentally a collection of

rules for assigning numbers between 0 and 1 to various sets. The

CDF tells us how much probability is associated with the set of

values that fall below a candidate θ. Using this function, we can find

the probability of other sets; the probability that θ is between any

two limits θ1 and θ2 (θ1 < θ2) can be obtained by finding how much

the CDF increases as we move from θ1 to θ2; we subtract F (θ1|D)
from F (θ2|D) to get P (θ1 < θ∗ < θ2|D). For instance, we take

θ2 = .6 and θ1 = .4, then F (.6|D) = .73 and F (.4|D) = .66,

giving P (.4 < θ∗ < .6|D) = .07.

When the parameter space is continuous, the probability of

any individual point is zero. We can then look at the probability

density, which tells us how much probability is concentrated “near”

a given parameter value. The idea of probability density is directly

analogous to physical concepts of density, in that it tells us how

much (probability) mass exists in a given region of some space.

Consider our example with the standard normal posterior for θ. We

could take a small window ∆θ around each θ that spans .1 below

and .1 above, and find the probability that θ∗ is between those

limits. Some examples are drawn on Figure 2(a). Regions that

have more probability around them have greater density.

“Near” θ = −1, there is 5% of our total probability. “Near” θ = 0
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Fig. 2. An illustration of how transformation affects the CDF and PDF. Thin red lines show tangent vectors at the given points. Brackets indicate the change in the CDF within

the neighboorhood of the highlighted parameter values. (a) The CDF of a normally distributed θ. (b) The CDF resulting from applying the transformation exp(θ). (c) The PDF

of a normally distributed θ. (d) The PDF resulting from applying the transformation exp(θ).

there is 8% of our total probability. This distribution is symmetric

around 0, so “near” θ = 1, there is again 5% of our total probability.

If we take these amounts and divide them by the length of the

window ∆θ, we have an idea of how densely the probability is

packed around each of these values. We can compute the density

of these windows around −1, 0, and 1 to be .25, .4, and .25,

respectively.

Thinking in terms of the CDF, how dense a region is around a

parameter corresponds to how steeply the function rises near that

point. The idea of probability density follows this line of thinking into

the limit of smaller and smaller windows around θ values; we look

at how much the CDF’s value is changing with an infinitesimally

small change around the parameter value. In other words, we can

look at the slope of the CDF at a given parameter value to find its

density. Thus, the posterior density function is the derivative (slope,

or rate of change) of the cumulative distribution function. In this

way, an individual parameter value can have a non-zero density,

which critically distinguishes probability density from probability.

To summarize, the density of candidate parameter values is

determined by first defining a window length to be applied to the

regions of θ (i.e., ∆θ), finding the probability mass within that

window, and then passing on to a limit. This results in taking the

derivative of the CDF, telling us how much probability exists in a

very small window “near” each candidate θ value. As we can see

for our standard normal example, the highest-density point (i.e.,

the mode) is at θ = 0 and the density gradually and symmetrically

decreases in either direction.

The difference in the way transformations act on probabilities

and probability densities is central to our argument. Equivalent

sets of parameters must naturally have equal probabilities, but their

densities can be quite different.

Reparameterization and transformation of variables. Probability

density quantifies how much probability mass is “near” a point in

the support of a probability distribution. When the probability

distribution is a prior or posterior distribution of a parameter, it is

tempting to think of the density as a measure of how “plausible”

each parameter value is. However, this line of thinking fails when

we realize that a parameterization of a model is merely an indexing

system of a family of distributions that could have generated the

data (Bernardo, 2005). Usually when we talk about inference, we

make reference to parameter values such as θ, but what is being

tested is the data generating process for the data, f(x|θ). For

example, in a t-test we may make an inference on whether the

difference between group means µ1 and µ2 equals zero, but this

is merely an expedient way of determining whether f(x|µ1) is the

same function as f(x|µ2). Parameters do not exist outside of a

model for some data generating process.

When we think of parameterizations as indices of data gener-

ating processes, it becomes clear that we have to make a choice

of which index to use in any given case. It may be that we choose

based on convention or ease of interpretability, but we must make a

choice; there is no God-given parameterization. And in making our

choice, we must recognize that other analysts may make different

choices. That is, we may prefer to think of the model in terms

of a θ, but someone else may prefer to think in terms of ψ that

is some function of θ. For example, in the case of generalized

linear models we estimate parameters on one scale and interpret

them on another. In the case that this function is bijective (both

one-to-one and onto), we can say that ψ is a reparameterization of

the model based on θ.

