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ABSTRACT

We introduce a new notion of information complexity for multi-
pass streaming problems and use it to resolve several important
questions in data streams:

(1) In the coin problem, one sees a stream of n i.i.d. uniformly
random bits and one would like to compute the majority
with constant advantage. We show that any constant-pass
algorithm must use Q(log n) bits of memory, significantly
extending an earlier Q(logn) bit lower bound for single-
pass algorithms of Braverman-Garg-Woodruff (FOCS, 2020).
This also gives the first Q(logn) bit lower bound for the
problem of approximating a counter up to a constant factor
in worst-case turnstile streams for more than one pass.

(2) In the needle problem, one either sees a stream of n i.i.d.
uniform samples from a domain [¢], or there is a randomly
chosen “needle” a € [t] for which each item independently
is chosen to equal a with probability p, and is otherwise uni-
formly random in [¢]. The problem of distinguishing these
two cases is central to understanding the space complexity
of the frequency moment estimation problem in random
order streams. We show tight multi-pass space bounds for

this problem for every p < 1/4/nlog® n, resolving an open
question of Lovett and Zhang (FOCS, 2023); even for 1-pass
our bounds are new. To show optimality, we improve both
lower and upper bounds from existing results.

Our information complexity framework significantly extends the
toolkit for proving multi-pass streaming lower bounds, and we
give a wide number of additional streaming applications of our
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1 INTRODUCTION

Streaming problems with stochastic inputs have been popularly
studied in the streaming community [6, 9, 13, 14, 16, 20, 27, 28, 37],
which have applications to diverse areas including learning theory
[12, 17,47, 48] and cryptography [18, 19, 31, 50]. In this setting, one
sees a stream of i.i.d. samples from some underlying distribution. As
the samples are i.i.d., this is a special case of the well-studied random
order streaming model. In this paper, we will consider streaming
problems (with stochastic inputs) that are allowed multiple passes
over their input. Surprisingly, even the most basic problems in data
streams are not resolved in the stochastic setting. We discuss two
such problems below.

Coin Problem. If the stream is X1, Xo, . . ., X, with each X; being
independently and uniformly drawn from {-1, 1}, then the coin
problem is to compute the sum of these bits up to additive error
O(+/n), which gives a non-trivial advantage for estimating the ma-
jority. This can be solved trivially in O(log n) bits of memory by
storing the sum of input bits, and was recently shown to require
Q(log n) bits of memory in [9]. However, if we allow two or more
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passes over the stream, the only known lower bound is a trivial
Q(1) bits.

Naturally, the coin problem is closely related to the fundamental
question of counting the number of elements in a data stream —
maintain a counter C in a stream under a sequence of updates of
the form C «— C+1 or C « C— 1, which is arguably the most basic
question you could ask. More generally, one would like to approxi-
mate C up to a constant multiplicative factor. One can solve this
exactly using [log, n] bits of memory, where n is the length of the
stream. This bound is tight for deterministic algorithms even if you
allow a large poly(n) approximation factor [3]. It is also tight for
constant-factor-approximation randomized 1-pass algorithms, via
a reduction from the augmented indexing problem [36]. In fact, the
lower bound of [9] for the coin problem implies that the randomized
1-pass lower bound holds even when the algorithm succeeds with
high probability over an input of i.i.d. coin flips. Despite our un-
derstanding of 1-pass algorithms, we are not aware of an Q(logn)
lower bound for this basic problem of approximate counting for
more than one pass, even for worst-case streams, once two or more
passes are allowed. For k-pass streaming algorithms, a weaker lower
bound of Q((log n)1/k) can be derived using communication com-
plexity lower bounds for the Greater-Than function® [40, 51]. There
is work on approximate counting lower bounds of [2], which ana-
lyzes a single linear sketch and therefore can only apply to single
pass streaming algorithms. It also requires at least exponentially
long streams in the value n of the final count, despite the count
being O(n) in absolute value at any time during the stream.

Needle problem. Here the goal is to distinguish between streams
X1, -+, Xn sampled from two possible underlying distributions: let
t=Q(n),

o Uniform distribution Dy: each X; is picked independently
and uniformly at random from the domain [¢], and

o Needle distribution D1: the distribution first uniformly sam-
ples an element « from [¢] (we call it the needle). Then, each
item X; independently with probability p equals «, and oth-
erwise is sampled uniformly from [¢].

