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Ultracold atoms provide a platform for analog quantum computer capable of sim-
ulating the quantum turbulence that underlies puzzling phenomena like pulsar
glitches in rapidly spinning neutron stars. Unlike other platforms like liquid
helium, ultracold atoms have a viable theoretical framework for dynamics, but
simulations push the edge of current classical computers. We present the largest
simulations of fermionic quantum turbulence to date and explain the computing
technology needed, especially improvements in the Eigenvalue soLvers for Petaflop
Applications (ELpA) library that enable us to diagonalize matrices of record size
(millions by millions). We quantify how dissipation and thermalization proceed in
fermionic quantum turbulence by using the internal structure of vortices as a new
probe of the local effective temperature. All simulation data and source codes are
made available to facilitate rapid scientific progress in the field of ultracold Fermi
gases.

quantum turbulence | high-performance computing | ultra-cold gases | density functional theory

Computation is regarded as the third pillar of physical science, complementing theoretical and
experimental physics. Each pillar has its unique methodology: theoretical physics relies on math-
ematical analysis, measurements are the central interest of experimental physics, and numerical
modeling is the heart of computational physics. Many recent breakthroughs, like observing the
Higgs boson (1, 2) or detecting gravitational waves (3), would not have been possible without
advanced numerical analysis capabilities that adapt algorithmic breakthroughs to evolving hard-
ware. Here we demonstrate the synergy between theory and computation: advances in linear
algebra libraries enable Europe’s fastest supercomputer (LUMI) to diagonalize matrices of record
size, allowing us to simulate turbulent dynamics in quantum systems (superfluids). We use these
simulations to investigate how vortices dissipate energy, driving quantum turbulence in neutron
stars and ultracold-atom experiments.

As Moore’s law bottoms out, using high-performance computing (aPC) effectively be-
comes a significant challenge. ~ Current HPC systems consist of thousands of intercon-
nected nodes, each comprising dozens of computing cores or multiple hardware accelera-
tors.  Specifically, accelerators like graphics processing units (GPUS) account for most of
the computing power on modern platforms.  Leadership supercomputers can compute
from 107 floating point operations per second (FLOPS) for pre-exascale systems, to 10™® FLOPS
(=1EFLOPS or exa-FLOPS) for exascale systems. According to Top soo list (June 2023) the top
three supercomputers are: Frontier (Oak Ridge National Laboratory, usa) with r.19 EFLOPS,
Supercomputer Fugaku (RIKEN Center for Computational Science, Japan) with 0.44 EFLoPs, and
rumI (Euro HPC/Csc, Finland) with .31 EFLoPs. Here we use LumI (Fig. 1), the fastest European
system, to demonstrate some of its capabilities to advance computational physics.

While this computational potential is enormous, using these HPC capabilities requires a highly-
tuned software stack capable of dealing with massive parallel and heterogeneous architectures, and
core scientific libraries are constantly being adjusted to maximize performance on new hardware.
These include Fast Fourier Transforms, linear algebra routines, libraries for matrix decomposition,
random number generators, and solvers for algebraic and differential equations. These core
libraries form the building blocks for the efficient domain-specific scientific packages that enable
us to make physics breakthroughs in the domain of quantum mechanics.

Simulating quantum dynamics is one of the hardest challenges for classical computers due to
the exponentially large size of a many-body wavefunction. Even storing the wavefunction for a
modest nucleus like tin with ~ 100 nucleons would require more bytes than there are atoms
in the visible universe. The techniques of density functional theory (DFT) (4-6) and its time-
dependent extension time-dependent density functional theory (TDDFT) (7, 8) have revolutionized
our ability to study quantum dynamics by replacing the need to store the many-body wavefunction
with an energy functional of a handful of densities. Despite needing to approximate the form of
the functional, TDDFT has become one of the most successful methods for simulating dynamics
in quantum systems. Its popularity is due to both its accuracy and
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versatility, providing access to static properties at zero and finite temper-
atures (6, 9), and real-time dynamics (8) for highly complex problems
consisting of thousands of particles. For these reasons, DFT is presently
the tool of choice for solid-state physics and quantum chemistry (10-12),
and is used extensively in nuclear physics and astrophysics (13-15).

The discovery of high-temperature superconductivity (16) encour-
aged extensions of DFT to superconducting systems (17, 18). A local
formulation was soon developed (19-21) called the superfluid local den-
sity approximation (SLDA), which has now been verified and validated
against both quantum Monte Carlo (QMc) calculations and experi-
ments at the few-percent level for a wide range of systems (21-23). These
extensions have brought about new applications for DFT: designing
superconductors (24), simulating nuclear reactions (23, 26), and bench-
marking experiments with ultracold Fermi gases (27-34). Including
superfluid correlations, however, comes with a cost that requires super-
computing resources.

To properly account for the Pauli exclusion principle, the sLpa
variant of DFT is an orbital-based theory in the spirit of Kohn and
Sham (5). When applied to a normal state, this requires one orbital
per particle. Thus, to describe N particles on a spatial grid r requires
storing Np, functions. Extending this to superfluids requires at least
twice as many functions, which we call quasiparticle wavefunctions
(qpwt's) @u(r,t) = [un(r,t),va(r, t)]T, since we must represent both
particles and holes. (Including both Hartree and Fock terms in nuclei
requires four times as many functions (see e.g. (35)).) The main cost
increase, however, is that superfluids allow fractional occupation of the
orbitals, and to obtain convergence, one needs significantly more qpwf's
than there are particles in the system. As we shall estimate below, if we
represent our system on a three-dimensional spatial grid containing N8
points, then we need on the order of Ngyur ~ 0.5N? qpwf's leading to
a memory cost of & 0.5N° complex numbers per state. For a grid with
N = 100 points in each direction, a single state thus requires ~ 15 TB.

We consider the simplest type of fermionic superfluid comprising
equal populations of two species. (Think spin-up and spin-down, but
in most cold-atom experiments these are different hyperfine states.) In
these systems, the attractive interaction between these two states can
be tuned at will using magnetic fields and broad Feshbach resonances
to realize fermionic superfluids throughout what is called the Bardeen
Cooper Schrieffer (Bcs)-Bose-Einstein condensate (BEC) crossover (36).
For weak inter-particle attractions, the superfluid has a Bcs-like struc-
ture with large Cooper pairs providing long-range order and the asso-
ciated superfluid flow while slightly modifying the dominant structure
of the Fermi sea. As one increases the interaction strength, the size of
these Cooper pairs gets smaller and smaller until they are best described
as tightly bound dimers consisting of fermions of each type. In this BEC
limit, the dimers behave as bosons, and the system is well described as a
BEC with the Gross-Pitaevskii equation (GPE) Eq. (3) where mp = 2m
is now the mass of the dimer, and the dimer density ng = 1/2 is half
the total fermion density n. In the middle is the so-called unitary Fermi
gas (UFG) where the dimers are on the threshold of being bound in
the vacuum. Interestingly, there is no phase-transition separating the
strongly and weakly interacting systems, hence the term crossover.

