
A New Information Complexity Measure for Multi-pass
Streaming with Applications∗

Mark Braverman
Princeton University
Princeton, NJ, USA

mbraverm@cs.princeton.edu

Sumegha Garg
Rutgers University
Piscataway, NJ, USA

sumegha.garg@rutgers.edu

Qian Li
Shenzhen lnternational Center For
Industrial and Applied Mathematics,
Shenzhen Research Institute of Big

Data
Shenzhen, China

liqian.ict@gmail.com

Shuo Wang
Shanghai Jiao Tong University

Shanghai, China
s.wangg2002@gmail.com

David P. Woodru�
Carnegie Mellon University

Pittsburgh, PA, USA
dwoodruf@andrew.cmu.edu

Jiapeng Zhang
University of Southern California
Los Angeles, California, USA

jiapengz@usc.edu

ABSTRACT

We introduce a new notion of information complexity for multi-

pass streaming problems and use it to resolve several important

questions in data streams:

(1) In the coin problem, one sees a stream of = i.i.d. uniformly

random bits and one would like to compute the majority

with constant advantage. We show that any constant-pass

algorithm must use «(log=) bits of memory, signi�cantly

extending an earlier «(log=) bit lower bound for single-

pass algorithms of Braverman-Garg-Woodru� (FOCS, 2020).

This also gives the �rst «(log=) bit lower bound for the

problem of approximating a counter up to a constant factor

in worst-case turnstile streams for more than one pass.

(2) In the needle problem, one either sees a stream of = i.i.d.

uniform samples from a domain [C], or there is a randomly

chosen “needle" U * [C] for which each item independently

is chosen to equal U with probability ? , and is otherwise uni-

formly random in [C]. The problem of distinguishing these

two cases is central to understanding the space complexity

of the frequency moment estimation problem in random

order streams. We show tight multi-pass space bounds for

this problem for every ? < 1/
√
= log3 =, resolving an open

question of Lovett and Zhang (FOCS, 2023); even for 1-pass

our bounds are new. To show optimality, we improve both

lower and upper bounds from existing results.

Our information complexity framework signi�cantly extends the

toolkit for proving multi-pass streaming lower bounds, and we

give a wide number of additional streaming applications of our

∗The full version of this paper is available at https://arxiv.org/abs/2403.20283.

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0383-6/24/06
https://doi.org/10.1145/3618260.3649672

lower bound techniques, including multi-pass lower bounds for ℓ? -

norm estimation, ℓ? -point query and heavy hitters, and compressed

sensing problems.

CCS CONCEPTS

• Theory of computation³ Lower bounds and information

complexity; Streaming models.

KEYWORDS

Information Complexity, Streaming Algorithms

ACM Reference Format:

Mark Braverman, Sumegha Garg, Qian Li, Shuo Wang, David P. Woodru�,

and Jiapeng Zhang. 2024. A New Information Complexity Measure for Multi-

pass Streaming with Applications. In Proceedings of the 56th Annual ACM

Symposium on Theory of Computing (STOC ’24), June 24–28, 2024, Vancouver,

BC, Canada. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/

3618260.3649672

1 INTRODUCTION

Streaming problems with stochastic inputs have been popularly

studied in the streaming community [6, 9, 13, 14, 16, 20, 27, 28, 37],

which have applications to diverse areas including learning theory

[12, 17, 47, 48] and cryptography [18, 19, 31, 50]. In this setting, one

sees a stream of i.i.d. samples from some underlying distribution. As

the samples are i.i.d., this is a special case of thewell-studied random

order streaming model. In this paper, we will consider streaming

problems (with stochastic inputs) that are allowed multiple passes

over their input. Surprisingly, even the most basic problems in data

streams are not resolved in the stochastic setting. We discuss two

such problems below.

Coin Problem. If the stream is -1, -2, . . . , -= , with each -8 being

independently and uniformly drawn from {21, 1}, then the coin

problem is to compute the sum of these bits up to additive error

$ (
:
=), which gives a non-trivial advantage for estimating the ma-

jority. This can be solved trivially in $ (log=) bits of memory by

storing the sum of input bits, and was recently shown to require

«(log=) bits of memory in [9]. However, if we allow two or more

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

1781

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Mark Braverman, Sumegha Garg, Qian Li, Shuo Wang, David P. Woodru�, and Jiapeng Zhang

passes over the stream, the only known lower bound is a trivial

«(1) bits.
Naturally, the coin problem is closely related to the fundamental

question of counting the number of elements in a data stream –

maintain a counter � in a stream under a sequence of updates of

the form� ± � + 1 or� ± � 2 1, which is arguably the most basic

question you could ask. More generally, one would like to approxi-

mate � up to a constant multiplicative factor. One can solve this

exactly using +log2 =+ bits of memory, where = is the length of the

stream. This bound is tight for deterministic algorithms even if you

allow a large poly(=) approximation factor [3]. It is also tight for

constant-factor-approximation randomized 1-pass algorithms, via

a reduction from the augmented indexing problem [36]. In fact, the

lower bound of [9] for the coin problem implies that the randomized

1-pass lower bound holds even when the algorithm succeeds with

high probability over an input of 8 .8 .3 . coin �ips. Despite our un-

derstanding of 1-pass algorithms, we are not aware of an «(log=)
lower bound for this basic problem of approximate counting for

more than one pass, even for worst-case streams, once two or more

passes are allowed. For:-pass streaming algorithms, a weaker lower

bound of «((log=)1/:) can be derived using communication com-

plexity lower bounds for the Greater-Than function1 [40, 51]. There

is work on approximate counting lower bounds of [2], which ana-

lyzes a single linear sketch and therefore can only apply to single

pass streaming algorithms. It also requires at least exponentially

long streams in the value = of the �nal count, despite the count

being $ (=) in absolute value at any time during the stream.

Needle problem. Here the goal is to distinguish between streams

-1, · · · , -= sampled from two possible underlying distributions: let

C = «(=),

" Uniform distribution J0: each -8 is picked independently

and uniformly at random from the domain [C], and
" Needle distribution J1: the distribution �rst uniformly sam-

ples an element U from [C] (we call it the needle). Then, each
item -8 independently with probability ? equals U , and oth-

erwise is sampled uniformly from [C].

Lovett and Zhang [37] showed a lower bound of «
(

1
?2= log=

)
bits

for any constant number of passes to distinguish J0 from J1, and

left it as an open problem to improve this bound. Using an algorithm

for frequency moment estimation, the work of Braverman et al. [11]

shows that for ? = >
(

1
=2/3

)
, there is a single-pass upper bound of

$
(

1
?2=

)
bits. For larger ? , the best known algorithm is to store

the previous $
(

1
?2=

)
items in a stream, using $

(
log=

?2=

)
bits, and

check for a collision. Thus, for every ? there is a gap of at least log=

in known upper and lower bounds, and for the important case of

? > «

(
1

=2/3

)
, the gap is �(log2 =). We note that the work of Lovett

1Brie�y, given inputs G, ~ * [=0.1] to the two-player CC problem for Greater-than

function, Alice adds G · =0.9 1s to the stream and Bob adds ~ · =0.9 number of 21s.
Determining the sign of G 2 ~, or estimating G 2 ~ up to additive error =0.9 requires

« ((log=)1/:) randomized :-round communication since it solves Greater-Than.

and Zhang also requires C = «(=2) in its lower bounds2, which

limits its applications to frequency moment estimation.

The needle and coin problems are related to each other if ? =

�

(
1:
=

)
and when the algorithm has access to a random string that

is not counted towards the space complexity3. One can randomly

hash each universe element in a stream in the needle problem to

{21, 1} – under the needle distribution J1, the absolute value of

the sum of bits is likely to be an additive �(
:
=) larger than in

the uniform distribution J0, and thus the coin problem is at least

as hard as the needle problem. However, the needle problem for

? = �

(
1:
=

)
could be strictly easier than the coin problem.

We stress that the coin and needle problems are arguably two

of the most fundamental problems in data streams. Indeed, a vast

body of work has considered estimating the @-th frequency moment

�@ =
∑C
8=1 |G8 |@ , for an underlying C-dimensional vector G undergo-

ing positive and negative updates to its coordinates. If C = 1, this

problem is at least as hard as the coin problem. The lower bound

of [9] thus gave the �rst «(log=) lower bound for single pass �2-

estimation in the bounded deletion data stream model [32], even

when one does not charge the streaming algorithm for storing its

randomness. As the lower bound of [9] was actually an information

cost lower bound, it gave rise to the �rst direct sum theorem for

solving multiple copies of the �2-estimation problem, showing that

solving A copies each with constant probability requires «(A log=)
bits in this data stream model. Lower bounds for the coin problem

were shown to imply additional lower bounds in random order and

bounded deletion models for problems such as point query, and

heavy hitters; see [9] for details. For @ > 2, if we set ? = �

(
1

=121/@

)
in the needle problem, then it is not hard to see that �@ di�ers

by a constant factor for distributions J0 and J1 with large prob-

ability. In this case, the lower bound of [37] gives an «

(
=122/@
log=

)
lower bound for frequency moment estimation in the random or-

der insertion-only data stream model for any constant number of

passes, provided C = «(=2). There is also a long sequence of prior

work on this problem [6, 13, 16, 39], which obtains polynomially

worse lower bounds (though does not require C = «(=2)). The
single-pass arbitrary order stream $

(
=122/@

)
upper bound of [11]

for @ > 3 matches this up to a logarithmic factor, and a central

question in data streams is to remove this logarithmic factor, as

well as the requirement that C = «(=2).

