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Efficient Scenario Generation for
Chance-Constrained Economic Dispatch
Considering Ambient Wind Conditions

Qian Zhang

Abstract—Scenario approach is an effective data-driven method
for solving chance-constrained optimization while ensuring desired
risk guarantees with a finite number of samples. Crucial chal-
lenges in deploying this technique in the real world arise due to
non-stationarity environments and the absence of appropriate risk-
tuning models tailored for the desired application. In this article,
we focus on designing efficient scenario generation schemes for
economic dispatch in power systems. We propose a novel scenario
generation method based on filtering scenarios using ambient wind
conditions. These filtered scenarios are deployed incrementally in
order to meet desired risk levels while using minimum resources.
In order to study the performance of the proposed scheme, we
illustrate the procedure on case studies performed for both 24-bus
and 118-bus systems with real-world wind power forecasting data.
Numerical results suggest that the proposed filter-and-increment
scenario generation model leads to a precise and efficient solution
for the chance-constrained economic dispatch problem.

Index  Terms—Scenario generation, chance-constrained
programming, economic dispatch, wind power forecasting
error, scenario approach.

I. INTRODUCTION

HE integration of intermittent renewable sources of gen-
T eration into the existing power grids has posed significant
challenge due to the inherent uncertainty associated with these
sources. While both solar and wind generators introduce uncer-
tainty, wind power, in particular, presents unique challenges.
Unlike solar, wind energy lacks diurnal patterns, making it
more difficult to predict. Furthermore, the scale of installed and
consumed wind energy often surpasses that of solar power in
many dispatch areas, leading to a higher level of uncertainty in
the overall power system. For instance, wind power accounts for
25% of the total electricity consumed by the Electric Reliability

Manuscript received 28 June 2023; revised 26 October 2023 and 6 December
2023; accepted 23 December 2023. Date of publication 3 January 2024; date
of current version 20 June 2024. This work was supported in part by NSF,
in part by ECCS-2038963, in part by the U.S. Department of Energy (DoE)
Office of Energy Efficiency and Renewable Energy (EERE) through the Solar
Energy Technologies Office (SETO) under Award Number DEEE0009031,
and in part by Texas A&M Energy Institute. Paper no. TPWRS-00998-2023.
(Corresponding author: Le Xie.)

The authors are with the Department of Electrical and Computer Engineering,
Texas A&M University, College Station, TX 77843 USA (e-mail: zhanggian-
leo@tamu.edu; apurv.shukla@tamu.edu; le.xie @tamu.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TPWRS.2023.3349237.

Digital Object Identifier 10.1109/TPWRS.2023.3349237

, Graduate Student Member, IEEE, Apurv Shukla

, Member, IEEE, and Le Xie, Fellow, IEEE

Council of Texas (ERCOT) region during 2022, compared to
6% for solar [1].

In response to these challenges, stochastic optimization (SO)
and robust optimization (RO) are widely used methods for power
engineers to deal with uncertainties [2]. SO utilizes proba-
bilistic models to handle randomness [3], while RO employs
set-based and deterministic uncertainty models [4]. We focus on
chance-constrained optimization (CCO) which bridges the gap
between probabilistic and deterministic approaches, providing
explicit probabilistic guarantees on the feasibility of optimal
solutions [5].

Over the past decade, many attempts have been made
at reformulating CCO into a more computationally tractable
form. Bienstock et al. [6] reformulate the chance-constrained
DC-optimal power flow (DC-OPF) under affine control as a
second-order cone program by a moment-based reformulation.
Roald et al. [7] extend similar reformulations into the AC-OPF
model with some efficient algorithms. Other reformulations
have also been proposed considering the distributionally ro-
bust property, especially in economic dispatch problem [8],
[9].

However, most of the above approaches require the explicit
or approximated distribution function of uncertainty, which is
hard to validate with streaming data. Data-driven optimization
methods, unconstrained by specific underlying uncertainty dis-
tributions, have received substantial attention in recent years [5],
especially the Sample Average Approximation (SAA) [10]
and the Scenario Approach [11]. In the realm of power sys-
tems, applications of SAA are evident in day-ahead unit
commitment [12], capacity planning [13], and other offline
domains [14]. In real-time cases, the scenario approach proves
advantageous due to its rapid computational speed, avoiding the
long solving time caused by binary variables in SAA. Despite
many recent works that have tried to apply the scenario approach
in power systems [2], [5], [15], [16], [17], [18], [19], [20], there
still exist two main limitations.

A. Scenario Generation Limitation

Several studies validate scenario approach in the economic
dispatch by using synthetic data created from representative dis-
tribution [15], [16]. These techniques do not utilize and exploit
the fact that the scenario approach can be distribution-agnostic
since the scenarios can be directly extracted from previous ex-
perience. In most real-world settings, empirical data is collected
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from non-stationary environments, wherein the distribution of
the random variable depends on environmental conditions [21].
Directly sampling from the past will incorporate all environmen-
tal factors from empirical data in scenario approach. For exam-
ple, the wind power forecasting error addressed in this article,
is the primary source of uncertainty in the economic dispatch
process [22], [23], while the wind forecast error distribution
varies based on forecasting techniques, power output levels, and
ambient conditions, as noted in studies by [24], [25].