When these systems are sufficiently dilute, all the parameters of the
short-range interaction can be become irrelevant except for the s-wave
scattering length a which describes the size of the bound dimers on the
BEC side when @ > 0. At unitarity 4 — oo, and it becomes negative
on the BCs side where the dimers are unbound. It is thus convenient to
parameterize the equation of state in terms of the dimensionless param-
eter kpa, where kp = (37121)1/3 is the so-called Fermi momentum. For
reference, the total density n, Fermi energy ep(n), and energy density
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Fig. 1. LUMI, EURO HPC's pre-exascale system with AMD mi250x GPU-accelerated nodes. Each
GPU node consists of the four AMD mi250x GPUS, each of which has two graphics compute dies
(GCDS) being individual Heterogeneous-Compute Interface for Portability (HIP)-programmable
devices. Photo copyright Fade Creative.
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Atzero temperature (T = 0), for example, the equation of state through-
out the crossover can be expressed as

Erpa(n) = G(kpa)rg(n), [2]

The dimensionless function ¢(kra) characterizes the strength of the
interactions, and a major challenge for both theory and experiment has
been to determine the universal value at unitarity known as the Bertsch
parameter &(co) & 0.37 (28), which combines both experiment (37, 38)
and QMc (27, 39) results. (Note: computing the value of §(co) was a
race between classical and analog quantum computing using cold atoms.
Establishing the value was one of the first demonstrated successes of the
quantum approach.) Dynamics in these systems has direct application
to ultra-cold atom experiments, but also indirectly to nuclear physics. In
particular, the neutron-neutron scattering length is accidentally large,
making the UFG an excellent proxy for the dilute neutron matter ex-
pected to occur in the crust of neutron stars (40—42).

Simulating quantum turbulence is one of the most complex problem
in quantum mechanics. The phenomenon has been studied intensively
using both isotopes of superfluid helium — bosonic “He, and fermionic
*He (see (43, 44) for reviews) — and more recently in ultracold atomic
gases (see (45—50) and (s1, 52) for reviews). The cold-atom platform
has several advantages over liquid helium (23), including access to com-
pressible and hypersonic regimes, superfluid mixtures for studying en-
trainment (s3), and accurate microscopic theories in the form of the
time-dependent superfluid local density approximation (TpsLpa) for
fermions, and the GPE for bosons (see e.g. (54)). We demonstrate here
that HpC techniques and time-dependent DFT frameworks have reached
a level of maturity that allows for microscopic simulations of complex
phenomena in systems consisting of tens of thousands of superfluid
fermions.

Results

Here we consider quantum turbulence in an ultra-cold atomic gas of
fermions for two cases within BEC-BCS crossover:

1. The strongly coupled UFG with kra — co. We compare this to
a bosonic (GPE) theory for dimers tuned to the UFG equation of
state;

2. A weakly coupled superfluid in the Bcs regime with kpa = —1.8.
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Through this comparison, we demonstrate the importance of energy
dissipation from heating, and its effect on the structure of quantum
vortex cores in fermionic systems.

The quantum simulations we perform require two stages of compu-
tation: matrix diagonalization to obtain the initial state for evolution,
and solving system of millions of coupled partial differential equations
(PDES) to perform the real-time evolution. Here, we will describe them
in the context of an HPC implementation on the LUMI supercomputer,
and benchmark their efficiency on this platform. Before describing
the technical aspects of the computation, we introduce a theoretical
framework to show the source of the challenges we face.

Theoretical Framework: TDDFT for Bosons. We start with the simpler
problem of describing a bosonic superfluid gas. If the gas is sufficiently
dilute, then the superfluid state can be well described as a BEC where all
the bosons (dimers in our case) occupy the same condensate wavefunc-
tion §p(r,t) normalized to the total boson number density np(r, t) =
|g (7, )|2. This evolves under a non-linear Schrédinger equation called
the GPE (see (53, 56)),

. _ 1522
ihel al/’Ba(:, t) _ ( thz + gl (nB (1“, t))) IPB (1“, t), [3]

IAIB (rt)

where mp is the boson mass, # is a small phase factor to model dis-
sipation that we tune to better match the natural dissipation in the
fermionic simulations (57), and interactions enter through the derivative
of the equation of state £(np) that characterizes the energy density
as a function of the boson density ng. This derivative is an effective
mean-field chemical potential 4 = &’(np) which repels or attracts
bosons depending on the sign and strength of the interaction. One can
include an external potential Vex (7, t) in the single-particle Hamiltonian
hig(r, t), but we do not include one in our simulations here. Although
expressed as a wavefunction, this is equivalent to an orbital-free DFT (58)
of the Hohenberg-Kohn type (4), and Eq. (3) follows from a principle
of stationary action for a generalized Schrédinger field i with the right-
hand-side of Eq. (3) minimizing the energy functional

Fanlpol = [ (F780O0 L gpirnp) e 1

For modest system sizes, Eq. (3) can be efficiently solved on small
computers, with HPC resources being required only for large simulation
volumes (see e.g. (59)). These superfluids demonstrate a wide array of
interesting properties, including dissipationless flow past obstacles (with
n = 0), and quantized vortices that mediate the energy cascades associ-
ated with quantum turbulence in spite of the lack of dissipation (44, 54).

Although the theory for fermions is much more complicated as we
shall describe below, there is a limit which can be well described by a
modified version of the GPE. This is the so-called BEC limit where two
fermionic species have sufficiently strong attraction that they form a
gas of tightly bound dimers. These dimers are bosonic in nature, and
can be described by a modified GPE like Eq. (3) with mp = 2m, total
density n = 2np = 2|zp\2 (i.e. ¢ describes the dimers), total currents
j = 2Im(ypV¢*), and a properly tuned equation of state £. (See (58)
for details: our modified GPE with €(n) = &, ;- (1) is what they call
the effective Thomas-Fermi ETF model.) To date, the majority of results
for quantum turbulence in ultra-cold atomic gases have been simulated
using the GPE (54).

TDDFT for Fermions. Unlike bosons,
fermions cannot occupy the same state due to the Pauli exclusion
principle, and a density functional of the Hohenberg-Kohn type

Theoretical Framework:
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would be highly non-local. Instead, one uses an orbital DFT of
the Kohn-Sham type (s) where the functional is expressed in
terms of a Slater determinant of Ny,
on(r,t) = [un(r,t),vn(r,t)]T, which, as described above, must
include at least two components to describe particle-hole excitations in

aBCs type superfluid. Each of these states evolves under a single-particle
Hamiltonian of the form:

ihi un(r,t)\ hi(r, t) A(r, t) up(r, t) 5]
at \ou(r,t) ) ~ \&*,ty =i, ) \owtrt))” B
N —

H(r,t) Pu(rt)

¢ single-particle orbitals

where fi(r, t) has a form similar to fig (, t) above with second-derivatives
in space, and A(r, t) is a complex-valued function describing the super-
fluid correlations. Together they form the quasiparticle Hamiltonian
H(r,t). The function A plays the role of the order parameter, in analogy
to the ¢p function in the GPE. Unlike in the GPE, however, it no longer
carries information about the density of the system. The key to a local
DFT like the sLDA is that fi(r, t) and A(r, t) depend only on a handful of
local densities: the particle density n(r, t), the kinetic density 7(r, ), the
current density j(r, t), and the anomalous density v(r, t), each of which
is computed from the orbitals { ¢y (r, )} via a reduction.