Lovett and Zhang [37] showed a lower bound of Q (m) bits

for any constant number of passes to distinguish D¢ from D1, and
left it as an open problem to improve this bound. Using an algorithm
for frequency moment estimation, the work of Braverman et al. [11]

shows that for p = o (#), there is a single-pass upper bound of
1

© (pzn

the previous O (%n) items in a stream, using O (

) bits. For larger p, the best known algorithm is to store

IO%:) bits, and
check for a collision. Thus, for every p there is a gap of at least log n

in known upper and lower bounds, and for the important case of
p>Q (#) the gap is ©(log? n). We note that the work of Lovett

!Briefly, given inputs x, y € [n%!] to the two-player CC problem for Greater-than
function, Alice adds x - n®? 1s to the stream and Bob adds Y- n% number of —1s.
Determining the sign of x — y, or estimating x — y up to additive error n% requires
Q((log n)'/*) randomized k-round communication since it solves Greater-Than.
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and Zhang also requires t = Q(n?) in its lower bounds?, which
limits its applications to frequency moment estimation.
The needle and coin problems are related to each other if p =
oL
Vn
is not counted towards the space complexity>. One can randomly
hash each universe element in a stream in the needle problem to
{~1,1} - under the needle distribution D1, the absolute value of
the sum of bits is likely to be an additive ®(+/n) larger than in
the uniform distribution Dy, and thus the coin problem is at least
as hard as the needle problem. However, the needle problem for

) and when the algorithm has access to a random string that

p=0 (\/LE) could be strictly easier than the coin problem.

We stress that the coin and needle problems are arguably two
of the most fundamental problems in data streams. Indeed, a vast
body of work has considered estimating the g-th frequency moment
Fq = X!, |xi|9, for an underlying ¢-dimensional vector x undergo-
ing positive and negative updates to its coordinates. If ¢ = 1, this
problem is at least as hard as the coin problem. The lower bound
of [9] thus gave the first Q(log n) lower bound for single pass Fz-
estimation in the bounded deletion data stream model [32], even
when one does not charge the streaming algorithm for storing its
randomness. As the lower bound of [9] was actually an information
cost lower bound, it gave rise to the first direct sum theorem for
solving multiple copies of the F2-estimation problem, showing that
solving r copies each with constant probability requires Q(r log n)
bits in this data stream model. Lower bounds for the coin problem
were shown to imply additional lower bounds in random order and
bounded deletion models for problems such as point query, and

heavy hitters; see [9] for details. For ¢ > 2, if we set p = © (nl—;l/q)
in the needle problem, then it is not hard to see that Fy differs

by a constant factor for distributions Dy and D with large prob-
1-2/q

o )
lower bound for frequency moment estimation in the random or-
der insertion-only data stream model for any constant number of
passes, provided t = Q(n?). There is also a long sequence of prior
work on this problem [6, 13, 16, 39], which obtains polynomially
worse lower bounds (though does not require ¢t = Q(n?)). The

ability. In this case, the lower bound of [37] gives an Q (

single-pass arbitrary order stream O (nl_z/q) upper bound of [11]

for ¢ > 3 matches this up to a logarithmic factor, and a central
question in data streams is to remove this logarithmic factor, as
well as the requirement that t = Q(n?).

1.1 Our Contributions

We give a new multi-pass notion of information complexity that
gives a unified approach to obtain lower bounds for the coin and
the needle problem for any number k of passes. We note that the
measure of information we use is a generalization of the notion
of information complexity for k = 1 pass given in [9]. Namely, we

2Here we choose the domaint to be [#] and 7 the number of samples to be consistent
with our notation for the coin problem. Unfortunately, this is exactly the opposite
notation used in [37]

3This is referred to as the public coin model in communication complexity, and we
may naturally view this problem as an n-player communication game.
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define the k-pass information complexity notion by

k n i
MIC(M, p) == ZZ ZI(M(i,j);Xf | M(si,{’—l),M(si—l,j))
i=1 j=1 =1
k n n
+ZZ Z I(M(i,j)sxf | M(Si—l,(’—l)’M(si—l,j))’
i=1 j=1+¢=j+1
where (X1, -+, Xp) ~ pand M(; ;) represents the jth memory state

in the ith pass. We will set p to be the uniform distribution over
{~1,1}" in the coin problem and the uniform distribution Dy in
the needle problem. When  is clear from the context, we will drop
it from the notation and write MIC(M). The primary challenge
in establishing lower bounds for multi-pass streaming algorithms
arises from the fact that the streaming data loses its independence
when multiple passes are used. To mitigate this, the idea of MIC(M)
is to capture some residual independence by carefully fixing some
memory states in the previous pass. To make this notion useful, we
show that MIC(M) is upper bounded by 2ksn.

