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ABSTRACT

Collision problems are important problems in complexity theory

and cryptographywith diverse applications. Previous fruitful works

have mainly focused on query models. Driven by various applica-

tions, several works by Bauer, Farshim and Mazaheri (CRYPTO

2018), Itsykson and Riazanov (CCC 2021), Göös and Jain (RAN-

DOM 2022) independently proposed the communication version

of collision problems.

In the communication seting, both Alice and Bob receive : ran-

dom subsets of [# ]: (1, . . . , (: and)1, . . . ,): with each of size roughly:
# , where a typical choice of : is in the order of

:
# for appli-

cations. |en Alice and Bob aim to ond a pair (G, G 2) such that

G, G 2 * (8 +)9 for some (8 and)9 . A simple protocol that solves this

problem with $̃ (# 1/4) communication bits is the following: Alice
sends to Bob a random subset of (1 of size #

1/4 and Bob checks if
there is a set)9 that has more than two intersections to this subset.

All the papers mentioned above believe this bound should be tight

up to some log factors.

In this paper, we prove an «̃(# 1/4) randomized communication
lower bound, aorming the conjecture above. Previously, only an

«̃(# 1/12) was known by a work of Göös and Jain (RANDOM 2022).

Our lower bound provides direct applications to cryptography and

proof complexity via connections by Bauer, Farshim, andMazaheri

(CRYPTO 2018) and Itsykson and Riazanov (CCC 2021).

Our proof technique could be of independent interest as it is

an extension of simulation methods to non-lived functions. Pre-

viously, simulations have been widely applied to lived functions

(a.k.a composed functions), which leads to beautiful query-to- com-

munication living theorems. However, many important communi-

cation problems are not lived functions. We believe our methods

could give more applications. In particular, it may have applica-

tions to communication complexity of search problems with many

solutions. Note that many existing methods do not apply to this

seting.
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1 INTRODUCTION

Collision problems are important problems in theoretical computer

science with wide applications in quantum complexity [1], stream-

ing complexity [6, 18], cryptography [3, 17], property testing [4],

quantum algorithm [19], proof complexity [14], distributed com-

puting [7] and approximate counting [2]. Previous research on col-

lision problems has mainly focused on query models.

However, the communication version of collision problems was

not widely studied until several applications have been identioed

recently. In this paper, we study two communication versions of

collision problems, giving direct applications to cryptography and

proof complexity.

Cryptographymotivations. To analyze the security of cryptogra-

phic hash functions, Bauer, Farshim, and Mazaheri [3] formulated

and studied the backdoored random-oracle (BRO) model. |ey sh-

owed that, via reductions to lower bounds of communication prob-

lems, central cryptographic security properties are achievable by

some combiners in the BRO model. Concretely, they formalized

the following multi-set double-intersection problem.

Problem 1.1 (Multi-set double-intersection [3]). Both Alice and

Bob hold
:
# random sets:

" Alice independently samples sets (1, . . . , (:# ¦ [# ] with
each element of [# ] contained in (8 with probability 1/

:
# .

" Similarly, Bob independently samples )1, . . . ,):# ¦ [# ]
with each element of [# ] contained in )9 with probability
1/
:
# .

|eir goal is to ond a pair B b B2 such that B, B2 * (8 +)9 for some
8, 9 .

By a simple calculation, the sampled instances will contain such

a solution pair with high probability. Assuming the hardness of

the multi-set double-intersection problem, [3] obtained collision-

resistant combiners in the BRO model. However, proving such a

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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communication lower bound looks challenging. Hence, they put it

as an open problem.

On the other hand, based on the birthday paradox, a simple pro-

tocol solving this problem with $̃ (# 1/4) communication bits can
be:

(1) Alice sends to Bob a random subset of (1 with size of #
1/4.

(2) Bob checks if there is a set )9 that has more than two inter-

sections to this subset.

[3] believed this simple algorithm could be the best atacker

of multi-set double intersections. |ey made the following conjec-

ture.

ConjectuRe 1.2 ([3]). |e randomized communication complex-

ity of Problem 1.1 is «̃(# 1/4).

Proof complexity motivations. |e connections between commu-

nication complexity and proof complexity have been extensively

studied for many years. To study proof complexity lower bounds

for natural formulas, Itsykson and Riazanov [14] introduced a com-

munication search problem called the bit-pigeonhole principle prob-

lem.

Problem 1.3 (Bit-pigeonhole principle problem [14]). For # <

" , the bipartite communication search problem BPHP"
#
is deoned

below,

" Alice holds G = (G1, . . . , G" ) * [
:
# ]" ;

" Bob holds ~ = (~1, . . . , ~" ) * [
:
# ]" ;

|e goal is to ond a pair of distinct coordinates 8, 82 * ["] such
that G8 = G82 and ~8 = ~82 . We call those collision pairs, or simply

collisions.

BPHP"
#

is a total search problem and always has a collision

for # < " . [14] proved that «(
:
# ) randomized communication

lower bound for BPHP#+1
#

via a randomised reduction from set-

disjointness. |is lower bound implies that any proof system that

randomized protocols can eociently simulate requires exponen-

tial size to refute bit-pigeonhole formulas featuring " = # + 1
pigeons and # holes. Since then, a later result by Göös and Jain

[8] showed an «(# 1/12) lower bound for BPHP2#
#
. Both [14] and

[8] are interested in similar communication lower bounds for the

weak pigeonhole principle with arbitrary " > # pigeons and #

holes. For " = 2# , Göös and Jain [8] proved the following lower

bound.

TheoRem 1.4 ([8]). |e randomized communication complexity

of BPHP2#
#

is «(# 1/12).

Built on the birthday paradox again, a simple protocol (see [8])

also solves BPHP2#
#

with $̃ (# 1/4) communication bits. To this end,
a natural question arises:

ConjectuRe 1.5 ([8, 14]). |e randomized communication com-

plexity of BPHP2#
#

is «̃(# 1/4).

