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Abstract

Emerging interconnects make peripherals, such as the net-

work interface controller (NIC), accessible through the pro-

cessor’s cache hierarchy, allowing these devices to partici-

pate in the CPU cache coherence protocol. This is a funda-

mental change from the separate I/O data paths and read-

write transaction primitives of today’s PCIe NICs. Our exper-

iments show that the I/O data path characteristics cause NICs

to prioritize CPU efficiency at the expense of inflated latency,

an issue that can be mitigated by the emerging low-latency

coherent interconnects. But, the coherence abstraction is not

suited to current host-NIC access patterns. Applying existing

signaling mechanisms and data structure layouts in a cache-

coherent setting results in extraneous communication and

cache retention, limiting performance. Redesigning the inter-

face is necessary to minimize overheads and benefit from the

new interactions coherence enables. This work contributes

CC-NIC, a host-NIC interface design for coherent intercon-

nects. We model CC-NIC using Intel’s Ice Lake and Sapphire

Rapids UPI interconnects, demonstrating the potential of op-

timizing for coherence. Our results show a maximum packet

rate of 1.5Gpps and 980Gbps packet throughput. CC-NIC has

77% lower minimum latency, and 88% lower at 80% load, than

today’s PCIe NICs. We also demonstrate application-level

core savings. Finally, we show that CC-NIC’s benefits hold

across a range of interconnect performance characteristics.
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1 Introduction

A wide range of new interconnects is emerging for accelera-

tors, disaggregated memory, and multi-GPU systems. PCI Ex-

press (PCIe) [37] has long been the standard interconnect be-

tween a server and peripheral devices, such as the network in-

terface controller (NIC).While PCIe bandwidth has increased

substantially over the seven protocol generations, its inter-

face for host-device communication has remained consistent.

Now, new interconnect specifications [2, 3, 35, 36, 49, 50]

propose to either replace or build upon the PCIe physical

layer, while providing fundamentally different data paths

and communication abstractions between the host and the

peripheral.

A key attribute of these interconnects is allowing the

host and devices to participate in coherence protocols. Hosts

can access devices through the processor’s highly optimized

cache hierarchy, and devices can participate in the CPU’s

cache coherence protocol while accessing memory. These in-

terconnects enable devices to be integrated into the host pro-

cessor’s coherence domain in different settings. For instance,

Compute Express Link (CXL) [3] targets devices housed on

expansion cards, Ultra Path Interconnect (UPI) [9, 14] is an

inter-socket interconnect that also allows for the integration

of hardware devices (e.g., Intel Agilex FPGA [23, 39]), and

Cache Coherence Interconnect for Accelerators (CCIX) [2]

proposes a coherent interface for chiplet-based systems.

Coherent device access to shared memory is a powerful

programming model for data sharing, providing semantics

not available with the typical read/write primitives of PCIe

transactions. PCIe uses specialized data paths for transfers

between the CPU and the device: CPUs access devices using

memory-mapped I/O (MMIO) transfers that bypass the cache.

Devices access host state using direct memory access (DMA).

DMAs traditionally target data in host DRAM and place

DRAM on the critical path for device access, although newer

platforms add a limited form of cache interactions [15]. In

contrast, coherent interconnects integrate with the CPU’s

existing, highly-optimizedmemory data path. UPI, CCIX, and
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CXL directly interface with the coherence protocol and the

L2 cache state, handling cache ownership and data transfers

to a peripheral. This not only results in a shorter data path to

the CPU core (as the device can target L2 instead of LLC or

DRAM) but also enables the device to poll locally on cache-

coherent state. Likewise, CPU accesses to the device can

utilize the caching memory path instead of MMIO.

Coherent interconnects represent a fundamental change

in host-device communication, offering new benefits and

posing challenges. This paper aims to understand the value

of coherent interconnects in the context of NICs.While many

emerging interconnect specifications are in flux, we apply

existing UPI hardware as a means to explore cache-coherent

host-NIC interface designs and develop principles that could

apply across a range of interconnects.

We first study today’s PCIe-based NICs, identifying the

unique tradeoffs that PCIe imposes on NIC interfaces. PCIe

limits the use of shared data structures and imposes CPU

overheads for host-initiated interconnect operations. Today’s

NIC designs, therefore, aim to minimize host PCIe overheads

at the expense of transmission latency by introducing addi-

tional signaling trips and batching. The impact on packet

latency is significant: the host-NIC loopback latency on a

Mellanox CX6 NIC is 2.1us at low load and 6.0us at 80% load,

almost an order of magnitude higher than switch traversal.

The streamlined datapaths of coherent interconnects can

improve latency for existing NIC interface designs. But, we

observe performance is highly sensitive to the access pattern

on both sides. The producer-consumer patterns typical of

existing NIC interfaces incur significant overheads without

an optimized combination of access instructions, data own-

ership, and cache-line layout decisions. Achieving optimal

communication requires data structures specifically designed

for coherence. Finally, caching must be carefully managed;

data and metadata may be retained in remote caches longer

than needed, triggering expensive remote communication

upon a future local access. Thus, redesigning the host-NIC

interface is required to fully take advantage of coherent in-

terconnects, and doing so allows us to benefit from the new

signaling and sharing interactions made possible by coher-

ence.

We present CC-NIC, a host-NIC interface optimized for co-

herent interconnects. We redesign all aspects of the host-NIC

interface (namely, data structures, layouts, and signaling) to

take advantage of the new data paths and cache interactions

supported by coherent interconnects. To design CC-NIC,

we consider the space of access type, layout, homing, and

prefetching decisions, for each element of the interface. Our

redesign not only offers improved latency but also delegates

certain buffer management tasks to the NIC, thus reducing

host-side costs.

We demonstrate the performance of CC-NIC over UPI on

Intel’s Ice Lake and Sapphire Rapids server platforms. CC-

NIC demonstrates a packet rate of 1.5Gpps and a minimum

TX-RX latency of 494ns. Latency under 80% load is 716ns,

an even greater reduction relative to PCIe NICs. Compared

to an interface matching a current PCIe NIC, on the same

UPI link, our proposed design achieves a 3.3× throughput

improvement and 52% minimum latency reduction, in addi-

tion to decreased latency under load and terabit bandwidth

saturation. We evaluate key-value store and RPC workloads;

both show that CC-NIC saturates network bandwidth with

up to 50% fewer application threads versus PCIe NICs.

We present CC-NIC as a case study of optimizing coherent

host-device interactions. The design of CC-NIC can be ap-

plied to other coherent interconnects. Our evaluation shows

that CC-NIC’s design benefits hold, maintaining consistent

relative improvement, across varied interconnect perfor-

mance characteristics.

2 Dissecting the PCIe Host-NIC Interface

We first analyze the host-device interface of today’s PCIe

NICs. Our goal is to understand how the characteristics of

PCIe drive the interface design of existing NICs. In ğ2.1,

we describe the packet queue interface and its data struc-

tures in the context of PCIe. Then, in ğ2.2, we measure the

performance of PCIe access mechanisms. We discuss how

these performance characteristics lead to tradeoffs in ğ2.3ś

the tradeoffs ultimately dictating the design of PCIe NIC

metadata structures, data transfer, and buffer management.

2.1 The Host-NIC Interface

In this section, we focus on packet transmit (TX) and receive

(RX) queues, the main transfer interface between host and

NIC. This interface is consistent across a wide range of NICs

and consists of the following components:

Packet buffers store the data payloads transmitted to

or received by the NIC. Buffers are pre-allocated memory

chunks. A pointer to each buffer is inserted into a buffer pool

data structure, typically a queue. Allocating and releasing

packet buffers involve dequeuing or enqueuing a pointer

from the buffer pool. Packet buffers also include application-

level metadata, e.g., length of the packet’s headers, etc. Al-

though the driver may use this metadata, it is not transferred

to the NIC. The address communicated to the device is the

start of the packet payload, which is typically cache-aligned

and placed after any application metadata.

Descriptors represent the work requests. Each descrip-

tor contains the address of a corresponding packet buffer.