B. Risk Tuning Limitation

After choosing the scenario space, the next step is to decide
the number of scenarios. The conventional sample and discard
approach [26] requires the decision-makers to first create an
estimate of the sample size and calculate the exact risk level
ex-ante. Then, it is decided whether scenarios need to be dis-
carded to trade off risk and performance. To ensure meeting the
risk requirements, a conservative sample size is used, which
could be astronomical for problems with a large number of
decision variables. This inefficient risk-tuning process consumes
superfluous data and results in a long computation time.

The main contributions of this article are dealing with these
two limitations, which can be summarized as follows:

1) To enhance scenario accuracy, the conditional distribution
is considered without assuming any knowledge of the true
distribution. Utilizing correlation analysis, wind forecast
error scenarios are generated from empirical data simi-
lar to the present environment, ensuring a more precise
representation of real-world conditions.

2) The incremental risk tuning method is introduced to meet
the risk requirement with minimum data resources [27].
After declaring a desired risk level, scenarios are generated
iteratively to eventually hit a desired level of risk.

3) Algorithms are designed to incorporate scenario genera-
tion with risk-tuning processes efficiently.

The remainder of this article is organized as follows:
Section II formulates the chance-constrained economic dispatch
problem and highlights the challenges associated with solv-
ing the problem with conditional wind power forecast error.
Section III introduces our incremental scenario approach, and
Section IV discusses the assumptions and limitations of the
proposed method. We demonstrate the efficacy of the proposed
approach on 24 and 118-bus systems in Section V.

II. PROBLEM STATEMENTS
A. Chance-Constrained Economic Dispatch

We consider the chance-constrained DC-OPF formulation in
the presence of wind-forecasting uncertainty [6], [18]:

min ¢(g) (1a)
ag.m

st1lg=1"d—1"w (1b)
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Ry = —1Tum < R,

1'p=1 (1f)

The decision variables are generator output levels g € R"s, and
an affine control policy 7 € R™s proportionally allocating total
wind fluctuation 1 "0 to each generator!. The objective function
is the total generations cost ¢(g). The load level is d € R™,
and the wind generation w = w + w consists of deterministic
wind forecast value w € R™ and the uncertain forecast error
w € A, where A C R™ is the uncertainty set. Transmission
line flows f € R"/ are calculated using (3d), where H,, H,,
and H,, are the corresponding sub-matrix of the power trans-
fer distribution factor (PTDF) matrix H. Constraints include
transmission line flow limits [f, f] € R x R™/, generation

capacity limits [g, 7] € R™ x R™ and the ramp up(down)
rate limits [Ry, R,] € R™ x R"s are modeled as a chance-
constraint form under risk € in (1e).

As mentioned in [18], the affine control policy 7 only fo-
cuses on the steady-state behavior of the Automatic Genera-
tion Control (AGC) action in dispatch time scale, i.e. 5 to 15
minutes, but not the 2 to 6 seconds fast time-scale regulation
process. The system’s active power deviation is allocated to
generators based on 7, which is also well known as participation
factors in the conventional AGC scheme [28]. It is easy to
confirm that constraints (3b) and (3f) imply the supply-demand
balance in the presence of wind uncertainties:

17 (g — @)

Setting the constant affine control policy 7 prior to the next
dispatch interval will unavoidably be economically inefficient
if the netload’s fluctuation or forecasting error is large. Changing
the 7 more frequently within dispatch interval, or incorporating
the optimization program into the AGC control policy may
improve the economic efficiency [29], [30], but these methods
ignore the network constraints and are hard to apply to the bulk
power system due to the communication delay or solving time.
In this article, we mainly concentrate on improving the dispatch
performance in the chance-constrained problem. The description
of affine control policy 7 in (1) is based on two assumptions: 1)
All the traditional generators participate in the AGC actions; 2)
The whole system is regarded as one control area.

17am) =1"d — 17 (0 + )

B. Conditional Wind Power Forecast Error

Due to the nonlinear wind power curve, the wind power
forecast error is observed to vary with the level of its output [31],
[32], while spatial and weather parameters also indirectly affect
the forecasting quality [33], [34]. Based on these facts, the wind
power forecast error measure Py, in (1e) should be modeled as a
conditional probability distribution from similar environments.
Previous studies have focused on approximating the measure of

n this article, 1" denotes a row vector of all ones, with its dimension
adjustable to match the vector it multiplies.
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conditional forecast error, eg., [31] generate the conditional er-
ror model based on the wind turbine power curve, [24] employ a
fuzzy inference model to obtain conditional prediction intervals
and [25] calculate the conditional forecasting error from joint
distributed data using copula theory. All the above approxima-
tion methods for the distribution P,z under similar conditions are
incompatible with the data-driven approach in chance-constraint
optimization, which uses distribution agnostic empirical data.
Furthermore, the wind power output, temperature, and weather
parameters are continuous variables, meaning the past scenar-
ios’ observations will be distinct with probability 1, which
makes it impossible to generate scenarios in the data-driven
scheme from an identical environment but similar environments.
Scenario selection from similar environments presents a major
engineering obstacle: a large search space results in conservative
decision-making while a smaller search space results in limited
data [21].

