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Abstract—With the increasing amount of distributed energy
resources (DERs) integration, there is a significant need to model
and analyze hosting capacity (HC) for future electric distribution
grids. Hosting capacity analysis (HCA) examines the amount of
DERs that can be safely integrated into the grid and is a chal-
lenging task in full generality because there are many possible
integration of DERs in foresight. That is, there are numerous
extreme points between feasible and infeasible sets. Moreover,
HC depends on multiple factors such as (a) adoption patterns of
DERs that depend on socioeconomic behaviors and (b) how DERs
are controlled and managed. These two factors are intrinsic to
the problem space because not all integration of DERs may be
centrally planned, and could largely change our understanding
about HC. This paper addresses the research gap by capturing
the two factors (a) and (b) in HCA and by identifying a few
most insightful HC scenarios at the cost of domain knowledge.
We propose a data-driven HCA framework and introduce active
learning in HCA to effectively explore scenarios. Active learning
in HCA and characteristics of HC with respect to the two fac-
tors (a) and (b) are illustrated in a 3-bus example. Next, detailed
large-scale studies are proposed to understand the significance of
(a) and (b). Our findings suggest that HC and its interpretations
significantly change subject to the two factors (a) and (b).

Index Terms—Hosting capacity analysis, hosting capacity,
active learning, distributed energy resources.

I. INTRODUCTION

POWER grids are an essential infrastructure of modern
society and continue to expand as large-scale transitions

towards sustainable and eco-friendly systems are expected.
The trends are clear for the adoption of large-scale bat-
tery storage, plug-in electric vehicles (EVs), and renewable
energy resources. Pathways towards these massive transitions
definitely foster and accompany the creative destruction of
technologies. Distributed generation (DG) is replacing the
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traditional greenhouse-gas emitting generation in an effort to
move towards carbon-neutrality. Additionally, the transporta-
tion sector, where EVs are replacing the internal combustion
engine cars, is getting electrified. The large-scale integration
of distributed energy resources (DERs) such as DG, EVs, or
battery energy storage systems will fundamentally reshape the
future grid because DERs will gradually become integral parts
of power systems. These movements bring up many challenges
and opportunities that there are open questions about whether
today’s electric grid infrastructure is ready for large-scale
transitions [1], [2].
Along with large-scale transitions, today’s electric grid

is challenged to accommodate DERs as safely as possible
towards a low-carbon economy. Notice that today’s grid infras-
tructure was not built with DERs in mind and the electric
grid will face unstable system states more frequently as the
amount of DERs increases. It will eventually become unable to
host additional DERs after a point without upgrading today’s
grid infrastructure. Hosting capacity analysis (HCA) addresses
this line of questions by analyzing the amount of DERs
that can be safely integrated into today’s grid infrastructure.
Understanding the hosting capacity (HC) is pivotal and partic-
ularly useful to distribution system operators because it allows
them to anticipate and to prepare in advance for upcoming
transitions.
There is a generic challenge in HCA that renders it a com-

plex and interesting task. The integration of DERs involves
a number of uncertain factors such as the location, capac-
ity, and unpredictability. We underline that HCA investigates
the system performance of today’s grid infrastructure with
possible and upcoming integration of DERs without major
infrastructure upgrades. Notice that today’s grid is a known
realization, while the integration of DERs is an unknown
forthcoming event. This leads to considering many scenar-
ios (possibilities) for the integration of DERs. For instance,
hosting a variable renewable energy source may be allowed
in some locations without a major upgrade, but not in oth-
ers. Clearly, the capacity, unpredictability, and intermittency
of the generator also matter. Moreover, hosting DERs in a
location may prevent other DERs from being integrated in
other locations, which complicates the HCA in general.
The large-scale integration of DG may have adverse impacts

on power system operations such as overvoltage, thermal over-
loading of the network, power loss, and system protection
problems [3], [4], [5]. Studies have investigated the impacts
of large-scale integration of EVs, and it has found that EVs
can potentially cause thermal overloading and unexpected
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congestion in distribution systems [6], [7], [8]. HCA has
been extensively studied for the integration of DG such as
solar and wind generation [9], [10], [11], [12] and for the
integration of EVs [13], [14], [15]. The integration of PV
and wind power has been studied in [16], and there are
recent papers that study the combined integration of PVs
and EVs in [17], [18]. There are many optimization-based
frameworks for HCA including [19], [20], and recently [21]
proposed an optimization-based HCA algorithm to accelerate
computational time. Additionally, [22] removes the need to
simulate a large number of scenarios using a spatial-temporal
probabilistic framework.

A. Potential Limitations of Conventional HCA

Conventional HCA frameworks focus on maximizing the
HC to identify the maximum amount of DERs that can
be safely integrated into the grid. However, there are two
other factors that are not typically accounted for in con-
ventional HCA frameworks: (a) the adoption patterns of
DERs, which depend on socioeconomic and behavioral deci-
sions, and (b) how DERs are controlled and managed. It
is important to include these two factors in HCA frame-
works, as they can significantly impact the performance
of HCA.
By solving HCA as a maximization (optimization) problem,