Typical descriptors are 16B, including 8B of tightly-packed

metadata, such as the data length. They are organized into

a ring buffer implemented as a circular array. On the TX

path, the driver writes a descriptor for each submitted TX

packet. The descriptor is derived from the driver’s configu-

ration state and the per-packet metadata in the TX buffer.

The address and packet length are critical components of

the TX descriptor; the NIC must have these values before
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Figure 1. PCIe (a) and UPI (b) transfer paths.

it can access the packet from the host. On the RX path, the

host first posts RX descriptors to provide the NIC with blank

packet buffers. After the NIC writes a received packet into

the RX buffer, it overwrites the descriptor with RX metadata

(e.g., completion status).

Head and tail registers serve as signals to coordinate

the producer-consumer relationship between the host and

NIC. Registers are typically 32 or 64-bit values representing

the producer and consumer positions of the ring array. Af-

ter writing a TX descriptor, the host makes the descriptor

available to the NIC by incrementing the TX tail register.

When the NIC receives the tail value, it reads and handles

packet descriptors up to the new tail index. After the NIC

transmits a packet, it signals completion to the host by incre-

menting the TX head. The host handles transmit completions

by returning the freed packets to the buffer pool, reclaiming

descriptor ring space.

For the receive path, the host allocates blank RX buffers

from the pool, writes their addresses to the RX descriptor

ring, and then increments RX head to signal the presence of

new RX buffers. When the NIC receives packet data, it uses

blank RX buffers at the RX tail index and notifies the host of

RX packet availability by incrementing the RX tail. The host

handles descriptors up to the RX tail index by returning the

RX buffers to the application. In summary, the host writes

the TX tail to submit TX packets to the NIC and writes the

RX head to submit blank buffers to the NIC. The NIC writes

the TX head to indicate transmit completions and writes the

RX tail to indicate newly received packets.

2.2 PCIe Microbenchmarks

We now perform a measurement characterization of host-

device accesses to understand how PCIe performance dic-

tates host-NIC interface designs. While existing work has

identified PCIe limitations [7, 32, 42, 43, 54], we aim to un-

derstand the extent to which performance limitations hold

on current server platforms and NIC interfaces.

PCIe interconnect latency. PCIe presents an asymmetric

interface to the device and the host. Figure 1a shows the

mechanisms for transfers initiated by the host and by the

device: MMIO and DMA, respectively.

Host-to-NIC reads and writes are performed via memory-

mapped IO (MMIO). The device exposes a memory area

mapped into the host address space as an uncacheable (UC)

or write-combining (WC) memory type. This allows the host

to issue loads and stores to the device, which are executed as

PCIe read and write transactions. The UC and WC memory

types do not provide cache coherence or operate within the

cache hierarchy. Instead, CPU loads always require a PCIe

roundtrip, resulting in expensive accesses. On the ICX CPU

platform, targeting an Intel E810 NIC (testbed described in

ğ5.1), we measure a median MMIO read latency of 982ns (8B)

and 1026ns (64B AVX512).

PCIe devices read and write host memory using Direct

Memory Access (DMA). DMAs may be significantly larger

(e.g., 4KB) than the 64B MMIO write-combining buffer size

and typically access standard writeback host memory. While

conventional PCIe NICs do not expose DMA latency statis-

tics, we expect DMA roundtrip latency to be comparable

to that of MMIO. SmartNICs that provide a low-level DMA

controller interface, such as Marvell’s LiquidIO [27], show a

minimum DMA read latency of at least 1𝜇s [25, 44].

Implication: The high latency of MMIO and DMA accesses

suggests that each PCIe roundtrip contributes significantly

to overall packet latency. Host-NIC data structures should

also be designed to minimize high-cost CPU operations such

as polling or reading across the PCIe bus (MMIO loads).

MMIOwrite throughput. Unlike loads, MMIO stores are

posted, so a store does not incur a PCIe roundtrip delay from

the host’s perspective. However, MMIO writes are still ex-

pensive in the context of both UC and WC memory types.

The UC memory type bypasses host caches altogether, so

each MMIO access results in a PCIe transfer. To preserve

ordering, only one MMIO access may be in flight between

the CPU core and PCIe root, thus limiting throughput. The

WCmemory type offers more flexibility via write-combining

store buffers, which can merge contiguous stores within a

64B-aligned region into a single PCIe transfer. This can re-

duce PCIe protocol overhead but complicates write ordering

since writes may be buffered for an arbitrary time before

being flushed. To ensure writes are flushed, it is necessary

to issue a fence instruction, e.g., sfence, or ensure that each

64B buffer is completely filled in sequential order. These flush

conditions make it difficult to achieve fine-grained control

over PCIe write ordering.

Figure 2 compares the write throughput of WC MMIO

accesses to a device, WC-mapped local DRAM, and write-

back DRAM. We run this experiment on the ICX platform,

targeting the E810 NIC for MMIO accesses using a single

thread. We repeat the experiment with write sizes between

64B and 8KB, issuing an sfence barrier after each write.

With the WC data path, writing to both PCIe MMIO and

DRAM, we find that the barriers, which may be needed to

ensure ordering, impact throughput. This is not the case with
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WB DRAM, where throughput is consistent regardless of

barrier frequency. Our results suggest that the MMIO WC

data path cannot achieve high throughput without exten-

sive batching. Near-maximum single-threaded throughput

requires writing at least 4KB per barrier; with 64B packets,

this means a batching factor of 64. This batched throughput

is still only 76% of singleton 64B WB performance.

Implication: The WC and UC data paths are throughput-

limited relative to standard write-back memory. Our mea-

surements represent a NIC design that uses MMIO for bulk

data/metadata transfer, unlike the signaling-only MMIO op-

erations of current NICs. For streaming writes using the WC

datapath, the barriers required to ensure ordering and flush

to the device limit throughput.

MMIO write-combining latency. WC memory also in-

troduces the limitation of a fixed number of store buffers.

When all WC buffers are occupied, issuing a store within

a 64B region not already buffered results in stalling until a

buffer is flushed. Figure 3 shows the cumulative latency of 𝑁

32-bit MMIO stores to the E810 and CX6 NICs, up to 𝑁 = 64.

Latency remains uniform and low (< 20ns) until 𝑁 = 24,

where all WC buffers are utilized for the 𝑁 stores. Beyond

that, store latency is at least 15× greater and increases with

𝑁 , as store buffers are flushed on the critical path.

Implication: When the MMIO data path is used for bursts

of small stores, limited store buffer availability leads to expen-

sive, high-latency accesses. This represents a NIC interface

design that applies MMIO stores for metadata transfer, e.g.,

submitting descriptors to the device.

2.3 PCIe NIC Interface Design

The nature of PCIe and its performance characteristics im-

pose constraints on the host-NIC interface. We identify three

issues:

1. Since PCIe is not a coherent interconnect, local data struc-

ture updates must be communicated or signaled with

explicit PCIe transactions.

2. PCIe operations incur high latency, so reducing the num-

ber of interconnect traversals is critical to achieving low-

latency packet transmissions (ğ2.2).

3. Data and metadata writes over PCIe are expensive for

the CPU in terms of both throughput and high-latency

stalls (ğ2.2, ğ2.2).

The above issues define the performance tradeoffs im-

posed by the PCIe interface. An ideal design would achieve

high packet throughput, low latency, and high CPU effi-

ciency, but the PCIe prevents us from achieving all three

goals simultaneously. Today’s PCIe NICs prioritize CPU effi-

ciency and throughput at the expense of latency by making

the following design decisions:

Data structures are host-local, and updates are ex-

plicitly signaled. The host maintains packet buffers and

descriptor rings in its local memory (as opposed to device

MMIO) to reduce the CPU overheads for data structure ac-

cess and updates. Requests to transmit a packet and newly

received packets are signaled explicitly to the NIC. Other ar-

rangements (e.g., host or NIC polling across the PCIe) waste

PCIe bandwidth for each polling access and consequently are

not used. For instance, in the transmit path, the host writes

TX packets and TX descriptors into host memory and writes

only a TX signal to the queue tail register maintained on

the device side via MMIO. This results in a tradeoff: minimal

data transfer over MMIO at the cost of extra interconnect

roundtrips to read descriptors and packets from host mem-

ory.1

Descriptor transfer is batched.Given the host-side CPU

stalls for MMIO writes to uncacheable NIC-side registers, the

host may enqueue a large group of descriptors per MMIO

register signal. This batching optimization again trades off

latency for CPU efficiency.