III. METHOD
A. Scenario Approach

The scenario approach randomly extracts N independent
and identically distributed (i.i.d.) scenarios to approximate the
chance-constrained program. Supposing we have the random
wind forecasting error scenarios set N := {wy, Ws, ..., Wn},
the chance-constrained inequalities (1e) in DC-OPF problem
can be replaced by scenario-based inequalities (3e):

min ¢(g) (3a)
g,n
stllg=1"d—1"w (3b)
g=29=g (3¢)
f(,w) = Hy (9 — 1"in) — Had + Hyy (0 + )
(3d)
[ = flw,w) < f
g=2g—1"dn=g
Ri=—-1"wm=<R, i=1,2,3,...,N (3e)
1n=1 (3f)

To distinguish from the original optimization problem (1), we
name the above scenario problem as SP(N).

Definition 1 (Violation Probability): The vilolation proba-
bility of a candidate solution (g*,n*) is defined as the probabil-
ity that (¢g*,n") is infeasible, i.e., V5 (g%, n%) := Pz ((¢*,n") ¢
Xg), where Xy is the decision set generated by SP(N).

Definition 2 (Support Constraint): The scenario-dependent
constraint corresponding to sample ws, s € {1,2,...,5}, is a
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Algorithm 1: Searching Support Scenarios Using Dual Vari-
ables.
Solving the scenario problem SP(N)
Generate the primal solution (g}, 73-) and the constraints
(3e) related dual solution i} (2 = 1,2,3,...,N)
Let M =i e N :|juf| >0.SetS < Oslash;
for i € M do
Solve SP —; and compute (gh_;» Miq_i)
if c(g7,_;) < c(g)) then
S+ S+i
end if
end for
OUTPUT: The support scenarios S

support constraint or support scenario if its removal improves
the solution of SP(N), i.e., if it decreases the optimal cost (3a).

Definition 3 (Sample Complexity): The number of support
scenarios in SP(N) is defined as the sample complexity.

Definition 4 (Helly’s Dimension): Helly’s dimension of
the scenario problem SP(N) is the smallest integer h that
h >essupnvcan |S(N)| holds for any finite N > 1, where
|S(N)]| is the number of support constraints or sample com-
plexity 2.

The most important contribution of the scenario approach is
the relationship between violation probability V. (g*,n*), the
number of scenarios /N and the sample complexity.

Theorem I (Exact Feasibility [11], [35]): Under the assump-
tions of nondegeneracy and feasibility of the optimization prob-
lem, the deepest results show that the distribution of V5 (g*, n*)
is dominated by a Beta distribution, namely:

Bl 4
P (sl ) >0 <3 (V) du-ov=p @
i=0

where h is the Helly’s dimension of SP(N), and 1 — 3 is defined
as the confidence bound for the solution based on any N i.i.d
scenarios.

Theorem 2 (Property for Convex Problem [11]): Supposing

all the constraints in SP(A/) is convex for every instance of w,
the sample complexity |S(N)| for SP(N) is at most n. In other
words, h < n, where n is the number of decision variables after
eliminating the equality constraints [36].
For the convex problem, Helly’s dimension A can be replaced
by n to simplify the problem by applying Theorem 2, but it
often causes extremely conservative results. To compute the
lower bound of h, we suggest using the dual-based Algorithm 1
proposed in [17].

B. Sampling Scenarios From Parameter Space

Many environmental parameters, such as location, wind
speed, temperature, wind direction, and relative humidity af-
fect the wind power forecasting quality [34]. In this article,

2Because the randomness of sampling, the number of support constraints
might be different especially when sample size is small. Here ess sup means the
essential supremum to ignore some exceptional cases.
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we suppose the wind generators are from the same area with
the same forecasting algorithm, while the deterministic wind
forecast value, the wind power changing rate, temperature, and
relative humidity are selected as the four main parameters that
affect the forecasting error.

Remark: The deterministic wind forecast value and the wind
power ramp rate are parameters that are integrated with other
environmental information, especially the wind speed and wind
speed ramp rate, which are observed having a close relationship
with the wind power forecasting quality.

Definition 5 (Parameter Space for Wind Power Forecasting
Error): The parameter space V) is defined as the set of envi-
ronmental parameters which the past scenarios A/ are extracted
from. For instance, the temperature between 70° F" and 80° F' is
a temperature parameter space.