1.1 Our Contributions

We give a new multi-pass notion of information complexity that

gives a uni�ed approach to obtain lower bounds for the coin and

the needle problem for any number : of passes. We note that the

measure of information we use is a generalization of the notion

of information complexity for : = 1 pass given in [9]. Namely, we

2Here we choose the domaint to be [C] and = the number of samples to be consistent
with our notation for the coin problem. Unfortunately, this is exactly the opposite
notation used in [37]
3This is referred to as the public coin model in communication complexity, and we
may naturally view this problem as an =-player communication game.

1782

A New Information Complexity Measure for Multi-pass Streaming with Applications STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

de�ne the :-pass information complexity notion by

"�� (M, `) :=
:∑
8=1

=∑
9=1

8∑
ℓ=1

I
(
M(8, 9) ;-ℓ | M(f8,ℓ21) ,M(f821, 9)

)

+
:∑
8=1

=∑
9=1

=∑
ℓ=9+1

I
(
M(8, 9) ;-ℓ | M(f821,ℓ21) ,M(f821, 9)

)
,

where (-1, · · · , -=) > ` andM(8, 9) represents the 9 th memory state

in the 8th pass. We will set ` to be the uniform distribution over

{21, 1}= in the coin problem and the uniform distribution J0 in

the needle problem. When ` is clear from the context, we will drop

it from the notation and write "�� (M). The primary challenge

in establishing lower bounds for multi-pass streaming algorithms

arises from the fact that the streaming data loses its independence

when multiple passes are used. To mitigate this, the idea of"�� (M)
is to capture some residual independence by carefully �xing some

memory states in the previous pass. To make this notion useful, we

show that"�� (M) is upper bounded by 2:B=.

Note that this multi-pass information complexity notion applies

to any streaming problem as long as it is de�ned on a product

distribution. As we will see in the paper, this notion is useful for

proving multi-pass streaming lower bounds via various approaches,

such as round elimination as well as reductions to communication

problems.

Just as the measure of information in [9] was crucial for 1-pass

applications, such as the amortized complexity of approximate

counting in insertion streams [1], we will show our notions have a

number of important applications and can be used to obtain multi-

pass lower bounds for both the coin and needle problems. We will

de�ne and motivate our information complexity notion more below,

but we �rst describe its applications.

1.1.1 The Coin Problem. We give tight lower bounds on the infor-

mation complexity of the coin problem, signi�cantly extending the

results of [9] for the 1-pass setting to the multi-pass setting. We

then give a new multi-pass direct sum theorem for solving multiple

copies, and use it for streaming applications.

Multi-Pass Coin Problem. We give the �rst non-trivial multi-pass

lower bound for the coin problem.

Theorem 1.1 (:-Pass Coin Problem). Given a stream of = i.i.d.

uniformly random bits, any:-pass streaming algorithmwhich outputs

the majority of these bits with probability 1 2 W for a small enough

constant W > 0, requires «(log=
:
) bits of memory.

Theorem 1.1 is a signi�cant strengthening of the main result

in [9] which held only for : = 1 pass. Although the work of [10]

allows for a larger bias on its coins, it also held only for : = 1 pass.

As discussed before, we can interpret the coins as updates in

{21, 1} to a counter � initialized to 0. Adjoining a pre�x of U
:
=

1s to the stream for a large enough constant U > 0, we have that

by bounds on the maximum deviation for a 1-dimensional random

walk that � will be non-negative at all points during the stream,

which corresponds to the strict turnstile streaming model – where

one can only delete previously inserted items. We also have that the

�nal value of� will deviate from its expectation U
:
= by an additive

«(
:
=) with constant probability, that is, it is anti-concentrated.

Consequently, Theorem 1.1 implies the following.

Theorem 1.2 (:-Pass Counter in Strict Turnstile Streams).

Any :-pass strict turnstile streaming algorithm which counts the

number of insertions minus deletions in a stream of length = up to a

small enough constant multiplicative factor and with probability at

least 1 2 W for a small enough constant W > 0, requires «(log=
:
) bits

of memory.

By constant multiplicative factor, we mean to output a number

�2 for which (1 2 n)� f �2 f (1 + n)� for a constant n > 0. For

insertion-only streamswhere no deletions of items are allowed, non-

trivial algorithms based on Morris counters achieve $ (log log=)
bits [21, 25, 44, 49]. We rule out any non-trivial algorithm for strict

turnstile streams for any constant number of passes.

To obtain further applications, we �rst show a direct sum theo-

rem for multi-pass coin problems.

Theorem 1.3 (Direct Sum for :-Pass Counter). Suppose : <

log= and C < =2 for a su�ciently small constant 2 > 0. Given C

independent streams each of = i.i.d. uniformly random bits, any :-

pass streaming algorithm which outputs a data structure such that,

with probability 12W for a small enough constantW > 0 over the input,

the algorithm’s randomness, and over a uniformly random 9 * [C],
outputs the majority bit of the 9-th stream, requires «

(
C log=

:

)
bits

of memory.

As an example application of this theorem, in [41] the following

problem was studied for a real number ? * [0, 2]: given vectors

E1, . . . , EC * {2poly(=), . . . , poly(=)}3 , estimate a constant fraction

of the 'E1'? , . . . , 'EC '? up to a su�ciently small constantmultiplica-

tive factor with constant probability, where for a 3-dimensional

vector ~, the ?-norm4 '~'? =

(∑3
8=1 |~8 |?

)1/?
. We will refer to

this problem as Multi-ℓ? -Estimation. The best upper bound is

$ (C · log=), which follows just by solving each instance indepen-

dently with constant probability and using $ (log=) bits [36]. An
«(C log log=+ log=) randomized lower bound follows for any$ (1)-
pass streaming algorithm by standard arguments5. We note that

if we do not charge the streaming algorithm for its randomness,

then the$ (1) pass lower bound for Multi-ℓ? -Estimation is an even

weaker «(C log log=).
By using Theorem 1.3 and having each vector E8 in the Multi-ℓ? -

Estimation problem correspond to a single counter, we can show

the following:

Theorem 1.4 (:-Pass Multi-ℓ? -Estimation). Suppose : < log=

and C < =2 for a su�ciently small constant 2 > 0. Any :-pass

streaming algorithm which solves the Multi-ℓ? -Estimation Problem

on C instances of a stream of = updates for each vector, solving each

ℓ? -norm estimation problem up to a small enough constant factor

with probability 1 2 W for a su�ciently small constant W , requires

«

(
C log=

:

)
bits of memory.

4For ? < 1 the quantity 'E '? is not a norm, but it is still a well-de�ned quantity. With

a standard abuse of notation, we will refer to it as a ?-norm.
5The « (C log log=) bound follows just to record the output, while the « (log=) lower
bound follows by a reduction from the Equality problem, as in [4].

1783

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Mark Braverman, Sumegha Garg, Qian Li, Shuo Wang, David P. Woodru�, and Jiapeng Zhang

Another important streaming question we consider is the ℓ2-

Point �ery Problem: given an underlying 3-dimensional vector

G * {2poly(=), . . . , poly(=)}3 that undergoes a sequence of pos-

itive and negative additive updates to its coordinates, for each

9 * {1, . . . , 3}, one should output G 9 up to an additive error n 'G '2
with constant probability. Related to this question is the ℓ2-Heavy

Hi�ers Problem which asks to output a set (which (1) contains all

indices 8 for which G28 g n 'G '22, and (2) does not contain any index 8

for which G28 f
n2

2 'G '22. Further, for all 8 * (, one should output an

estimate Ĝ8 with |Ĝ8 2G8 | f n 'G '2. In [9], for both of these problems

an «(n22 log=) memory lower bound was shown for single-pass

algorithms on length-= streams, which improved the previous best

known «(n22 log3) lower bounds when the stream length = is

much larger than the dimension 3 of the input vectors. Notably, the

lower bounds in [9] only hold for single pass algorithms.

By having each coordinate of an underlying vector G correspond

to a counter, we can also use Theorem 1.3 to solve the ℓ2-Point

�ery Problem and the ℓ2-Heavy Hi�ers Problem. Here we also use

that the Euclidean norm of the underlying vector is concentrated.

Theorem 1.5 (:-Pass Point �ery and Heavy Hitters). Sup-

pose : < log= and n22 < =2 for a su�ciently small constant

2 > 0. Any :-pass streaming algorithm which, with probability

1 2 W for a su�ciently small constant W > 0, solves the ℓ2-Point

�ery Problem or the ℓ2-Heavy Hi�ers Problem on a vector G *
{2poly(=), . . . , poly(=)}3 in a stream of = updates, requires at least

«

(
n22 log=

:

)
bits of memory.

Our «(n22 log=) bit lower bound for the ℓ2-Heavy Hi�ers Prob-

lem can be applied to the Sparse Recovery Problem in compressed

sensing (see, e.g., [24, 45]), which involves an input vector G *
{2poly(=), . . . , poly(=)}3 in a stream, and asks to output an A -

sparse vector Ĝ for which

'Ĝ 2 G '2 f � · 'G 2 GA '2, (1)

where GA is G with all but the top A coordinates set to 0. Here � > 1

is any �xed constant.