Note that this multi-pass information complexity notion applies
to any streaming problem as long as it is defined on a product
distribution. As we will see in the paper, this notion is useful for
proving multi-pass streaming lower bounds via various approaches,
such as round elimination as well as reductions to communication
problems.

Just as the measure of information in [9] was crucial for 1-pass
applications, such as the amortized complexity of approximate
counting in insertion streams [1], we will show our notions have a
number of important applications and can be used to obtain multi-
pass lower bounds for both the coin and needle problems. We will
define and motivate our information complexity notion more below,
but we first describe its applications.

1.1.1  The Coin Problem. We give tight lower bounds on the infor-
mation complexity of the coin problem, significantly extending the
results of [9] for the 1-pass setting to the multi-pass setting. We
then give a new multi-pass direct sum theorem for solving multiple
copies, and use it for streaming applications.

Multi-Pass Coin Problem. We give the first non-trivial multi-pass
lower bound for the coin problem.

THEOREM 1.1 (k-Pass CoIN PROBLEM). Given a stream of n i.i.d.
uniformly random bits, any k-pass streaming algorithm which outputs
the majority of these bits with probability 1 —y for a small enough

constant y > 0, requires Q(k’%) bits of memory.

Theorem 1.1 is a significant strengthening of the main result
n [9] which held only for k = 1 pass. Although the work of [10]
allows for a larger bias on its coins, it also held only for k = 1 pass.

As discussed before, we can interpret the coins as updates in
{~1,1} to a counter C initialized to 0. Adjoining a prefix of av/n
1s to the stream for a large enough constant @ > 0, we have that
by bounds on the maximum deviation for a 1-dimensional random
walk that C will be non-negative at all points during the stream,
which corresponds to the strict turnstile streaming model — where
one can only delete previously inserted items. We also have that the
final value of C will deviate from its expectation av/n by an additive
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Q(+/n) with constant probability, that is, it is anti-concentrated.
Consequently, Theorem 1.1 implies the following.

THEOREM 1.2 (k-PAss COUNTER IN STRICT TURNSTILE STREAMS).
Any k-pass strict turnstile streaming algorithm which counts the
number of insertions minus deletions in a stream of length n up to a
small enough constant multiplicative factor and with probability at

logn) iy

least 1 —y for a small enough constant y > 0, requires Q(
of memory.

By constant multiplicative factor, we mean to output a number
C’ for which (1 — €)C < C” < (1+ ¢€)C for a constant € > 0. For
insertion-only streams where no deletions of items are allowed, non-
trivial algorithms based on Morris counters achieve O(loglogn)
bits [21, 25, 44, 49]. We rule out any non-trivial algorithm for strict
turnstile streams for any constant number of passes.

To obtain further applications, we first show a direct sum theo-
rem for multi-pass coin problems.

THEOREM 1.3 (DIRECT SUM FOR k-Pass COUNTER). Suppose k <
logn and t < n® for a sufficiently small constant ¢ > 0. Given t
independent streams each of n i.i.d. uniformly random bits, any k-
pass streaming algorithm which outputs a data structure such that,
with probability 1—y for a small enough constanty > 0 over the input,
the algorithm’s randomness, and over a uniformly randomj € [t],

%) bits

As an example application of this theorem, in [41] the following
problem was studied for a real number p € [0, 2]: given vectors
v1,...,0t € {—poly(n),... ,poly(n)}d, estimate a constant fraction
of the ||o1]|p, . .., llo¢ || p up to a sufficiently small constant multiplica-
tive factor with constant probability, where for a d-dimensional

(3L i)
this problem as Multi-£,-Estimation. The best upper bound is
O(t - log n), which follows just by solving each instance indepen-
dently with constant probability and using O(log n) bits [36]. An
Q(tloglog n+log n) randomized lower bound follows for any O(1)-
pass streaming algorithm by standard arguments®. We note that
if we do not charge the streaming algorithm for its randomness,
then the O(1) pass lower bound for Multi-£,-Estimation is an even
weaker Q(tloglogn).