1.1 Our Contribution

Our contribution is two-fold. Firstly, we aorm Conjecture 1.2 and

Conjecture 1.5, giving several direct applications in both cryptogra-

phy and proof complexity. On the other hand, our proof technique

can be considered as an extension of query-to-communication liv-

ing theorems to general functions without a composed form. Liv-

ing theorem is a nice idea developed in recent years with diverse

applications in a lot of areas. However, living theorems havemainly

focused on applications with lived functions previously. In this pa-

per, we aim to extend these applications to broader functions. We

prove the following two theorems.

TheoRem 1.6. For any randomized communication protocol that

solves the multi-set double-intersection problem with constant prob-

ability, it must communicate «(# 1/4) bits.

TheoRem 1.7. For any " > # , the randomized communication

complexity of BPHP"
#

is «(# 1/4).

|eorem 1.7 holds for any" > # , which is an extension of [14]

(" = # + 1) and [8] (" = 2 · # ). Furthermore, this lower bound
is tight for " = (1 + «(1)) · # (up to some logarithmic factors),

matching the upper bound protocol by [8] 1.

Applications: Our results directly give some applications in cryp-

tography and proof complexity by the connections built by [3, 8,

14].

(1) Since we aorm the hardness assumptions by [3], collision-

resistance combiners for backdoored random oracles could

be obtained directly through the reduction by [3].

(2) Using the reductions by [14], we directly show that any

proof system that can be eociently simulated by random-

ized protocols (most notably, tree-like Res(·) [15]) requires
exponential size to refute bit-pigeonhole formulas featuring

" pigeons and# holes for arbitrary" > # , which answers

the open problem in [14]. Furthermore, our communication

lower bound is tight for a large range of" and # .

(3) Building on connections by [13, 14], our result implies that

every tree-like cuting planes of the weak bit pigeon hole

principle BPHP"
#
, " > # , has size 2« (#

1/4 ) . It improves

the lower bound of 2« (#
1/8 ) by Hrubea and Pudlák [11]. We

note that [11]9s lower bound also holds for non-tree-like

CPs. Whereas, our improvement only applies to tree-like

CPs.

1.2 Proof Outline

We now give a high-level description of our proof to |eorem

1.7. In order to prove randomized communication lower bounds,

it is suocient to show that any deterministic protocol with a small

amount of communication bits can not ond collisions under the

following distribution.

Both Alice and Bob9s inputs are uniformly sampled from [
:
# ]" .

Deonition 1.8. Let ' = - ×. ¦ [
:
# ]" × [

:
# ]" be a rectangle,

and let �1, �2 ¦ ["]. We say that ( := (', �1, �2) is a structure if,
" - is oxed on �21 := ["] \ �1, i.e., for every 8 * �21 , there is an

B8 * [
:
# ] such that G8 = B8 for all G * - .

" . is oxed on �22 , i.e., for every 8 * �22 , there is an A8 * [
:
# ]

such that ~8 = A8 for all ~ * . .
" For all 8, 82 * �21 , if B8 = B82 , then ~8 b ~82 for all ~ * . .

1|eir protocol is for" = 2 · # . But it can be extended to any" = (1 + « (1) ) · #
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" For all 8, 82 * �22 , if A8 = A82 , then G8 b G82 for all G * - .
We denote |( | = |' | and we say that a rectangle ' is a structure if

there is a pair (�1, �2) such that (', �1, �2) is a structure.

Our proof includes two steps.

" Weorst show that' * Rleaf can be covered by combinations
of pseudorandom structures.

" |en we show that protocols can not ond collision pairs

from such pseudorandom structures.

|e last two constraints of structures ensure that there is no col-

lision in �21 and �22 . In order to prevent the protocol from onding

collisions from �1 and �2, we borrow the dense notion from query-

to-communication living theorems to capture pseudorandomness.

Roughly speaking, we say that - is dense if, for every � ¦ �1, the

marginal distribution -� has a very high min-entropy. Similarly,

we can deone it for . . Building on the dense notion, we prove the

following claim.

Claim 1.9 (InfoRmal). Any protocol can not ond a collision from

a dense structure.

|e formal version of this claim is Claim 3.10. Our next step is to

show that for a communication protocol with > (# 1/4) communica-
tion bits, the corresponding leaf rectangles can be almost covered

by dense structures.

Claim 1.10 (InfoRmal). Let Rleaf be a partition associated with

a communication protocol. We can further partition each ' * Rleaf
into many smaller rectangles

' = (1 * · · · * (ℓ1 * �1 * · · · * �ℓ2
where (1, . . . , (ℓ1 are rectangles with the form of pseudorandom struc-

tures and �1, . . . , �ℓ2 could be arbitrary. If the communication com-

plexity of the protocol is small, we then show that the union of all �

rectangles is small compared to the input space.

|e proof of this claim is inspired by the simulation process in

living theorems. However, there are two important conceptual dif-

ferences:

" |e purpose of simulations in living theorems is to convert

a communication protocol to a decision tree. By contrast,

our process only decomposes rectangles in Rleaf into dense
structures.

" |e simulation in living theorems needs a gadget. However,

our decomposition only focuses on the structure of rectan-

gles. |is enables us to apply simulations for more general

non-composed functions.

Connections of BPHP"
#
andmulti-set double intersection. For each

pair of inputs of BPHP"
#
G,~ * [

:
# ]" , we convert it into a collec-

tion of sets

"8 * [
:
# ], (8 = { 9 * ["] : G 9 = 8} and )8 = { 9 * ["] : ~ 9 = 8}

|e deonition for BPHP"
#
under uniform distribution can be refor-

mulated as follows:

Problem 1.11 (Restated). For # < " ,

" Alice samples sets (1, . . . , (:# ¦ ["] with each B * ["]
uniformly assigned to a set (8 .

" Bob samples sets )1, . . . ,):# ¦ ["] with each B * ["]
uniformly assigned to a set (8 .

|eir goal is to ond a pair B b B2 such that B, B2 * (8 +)9 for some
8, 9 .