Let us now consider what happens to our standard normal pos-

terior distribution when we reparameterize the model in terms of

exp (θ). This transformation is commonly applied to the output of

generalized linear models to ease interpretation of the parameters.

The top right panel shows the CDF of the posterior distribution for

this new parameterization, known as the log-normal distribution.

Note that the only change is to scrunch and stretch the axis in

different regions. The height of the curve has no need of adjust-

ment. Naturally, the probability that θ < 0 is just the probability that

exp (θ) < 1. This makes sense, as all we have done is assigned a

new labeling scheme for the model, going from f(x|θ) to f(x|ψ).
For example, the data generating processes that have a θ smaller

than 0 are precisely those that have a ψ less than 1.

In contrast to the simple way probability is maintained through

transformation, the new density is not as straightforward. Recall

that density is telling us how much probability is “near” different

parameter candidates, and what is considered “near” a parameter

value is defined as a window of width ∆. The critical problem for

thinking about plausibility in terms of density is this: data generating

4 of 10 Etz et al.
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processes that are “near” one another in terms of θ may not be

nearby in terms of ψ.

Consider the three θ values of −1, 0, and 1. In this space

(represented by the horizontal axes in Fig. 2(a) and 2(c)), the

data generating process corresponding to θ = −1 and θ = 1 are

equally far from the one corresponding to θ = 0. But the data

generating process corresponding to ψ = exp (0) = 1 is now

much closer to the one corresponding to ψ = exp (−1) = .37 than

it is to ψ = exp (1) = 2.7. However, critically, the probability mass

of this interval must stay the same, as equivalent sets must have

equal probabilities. Thus, the probability mass in the smaller region

of ψ between exp (−1) and exp (0) must be more dense than the

equally probable but more spread out region between exp (0) and

exp (1). This is the central idea of density: the same amount of

mass in a smaller region is more dense.

The story is the same as we shrink the window ∆ψ in the limit

to find the density function. Because the probability mass has

been stretched and scrunched differently in different regions of

parameter space, some data generating processes that had high

(low) density when expressed in terms of θ may have low (high)

density when expressed in terms of ψ. From the ψ perspective,

the densest region of parameter space is at exp (−1). The data

generating process corresponding to ψ = exp (−1) has the most

probability “around” it.

So far we have given an intuition of the idea of how posterior

density changes when we transform our parameterization or rep-

resentation of the model. Essentially, we have to ensure that we

account for the differential stretching being done to the parame-

ter space; regions that stretch out must become less dense, and

regions scrunching up must become more dense. In the limit, as

we look at smaller neighborhoods around the parameter values,

we have to make finer grained adjustments to the density. The

limiting adjustment is a factor called the Jacobian, and it takes

a central role in our argument here. The Jacobian corrects the

density up or down to the extent that the neighborhood around the

given parameter is shrinking or expanding.

The Jacobian (described in more detail in the subsection “The

Jacobian and coherence”) is generally going to be a function of

the new parameter, and can have a drastically different effect

on different regions of the new parameter space depending on

the transformation. It is perhaps instructive to see how the Jaco-

bian works for a few points in the transformation of the parameter

spaces for Avery and Cassidy from our hamster example earlier.

In transforming from θ to odds(θ), calling γ = θ(1 − θ)−1, the

Jacobian is (1 +γ)−2. The point θ = .50 for Avery goes to the new

point γ = 1 for Cassidy, and in doing so it undergoes a density

adjustment factor of (1 + 1)−2 = 1/4. The point θ = .70 for Avery

goes to the point γ = 7/3 for Cassidy, with a Jacobian adjustment

of (1 + 7/3)−2 = .09. Finally, the point θ = .90 goes to the new

point γ = 9 with a Jacobian adjustment of 1/100. The Jacobian is

acting more strongly on the larger values of the parameter because

the transformation of the space becomes more exaggerated as

we approach the boundary of θ. Consider that θ = .9 goes to

γ = 9, θ = .95 goes to γ = 19, and θ = .99 goes to γ = 99. The

probability around these points is being stretched across larger and

larger regions of odds, so the density must be adjusted downwards

accordingly. This differential adjustment due to the Jacobian will

generally lead to a different set of parameter values having the

highest density.

Critically, if we were to make the mistake of thinking of plausibil-

ity in terms of probability density (rather than probability proper),

we would have to interpret the transformation from one parameteri-

zation to another as providing some new information – it would be

as if the Jacobian were another source of data. But of course the

adjustment due to the Jacobian does not introduce any new infor-

mation; its sole purpose is to ensure that the probability density

function integrates to 1.

