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ABSTRACT

Collision problems are important problems in complexity theory
and cryptography with diverse applications. Previous fruitful works
have mainly focused on query models. Driven by various applica-
tions, several works by Bauer, Farshim and Mazaheri (CRYPTO
2018), Itsykson and Riazanov (CCC 2021), G66s and Jain (RAN-
DOM 2022) independently proposed the communication version
of collision problems.

In the communication setting, both Alice and Bob receive k ran-
dom subsets of [N]: Sy, ...,Sc and Ty, . . ., Ty with each of size roughly
VN, where a typical choice of k is in the order of VN for appli-
cations. Then Alice and Bob aim to find a pair (x,x’) such that
x,x" € §;NT;j for some S; and T;. A simple protocol that solves this
problem with O(N'/*) communication bits is the following: Alice
sends to Bob a random subset of Sy of size N1/4 and Bob checks if
there is a set T; that has more than two intersections to this subset.
All the papers mentioned above believe this bound should be tight
up to some log factors.

In this paper, we prove an Q(N'/#) randomized communication
lower bound, affirming the conjecture above. Previously, only an
§(N1/12) was known by a work of G66s and Jain (RANDOM 2022).
Our lower bound provides direct applications to cryptography and
proof complexity via connections by Bauer, Farshim, and Mazaheri
(CRYPTO 2018) and Itsykson and Riazanov (CCC 2021).

Our proof technique could be of independent interest as it is
an extension of simulation methods to non-lifted functions. Pre-
viously, simulations have been widely applied to lifted functions
(a.k.a composed functions), which leads to beautiful query-to- com-
munication lifting theorems. However, many important communi-
cation problems are not lifted functions. We believe our methods
could give more applications. In particular, it may have applica-
tions to communication complexity of search problems with many
solutions. Note that many existing methods do not apply to this
setting.
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1 INTRODUCTION

Collision problems are important problems in theoretical computer
science with wide applications in quantum complexity [1], stream-
ing complexity [6, 18], cryptography [3, 17], property testing [4],
quantum algorithm [19], proof complexity [14], distributed com-
puting [7] and approximate counting [2]. Previous research on col-
lision problems has mainly focused on query models.

However, the communication version of collision problems was
not widely studied until several applications have been identified
recently. In this paper, we study two communication versions of
collision problems, giving direct applications to cryptography and
proof complexity.

Cryptography motivations. To analyze the security of cryptogra-
phic hash functions, Bauer, Farshim, and Mazaheri [3] formulated
and studied the backdoored random-oracle (BRO) model. They sh-
owed that, via reductions to lower bounds of communication prob-
lems, central cryptographic security properties are achievable by
some combiners in the BRO model. Concretely, they formalized
the following multi-set double-intersection problem.

Problem 1.1 (Multi-set double-intersection [3]). Both Alice and
Bob hold VN random sets:

e Alice independently samples sets Sy, .. "S\/ﬁ C [N] with

each element of [ N] contained in S; with probability 1/ VN.
e Similarly, Bob independently samples T3, . Ty < [N]
with each element of [N] contained in T; with probability

1/VN.
Their goal is to find a pair s # s” such that s,s” € S; N T} for some
ij.
By a simple calculation, the sampled instances will contain such
a solution pair with high probability. Assuming the hardness of

the multi-set double-intersection problem, [3] obtained collision-
resistant combiners in the BRO model. However, proving such a
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communication lower bound looks challenging. Hence, they put it
as an open problem.

On the other hand, based on the birthday paradox, a simple pro-
tocol solving this problem with O(N 1/4) communication bits can
be:

(1) Alice sends to Bob a random subset of S; with size of N4,
(2) Bob checks if there is a set T; that has more than two inter-
sections to this subset.

[3] believed this simple algorithm could be the best attacker
of multi-set double intersections. They made the following conjec-
ture.

ConNJECTURE 1.2 ([3]). The randomized communication complex-
ity of Problem 1.1 is QN4

Proof complexity motivations. The connections between commu-
nication complexity and proof complexity have been extensively
studied for many years. To study proof complexity lower bounds
for natural formulas, Itsykson and Riazanov [14] introduced a com-
munication search problem called the bit-pigeonhole principle prob-
lem.

Problem 1.3 (Bit-pigeonhole principle problem [14]). For N <
M, the bipartite communication search problem BPHP% is defined
below,

e Alice holds x = (x1, ..., xp) € [VN]M;
e Bobholdsy = (y1,...,ym) € [VN]M;

The goal is to find a pair of distinct coordinates i,i’ € [M] such
that x; = x;» and y; = y. We call those collision pairs, or simply
collisions.

BPHPAN’I is a total search problem and always has a collision

for N < M. [14] proved that Q(VN) randomized communication
lower bound for BPHP%Jr1 via a randomised reduction from set-
disjointness. This lower bound implies that any proof system that
randomized protocols can efficiently simulate requires exponen-
tial size to refute bit-pigeonhole formulas featuring M = N + 1
pigeons and N holes. Since then, a later result by G66s and Jain
[8] showed an Q(Nl/lz) lower bound for BPHPIZ\]N. Both [14] and
[8] are interested in similar communication lower bounds for the
weak pigeonhole principle with arbitrary M > N pigeons and N
holes. For M = 2N, G66s and Jain [8] proved the following lower
bound.