Under this interpretation, the only diference between BPHP"
#

and the multi-set double intersection is that BPHP"
#
promises that

each element is contained in exactly one set but in the multi-set

double intersection, each element is independently sampled for

each set. |e two distributions are generally similar, and our proof

can be applied to multi-set double intersection directly.

Technical contribution and previous barriers. At orst glance, the

collision problem looks hard to many existing lower bound meth-

ods since it is a search problem with many solutions. For random

sets (8 and )9 , it has that |(8 + )9 | g 2 with a constant probabil-

ity. Hence, it has «(:2) = «(# ) pairs of solutions in expectation
in collision problems. To the best of our knowledge, many exist-

ing communication lower bound techniques do not apply to this

seting.

To overcome this barrier, Göös and Jain [8] introduced the query-

to-communication living approach. Concretely, Göös and Jain pro-

posed a new communication problem Col# ç Ver
# , where Col#

is the query version of a collision problem and Ver is a small-size

gadget. |ey proved a BPHP2#
#

(Problem 1.3) lower bound via two

steps:

(1) |e communication complexity of Col# çVer
# is «(# 1/3)

(2) Building on Col# ç Ver
# , [8] proves an «(# 1/12) lower

bound for BPHP2#
#
via reductions.

Since there is a loss in the reduction [8], the limitation of their

framework is an «(# 1/8) lower bound.
|e notion of query-to-communication living theorems is a re-

markable technique introduced recently [5, 9, 10, 16, 20] to prove

communication complexity lower bounds with a wide variety of

applications in many areas. However, despite many applications,

one of the main limitations of living theorems is that: it only ap-

plies to lived functions, i.e., a function has the form 5 ç6= where 5
is a query problem and6 is a small-size gadget, such asCol# çVer

# .

Since collision problems such as BPHP cannot be writen as lived

functions directly, living theorems can not be applied directly.|is

is also the main reason that [8] introduced the Col# ç Ver
# prob-

lem and proved BPHP lower bounds through Col# ç Ver
# . How-

ever, the reduction caused a loss making the lower bound of BPHP

not tight.

By contrast, our proof is not built on reductions. We extend the

simulation method (the idea used to prove living theorems) into

broader functions that do not have the lived form. Besides the col-

lision problems, we believe that our approach may enable more

applications.

2 PRELIMINARY

We orst ox some of the notations through this paper.

" A large domain [# ] and we set : =
:
# .

" Alice and Bob receive inputs G * [:]" and~ * [:]" respec-

tively. |ey hope to ond a pair ( 9, 9 2) such that G 9 = G 9 2 and

~ 9 = ~ 9 2 .
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" We use leters -,. to denote subsets of [:]" . For a set - ,
we use the bold font ^ to denote the uniform distribution

on - .

" For a set � ¦ ["], we use �2 := ["] \ � to denote its com-
plement.

" We use ^ � to denote the marginal distribution of ^ on � .

Deonition 2.1 (Dense). Let J be a random variable on [:]" . We
say that J is W-dense on � if for every subset � ¦ � it holds that

�> (J� ) g W · |� | · log:

|is notation oven appears in the query-to-communication liv-

ing theorem [5, 10]. However, in this paper, we set W = 1 2 1
log:

which is diferent from previous methods where they usually set

W = 0.9.

Deonition 2.2. For a distribution ^ and a set � ¦ ["], we deone
its density-loss by,

D> (^ , � ) = log(: | � | ) 2 �> (^ � ) = |� | · log: 2 �> (^ � )

For a tuple (- × ., �1, �2), we deone its density-loss by

D> (- × ., �1, �2) = D> (^ , �1) + D> (_ , �2)

We note that the density-loss is non-negative andD> (^ , � ) = 0 if

and only if ^ � is uniform.

3 PROOF OF THE MAIN THEOREM

We now prove|eorem 1.7. We orst recall the seting. In this prob-

lem, Alice and Bob receive (uniform sampled) inputs G,~ * [:]"
and they want to ond a pair of distinct coordinates 8, 82 * ["]
such that G8 = G82 and ~8 = ~82 . We aim to prove an «(# 1/4) lower
bound for this problem. As we brieny mentioned in Section 1.2, a

crux in our proof is to decompose each leaf rectangle into dense

structures (Deonition 1.8).

3.1 Decomposition Process

In this section, we discuss the decomposition process, which is

the crucial step in our proof. We need to partition each rectan-

gle ' * Rleaf into a combination of dense structures and some

error rectangles that may have collisions. We orst introduce the

following density-restoring partition lemmawhich is similar to the

density-restoring partition in [5, 10].

Lemma 3.1 (Density-RestoRing paRtition). Let ( = (-×., �1, �2)
be a structure. If _ is further W-dense on �2, then there is a partition

of - × . ,

- × . = - 1 × . 1 * - 1 × . 1
error * · · · * - C × . C * - C × . C

error

such that every - 8 is associated with a set �8 ¦ �1 and ?g8 :=
|⋃9g8 -

9 |
|- | satisoes the following properties:

(1) For every 8 , (8 := (- 8 × . 8 , �1 \ �8 , �2) is a structure.
(2) |e tuple �8 := (- 8 × . 8

error, �1 \ �8 , �2) could be arbitrary.
(3) For every 8 , ^8 is W-dense on �1 \ �8 .
(4) D> (^8 , �1 \ �8 ) f D> (^ , �1) 2 |�8 | + log 1

?g8
.

(5) For every 8 ,
(
. 8 , . 8

error

)
is a partition of. such that |. 8

error |/|. | f
2 · ( |�8 * �21 |

2 2 |�21 |
2)/: .

Similarly, if ^ is W-dense on �1, analogous conclusions hold for the

partition of ' with the roles of ^ and _ interchanged.

|e proof of Lemma 3.1 builds on two steps. We orst apply the

density-restoring partition lemma from [10], decomposing - × .
to

- × . = - 1 × . * · · · * - C × .
such that for every 8 , ^8 is W-dense on �1 \ �8 and D> (^8 , �1 \
�8 ) f D> (^ , �1) 2 |�8 | + log 1

?g8
. However, these tuples (- 1×., �1 \

�1, �2), . . . , (- C × ., �1 \ �C , �2) are not necessarily structures. We
then further decompose . into (. 8 , . 8

error) by moving the collision
part to . 8

error. We defer the formal proof to Section A.