The host handles all buffer management. The PCIe

read-write interface, without cache coherence, limits the

sharing of data structures between host and NIC. The syn-

chronization mechanisms that support multi-core pool ac-

cesses are incompatible with PCIe reads and writes. Thus,

the host performs all buffer management. This includes pre-

allocating RX buffers to be used by the NIC and freeing

completed TX buffers after NIC transmission. This results

in additional bookkeeping communication over PCIe and

1Some NICs, e.g., the CX6, implement an alternative data path that writes

descriptors over MMIO; however, this is typically enabled only for low-

throughput, latency-critical workloads.
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also limits the NIC from performing memory optimizations

based on the properties (such as size) of received packets.

In the Evaluation, ğ5.3, we provide end-to-end measure-

ments of PCIe NIC latency, throughput, and core utilization.

3 System Design for Coherent
Interconnects

In this section, we describe the design of CC-NIC, a host-

NIC interface optimized for cache-coherent interconnects

such as UPI. First, in ğ3.1, we contrast a cache-coherent

interconnect with PCIe, given our analysis of today’s NIC

interface designs. Then, we discuss the CC-NIC design in

terms of metadata structures (ğ3.2), data accesses (ğ3.3), and

packet buffer management (ğ3.4).

We present the design of CC-NIC as a series of empirically-

backed design decisions, with the eventual design having

the following desirable properties: (1) low-latency packet

transmissions through the use of cache-to-cache transfers

and hardware-supported signaling, (2) high throughput for

data and descriptor communications using the efficient write-

back datapath, and (3) reduced CPU management overheads

realized by sharing buffer management and optimizing buffer

placements for both TX and RX paths. Figure 4 compares the

TX path for the CC-NIC interface with that of a PCIe NIC.

CC-NIC provides a data plane interface analogous toDPDK

mempool and ethdev APIs, with burst semantics to enable

batched TX/RX and buffer management operations. Figure 5

shows the core software interface.

3.1 Contrasting Coherent Interconnects and PCIe

Coherent interconnects, such as UPI and CXL, are tightly in-

tegrated with the CPU’s memory data paths. Cross intercon-

nect accesses may target DRAM and caches (see Figure 1b).

The coherence protocol manages shared cache state, trans-

ferring lines into local caches when memory is accessed. The

protocol ensures a writer gains exclusive control of a cache

line before writing, invalidating any copies in remote caches.

The protocol allows multiple caches to share reader access

to a line, and lines may be forwarded between caches.

Overall, coherent interconnects provide a fundamentally

different interface from PCIe. The coherence abstraction

enables new forms of signaling and data structure sharing

without the constraints of the PCIe read and write interfaces.

Coherent interconnects integrate with the memory datapath

and cache hierarchy, unlike PCIe MMIO, and also provide a

symmetric interface, avoiding the tradeoffs between MMIO

and DMA operations. However, cross-interconnect transfers

depend on cache presence and coherence states, in terms

of latency, memory controller requests, protocol metadata

overhead, and roundtrips. There are limited means of ma-

nipulating these cache line states and caching behavior in

general. As a result, implementing NIC data structures in the

context of a coherent interconnect leads to both opportuni-

ties and challenges. We identify three factors that call for a

different design:

1.Coherence enables interface signaling and shared

data structures. PCIe NICs typically implement TX signal-

ing with a separate mechanism, MMIO, from data and meta-

data DMA transfers. This results in an extra interconnect

roundtrip to retrieve TX metadata via DMA after receiving

the signal. Cache coherence performs signaling in hardware:

when the remote side performs a write, the coherence proto-

col will invalidate any locally cached copy and fetch the new

value upon subsequent access. Further, a coherent intercon-

nect also enables the use of shared data structures between

host and NIC, thus allowing for shared management of the

buffer pool.

2.CC-NIChas to choose betweendifferent data trans-

fer mechanisms and homing options. Coherent inter-

connects provide a diverse set of transfer mechanisms. For

instance, CC-NIC can target write-back memory in addi-

tion to the cache-bypass data path and home data structures

on either the host or the NIC, thus providing it with mul-

tiple transfer options to choose from. Cross-interconnect

data transfers and cache state transitions also depend on the

current cache residency of an object, possible prefetching,

and the cache states caused by previous accesses. As a re-

sult, small objects, e.g., signals and descriptor metadata, are

highly sensitive to layout.

3.CC-NIC has to carefully manage caching. The co-

herence protocol exchanges cache line ownership across the

interconnect. Therefore, a remote access may result in addi-

tional communication when a later local access is performed.

This is specifically problematic for producer-consumer work-

loads. For instance, the typical TX path transfers metadata

and data from the host to the NIC, then the NIC performs

the data transmission, and the data is not needed again by

the NIC. In the coherent interconnect context, retaining the

packet buffer or descriptor in the NIC-side cache is unhelp-

ful; it adds overhead to subsequent host accesses that would

have to perform remote cache invalidations. This suggests

that minimizing overhead requires selectively invalidating

cached data, which is unsupported on typical x86 platforms,

or re-designing the data structures to avoid this access pat-

tern.

3.2 Metadata Structures

In this section, we discuss the key questions that inform

CC-NIC’s handling of metadata, such as TX/RX descriptors.

How can we take advantage of cache coherence to re-

duce software overhead? Cache-coherent interconnects pro-

vide an underlying hardware mechanism to transfer and

signal the availability of new data, via cache state transi-

tions. This avoids the need for software-based signaling via

head and tail index registers. To this end, CC-NIC applies
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int ccnic_buf_alloc(struct ccnic_pool *pool,

struct ccnic_buf **bufs, unsigned count);

void ccnic_buf_free(struct ccnic_pool *pool,

struct ccnic_buf **bufs, unsigned count);

int ccnic_tx_burst(int txq_index,

struct ccnic_buf **bufs, unsigned count);

int ccnic_rx_burst(int rxq_index,

struct ccnic_buf **bufs, unsigned count);

Figure 5. The core CC-NIC data plane interface, maintaining

the semantics of DPDK mempool and ethdev APIs.
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an inlined signal in the descriptor, implemented as a flag

indicating whether the descriptor is ready for consumption

or free. Integrating the signal and descriptor eliminates a

cache line transfer per signal and saves a cross-socket cache

line access delay, as shown in Figure 6. For transmission,

instead of polling a register containing the queue tail index,

the NIC polls the next descriptor in the ring. The descrip-

tor metadata includes a ready flag, which the host sets after

other descriptor fields are written. Once the flag is set, the

NIC receives the signal and the descriptor content in one

access.

Event-driven implementation. A coherent NIC ASIC

could further optimize signaling communication by directly

handling coherence protocol messages. Instead of access-

ing descriptors through the cache polling abstraction, the
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Figure 7. Local and cross-UPI access latency for Sapphire

Rapids and Ice Lake hosts with various cache states.

device would directly take action in response to snoop mes-

sages received over the interconnect. Handling the coher-

ence messages as signals avoids the scalability limitations of

software-based polling in the presence of large queue counts.

What is the ideal data path for metadata transfers?

Since a coherent interconnect may retrieve data from DRAM

or multiple levels of the cache hierarchy, we measure the per-

formance of each transfer case to understand performance

implications for signaling communication. Figure 7 shows

the median access latency of a 64B-aligned object in various

cache states for both local and remote (cross-UPI) memory

on Ice Lake (ICX) and Sapphire Rapids (SPR) server plat-

forms. We find that accessing remote uncached DRAM in-

curs approximately twice the latency of local DRAM access.