The precise form of equations of motion Eq. (5) will be discussed in
the Methods and Materials section below, but follows from minimizing
an energy functional of the form

Esuos [{9n(r10}] = [ Ema (1(r,0), 7(r,8), (5,0, 1(1,1)) . (6]

A key property of this system of PDEs Eq. (s) is that the quasiparticle
Hamiltonian # is the same for all quasiparticle wavefunctions. This
means that at each step of evolution, one needs to communicate only
the handful of local densities ~s0 MB rather than the complete state.
Furthermore, the single-particle Hamiltonian is unitary, ensuring that
the states remain orthonormal throughout the evolution. Thus, each
node can independently perform the evolution of its quasiparticle wave-
functions using local hardware acceleration to compute the derivatives,
with minimal communication that requires only an efficient message-
passing interface (MP1) reduction. This is how we solve the second
challenge, but to initialize this evolution, we must first obtain a good
initial state.

This requires an orthonormal set of quasiparticle wavefunctions
{¢u(r)} which solve the self-consistent set of equations minimizing

Esoa[{@n}]:

<ﬁ(r) Alr) ) (u”(r)) _F (un(r)> o]
a(r) =) \ea(n)) ~ 7" \ouln) ) 7
While the matrix on the left-hand-side can be described efficiently in
terms of the densities, the components are formally functions of the or-
bitals i1, @2, ... ) and A(@q, @2, . . . ). This Hermitian eigenvalue prob-
lem must be solved self-consistently, which we do iteratively through a
series of diagonalizations. In the numerical implementation, the func-
tions 1, (r) and v, (r) are represented as vectors whose length depends
strongly on the geometry and size of the problem. While some initial
states can be computed efficiently — e.g. systems with high degrees of
symmetry such as homogeneous matter — the maximum problem size is
generally limited by the technical capabilities of the eigensolver libraries
on the chosen HPC systems.

Numerical setup and implementation. To study turbulence, we sim-

ulate a periodic volume in space, and use a spectral representation for
the quasiparticle wavefunctions on an equally-spaced Ny x Ny x N
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Fig. 2. Cost (time-to-solution X node-count) of the parallel evolution of all quasiparticle wave-
functions for a unit time interval (expressed in dimensionless units), which corresponds to 286
integration time steps, as measured on the LUMI system. The number of nodes was adjusted
to fit the problem in the memory available on the nodes, and ranges from 32 in the smallest
case to 800 for the largest. The dashed line shows the expected ideal cost scaling.

Cartesian grid. In this basis, each quasiparticle wavefunction ¢, (r) is
represented as a complex vector with 2Ny NyN; components.

To put the size of our problem in perspective, we focus on a cubic
box with N = Ny, = 100 grid points in each direction. We define
our length scale in terms of the grid-spacing Ax = Ay = Az = 1so
that V.= L3 = N3andsett = m = 1 so that momenta p = hk
is equivalent to the wave-vector. To compute the kinetic energy in i,

we use the fast Fourier transform (rFT) ¢(k) = J-'(q)(r)) where the

momentak = 27n/N forn = {—N/2,...,N/2 — 1} increase in steps
of Ak =2m/N:

19 =7 (S F0n), 8

This replaces a matrix multiplication with two FFTs and a single inter-
mediate vector multiplication by k2 /2 which is diagonal in momentum
space. The remaining calculations are local in position space, simply
multiplying ¢, by various functions of the densities.

These operations can be computed independently and locally on
the computation nodes, each of which stores a small fraction of the
total set of quasiparticle wavefunctions ¢,. The need for HPC comes
from the large number of these required to adequately represent the
problem. To estimate this, note that, in our units, the maximum mo-
mentum represented is kmax = 77, hence the maximum kinetic energy
represented is Emax = k%,ac/2 = 712 /2. This provides a natural cutoff
scale Ec < Emax and we must keep those quasiparticles with energy
Ey < E.. Forlarge E;, the energy is dominated by the kinetic energy, and
we can estimate the number of such states by considering the volume
37k3,ax of the sphere E < E. in momentum space in terms of the
volume occupied by each quantum state (Ak)3:

k3max

N %71' 7'(3
fFR
qpw! (27'(/N)3
N——

(k)3

~ 0.5N°. [9]

For each state we have two PDEs (c.f. Eq. (5)). This demonstrates the cost
of explicitly including the Pauli principle: instead of solving one PDE
as for bosons, we need to solve many PDEs. For the case we consider,
N = 100, we will be solving in parallel the corresponding million of
PDES, all of them coupled to each other!
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Fig. 3. Strong scaling of the ELPA 1-stage solver. Shown is the time-to-solution of the ELPA
1-stage solver for real, double-precision computations in a strong-scaling setup for different
matrix sizes. The solid lines show the results on LUMI with 4 AMD MI250X GPUS per node.
The dashed lines show the results obtained on the RAVEN HPC system of the Max Planck
Computing and Data Facility (MPCDF), with 4 NVIDIA A100 GPUS per node.

Performance of the Time Evolution Algorithm. The time integra-
tion is done with s™-order multistep Adams-Bashforth-Moulton (aBM)
predictor-corrector method (60). The method requires the evaluation
of i and A twice per time step (predictor and corrector). The cost per
time step thus scales as N3 x N°®log N where the first factor accounts
for the number of evolved states and the second one for the complexity
of the FFT that we use to compute the kinetic term. (We use the hiprrT
library hipfft.readthedocs.io.) The stability of the method has been
studied in (61, 62).

The open-source w-sLpA Toolkit (63) provides a parallel implemen-
tation of this time integrator, and is designed to simulate fermionic
superfluids with the TDSLDA on modern GPU-accelerated systems. In
Fig. 2, we demonstrate the measured cost C (defined as time-to-solution
x node-count) obtained on the LuMI system. Our parallel implementa-
tion of Eq. (5) exhibits the expected scaling up to the maximum problem
size of N = 100 corresponding to one million PDEs. The main limita-
tion is imposed by the memory requirements: the ABM method, while
very accurate, require about 10 copies of the state to operate in case of
our implementation. In our largest case (N = 100) the total memory
requirement is about 164 TB.

Performance of the Matrix Diagonalization Algorithm. Generating
the initial state is even more costly, as it requires finding a self-consistent
solution to Eq. (7) for the complete set of Nyp e wavefunctions {¢n }.
This is done iteratively via a sequence of diagonalizations of an M x M
Hermitian matrix where M = 2N3. We reduce the cost of iteratively
solving Eq. (7) by using a multi-grid approach. We fix the domain size
and solve the problem on consecutively larger lattices with N = 60,
80, and 100 points in each direction, corresponding to decreasing lattice
spacings Ax = 1.67, 1.25, and 1.0, respectively. At each step, we interpo-
late the converged solution from coarser to finer latices, providing a good
initial state to accelerate the iterative algorithm. In this way, we only need
afew iterations to converge on the target N = 100 lattice. Even with this
tremendous simplification, in the final stage of iterations requires a few
dense diagonalization of two million by two million matrices.