The Jacobian and coherence. We now give a formal definition of

the Jacobian and demonstrate it in the context of the log-normal

example above. If a univariate random variable X has probability

density function fX(x), then the density function of the random

variable Y = g(X), for a smooth function g with inverse X =
h(Y ), is

fY (y) = fX(h(y)) |J(y)| . [2]

The factor J(y) = dh(y)/dy is the Jacobian of the transformation,

and rescales the density function to ensure that the probability

density function integrates to 1. The Jacobian factor is a function

of the new parameter, meaning that its value depends on where

in the parameter space we are; neighborhoods that are shrinking

will have a Jacobian greater than 1, and neighborhoods that are

expanding will have a Jacobian less than 1.

Let us continue with our example of transforming from a normal

random variable to a log-normal. Let X follow a normal distribution

with mean µ and variance σ2, that is, X ∼ N(µ, σ2). The density

function of X is

fX(x) =
1√

2πσ2
exp

{

− 1

2σ2
(x− µ)2

}

,

for −∞ < x < ∞. The mode of this distribution is that value of x
that maximizes exp{−(x− µ)2}, which is x = µ.

Table 1 shows the Jacobian for many common transformations.

The change of variable Y = exp(X) corresponds to the fourth

row of the table with a = 1. Thus, we have inverse X = log(Y )
and a Jacobian equal to 1/Y . Equation 2 tells us that the density

function of Y is given by

fY (y) =
1√

2πσ2
exp

{

− 1

2σ2

(

(log(y)) − µ
)2

}

·
∣

∣

∣

∣

1

y

∣

∣

∣

∣

=
1

y
√

2πσ2
exp

{

− 1

2σ2

(

log(y) − µ
)2

}

,

for 0 < y < ∞. It can be shown that the mode of this new density

is at y = exp (µ− σ2).
If we were to incorrectly interpret density as an indication of

“plausibility,” then the point with highest density should be con-

sidered the “most plausible” value of a random variable (i.e., the

mode). We would then have to simultaneously believe that the

most plausible value of X is µ, but that the most plausible value

of Y = exp (X) is not exp (µ), but the potentially very different

exp (µ− σ2). These two beliefs are contradictory, so treating den-

sity as a measure of plausibility leads to logical absurdity and is

not a coherent system of reasoning.

Issues with the density-based HRDR. As shown in our discus-

sion of density and transformation, regions of parameter space

having “high” or “low” density depends on how we choose to pa-

rameterize the data generating process. The relative ordering of

density can change drastically across reparameterizations of the

model, meaning any inferences based directly on density are es-

sentially artifacts of a statistically arbitrary parameterization choice.

The HRDR relies on the determination of overlap between a

high-density region and an “equivalency” region of the parameter
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Table 1. Some common transformations and their corresponding
Jacobian factors. The first column lists various transformations in
the form Y = g(X). The second column lists the inverse functions,
X = h(Y ). The third column lists the Jacobian factors correspond-
ing to each transformation, obtained by taking the derivative of the
corresponding inverse function (see the explanation in the main text).
Note that Φ is the normal CDF and φ is the normal PDF. Finally, the
rightmost column indicates whether the transformation is linear or
nonlinear – the scale dependence of the HRDR occurs only with
nonlinear transformations.

Transformation Inverse function Jacobian Linear

Y = g(X) X = h(Y ) J(Y ) =
dh(Y )

dY

Y = aX + b X = Y −b
a

J(Y ) = 1
a

Yes

Y = Xa X = Y 1/a J(Y ) = 1
a

Y
1−a

a No

Y = X1/a X = Y a J(Y ) = aY a−1 No

Y = eaX X = 1
a

log(Y ) J(Y ) = 1
aY

No

Y = a log(X) X = eY/a J(Y ) = 1
a

eY/a No

Y = X
1−X

X = Y
1+Y

J(Y ) = 1
(1+Y )2 No

Y = X
1+X

X = Y
1−Y

J(Y ) = 1
(1−Y )2 No

Y = log
(

X
1−X

)

X = 1
1+e−Y J(Y ) = e−Y

(1+e−Y )2 No

Y = 1
1+e−X X = log

(

Y
1−Y

)

J(Y ) = 1
Y (1−Y )

No

Y = Φ−1(aX + b) X =
Φ(Y )−b

a
J(Y ) = 1

a
φ(Y ) No

space. The issue with the procedure is now apparent: regions of

parameter space can have high density in one parameterization

and low density in another, meaning the location of the HDI relative

to the ROPE is dependent on an arbitrary parameterization choice.