A standard parameter of sparse recovery is the Signal-to-Noise

Ratio (SNR), which is de�ned to be
'GA '22
'G '22

. The SNR is at most 1,

and if it is 1, there is a trivial «(A (log= + log3)) bit lower bound.
Indeed, since the guarantee of (1) has multiplicative error, we must

have Ĝ = G = GA in this case, and it takes «(A (log= + log3)) bits to
encode, for each of the A non-zero locations in G , its location and its

value. However, when the SNR is a constant bounded away from 1,

this encoding argument no longer applies. Indeed, while one can

show an «(A log3) bits lower bound to encode the identities of A
locations, each of their values can now be approximated up to a

small multiplicative constant, and so encoding their values requires

only «(A log log=) bits.
While an «(A + log log=) measurement lower bound is known

for multi-pass streaming algorithms [46] for constant SNR bounded

away from 1, perhaps surprisingly in the data stream model, an

«(A log=) bit lower bound for streams of length= and SNR bounded

away from 1 was unknown. As our lower bound for the ℓ2-Heavy

Hi�ers Problem only requires recovering a large constant fraction

of the ℓ2-heavy hitters, all of which are comparable in magnitude

in our hard instance, and the Euclidean norm is concentrated, we

in fact can obtain a lower bound for the Sparse Recovery Prob-

lem even if the SNR is a constant bounded away from 1. We note

that there is an $ (log log=)-pass streaming algorithm which uses

$ (A log= log log=) bits of memory to solve the sparse recovery

problem for any SNR, see [43] which builds upon [29] (see the text

after the proof of Theorem 3.7 in [29] on how to obtain an exactly A -

sparse output). Our lower bound is thus tight up to poly(log log=)
factors.

Theorem 1.6 (Bit Complexity of Sparse Recovery). Suppose

: < log= and A < =2 for a su�ciently small constant 2 > 0. Any

:-pass streaming algorithm which, with probability 1 2 W for W > 0

a small constant, solves the Sparse Recovery Problem for constant

SNR in (0, 1), requires «(A log=
:
) bits of memory.

1.1.2 The Needle Problem. Lovett and Zhang [37] recently showed

the following lower bound for the needle problem.

Theorem 1.7 ([37]). Any :-pass streaming algorithm M which

distinguishes between the uniform and needle distributions with high

probability, where ? denotes the needle probability,= the stream length,

and B the space, satis�es :B?2= log(=) = «(1), provided the domain

size C = «(=2).

While this lower bound is nearly tight, it was conjectured by

[6, 13, 16, 37] that the additional log(=) term can be removed, and it

also was plausible that the C = «(=2) restriction could be removed.

This conjecture is for good reason, as for = = �(C) and ? j 1
=2/3

and : = 1, an upper bound for estimating frequency moments

of [11] shows that B?2= = $ (1). Indeed, the upper bound of [11]

shows how to estimate �@ =
∑C
8=1 5

@
8 up to an arbitrarily small but

�xed constant factor in$ (C122/@) bits of memory and a single pass,

for any @ > 3. Notice that in distribution J0, we could choose a

proper = = �(C) such that �@ = = + > (=) with high probability. On

the other hand, for distribution J1, we have that �@ > (? ·=)@ , and
so if ? = �(1/=121/@), these two distributions can be distinguished

by the algorithm of [11]. In this case the conjecture would say

B = «(1/(=?2)) = «(=122/@) = «(C122/@), which matches the

space upper bound of [11].

We resolve this conjecture. As a consequence, several other

streaming lower bounds mentioned by [16, 37, 38] can be improved

automatically. Also, our results also imply that the frequency esti-

mation problem for @ > 2 is as hard in the random order model as

in the arbitrary order model (both are «(C122/@)).

Theorem 1.8 (:-pass needle problem). Any :-pass streaming

algorithm M with space B that distinguishes J0 and J1 with high

probability satis�es :B?2= = «(1), where ? denotes the needle proba-

bility and = f C/100 denotes the number of samples.

If we use the algorithm of [11] to the needle problem by the

reduction discussed above, we can conclude that our lower bound

for the needle problem is tight when ? j 1
=2/3 . However, we further

improve the upper bound by giving a new algorithm and show that:

Theorem 1.9 (Improved upper bound). There exists a one-pass

streaming algorithm that distinguishes J0 and J1 with high proba-

bility and uses $ (1
?2=
) bits of space when ? f 1√

= log3 =
.

1784

A New Information Complexity Measure for Multi-pass Streaming with Applications STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

Our upper bound improves upon [11], and shows that our lower

bound for the needle problem is indeed tight for any ? f 1√
= log3 =

.

The remaining gap only exists in the range of ? >
1√

= log3 =
.

In fact, for ? g 1:
=
, for the =-player communication problem,

where each player has a stream item and the players speak one at a

time from left to right in the message passing model (see, e.g., [33]

for upper bounds for a number of problems in this model), we show

that the problem can be solved by having each player send at most

$ ((log log=) (log log log=)) bits to the next player. It is not quite

a streaming algorithm, as the players need to know their identity,

but would be a streaming algorithm if we also allow for a clock, so

that we know the number 8 for the 8-th stream update, for each 8 .

Theorem 1.10 (upper bound for communication game). There

exists an =-player one-round communication protocol that distin-

guishes J0 and J1 with high probability and each player uses at

most $ ((log log=) (log log log=)) bits of space for any ? g 1:
=
.

Theorem 1.10 shows that for ? =
1:
=
, the needle problem is

strictly easier than the coin problem, and thus the abovemen-

tioned algorithm for the needle problem, by �rst reducing to the

coin problem, is suboptimal. Indeed, in the same communication

model or for streaming algorithms with a clock, our «

(
log=
:

)
lower bound in Theorem 1.1 applies. Thus, for a constant num-

ber : of passes, the coin problem requires «(log=) bits of mem-

ory whereas the needle problem with ? =
1:
=
can be solved with

$ ((log log=) (log log log=)) bits of memory, showing that there

exists a separation between the two problems in the =-player com-

munication model.

Remark. Note that our algorithm not only applies to the needle

problem, but also could be adapted to a more general setting where

the needle is randomly ordered while non-needle items could be in

an arbitrary order with some constraints.

Our improved lower bound for the needle problem can be used

to obtain optimal lower bounds in the random order model for

arguably the most studied problem in the data stream literature,

namely, that of approximating the frequency moments. Starting

with the work of Alon, Matias, and Szegedy [4], there has been a

huge body of works on approximating the frequency moments in

arbitrary order streams, see, e.g., [5, 7, 8, 15, 22, 23, 30, 34, 42], and

references therein. As mentioned above, Braverman et al. [11] gave

an upper bound of $ (C122/@) for constant approximation for all

@ > 3, which is optimal for arbitrary order insertion streams.

A number of works have also studied the frequency moment esti-

mation problem in randomly ordered streams. While the $ (C122/@)
bit upper bound of [11] still holds, we did not have a matching

lower bound. Chakrabarti, Cormode, and McGregor [13] gave the

�rst non-trivial «(C123/@) lower bound. A follow-up paper by An-

doni et al. [6] improved this lower bound to «(C122.5/@). Recently,
a lower bound of «(=122/@/log=) was shown by Lovett and Zhang

[37] provided C = «(=2). Since a stream of i.i.d. samples is automat-

ically randomly ordered, our Theorem 1.8 resolves this long line

of work, giving an «(C122/@) lower bound. We thus improve the

lower bound of [37] by a logarithmic factor, and also remove the

requirement that C = «(=2). The application to frequency moments

follows by applying our theorem with C = �(=) and ? = 1/=121/@
and arguing that the needle problem gives rise to a constant factor

gap in the value of the @-th frequency moment in the two cases. We

note that the work of [26] claimed to obtain an «(C122/@) lower
bound for frequency moment estimation in a random order, but

was later retracted due to an error which has been pointed out in

multiple places, e.g., [39] retracts its lower bounds and points out

the error6 in [26].

There are other related problems to frequency moment esti-

mation that we also obtain improved lower bounds for, such as

frequency moment estimation of sub-sampled streams. McGregor

et al. [38] studied streaming problems in a model where the stream

comes in so rapidly that you only can see each element indepen-

dently with a certain probability. Our Theorem 1.8 gives an optimal

lower bound for this problem as well, via the reduction in [38].

Another example concerns stochastic streaming problems such as

collision probability estimation studied by Crouch et al. [16]. They

provided several lower bounds based on the needle lower bound of

[6]. Our Theorem 1.8 automatically improves their lower bounds

via the same reductions.

2 TECHNICAL OVERVIEW

In this section, we give a brief overview of our proofs for both the

coin problem and needle problem.

2.1 Properties of New Multi-Pass IC Notion

In this section, we will show some important properties of our IC

notion. In addition to the"�� , we get an another natural expression

for the an information measure for :-pass algorithms M as follows:

De�nition 2.1. LetM be a :-pass streaming algorithm, its input

is denoted by -1, . . . , -= following a product distribution `, then

we de�ne the following information complexity notion:

"��2>=3 (M, `) :=
=∑
9=1

9∑
ℓ=1

I
(
M(f:,9) ;-ℓ |M<: ,M(f:,ℓ21)

)
.