To do this, we use the publicly available ELPA library (64), which
was designed to efficiently solve dense symmetric or Hermitian standard
or generalized eigenvalue problems (EvPs), especially with scalability
to large core and/or GPU counts in mind. The ELPA library was first
released in 2010 and has been ported and optimized for all major HPC
architectures. The ELPA library is used in most software packages for

Gabriel Wlaztowski et al.
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Fig. 4. Scaling of the ELPA 1-stage solver with matrix size. Shown is the cost for solution
of different eigenvalue problems for different matrix sizes with the ELPA 1-stage solver on
the LUMI GPU system. The different red symbols indicate the costs (see also Fig. 3) for a
fixed matrix size but different node counts. The solid blue line represents the fastest time-
to-solution (albeit with the highest costs) achieved. Note, that the blue line was obtained with
measurements on different number of GPU nodes. Further note that the blue line has been
obtained by taking the arithmetic mean of the costs of at least two experiments of a specific
matrix size and node count. The dashed black line shows a power-law fit to the costs for the
best run time. The dashed blue line represents the lowest cost (albeit with higher time-to-
solution) achieved.

electronic-structure theory” and clearly outperforms implementations
such as scaLAPACK (65). Recently, in addition to the accelerated version
for NVIDIA GPUS (66, 67), a port to the AMD MI250 GPU architecture
has been publicly released. Here we show the first results obtained with
this port for AMD GPUS.

For the standard EVP, the ELPA library provides two solvers. The first
is a 1-stage solver with three steps: i) transforming the dense matrix into
a tridiagonal form, ii) diagonalizing this tridiagonal form, and iii) trans-
forming the eigenvectors back to their original representation. Alterna-
tively, a 2-stage solver introduces two additional steps: first transforming
the dense matrix in a banded matrix, and then transforming the banded
matrix into a tridiagonal form; the subsequent back transformation of
the eigenvectors also requires two stages. For specific algorithmic details,
see (64, 68).

To initialize the target N = 100 quantum turbulence problem,
we must be able to efficiently diagonalize matrices where the size is
of orders of millions by millions. With access to the LuMI supercom-
puter, we first ensured that the new ELPA AMD GPU version works as
expected on large node counts with matrices of this size. In Fig. 3
we compare the run time of the AMD GPU version of the ELpA library
with the run time on NVIDIA A100 GPUS using the RAVEN system
www.mpcdf.mpg.de/services/supercomputing/raven of the MpcDE. We
see that in a direct node-per-node comparison, the solutions of the
eigenvalue problems on 4 MI250X GPUS are in general twice as fast as
on 4 NVIDIA A100 GPUS, which is in line with the expectations. Due to
limited resources, especially limitations in the maximum job run-time,
we could not perform a strong-scaling analysis of the eigenvalue problem
for each matrix size — especially above a linear dimension of one million.
Instead, we had to rather focus on a limited number of experiments and
run each eigenvalue solution for a specific matrix size on specific node
counts.

This set of runs is shown in Fig. 4 which shows the costs C to solve a
real double-precision dense eigenvalue problem for different matrix sizes.
We include the power-law fit of the C = MV to the data, representing
the scaling behaviour for the best time-to-solution b =~ 2.5. Since this

“See e.g. elpa.mpcdf.mpg.de/ELPA_USED.
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Table 1. Physical parameters in the simulations

Length scales [IF1: min core sep. max method
N kra Ax é 100)  Leox  L(0)
22803 e} 1.0 1.3 7.2 99 19200 gpe
26790 [=S] 1.0 13 7.2 99 19200 tdslda
108532 -1.8 1.5 2.6 145 150 15937 tdslda

N: total number of particles. § = kr/mA: BCs coherence length (typical size of the vortex
core). Ly: size of the simulation domain. a: scattering length. I = k;l = [3r2n]~1/5:
inverse of Fermi momentum. L(0): total initial length of vortices. I(0): initial mean inter-
vortex spacing. All lengths are in units of /. The scales are set such ratio /& ~ 5.5 is fixed

across the runs.

power-law exponents b is still below the theoretical value of 3 (scaling
of eigenvalue algorithms is O(x%)) limit, we have not yet reached the
complexity scaling limit for matrix size M, at least on this HPC system
(hardware, compilers, etc.).

Nevertheless, we have successfully solved dense eigenvalue problems
for real, double-precision EVPs with linear matrix sizes up to 3.2 million,
which is already substantially larger than the problem size required for
the target quantum turbulence simulations discussed below. To our
knowledge, this is the largest dense eigenvalue problem ever solved with a
direct solver. While the benchmark of the ELPA library was executed for
symmetric matrices (double precision), in the production computation,
we were working with Hermitian matrices (double complex precision).
The scaling properties in the Hermitian mode are similar, with the
complex case taking about twice as long.

Results for Quantum Turbulence. We have presented the capabilities
of leadership supercomputers like LUMI to deal with dense matrices
and solve nonlinear PDES. We now combine all these elements together
to generate large-scale simulations of turbulent dynamics in ultra-cold
Fermi gases.

We start our calculations by preparing the initial state at zero temper-
ature (T = 0) consisting of a regular lattice of imprinted vortices in all
three directions, see Fig. sa. The lattice consists of alternately arranged
vortices and anti-vortices and the resulting state has zero total angular
momentum. The generation of the initial state amounts to solving the
static problem (7) with the additional constraint imposed on the phase
0(r) of the order parameter A(r) = |A(r)] (") The phase provides a
superfluid velocity field vs(r) o V6(r) consistent with the vortex/anti-
vortex lattice with a slight long-wavelength perturbation that destabilizes
the vortex lattice leading to a turbulent tangle of vortices as seen in
subsequent frames of Fig. 5.

We study the strongly-interacting UFG (kpa = o0) with both the full
fermionic TDSLDA DFT, and a simple modified GPE-like theory Eq. (3)
for dimers (mp = 2m) tuned to the UFG equation of state (58). To mimic
the natural dissipation of the TDSLDA, we add some artificial damping
to the GPE Eq. (3), considering two values: = 0.01 and 7 = 0.08 .
The lower value was found to give reasonable qualitative agreement with
UFG simulations of rotating quantum turbulence (57), while the larger
value better matches the flow energy decay seen in the corresponding
fermionic simulation. We also study a less strongly interacting system
in the BCs regime at an experimentally accessible value of kpa = —1.8.
The number of quasiparticle states extracted from the initial state prepa-
ration was Nypwf = 582898 for the UFG and Nypur = 675460 for the
BCS regime.

Table 1 shows some of the characteristic properties of these initial

pWi

states. There are four length-scales of interest. From smallest to largest,
these are: the Fermiscale [p = k;l is set by the density and is the smallest
resolvable scale in the problem; the BCs coherence length § = kp/mA
describes the size of the cores of the quantum vortices; the mean inter-
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Fig. 5. Selected frames of the time evolution of vortex tangle in the strongly interacting UFG (kpa — o0) superfluid gas. The lines indicate position of the vortex cores, and isosurfaces are used to
visualize their sizes. For the simulation we used a periodic lattice with N3 = 1003 points. The full movie is provided in Supplementary Material.

vortex distance I describes the vortex density and is the scale at which we
initially inject energy for the turbulence; and the size of the simulation
volume Ly, which is the largest scale in the problem.