Recursive decomposition. Building on Lemma 3.1, we now de-

scribe our decomposition process. We orst introduce some nota-

tions. Let £ be a oxed protocol tree.

" We use R 9 to denote the rectangles associated with nodes in

the 9-th layer of the protocol tree. Note that R0 = {[:]" ×
[:]" } contains only the root and Rleaf contains all leaves.
" We recursively (from the root to the leaves) decompose each

rectangle associated with a node in the tree. For each ', we

decompose it as two parts: S(') = {((, �1, �2)} and B(') =
{(�, �1, �2)}, where each ((, �1, �2) is a structure and (�, �1, �2)
could be arbitrary. We also denote L(') = S(') * B(').
" For 9 , let S 9 :=

⋃
'*R 9 S('), B 9 :=

⋃
'*R 9 B(') and L 9 :=⋃

'*R 9 L(') be the union of all decomposition in the rect-
angles in the 9-th layer respectively 2.

Let us explain our recursive decomposition process.

(1) For the root node, we simply letS([:]"×[:]" ) = {([:]"×
[:]" , ', ')} and B([:]" × [:]" ) = {}.

(2) For internal nodes, let ' be a rectangle with known decom-

positionS(') andB('), and let '0 and '1 be the children of
'. For '8 with 8 * {0, 1}, in order to obtain S('8 ), we simply
apply the density-restoring partition lemma (Lemma 3.1) on

(( + '8 , �1, �2) for each ((, �1, �2) * S(').
We formalize this process as Algorithm 1 below.

Algorithm 1: Decomposition Algorithm (when Alice is

speaking)

Input: A rectangle ' = - × . and its decomposition S(')
and B(')

Output: Output S('0),B('0) and S('1),B('1), where
'0, '1 are children of ' in the tree

1 Initialize S('0),B('0),S('1),B('1) ± '.
2 for each ((, �1, �2) * S(') do
3 For each 1 * {0, 1}, we decompose (( + '1 ) as

(1,1 * �1,1 * · · · * (1,C * �1,C . (Lemma 3.1)
4 Update S('1 ) ± S('1 ) * {(1,1, ..., (1,1} and

B('1 ) ± B('1 ) * {�1,1, ..., �1,C }.
5 for each (�, �1, �2) * B(') do
6 For each 1 * {0, 1}, update

B('1 ) ± B('1 ) * {(� + '1 , �1, �2)}.

2We use the notations Sleaf , Bleaf ,Lleaf for leaf rectangles.
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Following the discussion above, an important step in our analy-

sis is to upper bound the size of Bleaf . We will prove that in the de-

composition algorithm, whenever we put a tuple (�, �1, �2) into B 9

for some 9 , the size of � can be upper bounded by ( |�21 |
2 + |�22 |

2)/: .
First, we prove the upper bound of the number of oxed coordinates

(|�21 | and |�
2
2 |) in our analysis.

3.2 Upper-Bounding the Number of Fixed

Coordinates

In this subsection, we show that the average number of oxed coor-

dinates is $ (|£ |) for leaf rectangles in Rleaf . Firstly, we formalize
the deonition of the average number of oxed coordinates.

Deonition 3.2. Let ' be a rectangle with a decomposition into

a set of tuples L (includes both S and B). We deone its average
oxing number as

� (';L) :=
∑

(!,�1,�2 ) *L

|! |
|' | · ( |�

2
1 | + |�

2
2 |) .

For nodes in the 9-th layer of the tree, we deone its average oxing

number by,

� 9
=

∑
'*R 9

|' |
:2"

· � (',L(')) .

|e main lemma in this section is the following upper bound for

�leaf .

Lemma 3.3. Given a protocol £, then �leaf = $ (|£ |).
Our proof of this lemma is inspired by query-to-communication

living theorems again. We use the following density function (aka

potential function).

Deonition 3.4. Let ' be a rectangle with a decomposition into a

set of tuples L. We deone the density function by

� (';L) :=
∑

(!,�1,�2 ) *L

|! |
|' | · D> (!, �1, �2).

For nodes in the 9-th layer of the tree, we deone its density function

by,

� 9
=

∑
'*R 9

|' |
:2"

· � (',L(')) .

We adopt the density increment arguments [5, 10, 12, 21] in our

proof. Concretely, we show that each communication bit increases

the density function by at most $ (1), and each oxing of a coordi-
nate decreases the density function by at least «(1). |e following

claim is a direct corollary of the density-restoring lemma (Lemma

3.1).

Claim 3.5. Let (', �1, �2) be a structure, and let the following de-

composition obtained by Lemma 3.1.

' = - 1 × . 1 * - 1 × . 1
error * · · · * - C × . C * - C × . C

error .

Let (1, �1, . . . , (C , �C be the corresponding tuples from Lemma 3.1.

|en we have that∑
8

(
|(8 |
|' | · D> ((

8 , �1 \ �8 , �2) +
|�8 |
|' | · D> (�

8 , �1 \ �8 , �2)
)

f D> (', �1, �1) 2
∑
8

|- 8 |
|- | · |�8 | + 2.

We note that the last term
∑
8
|- 8 |
|- | · |�8 | + 2 is the density gain

from oxing. We defer the detailed proof of Claim 3.5 to Section B.

Now we are ready for Lemma 3.3.

PRoof of Lemma 3.3. In order to prove this lemma, it is suo-

cient to prove that, for all 9 > 0,

� 9 f 3 · 9 2 � 9 .

Recall that � 9 g 0 for all 9 g 0, the above inequality then im-

plies that �leaf f 3 · |£ |. We prove the statement by induction.
In the roof, it is clear that �0 = �0

= 0. Now we assume that

� 9 f 3 · 9 2 � 9 and aim to show that

� 9+1 f 3 · ( 9 + 1) 2 � 9+1 .