THEOREM 1.4 ([8]). The randomized communication complexity
of BPHPN is Q(N'1/12).

Built on the birthday paradox again, a simple protocol (see [8])
also solves BPHPJZVN with O(N'/*) communication bits. To this end,
a natural question arises:

CONJECTURE 1.5 ([8, 14]). The randomized communication com-
plexity ofBPHPZNN is Q(N1/4).

1.1 Our Contribution

Our contribution is two-fold. Firstly, we affirm Conjecture 1.2 and
Conjecture 1.5, giving several direct applications in both cryptogra-
phy and proof complexity. On the other hand, our proof technique
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can be considered as an extension of query-to-communication lift-
ing theorems to general functions without a composed form. Lift-
ing theorem is a nice idea developed in recent years with diverse
applications in a lot of areas. However, lifting theorems have mainly
focused on applications with lifted functions previously. In this pa-
per, we aim to extend these applications to broader functions. We
prove the following two theorems.

THEOREM 1.6. For any randomized communication protocol that
solves the multi-set double-intersection problem with constant prob-
ability, it must communicate Q(N1/4) bits.

THEOREM 1.7. For any M > N, the randomized communication
complexity ofBPHP% is Q(N1/4).

Theorem 1.7 holds for any M > N, which is an extension of [14]
(M = N +1)and [8] (M = 2 - N). Furthermore, this lower bound
is tight for M = (1 + Q(1)) - N (up to some logarithmic factors),
matching the upper bound protocol by [8] 1.

Applications: Our results directly give some applications in cryp-
tography and proof complexity by the connections built by [3, 8,
14].

(1) Since we affirm the hardness assumptions by [3], collision-

resistance combiners for backdoored random oracles could
be obtained directly through the reduction by [3].

(2) Using the reductions by [14], we directly show that any
proof system that can be efficiently simulated by random-
ized protocols (most notably, tree-like Res(®) [15]) requires
exponential size to refute bit-pigeonhole formulas featuring
M pigeons and N holes for arbitrary M > N, which answers
the open problem in [14]. Furthermore, our communication
lower bound is tight for a large range of M and N.
Building on connections by [13, 14], our result implies that
every tree-like cutting planes of the weak bit pigeon hole
principle BPHPY, M > N, has size 29N 1 improves

the lower bound of 22(N'"*) by Hrube§ and Pudlak [11]. We
note that [11]’s lower bound also holds for non-tree-like
CPs. Whereas, our improvement only applies to tree-like
CPs.

1.2 Proof Outline

We now give a high-level description of our proof to Theorem
1.7. In order to prove randomized communication lower bounds,
it is sufficient to show that any deterministic protocol with a small
amount of communication bits can not find collisions under the
following distribution.
Both Alice and Bob’s inputs are uniformly sampled from [VN]M.
Definition 1.8. Let R =X xY C [VNIM x [VN]M be a rectangle,
and let J;, Jo € [M]. We say that S := (R, J1, J2) is a structure if,
e Xisfixedon J{ := [M]\ J1, ie., for every i € J{, there is an
sj € [\/N] such that x; = s; for all x € X.
e Yisfixed on J7, ie, for every i € J5, thereisanr; € [VN]
such thaty; =r; forally e Y.
e Foralli, i’ € J{,ifs; = sy, theny; # yy forally € Y.

Their protocol is for M = 2 - N. But it can be extended to any M = (1+ Q(1)) - N
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e Foralli i’ € Js,ifri = ry, then x; # xy forall x € X.

We denote |S| = |R| and we say that a rectangle R is a structure if
there is a pair (Ji, J2) such that (R, J1, J») is a structure.

Our proof includes two steps.

e We first show that R € R!¢?f can be covered by combinations
of pseudorandom structures.

e Then we show that protocols can not find collision pairs
from such pseudorandom structures.

The last two constraints of structures ensure that there is no col-
lision in J{ and J;. In order to prevent the protocol from finding
collisions from J; and J,, we borrow the dense notion from query-
to-communication lifting theorems to capture pseudorandomness.
Roughly speaking, we say that X is dense if, for every I C Jj, the
marginal distribution X; has a very high min-entropy. Similarly,
we can define it for Y. Building on the dense notion, we prove the
following claim.

CramM 1.9 (INFORMAL). Any protocol can not find a collision from
a dense structure.

The formal version of this claim is Claim 3.10. Our next step is to
show that for a communication protocol with o(N 1/ 4) communica-
tion bits, the corresponding leaf rectangles can be almost covered
by dense structures.

CraiM 1.10 (INFORMAL). Let R pe g partition associated with
a communication protocol. We can further partition each R € Rleaf
into many smaller rectangles

R=51U---USp UB{U---UB;,

where Sy, ..., S, are rectangles with the form of pseudorandom struc-
tures and By, . .., Bg, could be arbitrary. If the communication com-
plexity of the protocol is small, we then show that the union of all B
rectangles is small compared to the input space.