it identifies a global optimal solution and it could be a real-
istic global upper bound when a utility company can choose
(and regulate) location and injection/consumption of all DERs.
Notice standard centralized HCA frameworks are from a
system operator or a central planner’s perspective. However,
actual adoption patterns of DERs may be far from the central
planner’s perspective when DERs are integrated and operate
in a distributed manner rather than in a centralized manner.
Then how much can we rely on conventional HCA frameworks
when (a) and (b) play significant roles? To put the question
differently, will adoption patterns of all DERs follow the solu-
tion of centralized HCA frameworks? Or will it start to deviate
from the solution as non-centrally planned integration of DERs
increases?
Moreover, standard centralized HCA frameworks includ-

ing optimization-based HCA are designed to identify a global
optimal solution (one extreme point between feasible and
infeasible sets), i.e., one point with the largest sum of host-
ing capacities. Even if it can identify multiple extreme points,
it is impossible to enumerate all extreme points in large-
scale distribution grids because there are numerous extreme
points. Then, how does the system operator deal with possi-
bly numerous (hundreds, thousands or more) extreme points?
It is unlikely that all extreme points are equally important.
However, is it possible to scale down the number of extreme
points and identify a few most insightful extreme points?
Due to these open questions, we propose an active learning-

based HCA to include (a) and (b). Notice that the significance
of the two factors will clearly vary in towns and cities. To
the best of our knowledge, these questions have not been
addressed.

B. Contributions

This paper begins with the following umbrella question:
How can we model HCA more accurately and realistically?
This question naturally leads us to investigate the way DERs
are integrated and operate in distribution systems. DERs pro-
vide benefits to end-use customers who purchase them, and
these customers drive the integration and operation of DERs.
However, end-use customers are also influenced by socioeco-
nomic incentives and policies that impact their decisions. For
example, an individual who is concerned about climate change
may not be able to afford an EV due to its current cost, despite
having a preference for consuming less fossil fuel. Similar
stories can be found for other types of DERs. This work
proposes an HCA framework to account for socioeconomic
incentives of end-use customers where customer preferences
are abstracted into two factors (a) and (b). However, includ-
ing (a) and (b) leads to a large number of scenarios. Thus,
we propose a data-driven HCA framework and active learning
algorithms. Here are the key contributions of our work:

• We propose a data-driven HCA to include the two factors
(a) and (b), active learning in HCA, and performance
comparison of active learning in HCA.

• We present three case studies in HCA where the two
factors (a) and (b) play significant roles: (1) adoption
patterns of EVs concentrate and form clusters, (2) uncoor-
dinated and coordinated EV charging, and 3) co-existence
of PVs and EVs.

For factor (b), this work takes a data-driven approach
to model how DER owners inject power into distribution
systems using publicly available data sources for PVs and EVs.
Although the dataset may not be universally applicable, the
proposed methodology can be applied when high-fidelity data
is collected by a utility company within their service territory.
For factor (a), we compared two possibilities: DERs located

uniformly randomly over buses versus non-uniformly located
over buses, where DERs are clustered in specific buses. We
chose the latter option to capture clustering effects, which cap-
tures the intuitive idea of the rich gets richer phenomenon
observed in social networks. In this context, it means that,
e.g., EV owners are more likely to have EV owner friends, or
a wealthy local community is more likely to have more EV
owners than a less wealthy local community. To understand the
impact of clustering effects in HCA, we select clusters in the
distribution system and exclusively located DERs in clusters.
We compared two different clusters, one causing overvolt-
age problems and the other causing undervoltage problems,
to highlight the importance of cluster location in factor (a) of
HCA. This work demonstrates the importance of cluster loca-
tion and factor (a) in HCA, despite the arbitrary selection
of the EV cluster. Simulation results show that HC and its
interpretations significantly change depending on factors (a)
and (b).
The rest of this paper is organized as follows. Section II

introduces a data-driven HCA, characteristics of HC and dis-
cussions about the importance to include (a) and (b) in HCA.
Section III introduces active learning and apply active learn-
ing in HCA. Section IV starts with a 3-bus network example
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to illustrate active learning and characteristics of HC. Next,
it presents, on a larger network, performance comparisons
of active learning, and case studies that include two factors
(a) and (b) in HCA. We conclude the article in Section V.

II. PROBLEM FORMULATION

First, we present a DistFlow model to represent distribu-
tion grids which holds true if the distribution network is a
tree [23]. Then, we formulate HCA as a data-driven method
using DistFlow model, and provide detailed discussions on
hosting capacity with respect to the two factors (a) and (b).

A. DistFlow Model

Consider a distribution grid of radial networks N = (V,E)
with buses (vertices) V and lines (edges) E ⊂ V × V . Denote
the cardinality of a set X as |X|. Let nodal real and reac-
tive injections be p ∈ R|V| and q ∈ R|V| respectively, nodal
squared voltage magnitudes be v ∈ R|V|, real and reactive
flows on lines be P ∈ R|E| and Q ∈ R|E| respectively. Then,
DistFlow model [24] of a distribution grid can be written as
follows:

pj + Pij = rijlij +
∑

k:(j,k)∈E
Pjk (1a)

qj + Qij = xijlij +
∑

k:(j,k)∈E
Qjk (1b)

vi − vj = 2
(
rijPij + xijQij

)
+

(
r2ij + x2ij

)
lij (1c)

lij =
P2
ij + Q2

ij

vi
(1d)

i ∈ V ∪ {0}, j ∈ V, ∀ (i, j) ∈ E.

where rij and xij are resistance and reactance of line
(i, j) ∈ E respectively. Constraints represent real/reactive
power flow (1a)-(1b) and voltage limit along the line (1c)-(1d).
DistFlow model characterizes the relationship among the
above variables associated with the network [23]. We denote
the model (1) as

[
P,Q, v

]
= DistFlow(p, q).