Definition 6 (Probability Distribution Over Parameter
Space): Let Py, be a probability distribution over the param-
eter space V.

Remark: Strictly speaking, Vs should be identical with the
environment parameter at the forecasting moment Wy to ac-
quire more precise risk guarantee. However, the input data in
the scenario approach is directly extracted from the empirical
experience with continuous environment parameters. Finding
the past scenarios under the same environment parameter as the
future is impossible with probability 1. Even in some frontier
probabilistic prediction methods, it is also hard to guarantee the
accuracy of predicted conditional distribution but check how
close it approximates to the real distribution based on testing
data [37].

Based on the definitions above, the barrier of bringing the
scenario approach to the real world is to find the parameter space
V) which includes both the potential environment parameter in
the future and enough number of empirical scenarios to meet the
risk requirement in Theorem 1.

C. Main Result I: Correlation-Based Scenario Generation

The Pearson correlation coefficient is used to quantify the
relationship between each environmental parameter and the
wind power forecasting error from the past forecasting data,
for example, the past half-year data before the decision-making
day. Let random variable P represent one of the environmental
parameters, and random variable W denote the wind power fore-
casting error, then the Pearson correlation coefficient between
these two variables is given by:

E (P — pup) (W — i)

- 5
Ppw Tpoy )]

where o p and o3, are the standard deviation of P and W, while
pp and jiy3, are the mean value of P and W, respectively. After
calculating the correlation coefficient of each parameter, we
combine the penalized parameters as the indicator vector for
estimating the difference in environmental conditions. Suppose
P1, P2, P3, P4 are the correlation coefficients of the four nor-
malized parameters p1, p2, p3, p4 that affect the past forecasting

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 39, NO. 4, JULY 2024

error respectively, then the indicator vector v is constructed as:

v = [p1p1, p2p2, p3p3, papal” (6)

Based on the indicator vector, we can define the wind power
forecasting environment difference d;; as the distance between
two forecasting environments ¢ and 7, that is:

dij = |lvi — vl @)

where | - || can be any norm distance and Euclidean norm is
used in the case study part.

After calculating the environment difference d,; between the
now and the past, we can pick scenarios from the empirical
data under more similar decision-making environments. The
overview of the proposed scheme and the conventional scenario
approach is drawn in Fig. 1.

Except for correlation analysis, many statistical or learning
methods can be used as the similar environment filter repre-
sented in Fig. 1, such as the coefficient of determination (R?),
and other learning-based ranking algorithms [38]. Furthermore,
some generative models, such as generative adversarial networks
(GAN), are another path to get the scenarios under a similar
environment. In this article, we do not compare the accuracy of
different filters but rather focus on illustrating this scheme and
its performance on the economic dispatch problem.

D. Main Result II: Incremental Scenario Optimization

To find the proper number of scenarios meeting the risk re-
quirement, two main scenario-based algorithms exist for convex
problems. The simple one is called a-priori approach [11], where
Helly’s dimension & is approximated by its upper bound: the
number of decision variables n. In a-priori approach, the number
of the needed scenarios can be directly given by Theorem 1
before solving the optimization program. The scenario sampling
from a similar environment embedded in a-priori scenario opti-
mization approach is summarized in the Algorithm 2.

The a-priori approach has less computational complexity and
risk guarantee before solving the optimization problem. When
the number of decision variables is small, the a-priori approach is
an efficient choice, but as the size of the system increases it leads
to extreme conservatism. For instance, the sample complexity of
the look-ahead economic dispatch problem [16] is 3 — 5 while
the decision variables n is 864.

Leveraging on support scenario searching algorithms, such as
Algorithm 1, the a-priori approach can be improved if the risk
level is updated after solving the optimization problem, called
the a-posteriori approach [21]. In many practical engineering
situations, the decision makers are interested in seeking the
optimal solution given a certain risk level, implying that if
the updated risk level is too conservative, the decision maker
trades off risks for better performance by discarding some
scenarios [26]. The computation complexity of this risk-tuning
process can be reduced by using an incremental scenario opti-
mization algorithm [27]. In this article, we propose an improved
incremental scenario optimization algorithm based on sampling
from a similar environment, see Algorithm 3. In practice, this
algorithm can generate the optimal solution with the given risk
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Fig. 1.

Algorithm 2: A-Priori Scenarios Approach Sampling from
Similar Environment.
INPUT1: The past forecasting error data with environment
parameters
INPUT2: The environment parameter at decision-making
time
INPUT3: The risk and confidence level € and 3
N « (4)
if V > empirical data size then
Reset risk and confidence level
else sampling the scenarios A/ under similar
environments
dij + (5)(6)(7)
N < the scenarios with the N smallest dy;
end if
Solve the scenario-based optimization problem SP(N)
with optimal solution (g*, n*).
OUTPUT: The optimal solution (g*, n")

guarantee and provide some higher-risk solutions with better
economic performance to meet the risk-tuning needs of system
operators.