The proof of this claim is inspired by the simulation process in
lifting theorems. However, there are two important conceptual dif-
ferences:

o The purpose of simulations in lifting theorems is to convert
a communication protocol to a decision tree. By contrast,
our process only decomposes rectangles in Rleal into dense
structures.

e The simulation in lifting theorems needs a gadget. However,
our decomposition only focuses on the structure of rectan-
gles. This enables us to apply simulations for more general
non-composed functions.

Connections ofBPHP’AV[I and multi-set double intersection. For each

pair of inputs of BPHP%I x,y € [VNIM, we convert it into a collec-
tion of sets

Vie [VNI,Si={je[M]:xj=i}andT; = {j € [M] : y; = i}

The definition for BPHP%I under uniform distribution can be refor-
mulated as follows:

Problem 1.11 (Restated). For N < M,
o Alice samples sets SN [M] with each s € [M]
uniformly assigned to a set S;.
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e Bob samples sets Tl,...,Tm C [M] with each s € [M]
uniformly assigned to a set S;.

Their goal is to find a pair s # s’ such that s,s" € S; N T; for some
i, j.

Under this interpretation, the only difference between BPHP%I
and the multi-set double intersection is that BPHP% promises that
each element is contained in exactly one set but in the multi-set
double intersection, each element is independently sampled for
each set. The two distributions are generally similar, and our proof
can be applied to multi-set double intersection directly.

Technical contribution and previous barriers. At first glance, the
collision problem looks hard to many existing lower bound meth-
ods since it is a search problem with many solutions. For random
sets S; and Tj, it has that |S; N Tj| > 2 with a constant probabil-
ity. Hence, it has Q(k?) = Q(N) pairs of solutions in expectation
in collision problems. To the best of our knowledge, many exist-
ing communication lower bound techniques do not apply to this
setting.

To overcome this barrier, G56s and Jain [8] introduced the query-
to-communication lifting approach. Concretely, G66s and Jain pro-
posed a new communication problem Coly o Ver™, where Coly
is the query version of a collision problem and Ver is a small-size
gadget. They proved a BPHPJZVN (Problem 1.3) lower bound via two
steps:

(1) The communication complexity of Colpy o VerY is Q(N1/3)
(2) Building on Coly o VerV, [8] proves an Q(N'/12) lower
bound for BPHPIZVN via reductions.

Since there is a loss in the reduction [8], the limitation of their
framework is an Q(N'/8) lower bound.

The notion of query-to-communication lifting theorems is a re-
markable technique introduced recently [5, 9, 10, 16, 20] to prove
communication complexity lower bounds with a wide variety of
applications in many areas. However, despite many applications,
one of the main limitations of lifting theorems is that: it only ap-
plies to lifted functions, i.e., a function has the form f o g where f
is a query problem and g is a small-size gadget, such as ColyoVer".
Since collision problems such as BPHP cannot be written as lifted
functions directly, lifting theorems can not be applied directly. This
is also the main reason that [8] introduced the Coly o VerN prob-
lem and proved BPHP lower bounds through Coly o Ver. How-
ever, the reduction caused a loss making the lower bound of BPHP
not tight.

By contrast, our proof is not built on reductions. We extend the
simulation method (the idea used to prove lifting theorems) into
broader functions that do not have the lifted form. Besides the col-
lision problems, we believe that our approach may enable more
applications.

2 PRELIMINARY
We first fix some of the notations through this paper.

e A large domain [N] and we set k = VN.

e Alice and Bob receive inputs x € [k]™ and y € [k]M respec-
tively. They hope to find a pair (j, j*) such that x; = xj» and
Yji=Yj-
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o We use letters X, Y to denote subsets of [k]M. For a set X,
we use the bold font X to denote the uniform distribution
on X.

e For aset ] C [M], we use J¢ := [M] \ J to denote its com-
plement.

e We use X to denote the marginal distribution of X on J.

Definition 2.1 (Dense). Let D be a random variable on [k]M. We
say that D is y-dense on J if for every subset I C J it holds that

Heo(Dyp) 2y - 1] - log k

This notation often appears in the query-to-communication lift-
ing theorem [5, 10]. However, in this paper, we set y = 1 — @
which is different from previous methods where they usually set
y =0.9.

Definition 2.2. For a distribution X and a set J C [M], we define
its density-loss by,

Deo(X, ]) = log(kV)) — Hoo (X)) = 1] - log k — Hoo (X))
For a tuple (X X Y, J1, ), we define its density-loss by
Deo(X XY, J1, 2) = Doo(X, J1) + Deo (Y, J2)

We note that the density-loss is non-negative and D (X, J) = 0 if
and only if X7 is uniform.

3 PROOF OF THE MAIN THEOREM

We now prove Theorem 1.7. We first recall the setting. In this prob-
lem, Alice and Bob receive (uniform sampled) inputs x,y € [k]M
and they want to find a pair of distinct coordinates i,i” € [M]
such that x; = x and y; = y;». We aim to prove an Q(N1/4) lower
bound for this problem. As we briefly mentioned in Section 1.2, a
crux in our proof is to decompose each leaf rectangle into dense

structures (Definition 1.8).

3.1 Decomposition Process

In this section, we discuss the decomposition process, which is
the crucial step in our proof. We need to partition each rectan-
gle R € Rl into a combination of dense structures and some
error rectangles that may have collisions. We first introduce the
following density-restoring partition lemma which is similar to the
density-restoring partition in [5, 10].