B. Hosting Capacity Analysis

Given a DistFlow model of radial networks N = (V,E),
we are interested in hosting capacity (HC), i.e., the amount
of DERs that can be safely integrated into today’s grid
without violating or upgrading the infrastructure. In the exist-
ing grid infrastructure, assume that there are daily baseline
real/reactivate load profiles {d[t], e[t]}t∈T over time T before
any integration of DERs. Suppose a candidate location of
DERs is denoted as L ⊂ V . A scenario denoted as ψ ∈ R|L|

represents a set of DERs installed and a net profiles {α[t]}t∈T
(net injection or consumption) over locations L for time T .
Now, consider the following feasibility problem:

[
P[t],Q[t], v[t]

]
= DistFlow(p[t], q[t]) t ∈ [T], (2a)

p[t] = AL diag(α[t])ψ − d[t] t ∈ [T], (2b)

q[t] = AL diag(η) diag(α[t])ψ − e[t] t ∈ [T], (2c)

v ≤ v[t] ≤ v t ∈ [T], (2d)
(
Pij[t]

)2 +
(
Qij[t]

)2 ≤
(
S̄ij

)2 ∀ (i, j) ∈ E t ∈ [T], (2e)

where [T] := {1, 2, . . . ,T}. Constraints represent nodal
real/reactive power balance (2b)-(2c), voltage magnitude (2d)
and line flow limits (2e). Here, matrix AL ∈ {0, 1}|V|×|L| is the
DER location-to-bus adjacency matrix, i.e., AL

ij = 1 if the jth

DER is at bus i and AL
ij = 0 otherwise. We assume that DERs

operate in the maximum power point tracking (MPPT) mode
and maintain fixed power factor η ∈ R|L| by simple reactive
power control.
Given a feasibility problem (2) and a set of scenarios {ψ},

we propose HCA as a feasibility problem as follows. In (2), a
scenario ψ is either feasible or infeasible for each t ∈ T and
denote it as Ot(ψ) = 1 if feasible and Ot(ψ) = 0 otherwise.
Finally, define the evaluation of a scenario ψ :

O(ψ) =
{
1 if 1

T

∑T
t=1Ot(ψ) ≥ ϵ̄

0 otherwise
(3)

where ϵ̄ ∈ [0, 1] determines how many time steps it is
allowed to be infeasible out of T . It is a computationally
tractable approximation (sample average approximation) of
more general chance-constrained problems [25].
Observe that the feasibility problem (2) includes 1) baseline

real/reactive load profiles {d[t], e[t]}t∈T , 2) a scenario ψ ∈ R|L|

and 3) generation/fload profiles {α[t]}t∈T of a scenario ψ . In
other words, the feasibility problem (2) determines whether
the scenario ψ (and its corresponding profiles {α[t]}t∈T) is
feasible or infeasible, and a set of scenarios {ψ} is evaluated
on the same grid. Note that the system performance should
comply with acceptable standards such as all nodal voltages
within a range from 0.95 p.u. to 1.05 p.u. (2d) and line loading
less than 100% of normal ampere rating (2e).
Clearly, it is expected that HC will be smaller if ϵ̄ = 1

and that HC will be larger if ϵ̄ < 1. For example, suppose
a scenario ψ has to satisfy 1

T

∑T
t=1Ot(ψ) = ϵ̄ = 1, i.e.,

Ot(ψ) = 1 for all t. Then, the scenario ψ needs to be con-
servative to be feasible for all t. On the other hand, if ϵ̄ is
not tight, for example, ϵ̄ = 0.9, then HC is larger yet it raises
concerns about system security. We investigate the empirical
relationship between HC and ϵ̄ in case studies (Section IV).

C. Characteristics of Hosting Capacity

The major purpose of HCA is to understand how feasible
and infeasible sets are separated and extreme points (HC lim-
its) between the two sets. Accurate formulation of HCA needs
to achieve the two goals. Fig. 1 presents a schematic illustra-
tion that there could be numerous HC limits between feasible
and infeasible sets. To support this illustration, we provide a
3-bus network example in simulation results.
Note that a standard optimization-based HCA is designed

to identify a global optimal solution (i.e., one point with
the largest sum of hosting capacities), which is one extreme
point between feasible and infeasible sets. In HCA, we argue
below that identifying multiple extreme points is more worth-
while and illustrative than identifying one global optimal point.
Recently, [19] proposed a conditional value at risk (CVaR)
based approach that identifies multiple feasible scenarios.
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Fig. 1. Characteristics of Hosting Capacity.