By using Theorem 1.3 and having each vector v; in the Multi-£,-
Estimation problem correspond to a single counter, we can show
the following:

outputs the majority bit of the j-th stream, requires Q (

of memory.

vector y, the p-norm* llyllp, = . We will refer to

THEOREM 1.4 (k-Pass Multi-f,-Estimation). Suppose k < logn
and t < n€ for a sufficiently small constant ¢ > 0. Any k-pass
streaming algorithm which solves the Multi-£,-Estimation Problem
on t instances of a stream of n updates for each vector, solving each
p-norm estimation problem up to a small enough constant factor
with probability 1 — y for a sufficiently small constant y , requires

Q (”O%) bits of memory.

“For p < 1 the quantity ||o||, is not a norm, but it is still a well-defined quantity. With
a standard abuse of notation, we will refer to it as a p-norm.

5The Q(t log log n) bound follows just to record the output, while the Q(log n) lower
bound follows by a reduction from the Equality problem, as in [4].
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Another important streaming question we consider is the f»-
Point Query Problem: given an underlying d-dimensional vector
x € {-poly(n),.. .,poly(n)}d that undergoes a sequence of pos-
itive and negative additive updates to its coordinates, for each
j €{1,...,d}, one should output x; up to an additive error €||x||2
with constant probability. Related to this question is the f,-Heavy
Hitters Problem which asks to output a set S which (1) contains all
indices i for which xl.2 > €|x||%, and (2) does not contain any index i
for which xi2 < %2 ||x||§. Further, for all i € S, one should output an
estimate X; with |X; —x;| < €l|x||2. In [9], for both of these problems
an Q(e~2log n) memory lower bound was shown for single-pass
algorithms on length-n streams, which improved the previous best
known Q(e~%logd) lower bounds when the stream length n is
much larger than the dimension d of the input vectors. Notably, the
lower bounds in [9] only hold for single pass algorithms.

By having each coordinate of an underlying vector x correspond
to a counter, we can also use Theorem 1.3 to solve the f,-Point
Query Problem and the f,-Heavy Hitters Problem. Here we also use
that the Euclidean norm of the underlying vector is concentrated.

THEOREM 1.5 (k-PAss POINT QUERY AND HEAvY HITTERS). Sup-
pose k < logn and €% < nC for a sufficiently small constant
¢ > 0. Any k-pass streaming algorithm which, with probability
1 — y for a sufficiently small constant y > 0, solves the f;-Point
Query Problem or the £,-Heavy Hitters Problem on a vector x €
{=poly(n), ... ,poly(n)}d in a stream of n updates, requires at least

-2
Q (SITOgn) bits of memory.

Our Q(e~2 log n) bit lower bound for the £-Heavy Hitters Prob-
lem can be applied to the Sparse Recovery Problem in compressed
sensing (see, e.g., [24, 45]), which involves an input vector x €
{-poly(n), .. ,,poly(n)}d in a stream, and asks to output an r-
sparse vector x for which

1

where x, is x with all but the top r coordinates set to 0. Here A > 1
is any fixed constant.
A standard parameter of sparse recovery is the Signal-to-Noise

2
Ratio (SNR), which is defined to be ler I . The SNR is at most 1,

ll[13
and if it is 1, there is a trivial Q(r(logn -ﬁ log d)) bit lower bound.
Indeed, since the guarantee of (1) has multiplicative error, we must
have X = x = x; in this case, and it takes Q(r(logn +log d)) bits to
encode, for each of the r non-zero locations in x, its location and its
value. However, when the SNR is a constant bounded away from 1,
this encoding argument no longer applies. Indeed, while one can
show an Q(rlog d) bits lower bound to encode the identities of r
locations, each of their values can now be approximated up to a
small multiplicative constant, and so encoding their values requires
only Q(rloglogn) bits.

While an Q(r + loglog n) measurement lower bound is known
for multi-pass streaming algorithms [46] for constant SNR bounded
away from 1, perhaps surprisingly in the data stream model, an
Q(r log n) bit lower bound for streams of length n and SNR bounded
away from 1 was unknown. As our lower bound for the #,-Heavy
Hitters Problem only requires recovering a large constant fraction
of the #-heavy hitters, all of which are comparable in magnitude

I = xllz < A-llx = xrll2,

1784

Mark Braverman, Sumegha Garg, Qian Li, Shuo Wang, David P. Woodruff, and Jiapeng Zhang

in our hard instance, and the Euclidean norm is concentrated, we
in fact can obtain a lower bound for the Sparse Recovery Prob-
lem even if the SNR is a constant bounded away from 1. We note
that there is an O(loglog n)-pass streaming algorithm which uses
O(rlognloglogn) bits of memory to solve the sparse recovery
problem for any SNR, see [43] which builds upon [29] (see the text
after the proof of Theorem 3.7 in [29] on how to obtain an exactly r-
sparse output). Our lower bound is thus tight up to poly(loglog n)
factors.