In the previous sample and discard risk tuning method [26],
the sample complexity is first supposed to be its upper bound,
i.e. the number of decision variables, which means a large
sample size may be used to solve the problem. After calculating
the true sample complexity and risk level based on the solution,
the decision-makers can trade off the risk and performance
by gradually discarding some support scenarios. Compared to
the incremental optimization method, the sample and discard
method tunes the risk in a decremented way, which is inefficient
when the true sample complexity is much smaller than the
number of decision variables.

IV. DISCUSSION

The most important assumption in the scenario approach is
the samples are identical independent distributed (i.i.d.) random
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Comparison of the conventional scenario approach (left) and the proposed scenario generation model (right).

Algorithm 3: Incremental Scenario Optimization Sampling
from Similar Environment.
INPUT1: The past forecasting error data with environment
parameters
INPUT2: The environment parameter at decision-making
time
INPUT3: The risk and confidence level € and (3
1:Setj:=1and Nog =0
2: Suppose the problem has j support scenarios, i.e. h = 7,
and calculate the number of needed scenarios IV; from
4).
3: Collect a sample of scenarios
WN;_ 41, WN;_; 42, - - -, WN; With Nj — N;_q smallest
environment difference d without replacement.
4: Solve the scenario-based optimization problem SP(N;)
with optimal solution (g*,7*) ;.
5: Compute the exact sample complexity /; of the solution
(g%,m") N, based on Algorithm 1.
6: (Optional) Compute the exact risk level €; corresponding
to (g%, n*) N, after updating h = h; in (4).
7:if h; < j then
8 halt the algorithm and return (g*, 1) := (g%, 7")n;,
set j := 7 + 1 and GOTO step 2

9: else
10: end if
OUTPUT1: The optimal solution (g*,n*).

OUTPUT2: (Optional) The solution (g*,7*) n, with higher
risk level ¢;.

variables. In this section, we will discuss how the proposed
method meets this i.i.d. property and our weakness.

A. Identical Distribution

In the chance-constrained problem, the uncertainties are mod-
eled as random variables sampled from the identical probability
distribution. For example, the uncertainty of wind forecasting er-
ror in chance-constrained DC-OPF problem (1) is sampled from
the fixed probability distribution IP;;. Because each forecasting
happens in a complex and varying environment, the precise
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description of uncertainty should be under the environment
condition, i.e. IPﬁ,WNOW. For data-driven optimization methods,
if we apply the whole empirical data to describe uncertainty, the
identical probability distribution Pz should be regarded as the
marginal distribution over the (past) environment parameters.

Existing papers focusing on modeling the gap between the
solution under empirical distribution P and exact distribution
P vy, TEquire prior knowledge of the distance or mean value
between two probability measures, which is hard to calculate
in the wind forecasting scenario. Some machine learning ap-
proaches [39] may be useful to approximate this exact dis-
tribution, but their results are not compatible with the direct
data-driven program, especially the scenario approach.

In this article, instead of quantifying the gap between empiri-
cal distribution and exact distribution, we seek to filter empirical
data through the similar environment parameter space Vy . The
proposed solution’s risk guarantee is based on the conditional
distribution ]PMVN, but the simulations in the next section show
that the testing results also meet the setting risk threshold even
in the real-world data.

B. Independent Random Variables

The purpose of sampling scenarios from parameter space is
to make the conditional distribution Py, much closer to the
exact one Py, » which do not affect the independent property
of scenarios under the two assumptions. The first is that the
forecasting algorithm does not use the previous forecasting error
data, which is true for most updated forecasting methods [34].
The second assumption is that the dispatch decision itself will not
affect future forecasting errors, which is also justifiable because
the dispatch decision does not interact with the whole weather
system in the short term.

V. CASE STUDY

The scenario approach formulation (4) has been validated
in the chance-constrained economic dispatch many times [5],
[15], [16]. The scenarios in these previous papers were all
obtained by sampling from some particular distribution, such
as normal and beta distribution, which didn’t utilize and exploit
the distribution-free advantage of the original scenario theory.

In our simulation, the knowledge about uncertainty is acquired
directly through experience, i.e. the past recorded data. We focus
on the economic dispatch under the 5-min unit, where the 5-min
ahead wind forecast uncertainty plays an important part. The
peak hours 16:00-18:00 in August 2022 is selected as the testing
period with 744 dispatch intervals. For each testing interval, the
empirical forecasting error scenarios are generated from the past
three or six months, i.e. a dataset with 25920 or 51840 5-min
ahead forecasting errors with their corresponding environment
parameters. All the data is acquired from the ERCOT website
based on the five wind forecasting regions in Fig. 2 [1], while
the weather data is from [40].

All the problems are solved using 64 GB RAM on the Intel
XEON-10885 M CPU (2.4 GHz). The mathematical models
were formulated using YALMIP on Matlab R2023a and solved
using Gurobi v9.5.
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Fig. 2. Wind forecasting region in ERCOT.
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Fig.3.  Scatter plot (left) and density function (right) of forecasting error under
different wind power forecasting value.