Fig. 5 shows the evolution of the UFG in our largest TDSLDA sim-
ulation on LuMI. The initial perturbed vortex lattice (Fig. sa) is un-
stable, and rapidly forms a vortex tangle (Fig. sb) by ter ~ 50. The
subsequently decay of this tangle (Figs. sc to se) transfers hydrodynamic
energy from the initial scale of the vortex lattice to other length scales.
The bending, crossing, and reconnection of vortices seen in Figs. sb to sd
are the primary mechanisms for quantum turbulence. Through these
mechanisms, hydrodynamic energy can flow from large to small scales,
resulting in the emergence of an effective viscosity (69, 70) even though
thisis a superfluid. In compressible fluids, part of this energy is converted
into sound (71, 72) and further into internal excitations, making this
cascade irreversible. There is also some weak wave turbulence (73, 74)
in the phonons (sound waves), but this is a small effect, and not visible
in these plots.

To quantify these, we introduce flow and condensation energies.
The former is just the kinetic energy associated with the flow, while the
latter estimates the energy in the condensate (Cooper pairs) which uses
a simple formula derived in the Bcs limit (33):

2 (r r 2
Eou () = / %d% Econd(t) = 2 / %n(r,t)d%.
[10]

We compare the evolution of Egy, with the total length L(t) of the
vortices in Figs. 6a and 6b. When the vortex core is small (we shall call
these right vortices) as in e.g. liquid helium, the flow energy associated
with turbulence is dominated by vortices and expected to be propor-
tional to the vortex length. Our case qualitatively differs from that of
liquid helium because we have compression modes (phonons or sound),
and the vortex core size is comparable to the inter-particle separation.
Nevertheless, we still see quite a strong correlation between these.

The evolution of the total length L(t) during the free decay is one
of the main probes to distinguish the type of turbulence (75). In an
incompressible fluid, a random tangle of tight vortices with no large-
scale structures in the velocity field is expected to develop what is called
Vinen or ultraquantum turbulence where the total vortex length decays
as L o t~1, On the other hand, if the vortices create large-scale struc-
tures — i.e. bundles of coherent vortices — then one expects the fluid to
develop eddies and dynamics that produce Kolomogorov or quasiclassical
turbulence (76, 77) with a characteristic decay of L o +73/2 In our
simulations (Fig. 6b), we see Kolomogorov-like decay in the GPE when
the vortex density is high 50 < ter < 300, but the TDSLDA never de-
velops this behaviour, suggesting a fundamental difference in the decay
mechanism between bosonic and fermionic simulations. In this regard,
the TDSLDA appears to more closely match the decay predicted by Vinen
turbulence, but we suspect this is coincidental rather than causal since,
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as we show below, there are additional dissipation mechanisms present
in this case. Note that in this work, we do a comparative study between
two methods (GPE vs TDSLDA) since we have access to data for identical
setups. However, the lack of statistics does not allow us to make state-
ments about the precise value of the decay exponent.

For compressible turbulence, one can wuse a Helmholtz
decomposition  to  split  Egoy, into  divergence-free  (in-
compressible/rotational/vortices) and curl-free (compress-
ible/irrotational/phonons) parts Efow = Evortices + Ephonons-  (See
e.g. (78).) The total vortex length L should be most strongly correlated
with the Eyomices contribution, but now vortex reconnections can
produce phonons (71, 72), further reducing Eyortices. Thus, we expect
the decrease in L(t) to be more pronounced than in Egy, (t).

To check if this expectation is seen in Fig. 6, we note that, by
coincidence, both TpsLDA simulations have lost about 98 % of their
total flow energy at fep ~ 1000, so we use this as a fiducial. (The
phenomenological dissipation 7 = 0.08 was chosen for one GPE to
match these results; the other GPE simulation with 4 = 0.01 hasa 94 %
loss in Egoy, at this time.) Here, we find that the GPE demonstrates the
expected trend for both cases, with a slightly greater drop in L. The
TDSLDA simulations, however, have a quantitatively different behaviour
with a smaller decrease in L of 94 % in the UFG, and 80 % in the BCs
regime.

This result might seem to be counterintuitive: in the BCs regime we
still have many vortices at the end, but they do not generate much flow.
We interpret this as a strong indication that another mechanism (absent
in the GPE) is responsible for reducing Eq,, in the TDSLDA. Noting
that the simple correlation L ~ Eygrrices holds only if we do not consider
corrections from the internal vortex core structure, we hypothesize that
thermalization plays a significant role. To demonstrate this, in Fig. 7 we
consider a vortex solution for the BCS case, as a function of temperature
T, which allows us to manipulate the size and structure of the vortex
core. The results are obtained by solving static Eq. (7) with the constraint
that we have a single and straight vortex line. Far from the core, the
density n(r) has the same behavior, but clearly, the density inside the
vortex core is sensitive to the temperature (Fig. 7a). The order parameter
distribution A(r) also indicates that vortices get bigger with the increase
of T (Fig. 7b). Accordingly, the velocity v(r) = j(r)/n(r), which
quantifies the flow energy, is suppressed by the thermal effects (Fig. 7¢
and inset Fig. 7d). This shows that the structure of the vortex core,
which is sensitive to T, can affect Eqy,. Specifically, in the inset Fig. 7d,
we see that finite temperature significantly reduces both the flow and
condensation energy.

This suggests an explanation for the breakdown of the correlation
between Egoy, () and L(t): the TDSLDA admits an additional dissipa-
tion mechanism whereby flow energy is “thermalized”, altering the flow
structure of the vortices. To explicitly demonstrate that the vortices in
the time-dependent runs get hotter, we added to Fig. 7 (thin gray lines)
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Fig. 6. Time evolution of: (a) the flow energy Eqqyw, (b) total vortex length L, and (c) the
condensation energy E.nq- All quantities are normalized with respect to their initial values.
The solid lines are from the TDSLDA calculations on LUMI for the UFG (dark blue) and BCS
(light orange) regimes. The dashed-dotted lines correspond to the simplified GPE model with
two different phenomenological dissipation coefficients 7 € {0.01,0.08}. In panel (b), the
thin gray lines show the expected slope for L(t) expected for Vinen (dotted) or Kolmogorov
(dashed-dotted) turbulence. The arrows indicate where the analyzed quantity drops by 94 %
and 98 %.

cross-sections through five randomly selected vortices from the Bcs runs
at ter = 1000. As expected for a non-equilibrium state, the profiles
of individual vortices have some variability, but all characteristics — the
density profile, the order parameter profile, and the velocity field — are
consistent with the static solutions obtained for a temperature T/ T, ~
0.6.