THEOREM 1.6 (BIT COMPLEXITY OF SPARSE RECOVERY). Suppose
k < logn andr < n° for a sufficiently small constant ¢ > 0. Any
k-pass streaming algorithm which, with probability 1 —y fory > 0
a small constant, solves the Sparse Recovery Problem for constant

SNR in (0,1), requires Q( rh;cgn

1.1.2  The Needle Problem. Lovett and Zhang [37] recently showed
the following lower bound for the needle problem.

) bits of memory.

THEOREM 1.7 ([37]). Any k-pass streaming algorithm M which
distinguishes between the uniform and needle distributions with high
probability, where p denotes the needle probability, n the stream length,
and s the space, satisfies ksp®nlog(n) = Q(1), provided the domain
size t = Q(n?).

While this lower bound is nearly tight, it was conjectured by
[6, 13, 16, 37] that the additional log(n) term can be removed, and it
also was plausible that the t = Q(n?) restriction could be removed.
This conjecture is for good reason, as for n = ©(t) and p < #
and k = 1, an upper bound for estimating frequency moments
of [11] shows that sp?n = O(1). Indeed, the upper bound of [11]
shows how to estimate Fg = Zle fl.q up to an arbitrarily small but
fixed constant factor in O(¢'~2/9) bits of memory and a single pass,
for any g > 3. Notice that in distribution Dy, we could choose a
proper n = ©(t) such that Fy = n + o(n) with high probability. On
the other hand, for distribution D1, we have that Fy > (p - n)9, and
soif p =0(1/ n'~1/4), these two distributions can be distinguished
by the algorithm of [11]. In this case the conjecture would say
s = Q(1/(np?)) = Q(n'~%9) = Q(+'7%/9), which matches the
space upper bound of [11].

We resolve this conjecture. As a consequence, several other
streaming lower bounds mentioned by [16, 37, 38] can be improved
automatically. Also, our results also imply that the frequency esti-
mation problem for g > 2 is as hard in the random order model as
in the arbitrary order model (both are Q(t!-%/ay).

THEOREM 1.8 (k-PASS NEEDLE PROBLEM). Any k-pass streaming
algorithm M with space s that distinguishes Dy and D1 with high
probability satisfies ksp®n = Q(1), where p denotes the needle proba-
bility and n < t/100 denotes the number of samples.

If we use the algorithm of [11] to the needle problem by the
reduction discussed above, we can conclude that our lower bound
for the needle problem is tight when p < —L-. However, we further

n2f3’
improve the upper bound by giving a new algorithm and show that:

THEOREM 1.9 (IMPROVED UPPER BOUND). There exists a one-pass
streaming algorithm that distinguishes Dy and D1 with high proba-
bility and uses O(ﬁ) bits of space when p < 1

/nlog? n‘
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Our upper bound improves upon [11], and shows that our lower
bound for the needle problem is indeed tight for any p < 1

nlog®n
1

,lnlogSn.

In fact, for p > \/LH for the n-player communication problem,

The remaining gap only exists in the range of p >

where each player has a stream item and the players speak one at a
time from left to right in the message passing model (see, e.g., [33]
for upper bounds for a number of problems in this model), we show
that the problem can be solved by having each player send at most
O((loglog n)(logloglogn)) bits to the next player. It is not quite
a streaming algorithm, as the players need to know their identity,
but would be a streaming algorithm if we also allow for a clock, so
that we know the number i for the i-th stream update, for each i.

THEOREM 1.10 (UPPER BOUND FOR COMMUNICATION GAME). There
exists an n-player one-round communication protocol that distin-
guishes Dy and D1 with high probability and each player uses at
most O((log log n) (logloglog n)) bits of space for any p > —

T
Theorem 1.10 shows that for p = ln the needle problem is

strictly easier than the coin problem, and thus the abovemen-
tioned algorithm for the needle problem, by first reducing to the
coin problem, is suboptimal. Indeed, in the same communication

model or for streaming algorithms with a clock, our Q (lo%)
lower bound in Theorem 1.1 applies. Thus, for a constant num-
ber k of passes, the coin problem requires Q(log n) bits of mem-
ory whereas the needle problem with p = \/lﬁ can be solved with

O((loglogn)(logloglogn)) bits of memory, showing that there
exists a separation between the two problems in the n-player com-
munication model.