A. Conditional Wind Forecasting Error

In this section, we mainly focus on the wind forecasting error
affected by the deterministic wind forecast value, the wind power
ramp rate, temperature, and relative humidity. To illustrate the
wind forecasting error under different wind forecast values,
the empirical forecasting error data is extracted from June to
August 2022 in a similar geometric region in Texas. Fig. 3.
shows the wind forecasting error density function under different
normalized wind forecasting levels. It is clear that the empirical
distribution under high wind output level ([0.8, 1], blue) is
right-skewed to the lower wind output level ([0, 0.8], green),
which means directly using the whole past scenario may make
the decision aggressive under high wind weather. Similar results
are also found in [25], [41].
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Fig. 5. Density function of forecasting error under different temperatures and

relative humidity.

TABLE I
CORRELATION COEFFICIENT BETWEEN WIND POWER FORECASTING ERROR
AND SOME ENVIRONMENTAL PARAMETERS

Correlation between forecasting error and  Coefficient
Wind Power Forecasting Value 0.50
(Absolute) Wind Power Changing Rate -0.17
Temperature -0.07
Relative Humility -0.03

Similarly, under different wind power ramp rates, the forecast-
ing error has different patterns. The ramping rate of wind power
is an aggregated parameter reflecting the stationary level of the
environment. Typically, the high absolute wind power ramp rate
means the weather data used for wind power forecasting is less
precise than the stable environment, which results in different
forecasting error distributions. After normalizing the ramping
rate to [—1, 1] interval, the distribution of forecasting error
conditions on a high ramp-up rate ([0.6, 1]) from June to August
2022 compared with its marginal distribution is shown in Fig. 4.

Unlike the wind power forecast value and ramp rate, the
temperature and relative humidity have less influence on the
wind power forecasting error. The distribution of wind power
forecasting errors in southern Texas during hot and cold, dry
and wet days of 2022 are compared in Fig. 5. It is obvious that
the forecasting error under different temperatures or humidity
shares a very similar distribution.

To quantify the correlation level between the above four
parameters and the wind power forecasting error, we calculate
the Pearson correlation coefficient between each parameter and
the forecasting error in southern Texas based on the past half
year’s data, i.e. February to July 2022. As shown in Table I,
the wind power forecasting value and changing rate have more
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correlation with the forecasting error than the temperature and
relative humility.

Remark: Due to confidentiality concerns, the chosen four
parameters are publicly available information accessible online.
Decision-makers also have the option to incorporate locally
measured data, including wind speed and direction, air pressure,
and freezing level, to enhance the resolution of their analysis. By
combining these diverse meteorological parameters, it becomes
possible to delineate specific scenarios for various extreme
weather events based on their respective thresholds.

After the above calculation, the scenarios under similar en-
vironments can be generated by Algorithm 2 or 3, where the
scenarios are selected from a smaller parameter space rather
than the conventional method whose scenarios are randomly
extracted from the whole past data. In other words, the dis-
tribution of empirical scenarios is adaptive changing with the
environment, while it is fixed in the conventional method.

Supposing 200 scenarios are needed to meet the risk re-
quirement, Fig. 6 shows some real future error values and
the scenarios’ empirical distribution in the whole last year,
while the proposed method gives the adaptive empirical dis-
tribution for each decision-making time in Fig. 7.
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Fig. 8. Modified 24-bus power system integrated with wind.

The advantages of sampling from similar parameter space
are obvious from the above simulation. First, the distribution of
scenarios will be compressed into narrower intervals giving a
higher-resolution description of the future uncertainty. Second,
the future error values are also covered by this empirical distri-
bution, which somewhat validates our method’s correctness.

B. 24-Bus System

The 24-bus System is modified from the IEEE Reliability
Test System (RTS-24) [42] with an additional six wind farms
to mimic the high renewable energy penetration as illustrated in
Fig. 8. The detailed information, including generator parameters,
reactance and capacity of transmission lines, and the load profile
can be found in [43]. The forecasting profile of wind generators
located at bus 3, 5 and 7 are directly scaled from the west Texas
region wind forecasting results, while the wind farms at bus 16,
21 and 23 are from the south Texas region. Each wind farm
is assumed with 400MW capacity and a low marginal price (3
$/MWh).

As suggested in [44], the capacity on the transmission lines
connecting the node pairs (15, 21), (14, 16), and (13, 23) is
reduced to 400MW, 250MW, and 250MW, respectively. This
is done to introduce bottlenecks or congestion in this high wind
penetration system, which shares a similar situation when comes
to the real power grids [45].