Notice that even if a method can identify multiple extreme
points (or scenarios), there are numerous extreme points and
it may be impossible to enumerate all the points in large-scale
distribution grids. Recall that extreme points (and scenarios
between the two sets) correspond to a possible integration
of DERs. This presents a challenge because it is unclear
how to deal with the numerous extreme points. There could
be hundreds, thousands or more extreme points, but there
are remaining open questions: are all extreme points equally
important to consider? Or can we scale down and identify a
few most insightful extreme points? We hold these questions
and raise another pivotal aspect.
On the other hand, we claim that HC depends on two factors

and they are crucial in HCA frameworks: (a) adoption patterns
of DERs driven by socioeconomic behavior and (b) how DERs
are controlled and managed. We provide detailed discussions
and examples why it is important to include (a) and (b) below.
Regarding (a), EVs can exist at any location after installing

a charging station in principle, however, EVs are more quickly
adopted in wealthy towns than in others. Similarly, small-
scale PVs can exist at any location, but adoption patterns are
driven by socioeconomic and behavioral decisions. Thus, it
is clearly expected that adoption patterns of DERs are not
going to be uniformly random in terms of location, but are
driven by socioeconomic and behavioral decisions correlated
with household location [26]. Notice that adoption patterns of
DERs may significantly vary in towns and cities. Regarding
(b), even if we know where DERs exist and concentrate, it
is equally important to know how DERs are controlled and
managed. For example, it is easily predicted that the grid can
host more EVs when they are coordinated whereas the grid
can host less EVs when they are uncoordinated. Still, there
is an open question about the degree of coordination of EVs,
which may greatly vary in towns and cities.
Although it may be impossible to precisely know about

(a) and (b) without domain knowledge such as transportation
and demographic information, observe that the two factors are
intrinsic to DERs because DERs are distributed by definition.
However, when additional domain knowledge is available,
observe that including (a) and (b) in HCA scales down extreme
points to consider. Thus, we argue that it may be necessary
to include (a) and (b) in HCA in great detail. Yet, there are
a large number of scenarios and, hence, active learning is
proposed.

Fig. 2. Pool-based Active Learning Framework.

III. ACTIVE LEARNING IN HOSTING CAPACITY ANALYSIS

In this section, we introduce active learning frameworks,
active learning algorithms, and apply to HCA.

A. Introduction to Active Learning

Many machine learning applications include a case that
there is a set of unlabeled data instances from a domain X .
Each instance x ∈ X has an unknown label from a label set
Y and x can be queried by an oracle. The objective of active
learning is maximize performance while minimizing expensive
data labeling. More specifically, the goal is to train a classifier,
a function h : X → Y without making too many queries to an
oracle. An oracle denoted as O, for example, can be a human
annotator or a computational resource which maps an input to
a label, i.e., O : X → Y where X is an input space and Y is
a label space.
There are three standard frameworks in active learning

literature [27] and we first introduce a framework called pool-
based active learning illustrated in Fig. 2. To begin, there is a
pool (set) of unlabeled data instances denoted as X . A unique
property of active learning is to query unlabeled data instances
to be labeled by an oracle O, and there is an associated cost
to access the oracle O in terms of monetary value or com-
putational resources. Therefore, it is essential to effectively
query which unlabeled data instances in X to be labeled by
an oracle O to improve performance and does not exceed a
cost budget (i.e., do not make too many queries). For this pur-
pose, define a function called query strategy in which its goal
is to effectively select unlabeled data instances to be labeled
and we discuss about query strategy in detail below. When a
query strategy selects x ∈ X to be labeled, the oracle O anno-
tates a label y. Then a pair (x, y) is added to the dataset for
training a machine learning model, and this cycle is repeated
until a budget is exhausted. This process is essentially outlined
in Fig. 2.
We quickly highlight distinctions between three frameworks

of active learning [27]. They are different based on how
unlabeled pool X is accessed, while the other pieces (query
strategy, oracle, machine learning) remain mostly the same:
1) Pool-based has access to a pool of unlabeled data to begin;
2) Stream-based has access to an unlabeled data instance at
a time rather than a pool X and, after labeling/rejecting it,
another instance arrives; and 3) Synthesis-based has no access
to unlabeled data at all and it is allowed to generate unlabeled
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Algorithm 1 Pool-Based Active Learning
1: Input: Labeled set L, unlabeled pool X , query strategy φ, query

size B, budget K
2: for k = 0, 1, . . . ,K do
3: θ = train(L)
4: for b = 0, 1, . . . ,B do
5: xb = argmaxx∈X φ(x)
6: yb = O(xb)
7: L := L ∪ (xb, yb) and X := X \ {xb}
8: end for
9: end for
10: return θ,L

data instances. While three active learning frameworks exist,
we mark that the distinction between the frameworks is not
very significant to HCA because they only differ on how an
unlabeled pool X is accessed. Due to this, only the pool-based
active learning framework is considered in this work.
We now introduce three query strategies, commonly used

in active learning. First, define P(y|x; θ) the probability that
model predicts a label y provided that input is x under
model parameter θ . Entropy strategy is defined as φEnt(x) :=
−∑

y∈Y P(y|x; θ) logP(y|x; θ). Information density strategy is

defined as φID(x) = φEnt(x)( 1
|X |

∑
x′∈X

xTx′
∥x∥∥x′∥ )

β where β is a
parameter that controls the relative importance of the density
term. Lastly, define a uniformly random strategy φU(x) = 1

|X | ,
i.e., all elements x ∈ X are equally likely to be selected.
Observe that x∗ ∈ argmaxx∈X φEnt(x) is a maximizer of the
entropy (information); x∗ ∈ argmaxx∈X φID(x) is a maximizer
of the information density; Uniformly random strategy φU(·)
is a Monte Carlo method, also called passive learning in active
learning literature.
Entropy strategy φEnt and information density strategy