Remark. Note that our algorithm not only applies to the needle
problem, but also could be adapted to a more general setting where
the needle is randomly ordered while non-needle items could be in
an arbitrary order with some constraints.

Our improved lower bound for the needle problem can be used
to obtain optimal lower bounds in the random order model for
arguably the most studied problem in the data stream literature,
namely, that of approximating the frequency moments. Starting
with the work of Alon, Matias, and Szegedy [4], there has been a
huge body of works on approximating the frequency moments in
arbitrary order streams, see, e.g., [5, 7, 8, 15, 22, 23, 30, 34, 42], and
references therein. As mentioned above, Braverman et al. [11] gave
an upper bound of O(t!~%/9) for constant approximation for all
q > 3, which is optimal for arbitrary order insertion streams.

A number of works have also studied the frequency moment esti-
mation problem in randomly ordered streams. While the o(t'-2/q)
bit upper bound of [11] still holds, we did not have a matching
lower bound. Chakrabarti, Cormode, and McGregor [13] gave the
first non-trivial Q(+'~3/9) lower bound. A follow-up paper by An-
doni et al. [6] improved this lower bound to Q(tl_z's/ 9). Recently,
alower bound of Q(n'~%/9/log n) was shown by Lovett and Zhang
[37] provided ¢t = Q(n?). Since a stream of i.i.d. samples is automat-
ically randomly ordered, our Theorem 1.8 resolves this long line
of work, giving an Q(t'~2/9) lower bound. We thus improve the
lower bound of [37] by a logarithmic factor, and also remove the

1785

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

requirement that ¢ = Q(n?). The application to frequency moments
follows by applying our theorem with t = ©(n) and p = 1/n!~1/4
and arguing that the needle problem gives rise to a constant factor
gap in the value of the g-th frequency moment in the two cases. We
note that the work of [26] claimed to obtain an Q(tl_z/ 9) lower
bound for frequency moment estimation in a random order, but
was later retracted due to an error which has been pointed out in
multiple places, e.g., [39] retracts its lower bounds and points out
the error® in [26].

There are other related problems to frequency moment esti-
mation that we also obtain improved lower bounds for, such as
frequency moment estimation of sub-sampled streams. McGregor
et al. [38] studied streaming problems in a model where the stream
comes in so rapidly that you only can see each element indepen-
dently with a certain probability. Our Theorem 1.8 gives an optimal
lower bound for this problem as well, via the reduction in [38].
Another example concerns stochastic streaming problems such as
collision probability estimation studied by Crouch et al. [16]. They
provided several lower bounds based on the needle lower bound of
[6]. Our Theorem 1.8 automatically improves their lower bounds
via the same reductions.

2 TECHNICAL OVERVIEW

In this section, we give a brief overview of our proofs for both the
coin problem and needle problem.

2.1 Properties of New Multi-Pass IC Notion

In this section, we will show some important properties of our IC
notion. In addition to the MIC, we get an another natural expression
for the an information measure for k-pass algorithms M as follows:

Definition 2.1. Let M be a k-pass streaming algorithm, its input
is denoted by Xi, ..., Xy following a product distribution g, then
we define the following information complexity notion:

J
ZI(M<sk,j>;XfIM<k,M(gk,z_n) :

n
MICeong(M, p) = Z
=1 =1

j=1
One might see that the notion above shares some similarities with
MIC, while the difference is MIC further divides the information
costs into smaller components. In our paper, we show the following
properties, which provide an upper bound for both notions and
show some relations. Particularly, we show that, when Xj, ..., X,
are drawn from a product distribution i, the following holds:
o MIC(M, p) < 2ksn;
e MIC(M, p1) = MIC;pq (M, p1).

Note that our information complexity notions could be applied to
any other problems as long as they are defined on product distribu-
tions.

2.2 Multi-Pass Lower Bound for the Coin
Problem
In this section, we assume that X3, ..., X}, are drawn from the uni-

form distribution over {—1, 1}"; we will drop y for the rest of the

OThis error has also been confirmed with the authors of [26] in 2016, and no fix with
their techniques seems possible.
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section. We show an Q(nlogn) lower bound on MIC,,,,4(M, ) for
any k-pass algorithm M that solves the coin problem (or computes
majority of input bits with large enough constant advantage).