Onemight see that the notion above shares some similarities with

"�� , while the di�erence is"�� further divides the information

costs into smaller components. In our paper, we show the following

properties, which provide an upper bound for both notions and

show some relations. Particularly, we show that, when -1, . . . , -=
are drawn from a product distribution `, the following holds:

" "�� (M, `) f 2:B=;

" "�� (M, `) g "��2>=3 (M, `).
Note that our information complexity notions could be applied to

any other problems as long as they are de�ned on product distribu-

tions.

2.2 Multi-Pass Lower Bound for the Coin

Problem

In this section, we assume that -1, . . . , -= are drawn from the uni-

form distribution over {21, 1}= ; we will drop ` for the rest of the

6This error has also been con�rmed with the authors of [26] in 2016, and no �x with
their techniques seems possible.

1785

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Mark Braverman, Sumegha Garg, Qian Li, Shuo Wang, David P. Woodru�, and Jiapeng Zhang

section. We show an «(= log=) lower bound on"��2>=3 (M, `) for
any :-pass algorithm M that solves the coin problem (or computes

majority of input bits with large enough constant advantage).

We will prove our :-pass lower bound for computing majority

(or approximating sum) on the uniform distribution by reducing

it to the one-pass lower bound proven by [9], which is stated as

follows:

Theorem 2.2 ([9], Corollary 14). Given a stream of = uniform

{21, 1} bits-1, . . . , -= , letO be a one-pass algorithm that uses private

randomness. For all n > 20=
2 1

20 , there exists X g 21n
5 (for small

enough constant 21 > 0 and large enough constant 20 > 0), such that

if

�� (O) =
=∑
9=1

9∑
ℓ=1

I(O8 ;-ℓ |Oℓ21) f X= log=, (2)

then

EO=


©­«
E


=∑
9=1

- 9

������ O= = >=


ª®¬
2
f n=. (3)

Here, O9 represents the memory state of the one-pass algorithm O

after reading 9 input elements.

In other words, if the output of algorithmO reduces the variance

of the sum7, then it needs to have high information cost.

Our main theorem for the :-pass coin problem is stated as fol-

lows:

Theorem 2.3. Let M be a :-pass algorithm on a stream of = 8.8 .3 .

uniform {21, 1} bits,-1, . . . , -= . For all constants Y > 0 and = greater

than a su�ciently large constant, there exists constants X, _ > 0, such

that if : < =_ ,

"��2>=3 (M) f X= log= and "8 * {0, . . . , :}, H(M8) f =_,

(4)

then

EM(:,=)
©­
«
E


=∑
9=1

- 9

������ M(:,=)

ª®
¬
2

f Y=. (5)

Theorem 2.3 and the fact that"��2>=3 f 2:B=, along with ([9],

Claim 6)– which proved an «(=) lower bound on the L.H.S. of

Equation (5) for any algorithm whose output computes majority

with 0.999 advantage, give us the «((log=)/:) space lower bound.

Construction of O. To prove Theorem 2.3, we develop a new sim-

ulation technique to prove our multi-pass streaming lower bounds

for the coin problem. Given a stream- of = 8.8 .3 . uniform bits, letM

be a :-pass algorithm that goes over- twice in order and computes

the majority – that is, the expected variance of the sum of input bits

conditioned on the output of the second pass is a constant factor

less than that of the maximum. Informally, for ease of discussion,

we refer to the variance reduction asM approximating
∑

9 - 9 up

to an additive error8 of n
:
=. Using M, we construct a one-pass

algorithm O, which given a stream of = 8.8 .3 . uniform bits . , also

7We want some mathematical quantity to measure how much information the output
of algorithm O has about the sum/count of the input bits, and variance turns out to be
the ideal measure for [9] as well as for our paper.
8This is actually crucial as our proof technique does not work with large multiplicative
errors, which is a bottleneck for generalizing single pass memory lower bounds for
the coin problem with larger biases [10] to multiple passes.

approximates
∑

9 .9 up to an additive error of > n
:
=. Let M8 repre-

sent the random variable for the output (or memory state) at the

end of the 8-th pass of M (8 * [:]). O executes : passes of M in

parallel. Before reading the input bits.1, . . . , .= ,O samples memory

states at the end of �rst : 2 1 passes from the joint distribution

on (M0, . . . ,M:21). O then modi�es the given input . to - 2 such
that the parallel execution of the : 2 1 passes of the algorithmM

on - 21, . . . , -
2
= end in the sampled memory states. O also maintains

an approximation for the modi�cation, that is of
∑=

9=1 (- 29 2 .9);
this helps O to compute

∑
.9 as long as M computes

∑
- 29 after

: passes. As we want O to have comparable information cost to

that ofM, the approximation of the modi�cation should take low

memory9. The key observation that makes such an approximation

possible is: since the KL divergence of the distribution - , condi-

tioned on reaching memory statesM0, . . . ,M:21, from the uniform

distribution is bounded by the entropy of (M0, . . . ,M:21) (which
we assume to be << =), algorithm O does not need to drastically

modify . (which has a uniform distribution). Still, we cannot a�ord

to store the modi�cation exactly; however, a cruder approximation

su�ces, which can be computed using low memory.

As described above, algorithm O has two components, 1) imitate

: passes ofM simultaneously, and 2) maintain an approximation

for modifying input . to a valid input - 2 for the �rst : 2 1 passes
ofM. To formally describe algorithm O (in Section 2.2.3), we �rst

state these two components separately as algorithms Im (in Section

2.2.1) and Apr (in Section 2.2.2) respectively.

2.2.1 Single-Pass Algorithm Im Imitating : Passes ofM. Recall that

M is a :-pass algorithm that runs on a stream of = 8.8 .3 . uniform

{21, 1} bits, -1, -2, . . . , -= . We describe algorithm Im in Algorithm

1. Let Im9 (where 9 * [=]) represent the random variable for the

memory state of Algorithm Im after reading 9 inputs bits, and

Im0 be a random variable for the starting memory state for the

algorithm. The input . to the algorithm Im is drawn from the

uniform distribution on {21, 1}= .
Let M28 denote the random variable associated with value <28

(8 * {0, 1, . . . , : 2 1). The distribution of M2
<:

is de�ned at Step

1 of Algorithm 1. Let {M2(8, 9) }8*[:], 9*{0,...,=} denote the random
variables associated with values {<2(8, 9) }8*[:], 9*{0,...,=} . The dis-

tribution of M2(8, 9) (9 * [=]) is de�ned at Step 19 of Algorithm 1,

and ofM2(8,0) is de�ned at Step 3. Let {- 29 } 9*[=] denote the random
variable for value G 29 in Step 5 of Algorithm 1. These distributions

depend on the joint distribution on (-,Mf: ,M(f:,[1,=])) and the

uniform distribution of . . Together with a data processing inequal-

ity on . ³ - 2 ³ Algorithm 1, we have

�� (Im) =
=∑
9=1

9∑
ℓ=1

I
(
Im9 ;.ℓ |Imℓ21

)

f
=∑
9=1

9∑
ℓ=1

I
(
M(f:,9) ;-ℓ |M<: ,M(f:,ℓ21)

)
= "��2>=3 (M) .

2.2.2 Low Information Approximation Algorithm Apr. We develop

Apr for the general problem of approximating the sum of= elements,

each in {21, 0, 1}. The problem is as follows: given parametersW > 0,

9Note that it takes log= bits of memory to store
∑=

9=1 (- 29 2 .9) exactly.

1786

A New Information Complexity Measure for Multi-pass Streaming with Applications STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

Algorithm 1: Single pass algorithm Im imitating : passes

ofM

Input: a stream of = bits ~1, . . . , ~= , drawn from uniform

distribution on {21, 1}=
1: Sample<20,<

2
1, . . . ,<

2
:21 > (M0,M1, . . . ,M:21) {Im

samples memory states for the end of �rst : 2 1 passes}
2: 8<0 ± (<20,<

2
1, . . . ,<

2
:21) {Im stores these memory

states for the entire algorithm}

3: "8 * [:],<2(8,0) ±<2(821) {Starting memory states for

the : passes of M}

4: for 9 = 1 to = do

5: V 9 ±(
Pr

[
- 9 = 1 | M(f:,921) =<2(f:,921) ,M<: =<2

<:

]
2 1

2

)
{Can be calculated using 8< 921}

6: if V 9 > 0 then

7: if ~ 9 = 1 then

8: G 29 ± ~ 9

9: else

10: G 29 ± ~ 9 with probability 1 2 2V 9 , and G 29 ± 1

otherwise

11: end if

12: else if V 9 f 0 then

13: if ~ 9 = 1 then

14: G 29 ± ~ 9 with probability 1 + 2V 9 , and G 29 ± 21
otherwise

15: else

16: G 29 ± ~ 9

17: end if

18: end if

19: Sample (<2(1, 9) ,<
2
(2, 9) , . . . ,<

2
(:,9)) from the joint

distribution of
(
(M(1, 9) ,M(2, 9) , . . . ,M(:,9))

)
condition on(

M(f:,921) =<2(f:,921) , M<: =<2
<:

, - 9 = G 29
)

{Given 8< (921) , Im executes 9th time-step for all passes

ofM}

20: 8< 9 ± (<2(1, 9) ,<
2
(2, 9) , . . . ,<

2
(:,9) ,<

2
0,<
2
1, . . . ,<

2
:21)

{At the 9th time-step, Im stores these memory states}

21: end for

� > W
:
=, and a stream of = elements 01, . . . , 0= * {21, 0, 1} jointly

drawn from a distribution D (such that E0>D
[∑=

9=1 10 9b0

]
f �),

the aim is to output
(∑=

9=1 0 9

)
up to an additive error of W

:
=. Let

'Apr = ('Apr1 , . . . , '
Apr
=), where '

Apr
9 denotes the random variable

for private randomness used by algorithm Apr at the 9 th time-step;

we formalize the error guarantee as

E0>D,A>'Apr


������Apr(0, A) 2

=∑
9=1

0 9

������

f W
:
=.