LEMMA 3.1 (DENSITY-RESTORING PARTITION). LetS = (XXY, J1, J2)
be a structure. If Y is further y-dense on J,, then there is a partition
of X XY,

XxY=X"xY UX!x Y2, U UX! x Y UX! x Y,

error error

such that every X' is associated with a set I; C Ji and p>; =
% satisfies the following properties:

(1) Foreveryi, St := (X! x Y., Jy \ I, Jo) is a structure.

(2) The tuple B := (X' X Y& or- 1 \ Ii, J2) could be arbitrary.

(3) Foreveryi, X" isy-dense on Ji \ I;.

@) Doo(X, i\ 1) < Deo(X, J1) = || +log 5.

(5) Foreveryi,(Y', Y} o) isapartition of Y such that |YE, o.|/]Y] <

2- (1L VTP = 12 k.

633

Guangxu Yang and Jiapeng Zhang

Similarly, if X is y-dense on J1, analogous conclusions hold for the
partition of R with the roles of X andY interchanged.

The proof of Lemma 3.1 builds on two steps. We first apply the
density-restoring partition lemma from [10], decomposing X X Y
to

XxY=X'XYU---UX'xY

such that for every i, X' is y-dense on J; \ I; and Deo (X%, J1 \
L) < Doo(X, J1) —|Li| +1log 1%1 However, these tuples (X! x Y, J \
I, 1), ..,(Xt x Y, Ji \ I, J2) are not necessarily structures. We
then further decompose Y into (Y%, YZ,,,) by moving the collision
part to Y, .. We defer the formal proof to Section A.

Recursive decomposition. Building on Lemma 3.1, we now de-
scribe our decomposition process. We first introduce some nota-
tions. Let IT be a fixed protocol tree.

e We use R/ to denote the rectangles associated with nodes in
the j-th layer of the protocol tree. Note that R = {[k]M x
[k]M} contains only the root and Rleaf contains all leaves.

e We recursively (from the root to the leaves) decompose each
rectangle associated with a node in the tree. For each R, we
decompose it as two parts: S(R) = {(S, J1, }2)} and B(R) =
{(B, J1, J2) }, where each (S, J1, J») isa structure and (B, J1, J2)
could be arbitrary. We also denote £(R) = S(R) U B(R).

e For j,let S/ := Ugeri S(R), B/ := Ugeri B(R) and L/ =
Urews L(R) be the union of all decomposition in the rect-
angles in the j-th layer respectively 2.

Let us explain our recursive decomposition process.

(1) For the root node, we simply let S([k]Mx[k]M) = {([k]Mx
(k]™,0,0)} and B([k]M x [k]M) = {}.

(2) For internal nodes, let R be a rectangle with known decom-
position S(R) and B(R), and let R® and R! be the children of
R.For R with i € {0, 1}, in order to obtain S(R’), we simply
apply the density-restoring partition lemma (Lemma 3.1) on
(SN RE Ji, Jo) for each (S, J1, Jo) € S(R).

We formalize this process as Algorithm 1 below.

Algorithm 1: Decomposition Algorithm (when Alice is
speaking)

Input: A rectangle R = X X Y and its decomposition S(R)
and B(R)
Output: Output S(R®), B(R®) and S(R!), B(R!), where
RO, R are children of R in the tree
1 Initialize S(R%), B(R?), S(R'), B(R') — 0.
2 for each (S, J1,J2) € S(R) do
3 For each b € {0, 1}, we decompose (SN RY) as
stlypbly...usht UBP (Lemma 3.1)
4 | Update S(R?) — S(RP) u {sP!, .. sP1} and
B(RY) « B(RY) U {BV1, ... Bb1).
5 for each (B, J1, J2) € B(R) do
6 For each b € {0, 1}, update
B(R’)  B(R") U{(BNR", J1. ])}.

2We use the notations S, Bleal rleal for Jeaf rectangles.
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Following the discussion above, an important step in our analy-
sis is to upper bound the size of Bleal We will prove that in the de-
composition algorithm, whenever we put a tuple (B, J;, J2) into BJ
for some j, the size of B can be upper bounded by (|]f|Z + |]2C|2)/k.
First, we prove the upper bound of the number of fixed coordinates
(IJ71 and |J5|) in our analysis.

3.2 Upper-Bounding the Number of Fixed
Coordinates
In this subsection, we show that the average number of fixed coor-

dinates is O(|II|) for leaf rectangles in Rleaf Firstly, we formalize
the definition of the average number of fixed coordinates.

Definition 3.2. Let R be a rectangle with a decomposition into
a set of tuples £ (includes both S and B). We define its average
fixing number as

4]
ERL)= D) e I+ 15D
(LJik)eL
For nodes in the j-th layer of the tree, we define its average fixing

number by,
El = Z
ReRJ

The main lemma in this section is the following upper bound for
Eleaf

R[

i+ ER L(R)).

LEMMA 3.3. Given a protocol I1, then Eleaf — o(jm)).

Our proof of this lemma is inspired by query-to-communication
lifting theorems again. We use the following density function (aka
potential function).