We will prove our k-pass lower bound for computing majority
(or approximating sum) on the uniform distribution by reducing
it to the one-pass lower bound proven by [9], which is stated as
follows:

THEOREM 2.2 ([9], COROLLARY 14). Given a stream of n uniform
{-1,1} bits Xy, . .., Xp, let O be a one-pass algorithm that uses private

1
randomness. For all € > con™ 2, there exists § > c1€° (for small
enough constant ¢c; > 0 and large enough constant c¢o > 0), such that

if

M‘\..

1C(0) =
j

I(04; X¢|O¢—1) < Snlogn, )

n

1

~
Il

1
then
2

< en. 3)

n
Eo, ||E Zx,» On=on|] | <
J=1
Here, O; represents the memory state of the one-pass algorithm O
after reading j input elements.

In other words, if the output of algorithm O reduces the variance
of the sum’, then it needs to have high information cost.

Our main theorem for the k-pass coin problem is stated as fol-
lows:

THEOREM 2.3. Let M be a k-pass algorithm on a stream of n i.i.d.
uniform {—1,1} bits, X1, ..., Xp,. For all constants ¢ > 0 and n greater
than a sufficiently large constant, there exists constants 5, A > 0, such
that ifk < n?,

MIC,ona(M) < Snlogn and Vie{0,....k}, H(M;) < n*,
(4)

then
2

n
EM(k.n) E ij M(k,n) < en. (5)
j=1
Theorem 2.3 and the fact that MIC,,,,q < 2ksn, along with ([9],
Claim 6)- which proved an Q(n) lower bound on the L.H.S. of
Equation (5) for any algorithm whose output computes majority
with 0.999 advantage, give us the Q((logn)/k) space lower bound.

Construction of O. To prove Theorem 2.3, we develop a new sim-
ulation technique to prove our multi-pass streaming lower bounds
for the coin problem. Given a stream X of n i.i.d. uniform bits, let M
be a k-pass algorithm that goes over X twice in order and computes
the majority - that is, the expected variance of the sum of input bits
conditioned on the output of the second pass is a constant factor
less than that of the maximum. Informally, for ease of discussion,
we refer to the variance reduction as M approximating >’ ; X; up
to an additive error® of evn. Using M, we construct a one-pass
algorithm O, which given a stream of n i.i.d. uniform bits Y, also
"We want some mathematical quantity to measure how much information the output
of algorithm O has about the sum/count of the input bits, and variance turns out to be
the ideal measure for [9] as well as for our paper.
8This is actually crucial as our proof technique does not work with large multiplicative

errors, which is a bottleneck for generalizing single pass memory lower bounds for
the coin problem with larger biases [10] to multiple passes.
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approximates ; ; Y; up to an additive error of ~ ey/n. Let M; repre-
sent the random variable for the output (or memory state) at the
end of the i-th pass of M (i € [k]). O executes k passes of M in
parallel. Before reading the input bits Y3, . . ., Yy, O samples memory
states at the end of first k — 1 passes from the joint distribution
on (Mo, ..., Mg_q). O then modifies the given input Y to X’ such
that the parallel execution of the k — 1 passes of the algorithm M
on X[, ..., Xj, end in the sampled memory states. O also maintains
an approximation for the modification, that is of Z;‘:l(Xj'. -Y));
this helps O to compute }; Y; as long as M computes ZX; after
k passes. As we want O to have comparable information cost to
that of M, the approximation of the modification should take low
memory’. The key observation that makes such an approximation
possible is: since the KL divergence of the distribution X, condi-
tioned on reaching memory states My, . . ., Mg_1, from the uniform
distribution is bounded by the entropy of (M, ..., Mg_1) (which
we assume to be << n), algorithm O does not need to drastically
modify Y (which has a uniform distribution). Still, we cannot afford
to store the modification exactly; however, a cruder approximation
suffices, which can be computed using low memory.

As described above, algorithm O has two components, 1) imitate
k passes of M simultaneously, and 2) maintain an approximation
for modifying input Y to a valid input X’ for the first k — 1 passes
of M. To formally describe algorithm O (in Section 2.2.3), we first
state these two components separately as algorithms Im (in Section
2.2.1) and Apr (in Section 2.2.2) respectively.

2.2.1 Single-Pass Algorithm Im Imitating k Passes of M. Recall that
M is a k-pass algorithm that runs on a stream of n i.i.d. uniform
{-1,1} bits, X1, X2, . .., Xn. We describe algorithm Im in Algorithm
1. Let Imj (where j € [n]) represent the random variable for the
memory state of Algorithm Im after reading j inputs bits, and
Img be a random variable for the starting memory state for the
algorithm. The input Y to the algorithm Im is drawn from the
uniform distribution on {-1, 1}".