The temperature dependence of the vortex-core density #1core allows
us to use fermionic vortices as a local thermometer. Using static SLDA
simulations of a single vortex, we calibrate #1¢ore (T), (the curve is pro-
vided in the Supplementary Material) and then use the density along
the vortex lines to demonstrate the thermal evolution of the turbulence
in the TDSLDA simulations. These results are presented in Fig. 8. We
observe that the effective temperature of vortex lines is higher in regions
of higher curvature, especially in regions where reconnections occur.
This is reminiscent to the heating of wire which is sharply bent back
and forth. Heating of the vortices represents an additional dissipative
mechanism missing in GPE-like models.

Heating depletes the condensate, which eventually vanishes at the
critical temperature T, at the superfluid to normal phase transition. This
heating is indicated by the loss of condensation energy as seen in Fig. 6¢.
In the UFG, the condensate is depleted only at the early stages tep <
200, after which it remains relatively constant. In contrast, in the BCs
regime, the condensate continues to gradually deplete. In the case of the
BCS vortex solutions, the depletion of the condensate by about 20 % is
for T ~ 0.6T; (Fig. 7d). This value approximately corresponds to the
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Fig. 7. Radial dependence of the: (a) density n1(r), (b) order parameter A(r), and (c) velocity
v(r) = j(r)/n(r) for a single straight vortex line at various temperatures in the BCS regime
(kpa = —1.8). The thin gray lines show the corresponding profiles of five randomly selected
vortices from the full TDSLDA taken at time ter = 1000. The temperature is normalized by
the critical temperature of superfluid-normal phase transition T, within the static model: i.e.
for T = T. one would have A(r) = 0. In the lower panel (c) we include the asymptotic
form v(r) = 1/2r as a thin dash-dotted line. Inset (d): temperature dependence of Egqyw
and E.nq energies for a single vortex. Together, these suggest an effective temperature of
T ~ 0.6T; at time tep = 1000.

estimated effective temperature of vortices from the cross-sections. It
is another signature pointing to the conversion of the flow energy into
internal excitations, which effectively heat the system.

Discussion

In the UFG, the turbulent dynamics resolved by the TpsLDA demon-
strate qualitative differences when compared with the simplified ap-
proach based on a modified GPE. For instance, the GPE does not properly
account for physics in the cores of vortices: Where fermionic vortices
have a finite density in the core, vortices in the GPE are empty, causing
them to move at different speeds. This can be somewhat compensated
for by averaging procedures (s8), but feeding this back into the evolution
has proved tricky (see (79) for one approach). It is also insufficient to
model the dissipative effects with a single phenomenological parameter
1. Here we have adjusted 7 ~ 0.08 to reasonably match the decay pattern
for Eqqy seen in the TDSLDA, but this differs from the value 7 = 0.01
that best fits rotating turbulence (s57). Nevertheless, the GPE provides a
fast way of gaining some insight into the qualitative effects of superfluid
dynamics.

The TDSLDA is a parameter-free, self-consistent microscopic theory
that naturally captures these effects. Thus, although more costly compu-
tationally, it provides deeper insight into superfluids dynamics than any
other currently available techniques. Here we have demonstrated that
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Fig. 8. Vortex lines with the color indicating their local effective temperature. The temperature
is extracted from the relation between density inside the vortex and the system’s temperature
for static solutions, see Fig 7(a). This snapshot is for UFG simulation at ter = 300, where
the reconnection event occurs and represents the same snapshot as Fig. 5d. The inset
shows the histogram of temperatures along the vortex lines. The full movie is provided in
the Supplementary Material. The highest temperatures are generally correlated with events
like vortex crossings and reconnections at sites of high curvature, but this energy dissipates,
resulting in a uniform effective temperature at later stages of evolution.

the TDSLDA breaks the natural correlation between the total flow energy
Efiow and the total vortex length L. By studying the structure of vortex
cores at various temperatures T, we provide evidence that this is due to
additional energy dissipation and thermalization mechanisms. Directly
comparing the TDSLDA with a GPE-like theory, we can distinguish this
mechanism from dissipation due to vortex bending, crossing, and Kelvin
modes, for example, which exist in both theories. The importance of the
fermionic nature of the superfluid is further supported by the result that
deviations are stronger in the BCs regime than in the BEC regime where
GPE-like theories should be accurate.

Some caveats are in order, and results at finite T in the sSLDA must
be treated with some caution. In principle, the functional (precisely
functions A, B, and C, in Eq. (15)) should now depend on the dimen-
sionless parameter kg T/ep (1), but the form of these has not yet been fit
due to lack of reliable benchmarks. Furthermore, it is an open question
about how thermalization in strictly T = 0 dynamical simulations
(Fig. 6) should be related to the explicit thermal distribution fr(E) used
in static calculations (Fig. 7). The agreement between these strongly
suggests that thermalization is the correct explanation for the break in
correlation between Eg gy, () and L(t), but additional analysis is needed
to conclusively rule out geometric effects, to identify the importance of
vortices to the thermalization process (80), etc.

This type of progress requires the development of all exascale HPC
technology components: computing hardware, optimized scientific li-
braries for FFT (hipFrT) and matrix diagonalization (ELPA), and ad-
vanced high-level scientific application software (the TDSLDA via the
w-SLDA toolkit). We have demonstrated that, with current technolo-
gies, we can diagonalize matrices of order a million by a million, and
use TDDFT to model fermionic quantum dynamics with 10#-105 parti-
cles. This is rapidly approaching the scale of typical ultra-cold atom
experiments (105-10° particles), allowing us to directly benchmark the
TDSLDA against experiments. The new generation of DFT packages
optimized for HPC are extremely flexible, enabling researchers to access
not only superfluidity as studied here, but many other fields, including
superconductivity, nuclear physics (15, 81), nuclear astrophysics, and new
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opportunities for emerging fields like atomtronics and other quantum
technologies (82). Simulations like these provide access to complex
but important microscopic physical processes, and thus provide bench-
marks to tune more economical phenomenological models like (58, 79),
which may ultimately be scaled up to address problems of importance
to fundamental physics in nuclear astrophysics. (E.g., the UFG we study
here is a good model for the neutron superfluid in the crust of neutron
stars, which is likely responsible for pulsar glitches.)

To maximize the scientific impact of these publicly-funded resources,
we have open-sourced our codes (63), and release the raw data generated
by these simulations (83) so that others can reproduce our analysis,
and use these results for further benchmarking other models, thereby
advancing the pace of science. We hope that other groups will follow
our example, making their codes and data available for the community.
This step is needed in order to maximize the amount of knowledge
extracted from data obtained by expensive HPCS systems, and share
research opportunities with groups that do not have direct access to
them.