φID generally outperform uniformly random sampling (Monte
Carlo methods), although the best strategy is application-
dependent [27]. On the other hand, performance of active
learning depends on the pool X that φEnt and φID suffer when
there are too many outliers in X [28]. This may not be sur-
prising because entropy and information density strategies are
noise-seeking in a sense to maximize the information gain
in X . It is also clear that φEnt and φID suffer when scenar-
ios in X are combinatorial. Similarly, performance of active
learning increases when the number of outliers decreases in
the pool. Thus, it is advised that the choice of query strategy φ,
X and machine learning model will all affect the performance
of active learning in practice.
We are ready to present a pool-based active learning

Algorithm 1. It starts with the following inputs: 1) labeled
set L, 2) unlabeled set X , 3) query strategy φ, 4) query size
B ∈ N and 5) computational budget K ∈ N. The labeled set
L can be an empty set without loss of generality, a pool (set)
of unlabeled data instances X is labeled by oracle O, and
both query size and budget are positive integers. In line 5, it
takes a maximizer xb of query strategy φ(·) (e.g., that maxi-
mizes information) and access to the oracle O to get a label
yb in line 6. After labelling, append the pair (xb, yb) to the
labeled set L and remove xb from the unlabeled pool X (line
7). Algorithm 1 repeats lines 5-7 in a for loop (line 4) and use

the labeled set L for training (line 3). Finally, Algorithm 1
repeats lines 3-7 until the maximum budget K is reached, and
returns θ and L.

B. Active Learning in Hosting Capacity Analysis

We now apply active learning to HCA. In Fig. 2, recall
that there are four major components and we explain all
components in detail in terms of HCA.
First, it is necessary to have a set (pool) X of unlabeled

scenarios X = {ψ} in the active learning. In practice, X may
not be available, and it is important to generate it. In the next
section, we provide explanations on how to generate a set
of scenarios in detail. It is worth highlighting that evaluation
of one scenario ψ in power system simulation software may
be computationally inexpensive (e.g., in the order of seconds).
However, the total number of scenarios could be immense and,
thus, the total computational time may be unacceptable. For
example, suppose we are interested in installing 5 solar PVs
and there are 50 candidate locations (buses). This already tells
that there are more than 106 ( >> 50 Choose 5) PV scenarios.
Similarly, the number of scenarios for possible EV adoptions
could be too gigantic. Thus, it is necessary to compose a set
of scenarios X with domain experts’ knowledge and evaluate
a subset of scenarios in X selectively, not exhaustively, to
determine the HC within a computational budget; otherwise,
the total number of scenarios may be beyond a reasonable
computation budget. We provide our suggestions in detail in
case studies where we propose simple ways to design X .
Next, there is a data selection component where its goal

is to select a scenario ψ ∈ X such that argmaxψ∈X φ for a
given query strategy. After choosing a scenario to evaluate,
the oracle evaluates the feasibility of the selected scenario ψ ,
which is taken to be OpenDSS [29] in this work, and give
a label (feasible or infeasible). In general, the oracle can be
any software that evaluates the feasibility/infeasibility of a sce-
nario by solving power flow equations (3). Lastly, there is a
machine learning component and it updates the query strategy
φ by using machine learning algorithms so that data selec-
tion component effectively selects an unlabeled scenarios to
evaluate.
In this work, active learning Algorithm 1 and machine learn-

ing tasks are implemented in Python programming language,
and interface with OpenDSS through a Python package called
OpenDSSDirect [30].

IV. SIMULATION RESULTS

The proposed active learning-based HCA is evaluated. First,
a simple example of a 3-bus network is provided. Next, on
a 123-bus network, we provide performance comparison of
active learning algorithms and case studies to illustrate the
importance of (a) and (b) in HCA.

A. 3-Bus Network

Matpower [31] provides a number of distribution system
test cases, and we modify the 4-bus network by removing
one bus and use it in this work. Scenarios are uniformly ran-
domly generated, i.e., (ψ1,ψ2) ∈ [0, 4]2 p.u., to illustrate the
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Fig. 3. Visualization of scenarios {ψ} after evaluating 50, 100 and 500 sce-
narios on the 3-bus network example with Monte Carlo Strategy in the
top, Entropy Query Strategy in the middle, and Information Density Query
Strategy in the bottom. Green and red points represent feasible and infeasi-
ble scenarios respectively. Shaded regions represent a separating hyperplane
between two sets of data points.

active learning and characteristics of HC. Three algorithms
are proposed and modified from Algorithm 1 as follows: 1) a
Monte Carlo strategy φU in line 5 and there is no need
for training in line 3, 2) an entropy strategy φEnt in line
5 and two layer fully-connected neural networks in line 3
and 3) an information density strategy φID in line 5 and two
layer fully-connected neural networks in line 3. Details about
fully-connected neural networks are referred to [32].
Active learning is illustrated in Fig. 3 where it shows how

the sampling process evolves in three active learning algo-
rithms. 50, 100, 500 scenarios are evaluated and placed, where
green and red points represent feasible and infeasible scenarios
respectively. Also, two sets of feasible and infeasible scenarios
are separated by support vector machines (SVMs) [32]. Notice
that 50 and 100 scenarios are especially contrasted where
entropy and information density strategies exhibit noticeable
concentration around the boundary and where Monte Carlo
strategy does not exhibit significant concentration. This is
predicted because of the noise-seeking property of φEnt and
φID, and note that it could be an advantage or disadvantage
depending on applications. Also, notice that information den-
sity strategy exhibits more narrow concentration compared to
entropy strategy.
In this 3-bus example, observe that there are numerous sce-