The number of decision variables n in the 24-bus system is 22
after eliminating the equation constraints. In this case, a rough
approximation of Helly’s dimension h by n will increase the
needed number of scenarios to meet the risk threshold, which
results in great conservatism of the final decision. To illustrate
this, Fig. 9 shows the relationship between the needed number
of scenarios and sample complexity under the risk ¢ = 0.05 and
confidence parameter 3 = 10~3. It can be seen that when the
sample complexity is 22, the needed number of scenarios is
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Fig. 10. Density function of the sample complexity over the 744 dispatch
intervals.

779, which is much larger than the 324 needed scenarios under
6 sample complexity.

Instead of wusing the a-prior approach, we apply
Algorithm 3 incrementally tuning risk for finding the exact
sample complexity and the needed number of scenarios.
Because the wind output and demand are changing, the sample
complexity needs to be updated for each dispatch interval. Fig.
10 shows the empirical distribution of the sample complexity
of the 744 dispatch intervals during August 16:00-18:00 we
studied, where the average sample complexity (5.8) is much
smaller than the number of decision variables (22). This
evidence implies that in the previous sample and discard
risk-tuning method [16], where the sample complexity is
first supposed to be the number of decision variables 22, the
decision makers may need to discard some redundant scenarios
to achieve the same performance as our incremental method.

Table II compares the initial and final input sample size of
these two risk-tuning methods when sample complexity is 6.
Compared with sample and discard, incremental optimization
guarantees the minimum input sample size with fewer itera-
tion times, which is beneficial in the situation of limited high-
accuracy data. Fig. 11 shows more details about the risk-tuning
process of these two methods. The incremental optimization
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TABLE I
COMPARISON OF THE RISK TUNING PROCESS

Risk Tuning Method Sample and Discard [26] Incremental Optimization

Initial Input Sample Size 779 135
Intial Risk Level 0.021 0.117
Final Input Sample Size 771 324
Iteration Times 8 6
0.12 T T T T T T T
N=135
0.11 —e— Sample and Discard §
—— Incremental Optimization
0.1 - - - - Setting Risk Level .

Risk Level

1 2 4 5 6 7 8 9
Iteration Times
Fig. I1.  Risk tuning details of two different methods.
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Fig. 12.  Dispatch cost by sampling from different parameter space and input

sample size between 16:00 and 18:00 on August 2nd, 2022 (24-bus system, high
wind day).

method’s efficiency results in fewer iteration times and less
sample size in each iteration.

Remark: The final input sample size in the sample and discard
method is much larger than the incremental method because only
support scenarios are discarded in [26] but not randomly, and this
risk bound is proved to be not tight in recent research [46].

So far, the simulation results have provided insights into the
specifics of scenario generation and risk-tuning processes. Sub-
sequent simulations will focus on examining the cost and actual
violation outcomes following the scenario-based optimization
model (3).

After setting the same risk and confidence parameter as Fig. 9,
we can input different size of scenarios to meet the risk require-
ment based on the sample complexity of each dispatch interval,
which is more efficient than the traditional sample and discarding
method. Fig. 12 illustrates the adaptive input sample size (green
triangle) between 16:00 and 18:00 on August 2nd, 2022, where
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Fig. 13.  Dispatch cost by sampling from different parameter space and input

sample size between 16:00 and 18:00 on August 30th, 2022 (24-bus system, low
wind day).

the dispatch cost of sampling from different parameter spaces is
also compared.? During these two hours, the average wind power
output is 23% of the total wind generation capacity, which is a
relatively high wind period during August rush hours. It is clear
that sampling from a similar environment space results in lower
costs in each dispatch interval than others.

It needs to be clarified that because of the stochastic property,
sampling from a similar environment does not ensure a lower
cost in each dispatch interval, especially on a low wind day. For
example, the average wind power output is only 13% of the total
wind generation capacity between 16:00 and 18:00 on August
30th, which makes the economic benefits of sampling from a
similar environment not comparable with the others (Fig. 13).

However, sampling from a similar environment builds a more
precise model of the uncertainty variables, which results in a
more trustworthy risk guarantee of the final solution. Table III
compares the testing risk and the average cost of each 5-min
dispatch interval by sampling from different parameter spaces
during the rush hours 16:00 to 18:00 in August, where sampling
from similar environment parameter space results in both lower
testing violations and less dispatch cost. Meanwhile, when ran-
domly sampling from the past half year, the testing violation
0.054 (the bold value in Table III) even exceeds the setting
risk 0.05, which invalidates the risk-guarantee property of the
scenario approach.

C. 118-Bus System

We apply our method to a larger system in this section,
based on the test case c//8swf.m in MATPOWER [47]. This
system includes 118 nodes, 210 lines, and 52 generators, 11 of
which are modeled as wind farms. To address the influence of
wind uncertainty on the economic dispatch, we replace the 4
storage units with the same capacity wind farms. Meanwhile,
the transmission line capacities are set to be 60% of the original
value to introduce more congestion in the system.