Materials and Methods

LUMI specification. LUMI is one of the three Euro HPC pre-exascale super-
computers, along with Leonardo and Marenostrum 5. It is the only
major European HPC system equipped with AMD GPU technology. The
numerical results described in this work were collected from the LuMI
pilot access phase. The LUMI system has a peak performance of nearly
500 PFLOPS, most of which is delivered by 2560 GPuU nodes. Each of
these nodes includes a single AMD epyc CPU with 64 cores and four AMD
MI250X GPUS. The AMD MI250X has a peak performance of 53 TFLOPS in
double-precision arithmetic. The AMD MI250X GPU package consists of
two independent devices, called graphics compute dies (GcDs). Each
of these GcDs has 110 compute units, and 64 GB of high-bandwidth
memory (HBM2) which can be accessed at a peak rate of 1.6 TB/s. The
two GCDS in the MI250x package are connected by an in-package
communication interface with a peak bidirectional bandwidth of up to
400 GB/s. Devices on different packages are linked with either a single
or double communication link with a peak bidirectional bandwidth
of 100 GB/s and 200 GB/s, respectively. Each GPu package is directly
connected to the Slingshot network providing up to 2x50 GB/s peak
bandwidth. The AMD MI250 GPU family is based on the 2"d genera-
tion AMD CDNA ("Compute DNA") architecture which uses AMD ROCM
(Radeon Open Compute) development stack. Rocm is an open-source
collection of drivers, development tools and application programming
interfaces (apis) for GPU programming from the low-level kernel to
end-user libraries. Device kernels are programmable with the HIP GPU
programming language extension. The HIP extension also provides
a runtime platform, numerical libraries (including the hipfFFT), and
porting tools.

Density functional theory for superfluid fermions. We consider here a system
with equal densities of two types of fermions interacting with short-
range interactions. In second-quantized notation,

v at(r)p?a(r) + 51 () p?b(r)
H= /dsr 2m

+ /d%df’r’ V(lr =+ Daa(ny (), ]

where 7, = ata and a, = b'h are the number operators for the two
species, expressed in terms of annihilation 4/b and creation at/b" op-
erators that satisfy anti-commmutation relations. We consider the limit
where V(r) is short-ranged, so that the interaction can be completely
described by a single parameter, the s-wave scattering length a.

In general, the state of such a system with N particles must be
described by a many-body wavefunction ¢(ry,,...,ry) Which requires
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an exponential amount of information, but DFT allows us to reduce this
description to an effective theory for the total density n(r) = (,(r)) +
(fp(r)) or states which can be expressed as a Slater determinant -
an anti-symmetrized product of single-particle states. Treated as
a variational problem of finding the best single-Slater-determinant
state (with some care required to express the zero-range limit), one
derives a Bcs-like ansatz in what is commonly referred to as Hartee-
Fock-Bogoliubov (HFB) theory or Bogoliubov-de Gennes (BdG) theory
for superconductivity. (See e.g. (55, 56,84).) These theories qualitatively
capture properties of the system Eqg. (11), but quantitatively fail in
regions of interest like the UFG. The SLDA has a similar mathematical
form, but is constructed from a different philosophy - that of density
functional theory (DFT).
The TDDFT equations follow from a condition of stationary action

65 =0, s:/f1 <<Q(t)
to

where |Q(t)) is quasiparticle vacuum at time t and E(t) is the total
energy. The key to all DFT approaches is the existence theorem due
to Hohenberg and Kohn (4), with extension to the time-dependent
cases by Runge and Gross (7), that for any given system, E(t) can be
expressed as

ih% 'Q(t)> - E(t)) ar, [2]

E() = Eine[n(r, )] +/ Vext (1, )n(r, ) dr [l

where Ej[n] is a universal functional and Vex (r, t) is the external po-
tential (which we set to zero here). Unfortunately, no prescription for
finding Ejnt[n] is known, and it is likely extremely complicated and non-
local, even for non-interacting fermions. Instead, Kohn and Sham (5)
derived an equivalent but alternate formulation in terms of an energy
functional of a Slater determinant |2(t)) of single-particle orbitals that
allows for an exact local formulation for non-interacting fermions. By
including both particles and holes, and with an appropriate regulariza-
tion procedure, this was generalized for superfluids (19-21, 85) in a form
called the sLDA that we now describe. Unlike the BdG equations, we
can now tune the parameters of the theory to match experiment and
ab-initio QMc calculations. We lose any notion of a variational bound,
but obtain instead a theory accurate to the few-percent level for a wide
range of systems (21-23).

The energy function for the sLDA can be expressed as an integral
of four local “densities” — each of which is a function of the orbitals in
the Slater-determinant state |Q(t)):

E(f) = /d3r5[n(r,t),r<r, £),j(r 1), vz, ). [4]

At T = 0, this system has only two length-scales: the inverse Fermi mo-
mentum k;l and the s-wave scattering length a. The SLDA functional
is thus constrained by dimensional arguments (see Eq. (1)) to have the
following form (in units where h = m = kg = 1):

C(kpa)
YE

T 3 2
€ = A(kra) 5 + B(kra) gner + v+ (1= Akpa)] £, [1s]

where A, B, and C are dimensionless universal functions. The first term
defines the kinetic energy, the second term (missing in BAG theory)
describes the Hartree energy, the third term accounts for the energy
gain due to pairing correlations, and the last term is required to restore
Galilean covariance.

By appropriately choosing the universal functions, one can de-
scribe the entire BEC-BCS crossover, including the weakly-interaction
BCS limit kra — 07, and the UFG |kra| — . The latter is especially simple
because A, B, and C, are just numbers. Precisely, the functions are
constructed in such way as to ensure correct reproductions of selected
properties of uniform Fermi gas at a given value of the interactions pa-
rameter kra. These properties are: equations of state ¢(kpa) = £/Epg(n),
strength of the pairing correlations A(kra)/er(n), and the quasiparticle
effective mass m* (kpa) = m/ A(kpa). All of these quantities are accessible
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from QMc calculations. For more details related to the construction
of the functional, see (19-23, 27, 35, 85) and the source code for the
reference implementation. In the calculations presented here, we
have assumed that the effective mass m* = m, so A(kpa) = 1. This is
a physically reasonable approximation that simplifies the functional
slightly since the last term of Eq. (15) vanishes.

The local densities entering the functional are:

n(r,t) = (Q)|a* (ra(r) + b (b(r)[QA(1)), [total]
(1, £) = (Q(1)| Vit (r) - Va(r) + VB (r) - VB(r)|Q(1)), [kinetic]
(1) = Im{Q(1)[a* (r) - Va(r) + B (r) - VB Q1)) [current]
v(r,1) = (Db Q(L)). [anomalous]

After varying the functional, we will obtain a matrix equation Eq. (5)
(derived below) with eigenvalues E, and two-component eigenstates
@u(r,t) = [un(r,1),04(r,1)]T. In terms of these, the densities are:

n(rt) =2 ¥ (joul? fr(=En) +lunl fr(En)). [16a]
0<En<Ec

t(rt)=2Y (|an\2fT(—E,,) +\Vu,,\2fT(En)), [16b]
0<En<Ec

i) =2 ¥ (o0 V03 fr(~En) — (Vi) fr(En) ) [16c]
0<En<Ec

vint) = Y wnoh(fr(=En) — fr(En)), [16d]
0<Ep<Ec

where we have suppressed the space-time arguments on the compo-
nents u, and v, to save space, and we have introduced the thermal
distribution function (Fermi distribution)

1

1+exp(E/T)’ [r7]

fr(E)=
which allows us to approximate finite temperatures T. We used the
finite-temperature variant only for understanding the structure of the
vortex core as presented in Fig. 7, the time-dependent runs were
executed at T =0.