Accessing data cached in remote L2 is faster: 171ns on SPR

and 114ns on ICX for memory homed on the remote socket

(rh case), and slightly higher for memory homed on the local

socket (lh). In these cases, the remote CPU has written to

and retained a line in its L2 cache in the M (modified) state,

and then the local reader accesses the address. When an

M-state object exists in a remote L2 cache, it cannot exist

in any other L2, so there is always a local L2 miss. With

reader-homed memory, the reader’s L2 miss causes a spec-

ulative memory read in addition to the remote request to

the writer’s cache. This speculative read is unneeded and

causes lower performance when an object is reader-homed,

increasing bus utilization with spurious traffic. Regardless of

homing, remote L2 accesses are faster than a remote DRAM

access, suggesting that cache-to-cache transfers achieve the

best-case latency.

CC-NIC applies these observations in its design. CC-NIC

places metadata structures in writer-homed memory: the TX
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Figure 8.UPI pingpong experiment showing median latency

with different memory layout choices.

descriptor ring is host-homed, and the RX ring is NIC-homed.

It enhances the possibility of cache-to-cache transfers by

utilizing write-back memory with regular caching accesses

instead of nontemporal stores that target memory. However,

the working set size of the NIC interface affects performance,

as do prefetch accesses (see ğ3.3).

How does memory layout affect metadata? NIC meta-

data, such as descriptors and signals, exhibit a producer-

consumer access pattern in which each descriptor is written

by one side and read by the other. For instance, TXDs are

written by the host and RXDs by the NIC. Performance de-

pends on the access pattern of a cache line, as this determines

the protocol communication necessary to ensure coherence.

We use a pingpong microbenchmark to analyze producer-

consumer accesses. We run a single thread on both sockets,

accessing two shared 64-bit registers. The first thread in-

crements the first value, while the second thread polls. The

polling thread increments the second register after reading

the updated value. We report roundtrip time, from writing

the first register to reading the same value in the second

register. Figure 8 shows median latency with both registers

allocated in separate cache lines; both homed on the same

socket (S0/S1 cases); both homed on the respective read-

er/writer sockets (Rd/Wr); and both co-located on one cache

line (S0C/S1C). In the S0/S1 and Rd/Wr cases, each register

exists on a separate cache line written by one CPU and read

by the other. These correspond to PCIe NIC signaling, where

host-to-NIC registers exist in the MMIO address space and

NIC-to-host registers in write-back memory.

With separate cache lines, we find that writer-homedmem-

ory yields the lowest latency, consistent with Figure 7. These

scenarios all show 1.7 − 2.4× higher latency than when the

values are on one cache line, homed on either socket. Co-

locating producer and consumer structures on a single cache

line achieves the best overall latency. With separate cache

lines, each read transfers a cache line over the interconnect,

and each write incurs another roundtrip to invalidate the

reader cache. The co-located case instead uses one cache

line for two-way communication. The 1.7 − 2.4× latency

difference shows the benefit of applying memory layouts

that enable this two-way communication. Measuring offcore

response perf counters shows a reduction of remote-socket
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Figure 9. Stream transfer experiment comparing UPI

throughput with caching and nontemporal accesses.

requests from 4 to 2 per pingpong. This indicates reduced

interconnect utilization in addition to improved latency.

CC-NIC applies two-way communication for signaling

and descriptor transfers. Unlike the PCIe head and tail reg-

ister layout, the host and NIC communicate by writing and

clearing each descriptor and its inlined signal. This results in

an access pattern matching the minimum pingpong latency.

How do we optimize for both latency-sensitive and

high-bandwidth regimes? With inlined signaling, the host

and NIC directly poll descriptor ring memory rather than

separate registers. This results in the cache line thrashing

between sockets when writing and polling a series of descrip-

tors smaller than the 64B cache line. This thrashing increases

latency compared to a cache-aligned case where descriptors

are padded to 64B. Cache-aligned descriptors result in sig-

nificant wasted space (e.g., 48 out of 64B), impacting the

maximum packet rate. Furthermore, both scenarios prevent

batching multiple descriptors per signal, a technique existing

NICs typically rely on to maximize packet rate. To address

these tradeoffs, CC-NIC implements a balanced solution: it

packs bursts of up to 4× 16B descriptors into a cache line,

with unused entries zeroed out, and uses one signal per cache

line. If the consumer reaches a blank descriptor in the middle

of a group, it skips to the next cache line to poll for the subse-

quent descriptor group. This eliminates wasted space in the

high-throughput case while avoiding thrashing in the low-

throughput, un-batched case. With one signal per descriptor

group, CC-NIC applies batching to utilize each descriptor

cache line fully in high-throughput scenarios.

3.3 Data Accesses

Next, we discuss the questions guiding the design of packet

data transfer in CC-NIC.

How should we write packet data? We run a streaming

write microbenchmark to compare caching and nontemporal

store throughput. For each case, we run awriter thread on the

local CPU and a reader thread on the remote CPU. The writer

thread sequentially writes data to a shared memory region,

signaling the reader via a register for each 1MB written. The

reader accesses 1MB per signal, copying into a thread-local

buffer. We run a copy of the workload on each pair of threads,
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up to all 16 ICX and 56 SPR cores. Figure 9 shows the results

using two access types. In the caching case, the writer applies

cacheable stores, which follow the typical memory datapath

and enter the cache. This results in cross-interconnect cache

transfers from the writer to the reader. In the nontemporal

case, the writer uses cache-bypassing nontemporal stores

to target reader-socket DRAM. This case aligns with the

PCIe MMIO datapath, where stores are submitted over the

interconnect directly without entering the cache. Our results

show that the cache-to-cache transfer path enables higher

throughput on both platforms: 1.8× (ICX) and 1.6× (SPR).

Additionally, we measure the maximum achievable inter-

connect throughput on our platforms using the Intel mlc

benchmark utility [17]. This measurement uses a read-only

remote access workload, which shows higher throughput

than other patterns. On SPR and ICX, we find a maximum

data throughput of 1020Gbps and 443Gbps, respectively. This

suggests that the reader-writer streaming workload reaches

91% of best-case read-only throughput by using cache-to-

cache transfers.

Based on this result, we apply caching stores to write

packet data, both at the host application (while generating

TX packets) and at the CC-NIC (while writing inbound RX

packets).

How can we minimize coherence protocol overhead

for data transfers? Packet buffers also demonstrate the

producer-consumer access pattern described in ğ3.2; NIC’s

TX buffer accesses are read-only, and RX buffer accesses are

write-only. Like descriptors, performance depends on under-

lying coherence state transitions. After the NIC completes

a packet transmission, the buffer is likely to remain in the

NIC’s local cache. Although the buffer contents are no longer

needed by the NIC, when the buffer is next allocated on the

host side, writing to the buffer memory requires cross-socket

access to invalidate this unnecessarily cached data.

There is no ideal instruction available to purge the con-

sumed buffer memory out of the consumer-side cache. While

CLFLUSHOPT does trigger cache invalidation, it is an expen-

sive instruction that must be called on a per-cache-line basis

and may incur memory accesses after the invalidation. Other

cache control instructions, such as CLWB, do not help, as they

do not result in cache invalidation.

Instead, CC-NIC implements a buffer recycling allocator

to reuse the most recently freed TX buffers as RX buffers

and vice versa. In both cases, the goal is to allocate buffer

memory still present in the writer’s cache. CC-NIC’s buffer

recycling provides similar application-level semantics to the

TX-RX buffer reuse implemented by some PCIe NIC drivers

(such as the i40e kernel driver [48]). However, these existing

mechanisms are software-only driver optimizations and thus

do not affect interconnect communication. CC-NIC’s buffer

recycling takes place at both the NIC and the host, and ad-

dresses the unique producer-consumer overheads imposed

by cache coherence. We implement buffer recycling using

host- and NIC-local stacks, which cache free buffer addresses

from the pool of packet buffer memory. This technique is

suitable for applications with a single buffer pool for TX

and RX traffic, the typical design pattern among DPDK NIC

drivers. But, in cases where there are multiple references to

the TX buffer payload, and the host retains the TX buffer

after transmission (e.g., for potential retransmission), this

optimization falls back to standard buffer allocate/release

behavior. The CC-NIC buffer allocator is described fully in

ğ3.4.