Additionally, we establish that the streaming algorithm Apr (de-

scribed in Algorithm 2) has low information cost – the memory

state at each time-step has low entropy, that is, "8 * [=], H(Apr8) >

2 log
(

�
W
:
=

)
. Note that, the exact computation of

∑
9 0 9 requires

log= memory.

Informally, Apr samples each 0 9 with probability ? > �
W2=

and

maintains their sum using a counter �. It is easy to see that �/?
is an approximation of

∑
9 0 9 (with additive error W

:
=) as long as∑

9 10 9b0 is bounded by > �. As � is an upper bound only on the

expectation of
∑

9 10 9b0, the algorithm Apr needs to �nd another

way to approximate the sumwhenever
∑

9 10 9b0 >> �. For this,Apr

maintains two more counters Z and �, where Z counts the number

of elements 0 9 sampled in the sum �, and � stores
∑

9 0 9 exactly

whenever counter Z becomes >> ?�. Apr is formally described in

Algorithm 2.

Algorithm 2: Algorithm Apr for approximate sum

Input stream: 01, . . . , 0= , drawn from joint distribution D
on {21, 0, 1}=
Given parameters: W > 0, � > W

:
=

Goal: "0 * {21, 0, 1}= ,
���Apr(0, A) 2∑=

9=1 0 9

��� f W
2

:
= with

probability at least 1 2 1
=3 over the private randomness

A > 'Apr

1: Let ? = min
{
6000 log2 = ·

(
�
W2=

)
, 1

}
{probability of

sampling}

2: �± 0 {� maintains an approximation for ? ·
(∑

9 0 9

)
}

3: Z ± 0 {Z approximates ? ·
(∑

9 10 9b0

)
}

4: � ± 0 {� computes
(∑

9 0 9

)
exactly when �/? is not a

good approximation}

5: for 9 = 1 to = do

6: if Z < 20 log= · ?� then

7: Let A 9 be 1 with probability ? and 0 otherwise

8: if A 9 = 1 then

9: �± � + 0 9
10: Z ± Z + 10 9b0 {Sample 0 9 and update the

counters with probability ?}

11: end if

12: else if Z g 20 log= · ?� then

13: � ± � + 0 9
14: end if

15: end for

16: return max{min{�/? + �, =},2=} {Project �/? + �
within [2=, =]}

In Theorems 2.4 and 2.5, we establish the approximation and

information cost guarantees for the algorithm Apr. Before, we note

that Apr uses private randomness at Step 7 of the algorithm and

de�ne '
Apr
9 to be a Ber(?) random variable for all 9 * [=].

Theorem 2.4. "W >
4:
=
, � > W

:
=, the output of Algorithm 2

(Apr) on every input stream 0 * {21, 0, 1}= satis�es the following

with probability at least 12 1
=3 over the private randomness A > 'Apr,������Apr(0, A) 2

=∑
9=1

0 9

������ f
W

2

:
=,

1787

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Mark Braverman, Sumegha Garg, Qian Li, Shuo Wang, David P. Woodru�, and Jiapeng Zhang

which further implies that " distribution D on {21, 0, 1}= ,

E0>D,A>'Apr


©­
«
Apr(0, A) 2

=∑
9=1

0 9
ª®
¬
2
f W2=.

Theorem 2.5. "W >
4:
=
, � > W

:
=, distributions D on {21, 0, 1}=

such that E0>D
[∑=

9=1 10 9b0

]
f �, memory states of Algorithm 2

(Apr) satis�es the following:

"9 * {0, . . . , =},H(Apr9) f 40 + 6 log log= + 2 log
(

�

W
:
=

)

Here, Apr9 denotes the random variable for Apr’s memory state after

reading 9 input elements, and it depends on input 0, as well as the

private randomness A > RApr used by the algorithm.

2.2.3 Single-Pass AlgorithmO for Computing Majority Using :-Pass

AlgorithmM. After introducing the two components, we now de-

scribe the one-pass algorithm O that approximates the sum almost

as well as the :-pass algorithm M, while having similar informa-

tion cost to M. O runs Algorithm 1 (Im) to imitate the : passes

of M – Im modi�es input bit ~ 9 at the 9-th time-step to bit G 29 . In
parallel, O runs Algorithm 2 (Apr) on the modi�cation – the 9-th

input element to Apr is (~ 9 2 G 29) * {21, 0, 1}. After reading ~ 9 , O
runs 9th time-steps of algorithms Im and Apr (the input to Apr is

generated on the �y), and stores the 9th memory states of both the

algorithms. While describing O formally in Algorithm 3 (where pa-

rameters W and � would be decided later), we will restate algorithm

Im and use Apr as a black-box. As used in Subsection 2.2.2, RApr9

represents the private randomness used by algorithm Apr at the 9 th

time-step and Apr9 represents the random variable for 9 th memory

state (A 9 and 0?A 9 represent their instantiations). The input to Apr

is denoted by 0. Let 5
Apr
9 (9 * [=]) represent the 9th transition

function for algorithm Apr, that is, 0?A 9 = 5
Apr
9 (0?A 921, 0 9 , A 9). Let

Apr9 (0?A 921, 0 9) denote the random variable for the 9th memory

state, when the 9th input element is 0 9 , (9 2 1)th memory state is

0?A 921 and private randomness A 9 is drawn from RApr9 .

The random variables .,- 2 are as de�ned in Subsection 2.2.1,

where . is drawn from uniform distribution on {21, 1}= and - 29
corresponds to value G 29 as in Algorithm 3. Let D be the joint

distribution generated by Algorithm 3 on inputs to Apr that is,

the joint distribution on (.1 2 - 21, .2 2 - 22, . . . , .= 2 - 2=). Let � 9

be the random variable for the 9th input element to Apr, that is,

� 9 = .9 2 - 29 . Let {M
2
(8, 9) }8*[:], 9*{0,...,=} and M2

<:
be random

variables as de�ned in Subsection 2.2.1 (these are random variables

for corresponding values that appear in Algorithm 3).

For the approximation algorithm Apr, we show

E0>D


=∑
9=1

10 9b0


= E


=∑
9=1

1.9b-
2
9


f

√
= · H(M

<:).

Informally, we relate the probability of modi�cation at step 9 to the

information that end memory states have about - 9 , conditioned

on the previous memory states. The claim follows from the fact

that the sum of this information over 9 , is bounded by the entropy

of the end states. Note that the above claim is tight if an end state

Algorithm 3: Single pass algorithm O using :-pass algo-

rithm M for computing majority

Input: a stream of = 8.8 .3 uniform {21, 1} bits .1, . . . , .=
Given parameters: W > 0, � > W

:
=

Goal: approximate
∑=

9=1 .9 .

1: Sample<20,<
2
1, . . . ,<

2
:21 > (M0,M1, . . . ,M:21)

2: 8<0 ± (<20,<
2
1, . . . ,<

2
:21)

3: "8 * [:],<2(8,0) ±<2(821)
4: Initialize Algorithm 2 (Apr) with parameters W and �

5: Sample 0?A0 > Apr0 {For Algorithm 2, the starting state

is deterministic}

6: for 9 = 1 to = do

7: V 9 ±(
Pr

[
- 9 = 1 | M(f:,921) =<2(f:,921) ,M<: =<2

<:

]
2 1

2

)
{Can be calculated using 8< 921}

8: if V 9 g 0 then

9: if ~ 9 = 1 then

10: G 29 ± ~ 9

11: else

12: G 29 ± ~ 9 with probability 1 2 2V 9 , and G 29 ± 1

otherwise

13: end if

14: else if V 9 f 0 then

15: if ~ 9 = 1 then

16: G 29 ± ~ 9 with probability 1 + 2V 9 , and G 29 ± 21
otherwise

17: else

18: G 29 ± ~ 9

19: end if

20: end if

21: 0 9 ± (~ 9 2 G 29) {Setting 9th input element to Apr}

22: Sample 0?A 9 > Apr9 (0?A 921, 0 9)
23: Sample (<2(1, 9) ,<

2
(2, 9) , . . . ,<

2
(:,9)) from the joint

distribution on
(
(M(1, 9) ,M(2, 9) , . . . ,M(:,9))

)
condition

on
(
M(f:,921) =<2(f:,921) , M<: =<2

<:
, - 9 = G 29

)
24: 8< 9 ± (<2(1, 9) ,<

2
(2, 9) , . . . ,<

2
(:,9) ,<

2
0,<
2
1, . . . ,<

2
:21)

25: > 9 ± (8< 9 , 0?A 9)
26: end for

Output: >= = (8<=, 0?A=) = (<2(f:,=) ,<
2
<:

, 0?A=)

computes the majority bit. Recall that,M is a :-pass algorithm such

that H(M8) f =_ for all 8 * {0, . . . , :}. We immediately have the

following corollary.

Corollary 2.6. As H(M8) f =_,"8 * {0, . . . , :},

E0>D


=∑
9=1

10 9b0


= E


=∑
9=1

1.9b-
2
9


f
:
= ·

√
:=_ .