narios close to the boundary between feasible and infeasible
scenarios where they range from the top left corner to the
bottom right corner in Fig. 3. Moreover, the maximum host-
ing capacity (the largest sum of hosting capacities ψ1 and
ψ2) is simply one of them and is far from characterizing the
boundary. The existence of numerous extreme points com-
plicates our understanding about the HC especially for more
practical large-scale distribution grids because of two reasons:
1) it is unclear which extreme points are useful from a system
operator’s perspective in foresight; 2) it is not straightforward

to visualize the boundary. On the other hand, when additional
domain knowledge about (a) and (b) is available, it is possible
to identify a few most insightful extreme points at the cost of
(a) and (b) and not to worry about all others. For large-scale
distribution grids, this is particularly advantageous because it
is impossible to enumerate all extreme points in general.
Lastly, notice that there is an implicit assumption in this

example that scenarios are uniformly generated in [0, 4]2.
In Euclidean space, it is straightforward to choose a proper
domain ([0, 4]2) by visualization. However, in higher dimen-
sions, it is not clear how to choose a proper domain (e.g.,
[0, 4]n) because it is not easy to visualize. Therefore, choos-
ing a proper domain involves a design problem irrespective of
scenarios as well as (a) and (b).

B. 123-Bus Network and Scenario Setup

We take the IEEE 123 Node Test Feeder as our choice of
a distribution grid and take a default baseline nodal demand
profile, i.e., we are given a default real/reactive load profiles
{d[t], e[t]}t∈T over T = 144(= 24 ∗ 6) time steps for a day. In
the 123 bus Feeder, there are 91 load buses.
A set of scenarios X = {ψ} is based on the two data

sources [26], [33] to capture two factors (a) adoption patterns
of DERs that depend on socioeconomic behaviors and (b) how
DERs are controlled and managed from.
We take EV consumption profiles proposed in [26] where

it models residential power demand including EV charging of
a group of households. Residential power demand profiles are
10-min resolution for 365 days with two different light-duty
EV charging power levels typically used in the United States:
Level 1 and Level 2. According to SAE J1772 standard, Level
1 charger operates at 1.92kW and Level 2 charger can operate
at up to 19.2kW depending on the charging station. In this
work, we assume that all EV customers are equipped with
Level 1 chargers and take one day out of 365 days to match
the baseline nodal demand profiles. Similarly, we take solar
PV generation profiles proposed in [33] that solar data con-
sists of 1 year of 5-minute resolution with 60 PV plants. We
modified the time-scale of solar data accordingly to match the
time-scale of other data. While dataset [26], [33] provides gen-
eration and consumption profiles of DERs, they are decoupled
to distribution grids and there is no information about locations
of DERs. Thus, they are meaningful only if we can properly
choose locations of DERs in distribution grids and generate
scenarios accordingly.

C. Performance of Active Learning Algorithms

Design of Scenarios: A set of scenarios X1 is designed
to serve as a baseline for performance comparison as fol-
lows. Assume that EVs are located in all load buses and that
the number of EVs (positive integer) in each bus is drawn
according to the Poisson distribution with a parameter λ and
that there are NEV_TYPE = 20 residential EV charging (con-
sumption) behaviors [26]. Similarly, assume that PV plants
are allowed to be located in a pre-selected 30 buses and that
the number of PV plants NPV is drawn uniformly randomly
in each bus and that there are 20 PV generation (injection)
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Fig. 4. Active learning algorithms are compared in terms of performance on
the left and computational costs on the right.

behaviors [33]. When the location and net injection of DERs
are chosen over all buses, it defines a scenario ψ . Notice that
a scenario characterizes the two factors (a) and (b). That is,
(a) in terms of choosing a number of DERs in locations, and
(b) in terms of net injection, by appropriately changing the
parameters in a scenario.
A set of scenarios X1 = {ψ} is generated by incremen-

tally increasing λ from 1.0 to 1.5 and NPV from 10 to 30.
We change the two parameters λ and NPV to have scenar-
ios lie in Feasible, Concerning, and Infeasible sets in Fig. 1.
The purpose is to have scenarios (extreme points) between
feasible and infeasible sets. We generate X1 has a cardinality
|X1| ≈ 16, 000 as describe above. All scenarios in X1 are eval-
uated once to obtain the maximum possible hosting capacity
within X1. Lastly, fix the probabilistic lower bounds ϵ̄ = 0.98
in Eq. (3) and report that about 53% of the scenarios in X1 is
feasible while 47% of the remaining scenarios is infeasible.
Performance Comparison: Three algorithms are proposed

and modified from Algorithm 1 as follows. 1) Takes a Monte
Carlo strategy φU in line 5 and there is no need for training
in line 3, 2) takes an entropy strategy φEnt in line 5 and two
layer fully-connected neural networks in line 3 for training,
and 3) takes an information density strategy φID in line 5
and two layer fully-connected neural networks in line 3 for
training. In all three algorithms, take constants B = 25 and
K = 28. To compare performance, run 20 separate episodes
to get enough samples for performance comparisons.
Scenarios consist of both EV and PV integration so we

consider the maximum of combined EV and PV to compare
performance of algorithms, i.e., the largest sum of the total
number of EVs and the total capacity (generation in kW) of
PVs. The mean and standard deviation of 20 episodes and the
maximum possible hosting capacity in X1 are shown in Fig. 4
(a) for three algorithms. Observe that information density
strategy φID generally outperforms the other two strategies.