Thus, the inference one draws from the HRDR is not invariant to

reparameterization of the model.

In fact, the non-invariance of the HRDR to reparameterization

suggests that the way we have written the decision rule associated

with the procedure in the earlier section is incomplete; the entire

decision process should be indexed by the parameterization choice

made. Thus, the HDI should be explicitly HDIθ, the ROPE should

explicitly be ROPEθ, and the decision rule should be explicitly δθ.
Thus, in terms of decision theory, the problem with the HRDR is

that with the same data and prior, it is not the case that the decision

δθ will necessarily be equal to the decision δψ associated with a

reparameterization of the model. Different analysts with the same

information can come to different conclusions based solely on their

choice of parameterization. Note that the incoherence problem

does not involve moving from one parameterization to another

– the changing choice of parameters simply serves to illustrate

the fact that the results of the HRDR depend on this statistically

arbitrary choice.

Computational demonstration of transformation incoherence.

To help develop a deeper understanding of these technical points,

we will now demonstrate how the transformation incoherence of the

HRDR can be seen in practice using modern computational tools.

Modern Bayesian analysis is done using computational tools such

as MCMC (van Ravenzwaaij, Cassey, & Brown, 2018). These com-

putational methods are able to generate samples from a posterior

distribution, which can then be used to draw inferences from the

data. We can obtain the posterior samples from a reparameterized

version of a model by applying the transformation directly to the

original posterior samples (treating them as derived parameters).

For example, if we can obtain samples from the posterior distri-

bution of a binomial rate θ, and we wish to draw inferences about

some transformation g(θ), we can simply apply the transformation

to each sample from the original posterior to obtain the posterior

samples for the derived g(θ).

θ

logit(θ)

0 0.25 0.5 0.75 1

−Inf −1.1 0 1.1 Inf

ROPE
Quantile Interval
HDI

Fig. 3. A computational illustration of transformation incoherence. The distribution

at the top contains samples of the posterior distribution over the rate of success

θ, while the inverted distribution at the bottom contains samples of the posterior

distribution over the transformation logit(θ). The connected points (open circles)

highlight the uneven shrinking of the logit transformation, as does the gray polygon

marking the ROPE limits in both scales. The 95% HDI, indicated with dashed black

lines, switches from non-overlapping in the original θ scale to overlapping after the

logit transformation. By contrast, the 95% quantile interval, shown with solid black

lines, must retain its original overlap with the ROPE since the relative order of the

posterior samples is preserved due to the monotonicity of the logit transformation.

Suppose we have 1000 posterior samples for θ, denoted θk
for k = 1, 2, . . . , 1000, ordered from smallest to largest. The 95%

highest-density interval for θ can be found in two steps. Start by

taking the first sample and the 950th sample and check the length

of the interval they form, θ950 −θ1. Then, check θ951 −θ2, θ952 −θ3,

and so on in sequence until the length of all such possible intervals

are computed. The shortest such interval will be the highest density

interval.

Consider the reparameterization logit(θ) = log
(

θ
1−θ

)

. To

obtain posterior samples from logit(θ), we simply apply the trans-

formation to each θk. The reparameterization will not change the

rank order of the samples, it will simply put them into a new scale.

The effect of this transformation is shown in Figure 3. Here we are

implementing the HRDR to test θ = .5 with a shaded ROPE of

(.40, .60). The top panel shows the posterior distribution of 1000

samples taken from a beta(10, 2) distribution. The bottom panel

shows the distribution of the posterior samples after applying the

logit transformation. The lines connecting the two panels show

how values of θ are mapped into the space of logit(θ). Notice that

equally spaced values of θ do not remain equally spaced after the

reparameterization: values near logit(θ) = 0 are closer to each

other than points at the extremes. The effect of the reparameteri-

zation on the ROPE is shown by the shaded region connecting the

panels.
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When we obtain the HDI for the reparameterization, the pro-

cedure operates the same way on the transformed samples. But,

critically, the relative distances between the transformed samples

will not be preserved due to the fact that samples near the middle

of the scale are now closer to each other than samples near the

extremes. This means that some intervals that were relatively

longer in the original parameterization may be shorter in the new

one, and vice versa. The effect of this transformation is shown by

the dashed lines connecting the two panels of Figure 3. Notice the

shearing effect when compared to the rest of the traced lines. This

shearing force is the Jacobian in action.