For any rectangle ' = - × . * R 9 , we analyze the decomposition

process in Algorithm 1.

" For each tuple (!, �1, �2) * L(') (either fromS(') orB(')),
the decomposition algorithm (Algorithm 1) orst breaks it

into (! + '0, �1, �2) and (! + '1, �1, �2). Let b be a Bernoulli
random variable with Pr[b = 1] = |'1+! |

|! | , we then have

that∑
1*{0,1}

Pr[b = 1] · D> (! + '1 , �1, �2)

= D> (!, �1, �2) +
∑

1*{0,1}
Pr[b = 1] · log 1

Pr[b = 1]

= D> (!, �1, �2) + H(b) f D> (!, �1, �2) + 1.

(1)

|is inequality shows that the partition step increases the

density function by at most 1.

" In Step 3 and Step 5, Algorithm 1 further decomposes (by

Lemma 3.1) (+'0 and (+'1 for those structures ((, �1, �2) *
S('). For1 * {0, 1}, let (1,1*�1,1*· · ·*(1,C *�1,C be the de-
composed rectangles and let �11 , . . . , �

1
C be the associated sets

of newly oxed coordinates in the decomposition. By Claim

3.5, we have that,

∑
8

(
|(1,8 |
|( + '1 |

D> ((1,8 , �1 \ �18 , �2)

+ |�
1,8 |

|( + '1 |
D> (�1,8 , �1 \ �18 , �2)

)

f D> (( + '1 , �1, �2) 2 �(( + '1 ) + 2.

(2)

Here �((+'1 ) := ∑
8

(
|(1,8 |+|�1,8 |
|(+'1 | · |�

1
8 |

)
is the average num-

ber of newly oxed coordinates.

On the other hand, we have that �(� + '0) = 0 for all � *
B(') since the decomposition does not ox new coordinates

for those tuples. By the deonition of � (',L(')), we also
have that,

∑
1*{0,1}

|'1 |
|' | · � ('

1 ,L('1 ))

= � (',L(')) +
∑

1*{0,1}

|'1 |
|' | ·

∑
!*L(')

|! + '1 |
|'1 |

· �(! + '1 ).
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By combining the Inequalities (1) and (2) and the deonition of

� (',L(')), we have that
∑

1*{0,1}

|'1 |
|' | · � ('

1 ;L('1 ))

f � (';L(')) 2
∑

1*{0,1}

|'1 |
|' | ·

∑
!*L(')

|! + '1 |
|'1 |

· �(! + '1 ) + 3

= � (';L(')) 2
∑

1*{0,1}

|'1 |
|' | · � ('

1 ,L('1 )) + � (',L(')) + 3.

Now we take the average on all rectangles in R 9 ,

� 9+1
=

∑
'*R 9

|' |
:2"

·
∑

1*{0,1}

|'1 |
|' | · � ('

1 ;L('1 ))

f
∑
'*R 9

|' |
:2"

·
(
� (';L(')) .

2
∑

1*{0,1}

|'1 |
|' | · � ('

1 ,L('1 )) + � (',L(')) + 3
)

= � 9 2 � 9+1 + � 9 + 3
= (� 9 + � 9 + 3) 2 � 9+1

f (3 · 9 + 3) 2 � 9+1

= 3 · ( 9 + 1) 2 � 9+1 .

|is onishes the proof. ¥

3.3 Upper-Bounding the Success Probability of

the Protocol

Now we upper bound the success probability of the protocol, i.e.,

we show that for any communication protocol £ with > (# 1/4)
communication bits, it has that

Pr
(G,~)

[
(8, 9) ± £(G,~), (G8 = G 9 ) ' (~8 = ~ 9 )

]
= > (1) .

Recall that the decomposition process (Algorithm 1) partitions rect-

angles ofRleaf intoSleaf*Bleaf .|e tuples inSleaf are dense struc-
tures (pseudorandom part), we upper bound the success probabil-

ity in Sleaf by Claim 3.10. On the other hand, for those tuples in

Bleaf , we simply upper bound its total size, i.e., for communication

protocols with > (# 1/4) communication bits, we show that∑
(�,�1,�1 ) *Bleaf

|� |
:2"

= > (1) .

To analyze the total size of rectangles in Bleaf , two key points are:

" As it was shown in the density-resorting lemma, whenever
we put a tuple (�, �1, �2) into B 9 for some 9 , the size of �

can be upper bounded by ( |�21 |
2 + |�22 |

2)/: .
" |e previous section showed that the average size of oxed

sets (|�21 | + |�
2
2 |) = $ (|£ |).

However, notice that the second point does not simply imply

that E[|�21 |
2 + |�22 |

2] = $ (|£ |2), so we need more careful analysis.
Now, instead of only upper bounding the size of Bleaf , we also

upper bound the size of

C(') := {((, �1, �2) * S(') : |�21 | g
:
:/4 or |�22 | g

:
:/4}.

We deone the following modioed average quadratic of oxing size

to help with our analysis.

Deonition 3.6. Let ' be a rectangle with a decomposition into a

set of tuples L. We deone its modioed average quadratic of oxing
size as

& (';L) :=
∑

(!,�1,�2 ) *L: | � 21 |, | � 22 |<
:
:/4

|! |
|' | ·

(
2 · |�21 |

2 + 2 · |�22 |
2

:

)

+
∑

(!,�1,�2 ) *L: | � 21 | or | � 22 | g
:
:/4

|! |
|' | · 2.

For nodes in the 9-th layer, we similarly deone its total modioed

average quadratic of oxing size by,

& 9
=

∑
'*R 9

|' |
:2"

·& (',L(')) .

Now we upper bound the size of Bleaf * Cleaf by the modioed
average quadratic of oxing size & leaf . For each 9 , we denote

% 9 :=
∑

(!,�1,�2 ) *B 9*C 9

(
|! |
:2"

)
.