Where should data be homed? Our measurements of

remote-socket accesses, in ğ3.2, demonstrate a latency ben-

efit to homing memory on the writer socket. As a result,

CC-NIC places the TX descriptor ring on the host socket and

the RX ring in NIC memory. However, we allocate packet

buffer memory entirely homed on the host. Since applica-

tions may arbitrarily access packet buffer data, placing it

in remote memory could have unexpected application-level

consequences. Applications may, for instance, submit RX

buffers to a TX queue, so writer-homing does not universally

apply to packet buffer memory. Instead, CC-NIC’s recycling

buffer allocation policy and locality-oriented optimizations,

described next, aim to minimize the cost of host and NIC

buffer accesses.

How can we maximize cache locality for packets? As

measured in ğ3.2, maximum remote access performance is

achieved when an object is present in remote cache. As such,

it is important to maximize the caching of shared data on

both the host and NIC sides. Using small packet buffer sizes

for small packets reduces the overall memory footprint of

the NIC interface. When supported by the application, an

MTU-sized buffer, for instance, 4KB, is subdivided into 32×

128B packet buffers. When the host allocates a buffer to write

a TX packet, it selects either a large or small buffer based

on the packet data size, if known in advance. The RX side

follows the same logic (see ğ3.4). This increases the cache

efficiency of small packet transfers. Unlike PCIe NIC drivers,

which may inline packet data into the descriptor ring, this

approach does not require copying the packet data payload

into another location.

Relative to PCIe, cache coherence brings the additional

challenge of potential remote prefetching. When buffers are

allocated sequentially from a contiguous region of mem-

ory, the sequential access pattern on the consumer side may

result in hardware prefetching of the buffer memory just

beyond the current packet buffer. These remote prefetches

contend with local writes of that same packet buffer before

it is submitted to the descriptor ring. This behavior occurs

when the NIC handles one posted TX buffer and prefetches

subsequent buffer memory while the host is writing to the

next buffer allocated sequentially in memory. We avoid this

contention by filling the memory pool with buffers such that
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Figure 10. Buffer management approaches. Thin lines de-
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transfer.

repeated buffer allocations do not yield sequential memory

addresses. This policy avoids unwanted cache state transi-

tions, increasing the efficiency of producer-side packet buffer

writes.

3.4 Buffer Management

Several of the above design features, including the recycling

buffer allocator (ğ3.3), subdividing buffers for small packets

(ğ3.3), and cache-aligned descriptor groups (ğ3.2), are critical

to CC-NIC’s efficient utilization of the interconnect. Each of

these optimizations requires allocating buffers and writing

RX descriptors based on the properties of the workload. In

a typical PCIe NIC interface, RX buffers are allocated and

posted to RX descriptors by the host prior to the actual recep-

tion of packets by the NIC. This makes it impossible to apply

knowledge of the RX packet burst at the time of assigning

buffers to RX descriptors. CC-NIC overcomes this by taking

advantage of cache coherence to share the responsibility of

buffer management with the host. Cache coherence allows

the host and NIC to access the buffer pool data structure

concurrently without the restrictions associated with simul-

taneous PCIe DMA and CPU accesses (e.g., lack of atomic

operations). A shared buffer pool structure allows the NIC

to release TX buffers to the pool after transmission. Like-

wise, the NIC can allocate RX buffers on demand and write

their addresses into the RX descriptor ring. This results in

a symmetric design that avoids extra bookkeeping passes

over the queues to free completed TX packet buffers and

post blank RX packet buffers. Finally, shared buffer man-

agement enables CC-NIC’s buffer allocation and descriptor

layout optimizations. Figure 10 compares CC-NIC’s buffer

management design to that of PCIe NICs.

4 CC-NIC Implementation

To demonstrate the benefits of the CC-NIC design, we imple-

mented CC-NIC on a dual-socket server where one socket

acts as a software NIC. In this implementation, all host-NIC

communication occurs over the UPI interface. In addition to

being a coherent interconnect that we can experiment with

now, UPI also provides bandwidth higher than contempo-

rary PCIe generations (see Table 1). Sapphire Rapids CPUs

Protocol GT/s 1 Link GB/s Max Total GB/s

PCIe 4.0 16 2.0 31.5 (×16)

PCIe 5.0, CXL 1.0-2.0 32 3.9 63.0 (×16)

PCIe 6.0, CXL 3.0 64 7.6 121 (×16)

Ice Lake UPI 11.2 22.4 67.2 (×3)

Sapphire Rapids UPI 16 48 192 (×4)

Table 1. Comparison of PCIe, CXL, and UPI bandwidth.

provide a terabit-throughput UPI interface, allowing us to

model terabit NIC communication.

We designate one CPU and its local-socket memory as the

host and the second socket as the NIC. NIC-socket memory

represents coherent device memory, and the NIC cores repre-

sent the processing units of the NIC. The software flexibility

enables experimenting with data structure designs and com-

munication patterns since we are not restricted by the hard-

ware interfaces of existing NICs. We believe the software-

initiated nature of NIC accesses does not change the host-NIC

interactions required to transfer packets; hardware-initiated

transfers would map to equivalent coherence protocol oper-

ations and show comparable interconnect performance.

To evaluate the PCIe and CC-NIC interfaces in isolation,

we focus on loopback performance. Prior work finds that

PCIe can contribute the majority of network TX/RX latency

observed by the end-host [32]. While these experiments ex-

clude Ethernet transmission, they demonstrate the most sig-

nificant component of overall latency.

To understand end-to-end throughput and core utilization,

we implement a CC-NIC Overlay interface atop a PCIe NIC.

With a PCIe NIC installed on the second socket, we utilize

overlay threads on the NIC socket to bridge between the CC-

NIC UPI interface and a PCIe NIC. These threads poll both

UPI TX and PCIe RX queues, copying packet data and writ-

ing descriptors between each respective pair of queues. This

allows applications running on the first socket to perform

network TX/RX via CC-NIC. While overlay packet forward-

ing adds latency and burns cores on the second CPU, it allows

us to measure application throughput and core utilization.

5 Evaluation

Our evaluation is guided by the following questions:

1. How does CC-NIC perform relative to PCIe NICs? ğ5.2

2. What performance does CC-NIC achieve on a terabit UPI

interconnect? ğ5.3

3. What are the gains from optimizing metadata structures,

data accesses, and buffer management? ğ5.4

4. How does batching affect performance? ğ5.5

5. Does CC-NIC’s design increase coherence communica-

tion efficiency? ğ5.6

6. Can CC-NIC save CPU cores with a key-value store ap-

plication and TCP RPC stack? ğ5.7

7. How sensitive is the design to hardware prefetching,

interconnect bandwidth, and latency? ğ5.8, ğ5.9
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5.1 Evaluation Setup

We use two server platforms with the following specifica-

tions. The ICX server is a dual-CPU Intel Ice Lake Xeon

Gold 6346, running at 3.1GHz, with PCIe 4.0 support and

3×11.2GT/s UPI links. Each ICX CPU has 16 cores (32 hyper-

threads), 1.25MB per-core L2, 36MBLLC, and 12×16GBDDR4

at 3200MHz. This server contains two PCIe NICs, an Intel

E810-2CQDA2 (E810) and Nvidia ConnectX-6 Dx MT42822

(CX6), both 2×100GbE devices. Our SPR server contains dual

Intel Sapphire Rapids CPUs, running at 2.0GHz, with PCIe

5.0 support and 16GT/s UPI. Each SPR CPU has 56 cores (112

hyperthreads), a 2MB per-core L2 cache, 105MB LLC, and

8 × 64GB DDR5 at 4800MHz.

We apply these two server platforms to evaluate the fol-

lowing comparison points:

• CC-NIC on ICX (UPI). We deploy CC-NIC on the ICX

server to compare UPI- and PCIe-based NIC communica-

tion on the same CPU platform.