Total computational costs (in time) are shown in Fig. 4 (b).
Monte Carlo, entropy, information density strategies take 1.7,
2.3, and 3.8 hours respectively. Monte Carlo strategy has no
computational overhead due to its simplicity while entropy
strategy and information density strategy have computational
overhead due to neural networks training and corresponding
entropy and information density computation. All algorithms
have negligible standard deviations in computational time. Due
to its computational simplicity, we take Monte Carlo strategy
in the rest of the simulation.
Lastly, we comment about the comparison with centralized

optimization-based HCA frameworks. Recall that the objective

of the proposed HCA is to include the two factors (a) and
(b) whereas optimization-based HCA frameworks find a global
optimal solution. Also, recall that adoption patterns of DERs
could be far from the global optimal solution when DERs
are non-centrally integrated. Thus, it is unclear to make a fair
comparison for the two approaches.

D. Clustering Effects of EVs

In principle, EVs can exist at any location in electric distri-
bution grids after installing a charging station. However, today
EVs are quickly adopted in some towns and are not adopted in
other towns, i.e., adoption of alternative vehicles such as EVs
may be characterized by significant clustering effects corre-
lated with household locations driven by socioeconomic and
behavioral decisions [26]. While accurate representation for a
region of a cluster requires additional domain knowledge (such
as transportation and demographics information), we pick two
representative clusters to understand how clustering effects of
EVs change HC.
Design of Scenarios: Two clusters, Clusters A and B, are

arbitrarily picked in IEEE 123-node test feeder network and
shown in Fig. 5 (a) and (d), and two sets of scenarios XA and
XB are proposed where EV adoption is restricted to the cluster,
i.e., EVs exist only in the cluster. In both XA and XB, assume
that there are the same EV charging (consumption) behavior
NEV_TYPE = 20 and the number of EVs is drawn according to
the Poisson distribution with the same parameter λ uniformly
in the cluster. That is, the only difference in XA and XB is that
EVs are restricted to exist in different regions of clusters.
Characteristics of HC: The results indicate that Clusters A

and B induce different operational violations and that Clusters
A and B have largely different HC values.
With the clustering effects of EVs in Cluster A, line load-

ing and nodal voltages for a representative scenario in XA are
shown in Fig. 5 (a) and (b) respectively. Cluster A causes
an undervoltage problem (voltage levels below 0.95 p.u.)
in buses 45 and 46. Also, there are line loading violations
(above 100% of normal rating) in several lines for peak loads.
With the clustering effects of EVs in Cluster B, line load-
ing and nodal voltages for a representative scenario in XB
are shown in Fig. 5 (d) and (e) respectively. Observe that
Cluster B causes an overvoltage problem (voltage levels above
1.05 p.u.) in buses 82 and 83 for peak loads and under-
voltage close to violation (voltage level around 0.96 p.u.)
in bus 114. Also, line loading is close to violation (i.e.,
above 90% of normal rating), and line loading pattern in
(d) is very different from (a) except for lines close to the
substation.
Moreover, the case study highlights that the aggregate

system load (summed over all buses for each time t ∈ [T])
alone is not sufficient to understand the HC and that loca-
tions of net injection from DERs are crucial as illustrated in
this case study. The same grid can host approximately 2,300
EVs with clustering effects in Cluster B and can host approx-
imately 1,600 EVs with clustering effects in Cluster B as
shown in Fig. 5 (c). Similarly, Fig. 5 (f) shows Clusters A
and B have noticeably different aggregate system loads that the
same grid can support. Therefore, we conclude that adoption
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Fig. 5. Two regions of Clusters A and B are shown in (a) and (d) respectively and clustering effects of EVs are illustrated. (a) and (b) show line Loading
and nodal voltages respectively with clustering effects in Cluster A. (d) and (e) show line Loading and nodal voltages respectively with clustering effects in
Cluster B. Corresponding HCs and aggregate system loads are shown in (c) and (f) respectively.

Fig. 6. Aggregate system consumption (summed over all buses for each time step) is shown for a day for Uncoordinated, Mildly Coordinated, Moderately
Coordinated scenarios respectively. Green line shows a baseline consumption in kW without DERs. Observe that additional loads are dispersed as EVs
coordinate more. The role of ϵ̄ is illustrated for three values ϵ̄ = 1, 0.98, 0.95.

patterns of DERs that depend on socioeconomic behavior play
a significant role in the HC limits.

E. Degrees of Coordination of EVs

Different degrees of coordination of EVs are studied for
HCA ranging from uncoordinated to moderately coordinated
EVs in terms of charging (consumption) behaviors. All EV
profiles are data-driven and coordination of EVs is considered.
Design of Scenarios: Three sets of scenarios X2,X3,X4

are proposed and called uncoordinated, mildly coordinated
and moderately coordinated respectively. The three sets are
distinguished in the sense that EVs have different charging
(consumption) behaviors as follows. Scenarios X2 are called
uncoordinated in a sense that all EVs have identical charging
behavior NEV_TYPE = 1, i.e., all EVs start and stop charging
at the same time. Scenarios X3 and X4 are called mildly coor-
dinated and moderately coordinated in a sense that EVs have
different charging behavior NEV_TYPE = 5 and 20 respectively,
i.e., EVs do not necessarily start and stop charging at the same
time. Observe that the proposed data-driven EV scenarios have
increasing degrees of coordination with NEV_TYPE. In the three
sets, assume the number of EVs (positive integer) is drawn
according to the Poisson distribution with a uniform parame-
ter λ in all buses. In addition, we examine three probabilistic
lower bounds ϵ̄ = 1, 0.98, 0.95.