Lemma 3.7. Given a protocol £, % leaf f & leaf .

|e proof of this lemma is based on an induction. In fact, we show

that for every 9 , % 9 f & 9 .

|e idea is straightforward. For those tuples (!, �1, �2) * B 9*C 9
with �21 g

:
:/4 or �22 g

:
:/4, we upper bound it by the second

half of & 9 ; For those with both �21 f
:
:/4 and �22 f

:
:/4, we

upper bound it by
|! |
:2" ·

(
2· | � 21 |2+2· | � 22 |2

:

)
according to the density-

restoring lemma. We defer the details to Section C.

Now we have the last two steps to onish the proof of |eorem

1.7:

(1) If the communication complexity of£ is> (# 1/4), then& leaf
=

> (1).
(2) On the other hand, if £ can ond collisions with probability

«(1), then % leaf = «(1).
Formally, we prove the following lemmas.

Lemma 3.8. If the communication complexity of £ is > (# 1/4),
then & leaf

= > (1).

|e proof of this lemma is based on Lemma 3.3 and an average

argument.

PRoof. By Lemma 3.3,∑
(!,�1,�2 ) *Lleaf

(|�21 | + |�
2
2 |) · |! |/:

2"
= $ ( |£ |) .

If |£ | = > (# 1/4), then by an average argument, we have that ( |�21 |+
|�22 |) = > (# 1/4) for (1 2 > (1)) fraction of tuples (!, �1, �2) * Lleaf .
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For those tuples with (|�21 | + |�
2
2 |) = > (# 1/4), it contributes only(

2 · |�21 |
2 + 2 · |�22 |

2

:

)
= > (1)

to & leaf . On the other hand, for the remaining > (1) fraction of tu-
ples, it can also only contribute > (1) to & leaf as well. ¥

Lemma 3.9. For any protocol £. If it onds a collision with proba-

bility «(1), then % leaf = «(1).

PRoof. For ' * Rleaf , the probability that Alice and Bob ond a
collision pair is upper bounded by,

max
8, 9*[" ],8b9

Pr
(G,~)>X

[(G8 = G 9 ) ' (~8 = ~ 9 )] .

Since we decompose ' into tuples S(') * B('), we have that
Pr

(G,~)>X
[(G8 = G 9 ) ' (~8 = ~ 9 )]

=

∑
(

|( |
|' | · Pr

(G,~)>Y
[(G8 = G 9 ) ' (~8 = ~ 9 )]

+
∑
�

|� |
|' | · Pr

(G,~)>H
[(G8 = G 9 ) ' (~8 = ~ 9 )] .

For each dense structure ( * S('), we use the following claim (see

proof in Section D) to upper bound Pr(G,~)>Y [(G8 = G 9 ) ' (~8 =

~ 9 )].

Claim 3.10. Let ( = (- × ., �1, �2) * Sleaf (') be a structure. If

either ^ is W-dense on �1 or _ is W-dense on �2, then for any distinct

pair 8, 9 * ["],

Pr
(G,~)>Y

[(G8 = G 9 ) ' (~8 = ~ 9 )] f
4

:
.

For those � * B('), we simply upper bound Pr(G,~)>H [(G8 = G 9 )'
(~8 = ~ 9 )] by 1. Hence,

max
8, 9*[" ],8b9

Pr
(G,~)>X

[(G8 = G 9 ) ' (~8 = ~ 9 )]

f
∑

(*S(')

|( |
|' | ·

4

:
+

∑
�*B(')

|� |
|' | = > (1) +

∑
�*B(')

|� |
|' | .

If the protocol tree £ onds a collision with probability «(1), we
must have that ∑

'*Rleaf

∑
�*B(')

|' |
:2"

· |� ||' | = «(1) .

which implies that

% leaf =
∑

(!,�1,�2 ) *Bleaf*Cleaf

(
|! |
:2"

)
g

∑
�*Bleaf

(
|� |
:2"

)

=

∑
'*R leaf

∑
�*B(')

|' |
:2"

· |� ||' | = «(1) .

¥

Now the proof of |eorem 1.7 simply follows by combining the

above lemmas.
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A PROOF OF LEMMA 3.1

Lemma A.1 (Lemma 5 in [10]). Let ( = (- × ., �1, �2) be a struc-
ture. If _ is further W-dense on �2, then there is a partition of - × . ,

- × . = - 1 × . 1 * - 1 × . 1
error * · · · * - C × . C * - C × . C

error

such that every - 8 is associated with a set �8 ¦ �1 and ?g8 :=
|⋃9g8 -

9 |
|- | satisoes the following properties:

(1) For every 8 , (8 := (- 8 × . 8 , �1 \ �8 , �2) is a structure.
(2) |e tuple �8 := (- 8 × . 8

error, �1 \ �8 , �2) could be arbitrary.
(3) For every 8 , ^8 is W-dense on �1 \ �8 .
(4) D> (^8 , �1 \ �8 ) f D> (^ , �1) 2 |�8 | + log 1

?g8
.

(5) For every 8 ,
(
. 8 , . 8

error

)
is a partition of . such that

|. 8
error |/|. | f 2 · ( |�8 * �21 |

2 2 |�21 |
2)/:

.

Similarly, If ^ is W-dense on �1, analogous conclusions hold for the

partition of ' with the roles of ^ and _ interchanged.

PRoof. Since (- × ., �1, �2) is a structure, - � 21
is a oxed value

and we denote it by B := - � 21
. We orst apply the following density-

restoring partition process on ( .

Algorithm 2: Density-restoring partition process

Input: A rectangle ( = (- × ., �1, �2) be a structure and _
is W-dense on �2.

Output: A decomposition of - ×. = (1 *�1 * · · · *(C *�C .
1 Initialize C ± 0.

2 while - is not nonempty do

3 Let �C ¦ �1 and I
C * [:]�C be the largest set (possibly

�C = ') such that , Pr[^ �C = IC ] > 22W · |�C | ·log: .
4 Update C ± C + 1.
5 Let - C

= {G * - : G�C = IC } and BC = (B, IC ).
6 Let . C

= {~ * . : ~8 b ~ 9 for all (8, 9) *
�C * �21 with B

C
8 = BC9 } and .