Corollary 2.6 suggests a value for parameter � that Algorithm 3

should run Algorithm Apr on, so as to use approximation guaran-

tees from Claim 2.4. Let O be Algorithm 3 with parameters W =
Y
10

1788

A New Information Complexity Measure for Multi-pass Streaming with Applications STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

and � =

:
: · =1+_ . We prove the following lemmas regarding in-

formation cost and output of algorithm O. See the full version for

detailed proofs of these lemmas.

Lemma 2.7. For all Y >
100:
=
, _ > 0, �� (O) f "��2>=3 (M) + = ·(

50 + 6 log log= + log
(
: ·=_

Y2

))
.

Once we have �� (Im) f "��2>=3 (M) and Proposition 2.5 in

place, Lemma 2.7 follows from careful disentanglement of the in-

formation costs for subroutines Im and Apr used in Algorithm O.

Lemma 2.8. For all Y > 100:
=
,

EM(:,=)

(
E

[
=∑
9=1

- 9

����M(:,=) =< (:,=)

])2
g Y=

=ó EO=

©­
«
E


=∑
9=1

.9

����O= = >=


ª®
¬
2

g Y

2
=.

Intuitively, Lemma 2.8 shows that if output of the :-pass algo-

rithm M gives information about
∑

9 - 9 (measured by reduction in

the variance), then the output of one-pass algorithm O also gives

information about
∑

9 .9 – sum of the input stream toO. The former

guarantee implies the output ofO contains information about
∑

9 -
2
9

(the modi�ed input); as O stores an approximation for
∑

9 (.9 2- 29),
this implies that it also has information about

∑
9 .9 . All that re-

mains to show is that the approximation for modi�cation has an

additive error of at most $ (Y
:
=), with high probability. For this,

we use E0>D
[∑=

9=1 10 9b0

]
f

√
= · H(M

<:) and ℓ2 approximation

guarantee for Apr from Theorem 2.4.

2.2.4 Solving Multiple Instances of the Coin Problem. We gener-

alize our multi-pass streaming lower bounds to solving multiple

instances of the coin problem simultaneously. Informally, given C

interleaved input streams generated by = 8.8 .3 . uniform bits each,

the goal of a multi-pass streaming algorithm is to output the ma-

jority of an arbitrary stream at the end of : passes. We show that

any :-pass streaming algorithm that solves the C-Coins Problem

requires «(C log=
:
) bits of memory (for C < =X). As for the single

coin case, we reduce the multiple coin case to the analogous result

for one-pass streaming algorithms proven by [9]. We simulate the

multi-pass algorithm for the C-Coins Problem using a one-pass al-

gorithm that maintains C approximations for modifying each input

stream to a valid stream for the :-pass algorithm. For the gener-

alization, we utilize the fact that the single coin simulation works

even when the output of the �rst pass has poly(=) entropy; for

the C-Coins Problem problem, we work with memories as large as

C log=.

2.3 Multi-pass Streaming Lower Bound for the

Needle Problem

Since we have shown that "�� (M,J0) is upper bounded by

2:B=, it su�ces to give an «(1/?2) lower bound for "�� (M,J0)
as we formally present in Lemma 2.9. In the following, we give the

intuition behind Lemma 2.9.

In the needle problem, we use the notion"�� (M,J0) as we de�ned
before, where J0 stands for the uniform distribution. For simplicity,

Algorithm 4: Communication Protocol ForMostlyEq

Input: z * [C]<
Output: ans * {0, 1}

1 Recall: (= {?1, . . . , ?<}
1: for player 9 from 1 to< do

2: let -? 9 = I 9
3: uniformly sample -? 9+1, · · · , -? 9+121 from [C]
4: end for

5: Player< simulatesM(1,?121) = M(-1, . . . , -?121) and
sends M(1,?121) to Player 1

6: for 8 from 1 to : 2 1 do
7: for 9 from 1 to< do

8: Player 9 simulates

M(8,? 9+121) = M(M8,? 921, -? 9 , . . . , -? 9+121)
9: Player 9 sendsM(8,? 9+121) to Player 9 + 1 (send to

Player 1 when 9 =<)

10: end for

11: end for

12: return the output of Player<

we write"�� (M) in the needle problem, and it could be easily dis-

tinguished from the notion"��2>=3 (M) used in the coin problem.

Lemma 2.9. In the needle problem, if a :-pass streaming algorithm

M distinguishes between J0 and J1 with high probability, then we

have"�� (M) = «(1/?2) .

Let us �rst consider the special case when ? = 1/2. A useful

observation is that the needle problem with ? = 1/2 is very similar

to theMostlyDISJ communication problem [35]. Viewing the needle

problem with ? = 1/2 as a multiparty communication problem (we

name itMostlyEq), we have the following de�nition:

De�nition 2.10 (<-party MostlyEq problem). There are< parties

in the communication problem, where the 8-th party holds an inte-

ger I8 * [C]. We promise that (I1, . . . , I<) are sampled from either

of the following distributions :

(1) Uniform distribution (denoted by V*): each I8 is sampled

from [C] independently and uniformly.

(2) Mostly equal distribution (denoted by V�@): �rst uniformly

sample an element U (needle) from [C]. Then each I8 indepen-
dently with probability 1/2 equals U , and uniform otherwise.

The goal of the players is to distinguish which case it is.

TheMostlyEq problem and the needle problem with ? = 1/2 are
closely related. For the MostlyEq problem, we prove a information

complexity lower bound, formalized by the following theorem:

Theorem 2.11. For any communication protocol £ that solves the

<-party, where< f C/100,MostlyEq problem with failure probability

smaller than 0.1, we have that,

I

(
£(V*); V*

)
= «(1),

In other words, the information complexity of £ is «(1).

Here, the failure probability for a protocol £ is de�ned by

Pr[£(V*) = 1] + Pr[£(V�@) = 0] .

1789

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Mark Braverman, Sumegha Garg, Qian Li, Shuo Wang, David P. Woodru�, and Jiapeng Zhang

By a standard reduction to MostlyEq (constructing a commu-

nication protocol by simulation streaming algorithm), we know

the mutual information I(M;-) betweenM = (M(8, 9))8*[:], 9*[=]
and input - = (-1, · · · , -=) is also «(1). Then, we can prove that

"�� (M) g I(M, -) g «(1) with information theory calculations.

Now, let us consider general ? f 1/2. We �rst use decompose

the needle problem into many local needle problems by rede�ning

the sampling process of J1 as follows:

(1) Sample a set (¦ [=] with each element 9 * [=] contained
in (independently with probability 2? .

(2) Uniformly sample a needle U * [C].
(3) For each 9 + (, the 9th streaming sample is uniformly ran-

dom.

(4) For each 9 * (, the 9th streaming sample equals to U with

probability 1/2 and uniformly random otherwise.

It is easy to see that the data stream sampled by the process above

follows J1. Thus, solving the needle problem with general ? is

equivalent to solving the needle problem with ? = 1/2 hiding in

a secret location (. Then, we de�ne local needle distribution J
(as

the distribution J1 condition on that the set sampled in Step (1)

equals (, and de�ne local needle problem as distinguishing between

J
(and J0 within a small error. Since the streaming algorithmM

does not know (, ifM solves the needle problem for general ? ,M

must distinguish between J
(and J0 for at least a constant faction

of (.

IfM solves the local needle problem with (= {?1, ?2, · · · , ?<},
then by a reduction shown in Algorithm 4 and Theorem 2.11, it

holds that

I
(
{M(8,? 921) }; {-?ℓ }

)
= «(1).

This comes from viewing the state of the streaming algorithms as

the transcripts of the communication protocols. In addition, further

information theory calculations show that

:21∑
8=1

<∑
9=1

8∑
ℓ=1

I(M(8,? 9+121) ;-?ℓ | M(f8,?ℓ21) ,M(<8,? 9+121)) g «(1) .

where we de�ne ?<+1 as ?1. Finally, by taking an expectation over

(, the L.H.S. of the inequality above is about"�� (M)/$ (?2) since
each term

I(M(8, 9) ;-ℓ | M(f8,ℓ21) ,M(f821, 9))
or

I(M(8, 9) ;-ℓ | M(f821,ℓ21) ,M(f821, 9))
of"�� (M) appears in the L.H.S. for an $ (?2) fraction of (. Conse-

quently, we have"�� (M) = «(1/?2) as desired.

2.4 Algorithms for the Needle Problem

We introduce the idea behind the following two algorithms in this

section: (1) M1, which solves the needle problem with ? g 1/
:
=

in $ (log log=(log log log=)) space in the communication model;

(2)M2, which solves the needle problem with ? f 1/
√
= log3 = in

$
(
1/(?2C)

)
space in the streaming model. As with previous work [9,

11, 52] for �nding ℓ2-heavy hitters we partition the stream items into

contiguous groups (in previous work, these groups contain �(
:
=)

stream items). These works sample $ (1) items in each group and

track them over a small number of future groups - this is sometimes

called pick and drop sampling. A major di�erence between our

algorithms and these is that we cannot a�ord to store the identity

of an item and track it, as that would require messages of length at

least log= bits. A natural idea is to instead track a small hash of an

item but there will be a huge number of collisions throughout the

stream if we use fewer than log= bits.