Definition 3.4. Let R be a rectangle with a decomposition into a
set of tuples L. We define the density function by

>
R
(L,ﬁ,]z)€£| |

For nodes in the j-th layer of the tree, we define its density function

by,
- Rl
D= Z M
ReRJ

We adopt the density increment arguments [5, 10, 12, 21] in our
proof. Concretely, we show that each communication bit increases
the density function by at most O(1), and each fixing of a coordi-
nate decreases the density function by at least Q(1). The following
claim is a direct corollary of the density-restoring lemma (Lemma
3.1).

Cramv 3.5. Let (R, J1, J2) be a structure, and let the following de-
composition obtained by Lemma 3.1.

R=x'xyluxtxyl .u
Let S, BY,...,S*, B? be the corresponding tuples from Lemma 3.1.
Then we have that

Z(lsll

IR|
< Do(R 1 J1) - Z '|X| |5 +2.

DR L) = Do (L, J1, J2)-

- D(R, L(R)).

SUXExYtuxtxy?

error-

|B'|

Doo(sl ]1 \Il’]z) + = | |

- Do (B, J1 \Iz,]z))
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We note that the last term Zl \XI - |Ii] + 2 is the density gain

from fixing. We defer the detailed proof of Claim 3.5 to Section B.
Now we are ready for Lemma 3.3.

Proor oF LEMMA 3.3. In order to prove this lemma, it is suffi-
cient to prove that, for all j > 0,

El <3.j-DJ.

Recall that D/ > 0 for all j > 0, the above inequality then im-
plies that El¢af < 3. |II|. We prove the statement by induction.
In the roof, it is clear that E® = D% = 0. Now we assume that
E/ < 3. j—DJ and aim to show that

Efl <3.(j+1)-D/*
For any rectangle R = X X Y € R/, we analyze the decomposition

process in Algorithm 1.

e Foreachtuple (L, J1, 2) € L(R) (either from S(R) or B(R)),
the decomposition algorithm (Algorithm 1) first breaks it
into (L N R%, Ji, J») and (L N RY, Ji, J»). Let b be a Bernoulli

. . _ 1 _ IRONL]
random variable with Pr[b = b] = o e then have
that
Pr[b = b] - Deo(L N RY, J1, J2)
be{o,1}
_ b log— ()
= DeallJo)+ ) Prib=b]-log gy

be{o,1}
= Doo (L, J1,J2) + H(b) < Doo(L, J1,J2) + 1.

This inequality shows that the partition step increases the
density function by at most 1.

e In Step 3 and Step 5, Algorithm 1 further decomposes (by
Lemma 3.1) SNR? and SNR! for those structures (S, J1, J») €
S(R).Forb € {0,1},let SLUBPLU. - .USPt UBY! be the de-
composed rectangles and let .. Itb be the associated sets
of newly fixed coordinates in the decomposition. By Claim
3.5, we have that,

2 S 5b 1 )
— | ISNR?| !
1) “
|SﬂRb| co s J1 ji»J2

< Deo(SNRY, J1, o) ~T(SNRY) + 2.
Here T(SNRY) := o, (%
ber of newly fixed coordinates.
On the other hand, we have that (BN R%) = 0 forall B €
B(R) since the decomposition does not fix new coordinates
for those tuples. By the definition of E(R, L(R)), we also
have that,

|Z; b |) is the average num-

be{0,1}
|L N RY|
|R?|

RY|

-T(LNRY).
7 (LR

=E(RLR)+

be{0,1}

2,

Le L(R)
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By combining the Inequalities (1) and (2) and the definition of
D(R, L(R)) we have that

be{o,1}
b
< D(R; L(R)) - Z % |Lm,,R|-F(LmRb)+3
be{0,1} Le L(R) IR?]

“owrm)- Y W ew oy e L) 5
be{0,1}

Now we take the average on all rectangles in R/,

i+ _ |R| IR"| b. p(pb
pit= N Y TR DR LE)
ReRI be{o,1}
IRl
< D(R; L(R
< D wm [PRLE®).
ReRJ
Rb
- > R BRY, £(REY) + ER L(R) +3
be{o,1} R
=D/ —F* 4 E 43
= (D) +F/ +3) - F/*!
<(3-j+3)-F/*!
=3.(j+1) - E*L
This finishes the proof. O

3.3 Upper-Bounding the Success Probability of
the Protocol

Now we upper bound the success probability of the protocol, i.e.,
we show that for any communication protocol II with o(N 1/4)
communication bits, it has that

e [(i.J) « T(xy), (xi = x7) A (i = yj)] = o0(1).

Recall that the decomposition process (Algorithm 1) partitions rect-
angles of R1f into S'f UB'eaf The tuples in S'¢f are dense struc-
tures (pseudorandom part), we upper bound the success probabil-
ity in S by Claim 3.10. On the other hand, for those tuples in
Bleaf we simply upper bound its total size, i.e., for communication

protocols with o(N 1/4) communication bits, we show that

Z |B|

(B.J1.h) e Bleaf

o(1).

To analyze the total size of rectangles in B2 two key points are:

o As it was shown in the density-resorting lemma, whenever
we put a tuple (B, Ji, o) into B/ for some j, the size of B
can be upper bounded by (|]f|2 + |]2”|2)/k.
o The previous section showed that the average size of fixed
sets (|J{1+|J;1) = O([II).
However, notice that the second point does not simply imply
that E[|]f|2 + |]2”|2] = O(|I1|?), so we need more careful analysis.