3The dispatch cost is calculated after each dispatch with true wind output data,
and the searching space of a similar environment is set to the past 3 months.
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TABLE IIT
VIOLATION AND AVERAGE DISPATCH COST OF SAMPLING FROM DIFFERENT PARAMETER SPACES (24-BUS SYSTEM)
Sampling Space Past Half Year  Past Three Months  Similar Environment
Setting Violation 0.05 0.05 0.05
Actual Violation 0.054 0.040 0.036
‘Whole August Average Cost(10*$) 47522 47512 4.7444
Average Solving Time(s) 0.181 0.166 0.165
Average Sampling Time(s) 0.015 0.014 0.020
2nd August (high wind) Average Cost(10*$) 4.2257 42154 4.1956
30th August (low wind) Average Cost(10*$) 4.6414 4.6430 4.6433
TABLE IV
VIOLATION AND AVERAGE DISPATCH COST OF SAMPLING FROM DIFFERENT PARAMETER SPACES (118-BUS SYSTEM)
Sampling Space Past Half Year  Past Three Months  Similar Environment
Setting Violation 0.05 0.05 0.05
Actual Violation 0.042 0.035 0.035
Whole August Average Cost(10°$) 1.7445 1.7454 1.7414
Average Solving Time(s) 13.66 13.41 13.30
Average Sampling Time(s) 0.022 0.021 0.028
2nd August (high wind) Average Cost(10°$) 1.5294 1.5435 1.5173
30th August (low wind) Average Cost(10°$) 1.7251 1.7255 1.7271
168 X10° 1700 Table IV lists the testing risk and the average cost of 5-min
' —— Similar Envrionment - - -Past 6 Months dispatch during August peak hours (16:00-18:00), where the
R = = ~Past 3 Months 4 Sample Size | 4500 result has a similar pattern with the 24-bus system. The 5-min
1631 A Aah i short-term wind power forecasting error is relatively lower than
B 1 A I . . .
- “ h no At S other long-term forecasting errors, but a more efficient scenarios
Z X A Iy A # 11200 % . . p :
& 0 ! P generation model will make the chance-constrained dispatch
[=% .
=1, '.' ' £  solution more trustworthy.
= ! ! g Although there’s no theory guarantee for a lower cost solution
a ! :' ) by sampling from a similar environment, the simulation shows
1. ! the economic advantage of the proposed efficient scenarios
generation model, especially during high wind situations. To
. L A ) . . . .
16:05 1635 1705 1735 1755 quantlfy the relationship betwe.en the accuracy of the scenario
generation model and economic benefits will be one possible
Fig. 14. Dispatch cost by sampling from different parameter space and input ~ direction of future research.

sample size between 16:00 and 18:00 on August 2nd, 2022 (118-bus system,
high wind day).

Similar to the simulation in the 24-bus system, the wind power
forecasting and real value are directly modeled by the data from
ERCOT with 7 wind generators from south Texas and 8 wind
generators from west Texas. Fig. 14 shows the adaptive input
sample size and the dispatch cost of sampling from different
parameter spaces between 16:00 and 18:00 on August 2nd, 2022.
In this period, the average wind power output accounts for 24%
of the total wind generation capacity, a relatively high wind
output level during August peak hours.

Benefiting from the smaller uncertainty space (see Figs. 6, 7),
sampling from a similar environment helps the decision maker
avoid some odd scenarios when applying scenario approach in
the real world. These odd scenarios typically make the final
decision more conservative, which can be illustrated by the cost
spikes in Fig. 14 when we directly sample scenarios from the
past.

Regardless of the selection of sample space, the number of
needed scenarios is the same, which results in a similar problem-
solving time of three different sample spaces in both Tables III
and IV. Meanwhile, computing indicator vector (7) of similar
environments increases the sampling time, but it’s far less than
the solving time by one or more orders of magnitude.

VI. CONCLUSION

This article studies the main two barriers to applying the
scenario approach to the economic dispatch with high penetra-
tion of renewable resources, i.e. lack of accurate scenario gen-
eration models and inefficient risk tuning process. Leveraging
correlation analysis, we generate scenarios via an environment
filter with empirical distribution closer to the true probability
measure. After embedding this scenario generation model with
the incremental scenario optimization algorithm, we propose
an efficient risk-tuning scheme, which can solve the optimal
solution meeting risk requirement with minimum data size and
provide other higher-risk solutions to system operators in mean-
while. Case studies based on real-world wind data and modified
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IEEE benchmark systems show the effectiveness and advantages
of our methods.

Directly generating scenarios from past experience may be a
naive approach, but it works well in practice when the needed
data size is much smaller than the size of the past data pool.
Future work includes (1) comparing the results of using other
scenario generation methods, such as the generative model in the
field of machine learning; (2) extending the economic dispatch
problem to a multi-stage framework, i.e. look-ahead economic
dispatch, where varying risk tolerance levels are allowed across
different time horizons to enhance the adaptability; and (3)
applying the proposed scheme to unit commitment and other
non-convex decision-making processes in electric power sys-
tems, which requires efficient handling of discrete variables
under incremental scenarios to ensure timely solutions.
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