Note that all states up to a specified energy cutoff E, = #%k2/2m
contribute to the densities: This is the main difference between the
DFT for superfluid systems and the original formulation of Kohn and
Sham which only keeps states up to the Fermi surface. For superfluids,
the single-particle state |Q(t)) has a coherent phase and hence does
not have a well-defined particle number. Instead, the BCs particle-hole
correlations (Cooper pairs) allow fractional occupation of states with
larger energy. The cutoff E. is essential for a local formulation with
short-range interactions because the kinetic 7(E.) and anomalous v(E;)
densities are linearly divergent in such a state

While both 7 and v diverge linearly « k., the combination #%z/2m —
Atvis finite where A = g.v is the finite pairing gap. To improve conver-
gence (19), we choose a scale kg ~ kr and use

_om ke ko ke +ko
e {1 2k ™k =k

so that the functional is specified by the density dependence of the
finite combination A/g. + A.. This finite quantity is proportional to the
inverse scattering length 1/a in the standard variational formulation
of BAG theory, but has additional dependence on kra in the SLDA. The
regularization scheme is constructed to assure independence of the
observables with respect to the energy cutoff E. (assuming it is large
enough to encapsulate meaningful states) when considering static
problems. In the context of time-dependent problems, another factor
needs to be considered: the total energy must be conserved. Formally,
the TDSLDA equations (5) are conservative only in E. — oo limit (86). For
this reason, in the computation, we use the cutoff scale E, = k2,,/2
defined through the maximum value of momentum kmax = 7 resolved
by our spatial grid. In our simulations, the relative change in of the
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total energy |E(t) — E(0)| /E(0) does not exceed a fraction of a percent.
See (1923, 27, 35, 85) and the source code for further details.

The equations of motion that emerge from the stationarity con-
dition Eq. (12) have the forms Egs. (5) and (7) discussed in the results
above. The single particle Hamiltonian i and pairing potential A are
defined through functional derivatives of the energy density

. SE SE i (SE SE
h77VEV+%7§(5—’.V+V§—’,>7% [18a]
SE c

A= =

v L]

8c

They depend on densities, which in turn depend on the quasiparticle
orbitals [u,(r), v, (r)]T. The single particle Hamiltonian frincludes a shift
by the value of the chemical potential u. This controls the particle
number in the static solution for the initial state Eq. (7). It is formally
irrelevant for the time-evolution Eq. (5), but helps improve numerical
convergence by minimizing the evolution of the global phase. The reg-
ularized coupling function g, defines the order parameter A, ensuring
it remains finite.

Initial state preparation and vortex lines detection. TO generate the quantum
turbulence, we start with a regular alternating array of interleaved
vortices and anti-vortices in all three directions. (See Fig. 5a.) Using
the Biot-Savart law, including image vortices from the periodic box,
we obtain the phase profile 6, (r) for this periodic array with a superfluid
velocity field vs(r) « V6, (r) consistent with the vortex/anti-vortex lattice.
On this periodic phase profile, we add a few small low-frequency
Fourier components 6(r) = 6y(r) + ag ):ﬁ’go cucos(ky - 1), where N, is the
number of vortices in each direction. The coefficients and frequencies
arec, = (-1)"/(2n+1)%, and ki, = (2n +1)(2n)/Li .. The magnitude of
the perturbation gy is adjusted so that the additional large-scale flow
increases Egq, by 5% compared with the vortex lattice (as computed
within the GPE). This phase profile is then held fixed in A(r) = |A(r)| ¥,
and the iterative solution for the magnitude of the gap|4|, density, etc.
is found using Eq. (7) as described above, which requires the improved
ELPA diagonalization routines.

To compute the total length of L, we need first to identify the
position of vortices from numerical data. For this, we search in A(r)
fields for points around which its phase winds. This also implies that,
at this point, the order parameter vanishes. We interpolate grid data
using discrete variable representation (DVR) to identify such points
with subgrid resolution (87). To connect points into lines we use
pseudovorticity w(r) = V x j(r), which should point along the line. A
detailed description of the algorithm is given in (57).

Supplementary Materials

Supplementary material is available at PNAS Nexus online.
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Supplementary Material for:
Fermionic Quantum Turbulence: Pushing the Limits of High-
Performance Computing

1. Raw Data

We provide raw data through Zenodo repository (83). The datasets
include:

1. dataset with results for BCS run (akp = —1.8) obtained with
TDSLDA method (bcs folder).

2. results of static calculations for single vortex line for
BCS run (akp = —1.8) obtained with SLDA method
(bcs_static_vortex folder).

3. dataset with results for UFG run (akp = o0) obtained with TD-
SLDA method (ufg folder).

4. dataset with results for UFG run (akp = o0) obtained with GPE
method. The results are provided for two dissipation coefficients
7 = 0.01 and 0.08 (ufg_gpe folder)

The files contain the following information:

* Time evolution of the density n(r,t), the current j(r,t) and the
order parameter A(r, t).

* Positions of extracted vortex lines from time-dependent runs.

* Reproducibility packs for TDSLDA runs. They contain the full

information about the settings and the computation process.

* Static solutions for the single vortex in the BCS regime (akp =
—1.8).

In the repository, there is README.md file that provides information
about used data formats. There are also provided example scripts/codes
demonstrating how to read data in python and C.

2. List of Movies

Below, we provide the list of accompanying movies (in mp4 format). 3D
views were created by VisIt software (88). The visualizations presented
the volume distribution of the order parameter and lines indicating the
vortex cores’ location. All movies are also accessible on YouTube.

Supplementary movie 1 Run for the unitary Fermi gas (akp = o0) by
means of TDSLDA.
YouTube: youtu.be/hOLPMPVQ4xo0

Supplementary movie 2 Run for the BCS regime (akp = —1.8) by
means of TDSLDA.
YouTube: youtu.be/OpIDOPdaPKM

Supplementary movie 3 Run for the unitary Fermi gas (akp = o0) by
means of GPE, with the dissipation coefficient 77 = 0.01.
YouTube: youtu.be/3Dux6PHD4e4

Supplementary movie 4 Run for the unitary Fermi gas (akp = o) by
means of GPE, with the dissipation coefficient 7 = 0.081.
YouTube: youtu.be/7FXI-NIAq20

Supplementary movie 5 Dynamics of vortex lines and their local effec-
tive temperatures for the unitary Fermi gas (akp = co).
YouTube: youtu.be/Wd_gEUZcbu4

Supplementary movie 6 Dynamics of vortex lines and their local ef-
fective temperatures for the BCS regime (akp = —1.8).
YouTube: youtu.be/zGSaVhT3e74
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3 THERMOMETER CALIBRATION CURVE
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Fig. 9. The relation between the vortex core density and the gas temperature for UFG (top)
and BCS (bottom) regimes. These calibration curves were used to assign the local effective
temperatures, as presented in Fig. 8.

3. Thermometer calibration curve

In Fig. 9, we provide the relation between vortex core density (normal-
ized to the bulk density) and gas temperature. These curves were used
for assign the local temperature of vortex cores, as shown in movies
Supplementary movie 5and Supplementary movie 6.
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