Fig. 7. Hosting Capacity for EV and PV in uncoordinated, mildly and
moderately coordinated scenarios. The role of ϵ̄ = 1, 0.98, 0.95 is illustrated.

Characteristics of HC: The results illustrate that the same
grid can host significantly more EVs when they are coordi-
nated compared to when uncoordinated. Hosting capacity for
EVs is shown in Fig. 7 (a) and it illustrates that the same
grid can host approximately 1,000, 2,200, 2,700 EVs when
they are uncoordinated, mildly coordinated, moderately coor-
dinated respectively. Hosting capacity for PV is shown in
Fig. 7 (b) and it shows HC mostly remains the same for
all three scenarios. Thus, we conclude that HC is notice-
ably large when EVs are coordinated. Although the results
are naturally predicted, the results are worthwhile because
it does not explicitly include direct interventions (control)
of DERs. In other words, the results are naturally observed
from the data and it does not explicitly include system and
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market interventions. For example, when all EVs are sched-
uled to follow peak shaving and valley filling programs [34]
that they typically charge EVs during 12am - 6am, i.e., when
EVs are disrupted by the intervention, it is also naturally pre-
dicted that the same grid can host more EVs. However, it is
unclear today whether these grid supporting services and pro-
grams are profitable and how many EVs are attracted and will
remain attracted to such programs in electric distribution grids.
Observe that this is another open and decisive parameter for
HC that will definitely vary in towns and cities.
Aggregate system loads (summed over all buses for each

time t ∈ [T]) are illustrated in Fig. 6 for representative scenar-
ios in X2,X3,X4, respectively. Baseline (green line) represents
default daily aggregate system loads (consumption in kW)
without DERs. There is a big irregular jump because EVs are
uncoordinated (start and stop charging at the same time), and
additional loads from EVs are dispersed and there is more con-
sumption during peak hours. Also, the aggregate system loads
are occasionally below 0 during the daytime when the total
renewable generation exceeds the aggregate system loads.
Lastly, the role of probabilistic lower bound ϵ̄ in Eq. (3)

is investigated that three values of ϵ̄ = 1, 0.98, 0.95 are
considered for X2,X3,X4. Observe in Fig. 6 and 7 that
ϵ̄ slightly affects the system performance for HCA only
marginal changes are observed for different values of ϵ̄ that the
aggregate system consumption and HC limits are marginally
changed for different values of ϵ̄.

F. A Combined Integration of PVs and EVs

A combined integration of PVs and EVs is investigated
to understand synergies between PVs and EVs. Our creative
imaginations permit that there can be a few directions for a
combination of PVs and EVs in electric distribution grids,
however, we consider a simple combination for the scope of
this work.
Design of Scenarios: Two sets of scenarios X5 and X6 are

proposed and designed as follows. Assume that the number
of EVs (positive integer) is drawn according to the Poisson
distribution with a uniform parameter λ in all buses and that
charging behaviors NEV_TYPE = 20 in X5 and X6. On the
other hand, for all scenarios in X5, consider that each EV is
co-located with a PV in the same bus whereas there is no PV
for all scenarios in X6. With this simple setup, we consider
whether the same grid can host more EVs or not.
Characteristics of HC: The results indicate that a combined

integration of EVs and PVs does not have significant adverse
or synergy. To be specific, the same grid can host approx-
imately 2,800 and 2,900 EVs for scenarios in X5 and X6
respectively. Also, hosting capacity for PV is approximately
1,800 for scenarios in X5. The results can be explained from
Fig. 6. In Fig. 6 (a), notice that PVs have a significant injection
that the aggregate system consumption is below zero during
the peak hours for PVs (between 10AM and 3PM) whereas
the injection is almost negligible after 4pm. On the other hand,
observe in Fig. 6 (c) that the peak hours for EVs are after 5PM.
Thus, we conclude that interactions of two technologies (PVs
and EVs) are not significant. We remark that the proposed

method is data-driven so it is possible that the results may be
slightly (but not significantly) different when data sources for
PVs and EVs are different. For example, DER profiles could
change for summer and winter periods. Thus, it is expected
that HC values do slightly change but may not significantly
change.

V. CONCLUDING REMARKS

This work presents a HCA framework with two factors in
mind: (a) adoption patterns of DERs driven by socioeconomic
behaviors and (b) how DERs are controlled and managed.
To address the challenge, a data-driven HCA framework and
active learning are proposed to effectively explore scenarios.
We illustrate the properties of active learning and character-
istics of HC in a 3-bus network example, which illustrates
that there are numerous scenarios between feasible and infea-
sible sets. This poses challenges from a system operator’s
perspective because it is unclear how to interpret numerous
feasible scenarios. On the other hand, when additional domain
knowledge about (a) and (b) is available, we show that it is
possible to consider a few most insightful scenarios and not
worry about all others. Next, on a larger network, we present
the performance of active learning algorithms and consider
detailed case studies about (a) and (b). Simulation results high-
light that the HC and its interpretation significantly change
subject to (a) and (b). Future work will investigate further
improvement on the region estimate of the HC, as well as
the public policy implication of the HCA for DER planning
purposes.
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