Because the HDIs must account for the density adjustment

due to the Jacobian, they transform at a different angle. The

transformation incoherence of the HRDR is demonstrated where

the lower bound of the HDI crosses into the ROPE area.

The thick solid lines connecting the two panels show the 2.5%

and 97.5% quantiles of the posterior distributions, which together

form a central 95% quantile interval. As we explain below, quantiles

are based on probabilities and therefore inherit coherence. The

transformation coherence of quantile intervals can be seen by them

operating at the same angle of the rest of the transformation. The

quantile interval lines cross with the sheared HDI lines because

the quantile intervals are unaffected by the Jacobian factor.

Kruschke (2010) provides code to produce HDIs from MCMC

output and produce figures summarizing the results. In Figure 4 we

provide code that can be used to replace the HDIs with quantile-

based intervals. This simple fix brings the procedure back to

a state of coherence while allowing the user to continue using

the computational framework provided by Kruschke (2010) with

minimal interruption.

1 QIofMCMC <- function ( sampleVec , credMass =0.95) {
2 # Computes the quantile interval from
3 # (1- credMass )/2 to 1-(1- credMass )/2, where
4 # credMass is the target percentage of
5 # posterior samples to be included in the
6 # interval .
7 # The typical value credMass =0.95 results in
8 # an interval from the 2.5% to the 97.5%
9 # quantile .

10 alp <- (1- credMass )/2
11 lim <- quantile ( sampleVec , probs =c(alp ,1- alp))
12 return (lim)
13 }

Fig. 4. R code to compute quantile intervals instead of HDIs. This function has the

same interface and can be used in the same way as the HDIofMCMC function provided

by Kruschke (2010, p. 628-629).

Additional examples

Recognizing that it is possible to expose the scale sensitivity of

the HDI by deriving the Jacobian of the transformation, we can

now easily show other examples of models used in psychological

science that are susceptible to incoherence if HRDR is used. In

this section, we provide additional examples of statistical models

whose varying parameterizations lead to incoherence.

Three parameterizations of the Rasch model. The Rasch model

(Rasch, 1960) is one of the most common models in item response

theory, with many useful applications and theoretical results well

known to psychometricians. Its most typical parameterization is

one where the probability of person p answering correctly on item

i is a logistic function of the difference between p’s ability θp and

i’s difficulty βi:

P (X = 1) =
[

1 + e−(θp−βi)
]

−1
.

However, at least two other parameterizations exist and have their

own specific use cases (see, e.g., Batchelder, 1998; Crowther,

Batchelder, & Hu, 1995):

P (X = 1) =
αp

αp + δi

and

P (X = 1) =
apbi

apbi + (1 − ap)(1 − bi)
.

Here, the parameters map to one another in the following ways:

δi = eβp , αp = eθp , ap =
[

1 + e−θp
]

−1
, and bi =

[

1 + e−βi
]

−1
.

The Jacobians associated with these transformations are shown

in Table 1. Since the associated Jacobians are a function of the

parameters themselves (i.e., the stretching of the scale is not

constant everywhere but depends on the value of the parameter

itself), these transformations distort the scale in a way that causes

incoherence when using the HRDR. Hence, making the innocuous

switch from one of these parameterizations to another, keeping

everything else the same, can cause a switch in the statistical

decision that results.

Kimura phylogenetic model. Stepping outside of the field of psy-

chology, a second example concerns DNA evolution. Models of

DNA evolution can be thought of as descriptions of the process

of nucleotide substitution (Zwickl & Holder, 2004). One family

of DNA evolution model known as the “Kimura family model” as-

sumes that all four nucleotides will be equally common, that the

eight types of transversions will occur at one rate, and that the four

types of transitions will occur at a second rate. Within the con-

fines of these assumptions, the Kimura model family can generate

predictions ranging from all substitutions being transversions to

all being transitions. A key parameter in this model family is the

transition/transversion rate ratio κ, which is used to describe this

range of possibilities. The two ends of the spectrum of predicted

substitution patterns are specified with κ = 0 (all transversions)

and κ = +∞ (all transitions). An alternative parameterization of

this model family instead characterizes the proportion φ of sub-

stitutions that are transitions. This parameter can be written as a

function of κ: φ = κ(2 + κ)−1. The Jacobian corresponding to

this reparameterization is J(φ) = 2(1 − φ)−2, which is again not

a constant but a function of the parameter φ.

The circular drift-diffusion model. The circular drift-diffusion

model (CDDM) is a process model used to describe response

and response time data collected in tasks where the decision

space is a circle (Smith, 2016). The model belongs to the broad

category of sequential sampling models that assume that individu-

als accumulate information about the stimuli presented from the

moment the trial starts until they are ready to input a response.