We start by choosing each group to be of size �(1/?), so each

group has one occurrence of the needle with constant probability

under distribution J1. We discuss the algorithmM1 for ? = 1/
:
=

�rst, so the group size is
:
=. This can be generalized to any ? g

1/
:
= (see the full version). For universe [C], we randomly sample

a hash function projecting [C] to [�2], where �2 is a constant. For

each group, we randomly sample a subset of [C] with size �1C/
:
=.

Then, M1 runs in
:
= rounds, and processes one data group in each

round. In round 8 , we set�2 new counters: for each 9 * [�2], we set
a counter that tracks 9 ; and when processing the following groups,

we check if each element G exists in 8’s random subset; if it is in,

we update its corresponding counter (the counter of group 8 with

the hash value of G). After processing each group, we check each

counter to see if it is at least a constant times the number of groups

processed after it was initialized. If not, we drop it. The intuition is

that (1) a counter that does not track the needle survives A rounds

with probability less than 422A , and (2) a counter tracking the needle
has constant probability to survive. We may accumulate many

counters and the space may hit our $ ((log log=) (log log log=))
bound - if so, we throw away all counters and start over. We show

that at the critical time when we start processing the needle we

will not throw it away.

For the second algorithm M2, the idea is to divide the domain

[C] into 1/(?2=) blocks and simultaneously run 1/(?2=) algorithms

similar toM1 on each block, checking if the needle exists. We show

we only need $ (1/(?2=)) space in total when ? f 1/
√
= log3 =

holds. Note that this algorithm is in the standard streaming model

since we can a�ord an additive log= bit counter to track the index

of current group.

3 FUTURE DIRECTIONS

Using the single-pass notion of information complexity in [9], that

we extend to multiple passes, Brown, Bun and Smith [12] showed

single-pass streaming lower bounds for several learning problems.

A natural question is if our multi-pass techniques can be useful for

learning problems. Another potential application is that of Dinur

[18], who shows streaming lower bounds for distinguishing random

functions from random permutations. Also, Kamath et al. [35] study

the heavy hitters problem for $ (1) pass algorithms. These results

have a logarithmic factor gap and use more classical notions of

information complexity. Can our techniques apply here?

ACKNOWLEDGMENTS

The authors thank three anonymous STOC reviewers for their

helpful suggestions on this paper.

Mark Braverman is supported in part by the NSF Alan T. Water-

man Award, Grant No. 1933331, a Packard Fellowship in Science

and Engineering, and the Simons Collaboration on Algorithms and

Geometry.

1790

A New Information Complexity Measure for Multi-pass Streaming with Applications STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

Qian Li is supported by Hetao Shenzhen-Hong Kong Science and

Technology Innovation Cooperation Zone Project (No.HZQSWS-

KCCYB-2024016).

David P. Woodru�’s research is supported in part by a Simons

Investigator Award, and part of this work was done while visiting

the Simons Institute for the Theory of Computing.

Jiapeng Zhang’s research is supported by NSF CAREER award

2141536.

REFERENCES
[1] Ishaq Aden-Ali, Yanjun Han, Jelani Nelson, and Huacheng Yu. 2022. On the

amortized complexity of approximate counting. CoRR abs/2211.03917 (2022).
[2] Yuqing Ai, Wei Hu, Yi Li, and David P. Woodru�. 2016. New Characterizations

in Turnstile Streams with Applications. In 31st Conference on Computational
Complexity, CCC 2016, May 29 to June 1, 2016, Tokyo, Japan (LIPIcs, Vol. 50), Ran
Raz (Ed.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 20:1–20:22.

[3] Miklós Ajtai, Vladimir Braverman, T. S. Jayram, Sandeep Silwal, Alec Sun, David P.
Woodru�, and Samson Zhou. 2022. The White-Box Adversarial Data Stream
Model. In PODS ’22: International Conference on Management of Data, Philadelphia,
PA, USA, June 12 - 17, 2022, Leonid Libkin and Pablo Barceló (Eds.). ACM, 15–27.
https://doi.org/10.1145/3517804.3526228

[4] Noga Alon, Yossi Matias, and Mario Szegedy. 1999. The Space Complexity of
Approximating the Frequency Moments. J. Comput. System Sci. 58, 1 (1999),
137–147. https://doi.org/10.1006/jcss.1997.1545

[5] Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. 2011. Streaming
algorithms via precision sampling. In 2011 IEEE 52nd Annual Symposium on
Foundations of Computer Science. IEEE, 363–372.

[6] Alexandr Andoni, Andrew McGregor, Krzysztof Onak, and Rina Panigrahy.
2008. Better Bounds for Frequency Moments in Random-Order Streams. CoRR
abs/0808.2222 (2008). arXiv:0808.2222 http://arxiv.org/abs/0808.2222

[7] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. 2004. An information
statistics approach to data stream and communication complexity. J. Comput.
Syst. Sci. 68, 4 (2004), 702–732.

[8] Lakshminath Bhuvanagiri, Sumit Ganguly, Deepanjan Kesh, and Chandan Saha.
2006. Simpler algorithm for estimating frequency moments of data streams. In
Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm.
708–713.

[9] Mark Braverman, Sumegha Garg, and David P Woodru�. 2020. The coin prob-
lem with applications to data streams. In 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science. IEEE, 318–329.

[10] Mark Braverman, Sumegha Garg, and Or Zamir. 2021. Tight Space Complexity of
the Coin Problem. In 62nd IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022. IEEE, 1068–1079. https:
//doi.org/10.1109/FOCS52979.2021.00106

[11] Vladimir Braverman, Jonathan Katzman, Charles Seidell, and Gregory Vorsanger.

2014. An optimal algorithm for large frequency moments using O(=122/:) bits.
In Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques (APPROX/RANDOM 2014). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik.

[12] Gavin Brown, Mark Bun, and Adam Smith. 2022. Strong memory lower bounds
for learning natural models. In Conference on Learning Theory. PMLR, 4989–5029.

[13] Amit Chakrabarti, Graham Cormode, and Andrew McGregor. 2008. Robust
Lower Bounds for Communication and Stream Computation. In Proceedings of
the Fortieth Annual ACM Symposium on Theory of Computing (Victoria, British
Columbia, Canada) (STOC ’08). Association for Computing Machinery, New York,
NY, USA, 641–650. https://doi.org/10.1145/1374376.1374470

[14] Amit Chakrabarti, T. S. Jayram, and Mihai Punde�nedtraşcu. 2008. Tight Lower
Bounds for Selection in Randomly Ordered Streams. In Proceedings of the Nine-
teenth Annual ACM-SIAM Symposium on Discrete Algorithms (San Francisco,
California) (SODA ’08). Society for Industrial and Applied Mathematics, USA,
720–729.

[15] A. Chakrabarti, S. Khot, and Xiaodong Sun. 2003. Near-optimal lower bounds
on the multi-party communication complexity of set disjointness. In 18th IEEE
Annual Conference on Computational Complexity, 2003. Proceedings. 107–117.
https://doi.org/10.1109/CCC.2003.1214414

[16] Michael S. Crouch, Andrew McGregor, Gregory Valiant, and David P. Woodru�.
2016. Stochastic Streams: Sample Complexity vs. Space Complexity. In 24th
Annual European Symposium on Algorithms, ESA 2016, August 22-24, 2016, Aarhus,
Denmark (LIPIcs, Vol. 57), Piotr Sankowski and Christos D. Zaroliagis (Eds.).
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 32:1–32:15. https://doi.org/
10.4230/LIPIcs.ESA.2016.32

[17] Ilias Diakonikolas, Themis Gouleakis, Daniel M Kane, and Sankeerth Rao. 2019.
Communication and memory e�cient testing of discrete distributions. In Confer-
ence on Learning Theory. PMLR, 1070–1106.

[18] Itai Dinur. 2020. On the Streaming Indistinguishability of a Random Permutation
and a Random Function. In Advances in Cryptology – EUROCRYPT 2020, Anne
Canteaut and Yuval Ishai (Eds.). Springer International Publishing, Cham, 433–
460.

[19] Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi Shamir. 2016. Memory-
e�cient algorithms for �nding needles in haystacks. In Advances in Cryptology–
CRYPTO 2016: 36th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 14-18, 2016, Proceedings, Part II. Springer, 185–206.

[20] Alireza Farhadi, MohammadTaghi Hajiaghayi, Tung Mai, Anup Rao, and Ryan A.
Rossi. 2020. Approximate MaximumMatching in Random Streams. In Proceedings
of the Thirty-First Annual ACM-SIAM Symposium on Discrete Algorithms (Salt
Lake City, Utah) (SODA ’20). Society for Industrial and Applied Mathematics,
USA, 1773–1785.

[21] Philippe Flajolet. 1985. Approximate Counting: A Detailed Analysis. BIT 25, 1
(1985), 113–134. https://doi.org/10.1007/BF01934993

[22] Sumit Ganguly. 2011. Polynomial estimators for high frequency moments. arXiv
preprint arXiv:1104.4552 (2011).