Now, instead of only upper bounding the size of 8¢ we also
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upper bound the size of
C(R) = {(S.J1.]2) € S(R) : |J{| = Vk/4 or |J§| = Vk/4}.

We define the following modified average quadratic of fixing size
to help with our analysis.

Definition 3.6. Let R be a rectangle with a decomposition into a
set of tuples £. We define its modified average quadratic of fixing

size as
3 L
R|
(LJJ) e L:AJEL g |< Vi /4
3 L
R =

I
(LJiJ) € L:AJE| or |JF |2 Vk/4

QR L) =

k

+

For nodes in the j-th layer, we similarly define its total modified
average quadratic of fixing size by,

ol = Z [R|

2M
ReRJ k

Q(R, L(R)).

Now we upper bound the size of 8!¢2f U Cleaf by the modified
average quadratic of fixing size Q'ef For each j, we denote

)

LEMMA 3.7. Given a protocol IT, P'¢f < Qleaf,

P/ =
(L1, R)eBIUCT

The proof of this lemma is based on an induction. In fact, we show
that for every j, P/ < QJ.

The idea is straightforward. For those tuples (L, Ji, J2) € 8/UC/
with J > Vk/4 or J5 = Vk/4, we upper bound it by the second
half of Q7; For those with both J < Vk/4 and J5 < Vk/4, we

l7€1209.1 7€ |2
upper bound it by lLA‘,, . w according to the density-

restoring lemma. We defer the details to Section C.
Now we have the last two steps to finish the proof of Theorem
1.7:

(1) If the communication complexity of ITis o(N 1/4) then Qleaf

o(1).
(2) On the other hand, if IT can find collisions with probability
Q(1), then P'af = Q(1).

Formally, we prove the following lemmas.

LEmMA 3.8. If the communication complexity of II is o(N1/4),
then Qleaf = o(1).

The proof of this lemma is based on Lemma 3.3 and an average
argument.

Proor. By Lemma 3.3,
D WIS - LM = o)),
(LJiJ) € Lleaf

If || = 0(N1/4), then by an average argument, we have that (|J7|+
IJED) = o(N'/#) for (1 - o(1)) fraction of tuples (L, J1, J2) € L',
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For those tuples with (|J{|+|J5]) = o(N1/4), it contributes only

2. c|2 +2. c|2
( s ' 51 ):o(l)
to Q' On the other hand, for the remaining o(1) fraction of tu-

ples, it can also only contribute o(1) to Q'€ as well. |

LEMMA 3.9. For any protocol IL. If it finds a collision with proba-
bility Q(1), then Plaf = Q(1).

Proor. For R € Rl the probability that Alice and Bob find a
collision pair is upper bounded by,

max Pr

S=xi) A =yl
i,je[M],i#j(x,y)~R[(Xl xj) (i y;)]

Since we decompose R into tuples S(R) U B(R), we have that

(x,Iy)§~R[(Xi =xj) A (y; = yj)]

. (x’y)ws[(xl- =xj) A (yi = yj)]

o P [ =x) A=yl

R yyp Y

For each dense structure S € S(R), we use the following claim (see
proof in Section D) to upper bound Pr(y ,)~s[(xi = xj) A (y;i =
Yyl

Cram 3.10. Let S = (X X Y, J1, o) € S (R) be a structure. If
either X is y-dense on J1 orY is y-dense on Jo, then for any distinct
pairi, j € [M],

Pr
(x,y)~

Eaul I

S[(xi =xj) A (yi =y;)] <

For those B € B(R), we simply upper bound Pr (. [ (xi = xj) A
(yi = y;)] by 1. Hence,

max Pr
i,je[M]i#j (x,y)~R

IS| 4
< D, iR kT >

SeS(R) BeB(R)

[(xi = xj) A (yi = yj)]

o+ >

BeB(R)

|BI

IRI"

1Bl _

IRl

If the protocol tree IT finds a collision with probability Q(1), we
must have that
IRl 1Bl _

RERIeaf BEB(R)

which implies that

leaf _ |L] |B|
s 2 (kZM)2 2 i
(L,J1,Jp ) € Bleaf y Cleaf Be Bleaf
_ IRl 1Bl _
- Z Z kM R T Q(1).
ReRleaf Be B(R)

O

Now the proof of Theorem 1.7 simply follows by combining the
above lemmas.
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A PROOF OF LEMMA 3.1

LEmMMA A.1 (LEMMA 5 IN [10]). LetS = (X X Y, J1, J2) be a struc-
ture. IfY is further y-dense on J, then there is a partition of X X Y,

XxY=X'xY uxtxyl ,u---UuX xy'uxtxY}

error

such that every X! is associated with a set I; C J; and p>i =

| Ujsi X7
X1

1) Foreveryi, S' := (X! x Y, J; \ I, ]) is a structure.

2) The tuple B' == (X' x Y1, ., J1 \ Ii, J2) could be arbitrary.