There are two common parameterizations of the model: one

that describes the drift vector in terms of drift angle θ and drift

length δ, and the other describing it in terms of horizontal drift µx
and vertical drift µy . Moving between these two parameterizations

involves transforming between Cartesian and polar coordinates:

µx = δ cos (θ)

µy = δ sin (θ) .
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The case of reparameterization with multiple interdependent pa-

rameters is slightly more complicated than our previous examples.

We do not go into further detail here, but the scaling factor that we

need is the absolute value of the determinant of the transformation,

which is:

||J || =

∣

∣

∣

∣

∣

∣

∣

∣

∂µx
∂δ

∂µx
∂θ

∂µy

∂δ

∂µy

∂θ

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∂δ cos θ
∂δ

∂δ cos θ
∂θ

∂δ sin θ
∂δ

∂δ sin θ
∂θ

∣

∣

∣

∣

∣

∣

∣

∣

= |[cos(θ) · δ cos(θ)] − [−δ sin(θ) · sin(θ)]| = δ.

Again the Jacobian is a function of a parameter.1

The three examples above serve to illustrate the ubiquity of non-

linear reparameterizations possible for scientific models across

psychology and related fields. Despite a popular preference to

represent models using certain “canonical” parameterizations (e.g.,

Kruschke, 2018), ultimately the epistemic content of a model is

not in its parameters but in the distributions it generates over data

(Villarreal, Etz, & Lee, 2023). There is always an alternative param-

eterization that could be meaningfully understood; good methods

should give us the same conclusions across them all.

Broadening our scope from these example models, we conclude

by pointing out that the ubiquitous framework of generalized linear

modeling relies on the frequent application of “link functions” that

map parameters between scales – often from one scale that is

natural for the parameter (e.g., a probability that lives between

0 and 1) to one that is convenient for regression (e.g., its logit

transform that lives on the full real line). All nontrivial link functions

are nonlinear, and hence the HRDR will be incoherent in those

common cases.

Coherent alternatives to the HRDR

The incoherence of the HRDR lies entirely in the choice of the HDI

as a reference to compare with the ROPE. Because the HDI is

defined with regard to the specific parameterization of the posterior

distribution, and because density of any given data generating

process can be high or low depending on parameterization, the set

that we end up comparing to the ROPE depends on a statistically

arbitrary choice. This means that any conclusions we draw from

our hypothesis testing procedure depends critically on a choice of

how the model is described.

The transformation incoherence we have highlighted here can

only occur when sufficient posterior mass lies inside or outside of

the ROPE. By definition, a 95% HDI is a set of parameter values

with probability .95. This probability will remain inside/outside the

ROPE no matter how we choose to reparameterize. Thus, we

cannot have a case where the conclusion from an HRDR flips from

rejection to acceptance – the maximum extent of the incoherence

is to change a rejection or acceptance into an inconclusive result

(or vice versa). This is still not very comforting, because any op-

portunity for inferences to change arbitrarily based on statistically

irrelevant choices indicates a fundamental weakness of a proce-

dure. In the remainder of this paper we will suggest some changes

that could be made to the HRDR test to achieve coherence.
1
The multidimensionality of the CDDM leads to additional complications. We could continue and

derive the multidimensional posterior distribution corresponding to the new parameterization, but

how to conduct the HRDR at that point is less immediate. We suspect most researchers would

prefer to perform the HRDR using the marginal posterior of the parameter of interest. This involves

integrating out any other non-focal parameters, such as δ. This adds more layers of complexity to

the transformations involved, and we do not discuss them further here. Suffice it to say that the

multiparameter HRDR is fraught with nonlinear relationships.

The HRDR suffers from transformation incoherence precisely

because it uses density-based interval estimates. As we have

demonstrated, the regions of parameter space with high density

in one parameterization can have low density in another. This

weakness can be overcome with a simple modification of the pro-

cedure: transitioning to probability-based decision rules. Because

probability theory itself is coherent, methods derived directly from

it will inherit that coherence.

Quantile intervals. The simplest transition to probability-based

inference is to use quantile intervals, which already happen to be

a very common output in Bayesian software. These intervals are

constructed by taking the inner 100α% of the probability mass of

the posterior distribution, leaving
(

1−α
2

)

% of the mass outside the

interval on either end.