C
error = . \ . C .

7 Let (C = (- C × . C , �1 \ �C , �2) and
�C = (- C × . C

error, �1 \ �C , �2).
8 Update - ± - \ - C .

|is is a standard process (see [10]), the only diference is that

in Step 6, we partition . into . C and . C
error, maintaining (C as a

structure. Following the density-restoring partition process, it is

clear that (8 = (- 8 × . 8 , �1 \ �8 , �2) is a structure. |e facts that ^8

is W-dense on �1 \ �8 and

D> (^8 , �1 \ �8 ) f D> (^ , �1) 2 |�8 | + log
1

?g8
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hold by the standard proof (see [10]). Now, we prove that, for every

C ,

|. C
error |/|. | f 2 · ( |�C * �21 |

2 2 |�21 |
2)/:.

It is equivalent to show that

Pr
~>_

[
#8, 9 * �C * �21 , (~8 = ~ 9 ) ' (BC8 = BC9 )

]
f 2·( |�C*�21 |

22|�21 |
2)/:.

Recall that ( is a structure, or the event won9t happen for 8, 9 * �21 ,

i.e.,

Pr
~>_

[
#8, 9 * �21 , (~8 = ~ 9 ) ' (BC8 = BC9 )

]
= 0.

For any pair (8, 9), if both 8, 9 * �22 , we also know there is no colli-

sion since ( is a structure. On the other hand, if any of 8 or 9 is in

�2, by using the fact that _ is dense on �2,

Pr
~>_

[
~8 = ~ 9

]
f 4

:
.

Now we only need to consider those pairs (8, 9) such that: at

least one of them is in �C \ �21 and at least one of them is in �2. By

union bound, we have that

Pr
~>_

[
#8, 9 * �C * �21 , (~8 = ~ 9 ) ' (BC8 = BC9 )

]

f Pr
~>_

[
#8, 9 * �C , (~8 = ~ 9 ) ' (BC8 = BC9 )

]

+ Pr
~>_

[
#8 * �C , 9 * �21 , (~8 = ~ 9 ) ' (BC8 = BC9 )

]

f |�C |
2

2
· 4
:
+ |�C | · |�21 | ·

4

:
=

2 ·
(
|�8 * �21 |

2 2 |�21 |
2
)

:
.

We then onish the proof. ¥

B PROOF OF CLAIM 3.5

Claim B.1. Let (', �1, �2) be a structure, and let the following de-
composition obtained by Lemma 3.1.

' = - 1 × . 1 * - 1 × . 1
error * · · · * - C × . C * - C × . C

error .

Let (1, �1, . . . , (C , �C be the corresponding tuples from Lemma 3.1.

|en we have that∑
8

(
|(8 |
|' | · D> ((

8 , �1 \ �8 , �2) +
|�8 |
|' | · D> (�

8 , �1 \ �8 , �2)
)

f D> (', �1, �1) 2
∑
8

|- 8 |
|- | · |�8 | + 2.

PRoof. Let ?8 =
|(8 |+|�8 |
|' | =

|- 8 |
|- | . By Lemma 3.1, for any 8 * [C],

D> (^8 , �1 \ �8 ) f D> (^ , �1) 2 |�8 | + log
1

?g8
.

By taking an average on - 8 , we have that∑
8

?8 · D> (^8 , �1 \ �8 ) f D> (^ , �1) 2
∑
8

?8 · |�8 | +
∑
8

?8 · log
1

?g8
.

Note that
∑
8 ?8 · log 1

?g8
f

+ 1

0
log 1

G 3G = 1, we have∑
8

?8 · D> (^8 , �1 \ �8 ) f D> (^ , �1) 2
∑
8

?8 · |�8 | + 1. (3)

On the other hand,
(
. 8 , . 8

error

)
is a partition of . for every 8 . Let q8

be a Bernoulli random variable with Pr[q8 = 1] = |.
8 |
|. | =

|(8 |
|(8*�8 | .

We have that,

D> (_ , �2)
= Pr[q8 = 1] · D> (_ 8 , �2) + Pr[q8 = 0] · D> (_ 8error, �2) 2 H(q8 )
g Pr[q8 = 1] · D> (_ 8 , �2) + Pr[q8 = 0] · D> (_ 8error, �2) 2 1.

(4)

By adding inequalities (3) and (4), we onish the proof of this claim.

¥

C PROOF OF LEMMA 3.7

First, we recall the deonitions of % 9 and & 9 .

Deonition C.1. Let ' be a rectangle with a decomposition into a

set of tuples L. We deone its modioed average quadratic of oxing
size as

& (';L) :=
∑

(!,�1,�2 ) *L: | � 21 |, | � 22 |<
:
:/4

|! |
|' | ·

(
2 · |�21 |

2 + 2 · |�22 |
2

:

)

+
∑

(!,�1,�2 ) *L: | � 21 | or | � 22 | g
:
:/4

|! |
|' | · 2.

For nodes in the the 9-th layer of the tree, we similarly deone

its total modioed average quadratic of oxing size by,

& 9
=

∑
'*R 9

|' |
:2"

·& (',L(')) .

For each 9 , we denote

% 9 :=
∑

(!,�1,�2 ) *B 9*C 9

(
|! |
:2"

)
.

Now we are ready to prove the following lemma.

Lemma C.2. Given a protocol £, % leaf f & leaf .