(

@ _

(3) Foreveryi, X" isy-denseon J \ I;.
4)

(5)

satisfies the following properties:

4) Doo (X, J1 \ 1)) < Deo(X, J1) = IIi] +log 5.
Yl or) is a partition of Y such that

[Yerorl/1Y] < 2 (I; U JEI? = |JE2) /K

5) For every i,(Yi,

Similarly, If X is y-dense on J1, analogous conclusions hold for the
partition of R with the roles of X andY interchanged.

Proor. Since (X X Y, J, J2) is a structure, lec is a fixed value
and we denote it by s := X e We first apply the following density-
restoring partition process on S.

Algorithm 2: Density-restoring partition process
Input: A rectangle S = (X X Y, J1, J2) be a structure and Y
is y-dense on Ja.
Output: A decomposition of Xx Y = STUBlU---USf UBE.
1 Initialize ¢t « 0.

2 while X is not nonempty do

3 LetI; C J; and 2% € [k]* be the largest set (possibly
I = 0) such that, Pr[X], = z'] > 27y el logk

4 Update t « ¢+ 1.

5 Let X! = {x € X : xj, =z'} and s’ = (5, 2").

6 Let Yl ={yeY:y; #yjforal (i) €

Iy U JT with sl.t = sj} and Y., =Y\ Y.

7 Let ' = (X! x Y%, Ji \ I1, J») and

Bt = (Xt X Yetrrorajl \Its]2)~
s | Update X « X\ X*.

This is a standard process (see [10]), the only difference is that
in Step 6, we partition Y into Y? and Y},,,, maintaining S? as a
structure. Following the density-restoring partition process, it is
clear that $¢ = (X! x Y%, J; \ I, J») is a structure. The facts that X'

is y-dense on J; \ I; and

; 1
Doo (X', 1\ i) < Do (X, J1) = | +10g17
=i
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hold by the standard proof (see [10]). Now, we prove that, for every
L,

| error|/|Y| <2 (lIt U]] |2 - Uﬂz)/k

It is equivalent to show that
bt |30 € 1 UJE (i = ) A G = D) < 2- (LU= k.

Recall that S is a structure, or the event won’t happen for i, j € J{,
ie.,

Pr [Hi,j e (yi=yj) A(st= st-)] =0.
y~Y /
For any pair (i, j), if both i, j € ]ZC, we also know there is no colli-

sion since S is a structure. On the other hand, if any of i or j is in
J2, by using the fact that Y is dense on J,

K‘I-P

Pr. lyi =yj] <

Now we only need to consider those pairs (i, j) such that: at
least one of them is in I} \ ]1C and at least one of them is in J. By
union bound, we have that

Pr [Ei,j el U]lc, (yi=yj) A (slt = th)]
y~Y

< Pr [Hi,j €l (yi =yj) A (sf = s;)]
y~Y

+ Pr [31’ el jeJ, (yi=yj) A (sf = sjt)]
y~Y
T 2 (muge - 1e)
2 Uk k ’
We then finish the proof. O

B PROOF OF CLAIM 3.5
Cramv B.1. Let (R, J1, J2) be a structure, and let the following de-

composition obtained by Lemma 3.1.

1 1 1 1 ty yt ty yt
R=X" XY UX XY, CUX XY UX X Yorror-

CI'I'OI

Let S1,BY,..., St B be the corresponding tuples from Lemma 3.1.
Then we have that

Z(IS’I

R|
< Do (R J1, 1) - Z X

 Deo(S' \1,,12>+U Do

R (B, \ 1i, J2)

I;| + 2.
|X| I

ISTI+|B| _ |X7|
[R| X1

ProOF. Let p; = By Lemma 3.1, for any i € [¢],

. 1
Deo (XL 1\ L) € Doo(X, J1) — |Ii| +log por
21

By taking an average on X, we have that
. 1
i Doo (X', 1\ L) € Doo(X, J1) — i 4|+ i -log —.
2 DX IR < DX J1)= 3 pic il + D pivlog
Note that };; p; ~log1ﬁ < /01 log %dx =1, we have

D i DXL \T) < DX, J1) = D pi Il 41 (3)
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On the other hand, (Y7, Y},) is a partition of Y for every i. Let q;
be a Bernoulli random variable with Pr[q; = 1] = % = %
We have that,

Do (Y, J2)

= Pr[qi = 1] -Z)OO(YI .]2) + Pr[ = O] -Z)OO(YerrODJZ) H(ql)

>Prlg; =1]- DOO(YI’JZ) +Pr[g; =0] - DOO(Yerror’]Z) -1
4)
By adding inequalities (3) and (4), we finish the proof of this claim.

O

C PROOF OF LEMMA 3.7
First, we recall the definitions of P/ and Q7.

Definition C.1. Let R be a rectangle with a decomposition into a
set of tuples L. We define its modified average quadratic of fixing
size as

Ll (2- 1T +2- |51
(LJiR) e L:AJE g |< Vi /4
|L|
—_ 2.
+ Z A

|
(LJ.J)e L:NJE) or |JE|2Vk/4

For nodes in the the j-th layer of the tree, we similarly define
its total modified average quadratic of fixing size by,

Q=)

ReRJ

IRl
k2M

QR L(R)).

For each j, we denote

|L]
M |

Pl = Z ,(k

(L Ji.k)eBIUCI

Now we are ready to prove the following lemma.