[23] Sumit Ganguly and David P. Woodru�. 2018. High Probability Frequency Mo-
ment Sketches. In 45th International Colloquium on Automata, Languages, and Pro-
gramming (ICALP 2018) (Leibniz International Proceedings in Informatics (LIPIcs),
Vol. 107), Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald
Sannella (Eds.). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl,
Germany, 58:1–58:15. https://doi.org/10.4230/LIPIcs.ICALP.2018.58

[24] Anna C. Gilbert, Yi Li, Ely Porat, and Martin J. Strauss. 2017. For-All Sparse
Recovery in Near-Optimal Time. ACM Trans. Algorithms 13, 3 (2017), 32:1–32:26.
https://doi.org/10.1145/3039872

[25] André Gronemeier. 2010. Information Complexity and Data Stream Algorithms for
Basic Problems. Ph. D. Dissertation. Technical University Dortmund, Germany.
https://hdl.handle.net/2003/27529

[26] Sudipto Guha and Zhiyi Huang. 2009. Revisiting the Direct Sum Theorem
and Space Lower Bounds in Random Order Streams. In Automata, Languages
and Programming, Susanne Albers, Alberto Marchetti-Spaccamela, Yossi Matias,
Sotiris Nikoletseas, and Wolfgang Thomas (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 513–524.

[27] Sudipto Guha and Andrew McGregor. 2007. Space-e�cient sampling. In Arti�cial
Intelligence and Statistics. PMLR, 171–178.

[28] Sudipto Guha and Andrew McGregor. 2009. Stream Order and Or-
der Statistics: Quantile Estimation in Random-Order Streams. SIAM
J. Comput. 38, 5 (2009), 2044–2059. https://doi.org/10.1137/07069328X
arXiv:https://doi.org/10.1137/07069328X

[29] Piotr Indyk, Eric Price, and David P. Woodru�. 2011. On the Power of Adaptivity
in Sparse Recovery. In IEEE 52nd Annual Symposium on Foundations of Computer
Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, Rafail Ostrovsky
(Ed.). IEEE Computer Society, 285–294.

[30] Piotr Indyk and DavidWoodru�. 2005. Optimal Approximations of the Frequency
Moments of Data Streams. In Proceedings of the Thirty-Seventh Annual ACM
Symposium on Theory of Computing (Baltimore, MD, USA) (STOC ’05). Association
for Computing Machinery, New York, NY, USA, 202–208. https://doi.org/10.
1145/1060590.1060621

[31] Joseph Jaeger and Stefano Tessaro. 2019. Tight Time-Memory Trade-O�s for
Symmetric Encryption. In Advances in Cryptology - EUROCRYPT 2019 - 38th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part I (Lecture
Notes in Computer Science, Vol. 11476), Yuval Ishai and Vincent Rijmen (Eds.).
Springer, 467–497. https://doi.org/10.1007/978-3-030-17653-2_16

[32] Rajesh Jayaram and David P. Woodru�. 2018. Data Streams with Bounded
Deletions. In Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems, Houston, TX, USA, June 10-15, 2018, Jan Van den
Bussche and Marcelo Arenas (Eds.). ACM, 341–354.

[33] Rajesh Jayaram and David P. Woodru�. 2023. Towards Optimal Moment Estima-
tion in Streaming and Distributed Models. ACM Trans. Algorithms 19, 3 (2023),
27:1–27:35.

[34] T. S. Jayram. 2009. Hellinger Strikes Back: A Note on the Multi-party Informa-
tion Complexity of AND. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, Irit Dinur, Klaus Jansen, Joseph Naor,
and José Rolim (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 562–573.

[35] Akshay Kamath, Eric Price, and David P. Woodru�. 2021. A Simple Proof of a
New Set Disjointness with Applications to Data Streams. In Proceedings of the
36th Computational Complexity Conference (Virtual Event, Canada) (CCC ’21).
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, DEU, Article lipics.
https://doi.org/10.4230/LIPIcs.CCC.2021.37

[36] Daniel M. Kane, Jelani Nelson, and David P. Woodru�. 2010. On the Exact
Space Complexity of Sketching and Streaming Small Norms. In Proceedings of the
Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010,
Austin, Texas, USA, January 17-19, 2010, Moses Charikar (Ed.). SIAM, 1161–1178.
https://doi.org/10.1137/1.9781611973075.93

[37] Shachar Lovett and Jiapeng Zhang. 2023. Streaming Lower Bounds and Asym-
metric Set-Disjointness. In 2023 IEEE 64th Annual Symposium on Foundations

1791

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Mark Braverman, Sumegha Garg, Qian Li, Shuo Wang, David P. Woodru�, and Jiapeng Zhang

of Computer Science (FOCS). IEEE Computer Society, Los Alamitos, CA, USA,
871–882. https://doi.org/10.1109/FOCS57990.2023.00056

[38] Andrew McGregor, A. Pavan, Srikanta Tirthapura, and David Woodru�. 2012.
Space-E�cient Estimation of Statistics over Sub-Sampled Streams. In Proceedings
of the 31st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems (Scottsdale, Arizona, USA) (PODS ’12). Association for Computing Ma-
chinery, New York, NY, USA, 273–282. https://doi.org/10.1145/2213556.2213594

[39] Andrew McGregor, A. Pavan, Srikanta Tirthapura, and David P. Woodru�. 2016.
Space-E�cient Estimation of Statistics Over Sub-Sampled Streams. Algorithmica
74, 2 (2016), 787–811. https://doi.org/10.1007/s00453-015-9974-0

[40] Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and Avi Wigderson. 1995. On
data structures and asymmetric communication complexity. In Proceedings of the
twenty-seventh annual ACM symposium on Theory of computing. 103–111.

[41] Marco Molinaro, David P. Woodru�, and Grigory Yaroslavtsev. 2013. Beating
the Direct Sum Theorem in Communication Complexity with Implications for
Sketching. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013,
Sanjeev Khanna (Ed.). SIAM, 1738–1756. https://doi.org/10.1137/1.9781611973105.
125

[42] Morteza Monemizadeh and David P. Woodru�. 2010. 1-Pass Relative-Error
Lp-Sampling with Applications. In Proceedings of the Twenty-First Annual ACM-
SIAM Symposium on Discrete Algorithms (Austin, Texas) (SODA ’10). Society for
Industrial and Applied Mathematics, USA, 1143–1160.

[43] Vasileios Nakos, Xiaofei Shi, David P. Woodru�, and Hongyang Zhang. 2018.
Improved Algorithms for Adaptive Compressed Sensing. In 45th International
Colloquium on Automata, Languages, and Programming, ICALP 2018, July 9-13,
2018, Prague, Czech Republic (LIPIcs, Vol. 107), Ioannis Chatzigiannakis, Christos
Kaklamanis, Dániel Marx, and Donald Sannella (Eds.). Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 90:1–90:14.

[44] Jelani Nelson andHuacheng Yu. 2022. Optimal Bounds for Approximate Counting.
In PODS ’22: International Conference on Management of Data, Philadelphia, PA,
USA, June 12 - 17, 2022, Leonid Libkin and Pablo Barceló (Eds.). ACM, 119–127.
https://doi.org/10.1145/3517804.3526225

[45] Eric Price and David P. Woodru�. 2011. (1 + eps)-Approximate Sparse Recovery.
In IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011,
Palm Springs, CA, USA, October 22-25, 2011, Rafail Ostrovsky (Ed.). IEEE Computer
Society, 295–304.

[46] Eric Price and David P. Woodru�. 2013. Lower Bounds for Adaptive Sparse
Recovery. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013,
Sanjeev Khanna (Ed.). SIAM, 652–663.

[47] Ran Raz. 2016. Fast Learning Requires Good Memory: A Time-Space Lower
Bound for Parity Learning. In IEEE 57th Annual Symposium on Foundations of
Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick,
New Jersey, USA, Irit Dinur (Ed.). IEEE Computer Society, 266–275. https://doi.
org/10.1109/FOCS.2016.36

[48] Vatsal Sharan, Aaron Sidford, and Gregory Valiant. 2019. Memory-Sample Trade-
o�s for Linear Regression with Small Error. In Proceedings of the 51st Annual
ACM SIGACT Symposium on Theory of Computing (Phoenix, AZ, USA) (STOC
2019). Association for Computing Machinery, New York, NY, USA, 890–901.
https://doi.org/10.1145/3313276.3316403

[49] Robert H. Morris Sr. 1978. Counting Large Numbers of Events in Small Registers.
Commun. ACM 21, 10 (1978), 840–842. https://doi.org/10.1145/359619.359627

[50] Stefano Tessaro and Aishwarya Thiruvengadam. 2018. Provable Time-Memory
Trade-O�s: Symmetric Cryptography Against Memory-Bounded Adversaries.
In Theory of Cryptography (Theory of Cryptography, Vol. 11239). Springer, 3–32.
https://doi.org/10.1007/978-3-030-03807-6_1

[51] Emanuele Viola. 2015. The communication complexity of addition. Combinatorica
35 (2015), 703–747.

[52] David P. Woodru� and Samson Zhou. 2021. Separations for Estimating Large Fre-
quency Moments on Data Streams. In 48th International Colloquium on Automata,
Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland
(Virtual Conference) (LIPIcs, Vol. 198), Nikhil Bansal, Emanuela Merelli, and James
Worrell (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 112:1–112:21.

Received 10-NOV-2023; accepted 2024-02-11

1792

	Abstract
	1 Introduction
	1.1 Our Contributions

	2 Technical Overview
	2.1 Properties of New Multi-Pass IC Notion
	2.2 Multi-Pass Lower Bound for the Coin Problem
	2.3 Multi-pass Streaming Lower Bound for the Needle Problem
	2.4 Algorithms for the Needle Problem

	3 Future Directions
	Acknowledgments
	References