• CX6, E810 on ICX (PCIe). For our PCIe NIC measure-

ments on the ICX server, we follow the vendor-published

system and driver configuration steps [18, 34] and ver-

ify that packet-forwarding performance matches these

official DPDK performance reports. We enable standard

platform-level optimizations such as DDIO [15].

• CC-NIC on SPR (UPI). To measure CC-NIC’s perfor-

mance across a terabit coherent interconnect, we also

deploy CC-NIC on the SPR platform with the above speci-

fications.

• Unoptimized UPI on SPR, ICX. To demonstrate coher-

ent NIC performance without CC-NIC’s design features,

we implement the Intel E810 NIC interface over the UPI

interconnect. We use writeback memory and caching ac-

cesses but maintain the E810 data structure layout and

register-based signaling. This baseline scenario represents

a case where future coherent NICs apply the same soft-

ware interface as today’s PCIe NICs.

Loopback setup. We implement a traffic generator using

DPDK [4] to evaluate both CC-NIC and PCIe NICs. Each NIC

serves as a loopback between pairs of TX and RX queues.

Each application thread configures private queues, allocates

TX buffers, andwrites full, timestamped payloads for each TX

packet burst; it polls RX queues and accesses each RX payload

before freeing the buffer. This is more work per packet than

minimal RX-TX forwarding due to payload accesses and

separate TX and RX flows.We vary TX rates from one inflight

packet to the maximum sustainable rate and measure median

roundtrip latency and RX data throughput.

Overlay setup. We use the CC-NIC Overlay (ğ4) to eval-

uate per-thread application throughput with the CC-NIC

interface. An application uses the CC-NIC UPI interface for
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Figure 11. Throughput-latency curves, comparing CC-NIC,

unoptimized UPI, and PCIe loopback performance on the

ICX server, for 64B and 1.5KB packet sizes

TX/RX; remote-socket overlay threads transfer packets be-

tween corresponding PCIe NIC queues. As a baseline, the

application interfaces directly with the same socket-local

PCIe NIC. While the PCIe NIC limits throughput in both

cases, this setup allows us to compare CPU utilization.

5.2 Performance Comparison Overview

Figure 11 shows a comparison of four host-NIC interfaces on

the ICX server: the CX6 and E810 PCIe NICs, a naive imple-

mentation of the E810 interface over UPI, and CC-NIC. These

results show that CC-NIC provides a significant opportunity

for latency improvement and higher throughput over PCIe.

CC-NIC’s minimum latency is 77% and 86% lower than that

of the CX6 and E810. As detailed in ğ5.3, CC-NIC’s latency

reduction over the CX6 is more significant when considering

latency under load for both large and small packets. CC-NIC

also achieves a 1.7× and 4.3× higher peak packet rate than

the E810 and CX6. With 1.5KB packets, we observe 1.8×

higher data throughput over both PCIe NICs.

The unoptimized UPI (unopt) scenario shows that a coherence-

optimized design is critical. This case applies the E810 inter-

face across UPI and achieves lower 64B packet rates than the

native PCIe E810 despite a higher-bandwidth interconnect.

Relative to CC-NIC, this version shows 79% lower through-

put and 2.1× higher minimum latency.

5.3 Detailed Performance Results

This section compares CC-NIC, CX6, and E810 results on

the ICX platform. Figure 12 shows throughput-latency pro-

files for CC-NIC and CX6, with 64B and 1.5KB packet sizes.

We also measure CC-NIC on the SPR platform’s terabit UPI

interconnect, shown in Figure 13.

Latency. CC-NIC demonstrates low minimum latency

and loaded latency relative to both PCIe NICs. We measure

a minimum loopback latency of 490ns (ICX) and 650ns (SPR)

versus a best-case PCIe latency of 2116ns (CX6) and 3809ns

(E810). The latency difference between CC-NIC and the CX6

is more significant when the load is increased. At 80% load,

CC-NIC’s 64B latency is 88% lower than the CX6 (85% lower
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Figure 12. Loopback throughput-latency curves for CC-NIC and CX6 on the ICX server, with 64B and 1.5KB packet sizes.
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Figure 13. Loopback throughput-latency curves for CC-NIC

on Sapphire Rapids UPI, with 64B and 1.5KB packet sizes.

than the E810). With large 1.5KB packets, minimum latency

is 76% lower than the CX6 (87% lower than the E810). As

with small packets, at 80% load, CC-NIC achieves a greater

improvement over PCIe: 88% for both CX6 and E810.

Throughput. On the ICX server, CC-NIC demonstrates

a maximum 64B packet rate of 330Mpps (169Gbps). This is a

substantially higher packet rate than PCIe NICs on the same

platform: 192Mpps (E810) and 76Mpps (CX6). For 1.5KB pack-

ets, CC-NIC reaches 403Gbps out of a maximum 443Gbps

measured data throughput on the interconnect; both PCIe

NICs reach their rated 200Gbps line rate on the 252Gbps PCIe

link. While the ICX server core count limits CC-NIC’s 64B

packet rate, the SPR results demonstrate full interconnect

utilization. The SPR CC-NIC loopback reaches a maximum

packet rate of 1520Mpps (778Gbps) with 64B packets. Includ-

ing the descriptor metadata transferred with each packet,

this corresponds to 96% of the measured maximum UPI data

throughput. For 1.5KB packets, we measure 986Gbps data

throughput or 97% of UPI throughput.

Core count. With 64B packets, 48 of 56 (SPR) and 14 of 16

(ICX) host cores are required to reach 90% of the maximum

rate. Large 4KB packets decrease the core counts to 18 (SPR)

and 8 (ICX). Each core accesses full TX/RX payloads, placing

a higher burden on the host cores than workloads such as

forwarding with header-only accesses. We measure core

utilization with application workloads in ğ5.7.

5.4 Design Feature Analysis

Next, we evaluate the impact of CC-NIC’s design features.

Recent work analyzing data center workloads in the context

of transport protocols [31] and data stores [46] emphasize
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Figure 14. Throughput and latency varying (a) register and

inline signaling options, and (b) descriptor layouts.
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Figure 15. Performance impact of CC-NIC buffer manage-

ment features.

the prevalence of small packets. Thus, we examine small

packet workloads and evaluate packet-handling efficiency.

Signal Inlining. Figure 14a shows the impact of inlining

signals into the descriptor ring versus maintaining external

queue tail doorbell registers. For 64B packets, inlined signals

reduce minimum latency by 37% and increase maximum

packet rate by 1.3×.

Descriptor Layout. Using the same workload, we evalu-

ate different descriptor layout choices: the optimized layout

(ğ3.2), 16B descriptors equivalent to the E810 NIC (pack case),

and the same format with each descriptor padded to a cache

line (pad). Figure 14b shows the results. Due to the 64B granu-

larity of UPI cache transfers and the direct descriptor polling

required for inlined signals, memory layout substantially af-

fects performance. Cache-aligning (padding) each descriptor

achieves low latency by avoiding thrashing. Packing single-

ton 16B descriptors into a cache line improves throughput

by 2.9× but causes thrashing as the host and NIC each access

multiple signals and metadata fields per line. Finally, the

optimized descriptor layout incorporates a single signal and

a group of descriptors per cache line. This layout achieves a

3.0× throughput improvement while matching the best-case

minimum latency of the padded case.
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Figure 16. 64B packet rate relative to maximum, varying

TX (a) and RX (b) batch sizes, for CC-NIC and E810 (PCIe).

Buffer Management Optimizations. In Figure 15, we

evaluate the performance impact of buffer management op-

timizations. We begin with the optimized design, removing

features sequentially. All measurements use 56 SPR cores

and 64B packets. First, we disable same-socket buffer reuse

and nonsequential allocation (ğ3.3), so all allocations and

frees access the buffer pool, not the buffer reuse cache for

each core. This is representative of a workload where TX

buffers are retained by the application after transmission, not

returned to the buffer pool. We observe a 20% throughput

reduction in this case. Second, we disable the small buffer

optimization (ğ3.3), so each 64B packet is written into a sep-

arate 4KB buffer. This results in a larger shared memory

footprint and a further 37% throughput decrease. Finally,

we disable shared access to the buffer pool (ğ3.4), instead

posting and freeing buffers exclusively on the host side. This

change prevents the NIC from adaptively filling RX descrip-

tors based on the available burst count and increases host

bookkeeping, decreases maximum throughput by 46%, and

increases latency by 1.3×. This final case is comparable to

PCIe NIC buffer management.