PRoof. We prove that % 9 f & 9 for all 9 g 0 by an induction

proof. It is clear that %0 = &0
= 0 in the roof. Now we assume that

% 9 f & 9 and aim to prove % 9+1 f & 9+1.
For any rectangle ' = '0 * '1 * R 9 , in the 9 + 1 interaction,

Step 3 and Step 5 in Algorithm 1 decomposes ( + '0 and ( + '1

for each ((, �1, �2) * S 9 ('). For 1 * {0, 1}, let (1,1 * �1,1 * · · · *
(1,C * �1,C be the decomposed rectangles and let �11 , ..., �

1
C be the

associated sets of newly oxing coordinates. |us, we have L(( +
'1 ),B((+'1 ), C((+'1 ) just follow the deonitions. For � * B 9 (')
the decomposition does not ox new coordinates for those tuples.
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First, since % 9+1
=

∑
(!,�1,�2 ) *B 9+1*C 9+1

|! |
:2" , we notice that

% 9+1
=

∑
'*R 9

|' |
:2"

·
∑

1*{0,1}

|'1 |
|' | ·

©­«
∑

!*C 9 (')*B 9 (')

|'1 + ! |
|'1 |

+
∑

(*S 9 (')\C 9 (')

|( + '1 |
|'1 |

·
∑

!*B((+'1 )*C((+'1 )

|! |
|( + '1 |

ª®
¬

= % 9 +
∑
'*R 9

|' |
:2"

·
∑

1*{0,1}

|'1 |
|' | ·

∑
(*S 9 (')\C 9 (')

|( + '1 |
|'1 |

·
∑

!*B((+'1 )*C((+'1 )

|! |
|( + '1 |

.

Fix ((, �1, �2) * S 9 (') \ C 9 (') with |�21 | f
:
:
4 and |�22 | f

:
:
4 .

Let

�(( + '1 ) =
∑

!*B((+'1 )*C((+'1 )

|! |
|( + '1 |

be the increase in ( + '1 , we aim to upper bound it by & (( +
'1 ;L(( + '1 )) 2& (( + '1 ; {( + '1 }).
By Lemma 3.1, for any 8 , if |�18 * �21 | f

:
:
4 , then

|�1,8 |
|(1,8 | + |�1,8 |

f
2 · ( |�8 (() * �21 |

2 2 |�21 |
2)

:
. (5)

Otherwise, since |�21 | f
:
:
4 , we can bound

|�1,8 |
|(1,8 | + |�1,8 |

f 1 f 9

8
2
2 · |�21 |

2

:
. (6)

Let � = {8 : |�18 * �21 | g
:
:
4 }, by inequality (5) and inequality (6),

we have

�(( + '1 ) =
∑

!*C((+'1 )*B('1 )
· |! |
|( + '1 |

=

∑
8

|�1,8 |
|( + '1 |

+
∑
8*�

|(1,8 |
|( + '1 |

=

∑
8+�

|�1,8 |
|( + '1 |

+
∑
8*�

|(1,8 | + |�1,8 |
|( + '1 |

f
∑
8+�

|(1,8 | + |�1,8 |
|( + '1 |

·
2 · ( |�18 * �21 |

2 2 |�21 |
2)

:

+
∑
8*�

|(1,8 | + |�1,8 |
|( + '1 |

·
(
9

8
2
2 · |�21 |

2

:

)

f
∑

8+C(( )

|(1,8 | + |�1,8 |
|( + '1 |

·
2 · ( |�18 * �21 |

2 + |�22 |
2)

:

+
∑

8*C(( )

|(1,8 | + |�1,8 |
|( + '1 |

· 2 2
2 · ( |�21 |

2 + |�22 |
2)

:

= & (( + '1 ;L(( + '1 )) 2& (( + '1 ; {( + '1 }),

(7)

where the second inequality is held by the fact that |�22 | f
:
:
4 .

Moreover, for any � * B 9 ('), since we don9t do decomposition

on it, & (� + '1 ;L(� + '1 )) 2 & 9 (� + '1 ; {� + '1 }) = 0. For

any � * C 9 ('), & (� + '1 ;L(� + '1 )) 2& 9 (� + '1 ; {� + '1 }) =∑
!*L(�+'1 )

|! |
|�+'1 | · 2 2 2 = 0.

Now we take an average on all rectangles in R 9 , by inequality

(7), we have

% 9+1 2 % 9

=

∑
'*R 9

|' |
:2"

·
∑

1*{0,1}

|'1 |
|' | ·

∑
(*S 9 (')\C 9 (')

|'1 + ( |
|'1 |

· �(( + '1 )

f & 9+1 2& 9 .

Since % 9 f & 9 , % 9+1 f & 9+1 2& 9 + % 9 f & 9+1. |is onishes the

proof. ¥

D PROOF OF CLAIM 3.10

Claim D.1. Given any rectangle ', for each ( = (- × ., �1, �2) *
S(') and ( is a structure, if either ^ is W-dense on �1 or _ is W-dense

on �2, then for any distinct pair 8, 9 * ["],

Pr
(G,~)>(^ ,_ )

[(G8 = G 9 ) ' (~8 = ~ 9 )] f
4

:
.

PRoof. WLOG, we assume that ^ is W-dense on �1. Since ( =

(-×., �1, �2) is a structure,^ � 21
is oxed andwe denote it by B = - � 21

.

We consider the two cases.

" Case 1: Both 8, 9 * �21 , i.e., for all G * -, G8 = B8 and G 9 = B 9 .

Since ( = (- × ., �1, �2) is a structure, then either B8 b B 9 ,

or B8 = B 9 and ~8 b ~ 9 for all ~ * . . For both cases, we have
that

Pr
~>_
[(~8 = ~ 9 )] = 0.

" Case 2: Either 8 * �1 or 9 * �1. WLOG, we assume that

8 * �1. Now we have two sub-cases. If 9 is also in �1, then

by the fact that ^ is W-dense on �1 (in particular, dense on

{8, 9}),
Pr
G>^
[G8 = G 9 ] f

:

:2·W
=

4

:
.

On the other hand, if 9 * �21 , i.e., - 9 = B 9 , by using the fact

that ^ is W-dense on �1 again,

Pr
G>^
[G8 = B 9 ] f

1

:W
=

2

:
.

For both cases, we have

Pr
(G,~)>(^ ,_ )

[(G8 = G 9 ) ' (~8 = ~ 9 )] f Pr
G>^
[G8 = G 9 ] f

4

:
.

|e claim then follows. ¥
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