LemmA C.2. Given a protocol 11, pleaf < Qleaf.

ProoF. We prove that P/ < Q/ for all j > 0 by an induction
proof. It is clear that P® = Q% = 0 in the roof. Now we assume that
PJ < QJ and aim to prove P/*1 < QJ*1,

For any rectangle R = R® U R! € R/, in the j + 1 interaction,
Step 3 and Step 5 in Algorithm 1 decomposes S N R and S N R!
for each (S, J1, J2) € S/(R). For b € {0,1},let S%* UBP U ... U
sbt U Bb! be the decomposed rectangles and let 1°, ...,Ig’ be the
associated sets of newly fixing coordinates. Thus, we have £(S N
RP), B(SNRY), C(SNRY) just follow the definitions. For B € 8/ (R)
the decomposition does not fix new coordinates for those tuples.
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. . i L .
First, since P/*! = 2 (L. J)eBIHUCH klz—,L we notice that
iy B s R R0l
kM R . A [R|
ReRJ be{0,1} LeC/(R)UB/(R)
SNRP L
+ ISNR7| 3 _I
, . IRY| 1SN R
SeSJ(R)\C/(R) Le B(SNRP)UC(SNRY)
: IR| IR?| SN R|
=pJ + . —_— . _
Z' J2M Z IR| ) Z ) |Rb|
ReRJ be{o0,1} SeS/(R)\C/(R)
L]
o
LeB(SNRY)UC(SNRY) 1SN R

Fix (S, J1, J2) € S/(R) \ C/(R) with |J¢] < YK and [J¢| < YE.

Let
L]

|S N RY|

A(SNRY) =
Le B(SNR?)UC(SNR?)
be the increase in S N RY, we aim to upper bound it by Q(S N
RP; £(SNRY)) — O(S N RY; {S N RbY).
By Lemma 3.1, for any i, iflll?’ Uil < %, then

|Bb1| s (L) VI =151 5
ISP+ |BPA| k ' ©
Otherwise, since |J{| < \/TE, we can bound
Bb,i 2.]7¢ 2
B o U ©
|Sb| + |Bb| 8 k

LetC = {i: |Il.b uJil = \/TE}, by inequality (5) and inequality (6),
we have

ML
|SNRY|

A(SNRY) =
LeC(SNRY)UB(RP)

Ly

b
T ISNR 2
i¢C
.y 1551 + (B> 2- (17 PP = 15 1P)
B |SNR?| k

Ly IS (o 2 U

L |snRrv| |8k
ISP 4 B2 2 (TP U TR+ JE)
IS N RY| k

|Sb,i| + |Bb’i| B 2 (|ch|2 + |]26|2)
|S N RP| k

Rl
|S N RP|

B™ |
|SNR?|

ieC

@

igC(S)

ieC(S)
=Q(SNRY; L(SNRY)) - (S NRE; {SNRYY),
< Yk

< T
Moreover, for any B € B/(R), since we don’t do decomposition

where the second inequality is held by the fact that |J5|
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on it, Q(B N R?; £(B N R?)) — /(B N R?;{B n Rb}) = 0. For
any C € C/(R), 0(CNRP; L(CNRY)) —Q/(CNRE;{CNRPY) =

IL| -
LLe £(CrRY) Tonge] 2T 2=0.
Now we take an average on all rectangles in R/, by inequality

(7), we have

pitl _ pj
R Rb RPNS
-y IR 3 IR ' L A A RY)
kM IR| ) ) |Rb|
ReRJ be{0,1} SeSJ(R)\C/(R)
<Q/tt -9l

Since P/ < QJ, P/*! < Q/*1 — QJ + P; < Q/*!. This finishes the
proof. O

D PROOF OF CLAIM 3.10

Cramm D.1. Given any rectangle R, for each S = (X X Y, J1, ]2) €
S(R) and S is a structure, if either X is y-dense on J; orY isy-dense
on Jo, then for any distinct pair i, j € [M],

4
(x,y)lifX,Y)[(xl = xj) A (yz = y;)] < E

Proor. WLOG, we assume that X is y-dense on Jj. Since S =
(XXY, J1, o) is a structure, X Je is fixed and we denote itby s = X e
We consider the two cases.

e Case 1: Both i, j € Ji, ie, forall x € X,x; = 5; and x; = s;.
Since S = (X X Y, J1, J2) is a structure, then either s; # sj,
or s; = sj and y; # y; for all y € Y. For both cases, we have
that

Pr [(yi =y;)] =0.
y~Y

e Case 2: Either i € J; or j € J;. WLOG, we assume that
i € J1. Now we have two sub-cases. If j is also in Ji, then
by the fact that X is y-dense on J; (in particular, dense on
{i. 7},

k 4

< ——=-.
K2y k

On the other hand, if j € ]f, ie, Xj = sj, by using the fact

that X is y-dense on J; again,

xlzg([xi = xj]

Pr [ 1< 1 2
r|xi=S5j| < —=-—.
X T T ey Tk

For both cases, we have

<

Faul I

(x,y)ljfx,Y) [(xi =xj) A (yi =yj)] < xlzg([xz‘ = x;]

The claim then follows.
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