Quantile-based intervals will naturally be transformationally co-

herent, because they are based directly on probability. Using the

CDF, a quantile interval can be constructed by finding the parame-

ter values with heights equal to .025 and .975. As we have seen,

the only change that occurs in a CDF during a transformation is

to stretch and scrunch the points along the x-asis – the function

values at those points remain unchanged. Thus, tests based on

quantile-interval endpoints will be transformationally coherent.

Transitioning to probability-based intervals is an easy fix to the

problem of transformation incoherence because they are already

in broad use. Most software that performs Bayesian inference,

such as JAGS (Plummer, 2003) and Stan (Carpenter et al., 2017),

will by default produce these intervals in a model summary. These

are computationally easy to produce because all one needs to

do is note which posterior samples correspond to the appropriate

sample quantiles. Almost no software is producing density-based

intervals by default, probably because it involves additional compu-

tational steps to find the shortest such interval.

Posterior mass in the ROPE. Once we move to a quantile-based

interval for use in the HRDR test, an even easier alternative solution

presents itself. Why not simply compute the posterior probability

that the parameter is in the ROPE? The interval comparison re-

quired by the ROPE test is superfluous at this point. Recall that

a 95% quantile interval is constructed by taking 2.5% and 97.5%

quantiles of the CDF. But most posterior distributions are unimodal,

meaning this interval is generally going to be a contiguous set of

parameter values. Thus, for the interval to not intersect the ROPE,

the probability the parameter is in the ROPE must be at most 2.5%.

Thus, we could simply use a decision rule that rejects the null

hypothesis when the probability it is in the ROPE is sufficiently low,

and accept it when it is sufficiently high.

Indeed, directly computing a probability is the natural Bayesian

approach to such a problem (Wellek, 2002). If we look back at our

example with the triplets and their hamster, the set of parameters

in the HDIs changed across the three parameterizations. However,

the probability of the ROPE is approximately .02, sufficiently small

to cast doubt on the null hypothesis regardless of one’s choice of

parameterization. We will next present an example of how this

approach would impact the conclusions of a recently published

result in the next section.

Alternatively to estimating the size of the parameter of interest,

one may still be interested in evaluating the statistical evidence

for or against the nullity of the parameter. To this end, one can

compute the Bayes factor associated with the hypothesis that the

parameter is inside versus outside the ROPE. Such a Bayes factor

would compare the posterior odds that the parameter is inside the
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ROPE to the corresponding prior odds, which is computationally

convenient if the posterior is obtained via sampling.2 This Bayes

factor would tell us the extent to which the data are making us more

or less confident that the parameter is inside the ROPE. Critically,

this Bayes factor would be based on probabilities and thus would

trivially maintain coherence.

Solution example. Newton et al. (2018) present a cluster random-

ized trial of the efficacy of an intervention program designed to

reduce cannabis usage among Australian high school students.

A total of 2190 students were randomly assigned to one of three

possible intervention conditions or a control condition, with mea-

sures related to cannabis usage, related harms, and knowledge

taken at baseline, and 6-9 months, 12, 24, and 36 months after the

baseline (i.e., post-intervention measures).

The data analysis presented by the authors focused mainly

on the differences between the control group and all intervention

conditions. The primary statistical analysis was conducted using

multilevel mixed-effects linear models that incorporated individual

and school-level random effects. Using a classical hypothesis test,

Newton et al. found no statistical differences in cannabis usage

and related harms between the control and intervention groups.

The authors then implemented an HRDR to quantify how much

evidence the data provided in favor or against the null hypothesis.

They defined a test value for the odds ratio θ = 1 and a ROPE

of [0.9, 1.1]. The authors note that the HDI for the odds ratio

overlapped partially with the ROPE and concluded that their initial

non-significant results were ambiguous and not indicative of a lack

of true effect.

The data in this real-world example allow us to contrast the

HRDR results with those achievable through using a direct proba-

bility approach. Table 2 presents results reported by Newton et al.,

their Table A2, using a collection of alternative probability-based

measures corresponding to the data collected at each moment in

time. In Table 2, the second column presents the median odds

ratio and the range of the 95%HDI as reported by the authors;

the third column lists the probability that the odds ratio value is

contained in the ROPE P (ROPE); the fourth column shows the

probability that the odds ratio is smaller than 0.9 P (θ < 0.9); and

the rightmost column shows the probability that the odds ratio is

larger than 1.1 P (θ > 1.1). Summing the fourth and the fifth

columns we obtain the probability that the odds ratio falls outside

of the ROPE (i.e., being either smaller than 0.9 or larger than 1.1),

which by the complement rule of probability theory is the same

as 1 − P (ROPE). Probability-derived measures are coherent by

definition.