5.5 Batching Effects

Batching is critical to achieving high NIC packet rates. For

PCIe NICs, TX batching enables submitting multiple packets

with oneMMIO doorbell; larger batch sizes reduce the rate of

MMIO operations. For CC-NIC, TX batching allows multiple

descriptors to be transferred within a single cache line. Host-

side RX batching primarily affects access patterns on the

descriptor ring and buffer pool, determining whether buffers

are handled individually or in bulk. Figure 16 shows 64B

packet rate at a given host TX/RX batch size, relative to the

highest achievable packet rate. We define batch size as the

maximum number of buffers transmitted per polling loop

iteration, i.e., the TX/RX burst count used in DPDK APIs. We

repeat the experiment with CC-NIC and the E810 PCIe NIC,

both on the ICX server.We vary the TX batch sizewhile using

a fixed RX batch size of 32, and vice versa. For TX, CC-NIC

achieves higher packet rates with lower batching factors; the

unbatched case shows 27% of peak throughput for CC-NIC

versus 12% for the E810. Because CC-NIC uses lightweight

per-cache-line signals instead of MMIO doorbells, the need
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Figure 17. NIC remote accesses per TX-RX loopback,

batched and singular descriptor cases.

for large batching factors is reduced; CC-NIC achieves peak

packet rates when descriptor cache lines are filled. For poll-

mode RX, host-side batching is less crucial to performance

since the host does not perform PCIe MMIO accesses and

releases RX descriptors lazily. Both NICs show significantly

less sensitivity to the RX batch factor: CC-NIC maintains

at least 93% of peak throughput across batch sizes, and the

E810 achieves at least 63%.

5.6 Interconnect Communication

To measure the coherence communication required to fa-

cilitate host-NIC interactions, we measure offcore response

PMU counters of the NIC CPU. As an additional comparison

point, we deploy NIC and host threads on a single CPU. This

setting eliminates UPI communication altogether, revealing

the interconnect contribution to latency and bandwidth over-

heads.

Remote Access Counters. We measure offcore response

PMU counters of the NIC and host CPU to quantify intercon-

nect communication. Figure 17 compares the remote accesses

performed by CC-NIC and the unoptimized UPI baseline per

64B TX-RX loopback operation. The figure shows NIC CPU

accesses; due to the symmetric TX-RX design of CC-NIC,

we observe symmetric host-side access counts. Each remote

access consists of a read or read for ownership (RFO) inter-

connect operation. We evaluate singleton and fully-batched

(4 descriptors per cache line) cases. The batched case shows

a throughput-oriented workload, processing descriptors in

bursts of 8 and filling ring cache lines without wasted space.

The singleton case represents a low-throughput, low-latency

workload, where the host transmits one packet at a time

and immediately polls for completion status. This case maxi-

mizes contention on shared cache lines, with the host and

NIC accessing descriptors and signals simultaneously.

With the batched workload, CC-NIC performs one read

access per packet, plus one read and one RFO per descriptor

group (0.25 per packet). This suggests that CC-NIC effec-

tively amortizes metadata cache transfers. The unoptimized

UPI baseline, which uses register-based signaling, incurs one

additional read and two additional RFO accesses per descrip-

tor group. For the singular scenario, each individual packet

requires full cache-line transfers for the descriptor, packet
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Figure 18. Single-thread 64B loopback performance, com-

paring CC-NIC thread running on local CPU versus cross-

UPI remote CPU.

PCIe Mops/s CC-NIC Mops/s Thread Count

KV store (ads) 37.0 42.3 16 → 8

KV store (geo) 17.8 17.9 8 → 4

TCP echo RPC 58.3 64.6 5 → 3

Table 2. Peak throughput and core count for KV Store and

TCP Echo RPC applications, comparing CX6 and CC-NIC

Overlay interfaces.

memory, and, in the unoptimized version, registers. When

we compare batched and singular cases, our results show the

importance of efficient descriptor cache-line layouts. Packing

multiple descriptors into one cache line (ğ3.2) significantly

reduces coherence communication, for both CC-NIC and the

unoptimized case. Comparing optimized and unoptimized

interface designs with the singleton workload, CC-NIC is

able to recycle locally-cached buffer memory (ğ3.3) and avoid

separate cache transfers for register signaling (ğ3.2). This

reduces interconnect communication, even in the presence

of contented host-NIC accesses.

Same-Socket Comparison. We deploy CC-NIC and host

threads on a single NUMA node to understand the contri-

bution of the UPI interconnect on loopback latency and

per-thread throughput. This setting exhibits host-NIC in-

teractions between local CPU cores, eliminating transfers

across the UPI physical link. Figure 18 shows one-thread 64B

loopback performance between host and CC-NIC threads

on the same SPR CPU, compared to the cross-UPI deploy-

ment used for all other results. Comparing both minimum

and loaded latencies shows that the interconnect accounts

for approximately 40-50% of TX-RX loopback latency. The

increased latency of cross-UPI accesses increases stalling for

the host application, which impacts maximum per-thread

throughput; the same-socket experiment shows 1.5× greater

per-thread throughput.

5.7 Application-Level Performance

Table 2 summarizes the thread count reduction enabled by

CC-NIC for the key-value store echo RPC applications dis-

cussed below. We compare the CC-NIC Overlay interface

(forwarding to the CX6 PCIe NIC) to the direct interface with

the CX6, both on the ICX platform.
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Figure 19. Throughput versus thread count for key-value

store workloads, comparing CC-NIC Overlay and PCIe NIC

interfaces.

Key-Value Store Throughput. We implement a key-value

store following the design of CliqueMap [46], with DPDK’s

rte_hash table as the index. Server threads poll NIC RX

queues to handle get and set RPCs. Gets are zero-copy, apply-

ing multi-segment TX (DPDK extbuf) to submit the header

and object payload to the NIC. This requires two buffer ad-

dresses per TX descriptor, increasing host-NIC metadata but

avoiding object memcpy. We deploy the key-value store on

one ICX server with a CX6 NIC, plus two remote clients,

enough to saturate the server. We evaluate two production

object distributions from Google, Ads and Geo [46], limit-

ing sizes to a 9600B MTU (truncating the largest 0.01% of

Ads). Ads consists of smaller objects; 61% are less than 100B,

compared to 13% in Geo. For both, we evaluate 95% gets, 5%

sets on 1M objects, following a Zipf access pattern with a

coefficient of 0.75.

Figure 19 shows key-value request throughput with CC-

NIC andCX6 interfaces across the range of application thread

counts (hyperthreading enabled). Since all scenarios perform

TX/RX via the CX6NIC, peak throughput is determined by its

packet rate. However, the CC-NIC Overlay interface achieves

peak throughput with fewer application threads. For Ads, 8

threads saturate throughput with the CC-NIC Overlay inter-

face, compared to 16 with the CX6. The high rate of small

objects stresses the host-NIC interface, especially with multi-

segment TX. The Geo workload demonstrates a reduction

of 8 to 4 threads, showing core savings with a distribution

skewed towards larger objects. The UPI 1-1 series uses one

overlay thread per application thread. Relative to the direct

CX6 interface, the same number of threads access PCIe NIC

queues, but this work is offloaded from application threads.

This increases per-thread throughput up to 31%, but the over-

lay thread count limits performance. Comparing CC-NIC to

the unoptimized UPI (unopt) baseline shows the benefits of

coherence-optimized buffer management: CC-NIC shows a

savings of 3 (Ads) and 2 (Geo) threads at peak throughput.