As we can see, there is a decline over time in the probability that

the odds ratio coincides with the ROPE. More specifically, by 24

months, the probability that the odds ratio is practically equivalent

to 1 is only .061, and at 36 months, the probability is only .04.

Critically, we note that despite the wide HDIs found at 24 and 36

months, we are relatively confident that the odds ratios at these

times are outside the ROPEs.

This real-world example helps to illustrate the advantages of

working with direct probability measures, which preserve the in-

tuitive reasoning of the HRDR while also guaranteeing logical

coherence.

2
Note that the odds in question are equal to P (ROPE)/P (¬ROPE). If one obtains the posterior

by simulation, this would correspond to the proportion of posterior samples inside versus outside

the ROPE.

Table 2. A selection of results of the logistic regression analysis from
Newton et al. (2018). The key statistic is the odds ratio θ.

Time Median θ (95% HDI) P (ROPE) P (θ<0.9) P (θ>1.1)

6m 0.87 (0.74 to 1.02) .351 .646 .003

12m 0.76 (0.54 to 1.02) .138 .851 .011

24m 0.58 (0.27 to 1.01) .061 .913 .026

36m 0.45 (0.12 to 0.99) .040 .929 .031

Conclusion

We have highlighted a critical flaw with the HDI+ROPE or HRDR

method: transformation incoherence. This flaw can lead differ-

ent researchers with the same priors and data to draw different

conclusions because they have arbitrarily chosen different param-

eterizations of the problem. We have shown that the root cause

of this incoherence lies with the choice of using highest density

intervals in the test. Because these intervals are constructed with

reference to a specific density function from one specific parameter-

ization, the change from one chosen parameterization to another

causes the set of highest density points to change; where the orig-

inal set may have excluded the ROPE, the new set may intersect

with the ROPE.

We are not the first to point out the problems with thinking of

density as a measure of “plausibility.” However, most discussion

tends to focus on the consequences this thinking has on coherent

specification of priors. Perhaps the most famous objection to this

line of thinking was made by Fisher (Lehmann, 2011), who argued

against the use of uniform priors to represent ignorance because

they will only be uniform in one parameterization of a model (for

a thorough demonstration see Ly, Marsman, Verhagen, Grasman,

& Wagenmakers, 2017). Zwickl and Holder (2004) provide a clear

illustration of the problem with taking uniform priors to represent

ignorance in the context of the General Time-Reversible Model,

in which it common to reparameterize in terms of either κ or φ =
κ/(2 +κ). Uniform priors in either κ or φ lead to highly informative

priors on the other scale.

Similar considerations led Jeffreys (1946) to develop the now

famous invariant Jeffreys prior rule. Druilhet and Marin (2007) pro-

pose a class of prior densities that lead to invariant highest density

sets, avoiding transformation incoherence of the HDI. However,

their solution imposes specific choices of Jeffreys-type priors that

may not be desirable or may not even exist in practice for models

with sufficient complexity. This led Druilhet and Pommeret (2012)

to develop new invariant conjugate families of priors that can be

applied when the model is a member of the exponential family.

In addition to issues in prior specification, issues with using

density-based intervals in estimation and testing have been pointed

out by others (Bernardo, 2005; García & Oller, 2006; Robert, 1996;

Shalloway, 2014). For instance, Bernardo argues against using

density-based intervals in favor of a parameterization invariant

“intrinsic” intervals based on the structure of the likelihood function.

Our argument may be interpreted as an extension of Bernardo’s to

the specific case of the HRDR test. However, we prefer probability-

based intervals over “intrinsic” intervals, if for no other reason

than that they are computationally and conceptually simpler and

thus easier to adopt in practice. More broadly, for the reasons we

discuss in this paper and those presented by Bernardo and others,

we do not believe HDIs are useful tools for Bayesians.

We have focused primarily on the simplest case where this

problem arises, namely, models with a single parameter. The

potential for incoherent inferences only increases when considering
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models with simultaneous hypothesis tests of multiple parameters,

as the multivariate Jacobian factor must account for stretching and

scrunching across all dimensions of the parameter space.

Critically, all parameterizations of a model are equally valid—

there is no “one true parameterization” for any model—so the

inference from the HRDR test critically hinges on what may be

considered an arbitrary choice made by the researcher. We sug-

gest a change to the HRDR test to remedy this incoherence: use

probabilities instead of densities. A direct probability approach is

both conceptually and computationally simpler than one based on

densities. Probabilities, by their very construction, must lead to

coherent inferences.
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