TCP RPC Throughput. We evaluate a TCP RPC server

built using TAS [22], a high-performance userspace TCP

service. We run the RPC server implemented by the TAS

authors, a basic TCP application dynamically linked to TAS,

overriding the kernel sockets interface. A set of userspace
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Figure 20. Impact of SPR hardware prefetching on 64B

packet throughput, relative to the prefetching-disabled case.

TAS fast-path threads to handle the TCP data plane via

DPDK, achieving state-of-the-art TCP performance. We re-

place TAS’s fast-path PCIe TX/RX with the CC-NIC Overlay

to evaluate the benefits of a coherent NIC interface. We do

not offload any aspects of TAS but instead deploy a drop-in

replacement NIC interface.

We evaluate a workload of 64B echo RPCs, deploying

one application thread and measuring the number of TAS

fast-path threads required to achieve 95% peak throughput.

In the PCIe baseline case, we run all application and TAS

threads on the CX6’s local socket CPU. For the CC-NIC

Overlay case, we deploy overlay threads on the CX6 socket

and all TAS and application threads on the remote CPU. On

a second machine, we run the client application with all

threads and a total of 96 flows, enough to saturate the server.

Table 2 compares RPC throughput with the CC-NIC Overlay

and direct CX6 interfaces. Applying the CC-NIC Overlay

results in NIC saturation with 3 TAS threads versus 5 with

the PCIe interface. The CX6 case shows slightly lower peak

throughput due to internal TAS overheads, which increase

with the fast-path thread count. Both scenarios are limited

to the CX6 NIC packet rate.

5.8 Sensitivity to Hardware Prefetching

In Figure 20, we compare the impact of hardware prefetching

on packet rates for CC-NIC and the unoptimized UPI base-

line, on the SPR platform. We enable prefetching on the host,

NIC, and both CPUs, measuring packet rate relative to the

case of prefetching disabled. We find that the optimized CC-

NIC interface is able to benefit from host-side prefetching for

small-packet workloads: prefetching increases packet rate

1.2× for 64B packets. This gain comes from the CPU’s DCU

IP Prefetcher and affects packet buffer accesses in particular.

Both designs achieve maximum throughput with prefetching

enabled on the host CPU only (we use this setting for all

other experiments). For the unoptimized interface design,

without CC-NIC’s locality-oriented buffer pool optimiza-

tions (ğ3.3), prefetching strictly decreases performance by

up to 7%. These differences suggest that the NIC interface

design dictates whether prefetching improves performance

or increases interconnect overheads.
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Figure 21. Performance with reduced UPI throughput and

latency.

5.9 Sensitivity to Interconnect Performance

We analyze CC-NIC’s sensitivity to interconnect bandwidth

and latency by varying the NIC socket uncore frequency.

This allows us to study CC-NIC under reduced interconnect

performance. However, this approach results in pessimistic

measurements, as downclocking the uncore impacts purely

local access performance in addition to remote UPI accesses.

Across the range of supported uncore frequencies (maximum

is the default), we measure host-to-NIC-socket DRAM ac-

cess latency and read throughput and loopback performance

with CC-NIC and the unoptimized UPI interface. Figure 21

shows 64B packet loopback latency relative to access latency,

and 1.5KB packet throughput relative to interconnect data

throughput, measured on the SPR server.

According to the CXL Consortium, the expected access

latency for CXL-attached DRAM is 170-250ns [40]. This

range is corroborated by research on CXL.mem prototypes,

which finds that CXL.mem load latency is approximately

1.5× higher than cross-UPI remote DRAM [47]. In Figure 21a,

we observe that CC-NIC’s latency increase closely tracks the

increase in host-to-NIC interconnect access latency. With a

1.11× increase in interconnect latency to 211ns (middle of

the CXL range), CC-NIC loopback latency increases by 1.13×.

CC-NIC maintains its relative improvement over the unopti-

mized UPI interface, which incurs a 1.16× latency increase.

Figure 21b shows that performance is also stable over a range

of interconnect throughputs. 1.5KB loopback throughput

scales well and maintains a consistent improvement over the

unoptimized case. When interconnect throughput is set to a

minimum of 40%, CC-NIC throughput is 39%.

6 Discussion

Hardware DMA. Hardware bulk transfers, on both host

and NIC sides, can potentially increase efficiency over CPU

accesses. While our application-level results (ğ5.7) show that

CC-NIC can reduce core utilization without DMA, efficient

hardware transfers could benefit large-packet workloads.

On-chip DMA engines, such as Intel’s Data Streaming Accel-

erator [16], are one possible mechanism for CPU-initiated

bulk transfers. For device-initiated DMA, a CXL-attached

NIC could leverage both CXL.cache for metadata and small
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packet transfers, plus CXL.io DMA for bulk packet opera-

tions.

Security and Isolation. We expect coherent host-device

interconnect standards to provide mechanisms for protecting

and isolating host resources. We expect that current tech-

niques to control PCIe DMA access to the host address space,

e.g., IOMMU translation, apply to coherent device accesses.

Likewise, the BAR space abstraction of current PCIe devices

offers a means of isolation by limiting host-device coherence

to a portion of the address space.

Network Function Workloads. While we studied work-

loads involving full packet access, cache-coherent NICs could

bring additional benefits formiddleboxworkloads like packet

switching. Packet-switching through a PCIe NIC incurs un-

needed interconnect andmemory bandwidth utilization. Even

if the application only operates on packet headers, the full

packet payload is still transferred to and from host memory.

In the case of DDIO, this may result in cache pollution. In-

stead, a coherent NIC may retain payloads in the NIC cache

while the host operates on the header, avoiding interconnect

transfers for packet data the host does not access.

7 Related Work

TinyNF [38], NIQ [7], PacketMill [6], and others [4, 8, 11, 19,

20, 22, 26, 42, 45] propose optimizations to the host software

interface of PCIe NICs through the elimination of driver

and stack overheads. Since our work maintains the packet

queue model, these optimizations carry to the software stack

running atop a coherent NIC interface.

NanoPU [13], Direct CacheAccess [12], and Semi-Coherent

DMA [28] propose new CPU-NIC data paths. Like our work,

these systems demonstrate that tighter integration between

the NIC and CPU caches enables higher performance. Rather

than propose new data paths, our work leverages the faster

paths of an existing cache-coherent interconnect.

Scale-out NUMA [33], and Dagger [23] apply cache co-

herence in conjunction with new communication models

beyond NIC packet RX/TX. Scale-out NUMA enables remote

coherent access to host memory by integrating an RDMA-

like interface with the cache hierarchy. Dagger applies a UPI-

attached FPGA as a target for offloaded RPCs with coherent

host access. Our work focuses specifically on optimizing the

producer-consumer data transfers associated with packet

RX/TX. However, these systems and others [5, 21, 29, 30, 53]

apply similar producer-consumer interactions, e.g., RDMA

work queues. In the context of a coherent interconnect, the

design we propose applies to these data structures.

Prior work on microkernel and shared-memory message

passing [1, 41], as well as IO virtualization [51, 52], describes

optimizations for producer-consumer accesses in the shared

memory setting. With coherent host-device interconnects,

these considerations (e.g., optimizing for cache-to-cache

transfers) become newly important to host-device interac-

tions. The specific context of NIC interactions presents new

opportunities for optimization and requires a specialized

design. For instance, while existing message queue systems

optimize for cache alignment, applying it to NIC RX queues

requires broader changes to the buffer management system.

CC-NIC applies a new combination of design decisions to

optimize for the unique properties of both host-device co-

herence and NIC TX/RX descriptor communication.

Pond [24] and DirectCXL [10] explore CXL as a means of

providing disaggregated memory resources. Their analysis

of CXL datapath performance pertains to CXL-attached NIC

interactions.

8 Conclusion

This paper makes a case for redesigning the host-NIC soft-

ware interface in the context of emerging cache-coherent

interconnects. These interconnects are capable of high per-

formance, but the interface design of current PCIe NICs

performs poorly in the coherent setting. We present CC-NIC,

a NIC interface designed to benefit from cache coherence.

Our results, modeling CC-NIC over the coherent UPI in-

terconnect, demonstrate high throughput, low latency, and

CPU-efficient host-NIC communication.
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