Let M} denote the random variable associated with value m;
(i € {0,1,...,k — 1). The distribution of M/<k is defined at Step
1 of Algorithm 1. Let {M,(i,j)}ielk],je{o,...,n} denote the random
variables associated with values {m/(i’j)}ie[k],jE{O,...,n}- The dis-
tribution of M’i!j) (j € [n]) is defined at Step 19 of Algorithm 1,

(
and of M’  is defined at Step 3. Let {X’}; denote the random
(i,0) P jijeln]

variable for value x’; in Step 5 of Algorithm 1. These distributions
depend on the joint distribution on (X, M<x, M(<k [1,n])) and the
uniform distribution of Y. Together with a data processing inequal-
ityon Y — X’ — Algorithm 1, we have

IC(Im) = I(Imj;Y[|lmf_1)

'M=
T

1l
_

J

)

S

M-

I(M(Sk,j);XflMdoM(sk,t’—l)) = MIC,opq(M).

—

~
I

—

~

222  Low Information Approximation Algorithm Apr. We develop
Apr for the general problem of approximating the sum of n elements,
eachin {-1,0, 1}. The problem is as follows: given parameters y > 0,

9Note that it takes log n bits of memory to store Z;‘Zl (Xj'. - Yj) exactly.
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Algorithm 1: Single pass algorithm Im imitating k passes
of M
Input: a stream of n bits y, ..
distribution on {-1, 1}"
4 ,,m;{_l ~ (Mo,Ml,...,Mk_l) {Im

.» Yn, drawn from uniform

1: Sample m('], mi, ..

samples memory states for the end of first k — 1 passes}

:imgy — (m(’),mi,.l.,
states for the entire algorithm}

: Vi € [k], m’(l.)o) — m’(l._l) {Starting memory states for
the k passes of M}

: for j=1tondo

Bi

(Pr [XJ‘ =1 M(<kj1) = ml(gk,j—l)’M<k =mlp| =

m;(_l) {Im stores these memory

1)
{Can be calculated using im;-1}
if f; > 0 then
if y; = 1 then
x;. —yj
else
x;-
otherwise
end if
else if f; < 0 then
if y; = 1 then
x;. « y; with probability 1+ 2}, and x;. — -1

10: « yj with probability 1 - 2f;, and x;. —1

otherwise
else
’
X i —y j
end if
end if

Sample (m’

7
iy ™y
distribution of ((M(l’j), M(z,j), el M(k’j)))
condition on

. m’(k j)) from the joint

X
J

)

{Given im(;_y), Im executes jth time-step for all passes
of M}
imj « (m

(M(sk,j—w = ngk,j—l)’ Mok =m’ ., Xj =

7 ’ 4 7’
1y ™y oo My)

{At the jth time-step, Im stores these memory states}
21: end for

’ ’
20: My N, My, M
(k.j)> 0

B > y+/n, and a stream of n elements ay, ..., a, € {-1,0,1} jointly

drawn from a distribution D (such that E,. o [Z;-lzl 1, j¢0] < B),
the aim is to output (Z?zl a j) up to an additive error of y+/n. Let

RAPT = (R;\pr, .. ,Répr), where R?pr denotes the random variable
for private randomness used by algorithm Apr at the jth time-step;
we formalize the error guarantee as

n

Eyep r~reer ||Apr(a,r) - Z aj

J=1

<

< yvi.
Additionally, we establish that the streaming algorithm Apr (de-
scribed in Algorithm 2) has low information cost — the memory
state at each time-step has low entropy, that is, Vi € [n], H(Apr;) ~
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2log (y%ﬁ) Note that, the exact computation of }’; a; requires

log n memory.
Informally, Apr samples each a; with probability p ~ )’%l and

maintains their sum using a counter A. It is easy to see that A/p
is an approximation of }’ j a; (with additive error yv/n) as long as
2.j 1a;#0 is bounded by ~ B. As B is an upper bound only on the
expectation of 3} ; 14,40, the algorithm Apr needs to find another
way to approximate the sum whenever 3} ; 14,20 >> B.For this, Apr
maintains two more counters { and I', where { counts the number
of elements a; sampled in the sum A, and I stores }’ ; a; exactly
whenever counter { becomes >> pB. Apr is formally described in
Algorithm 2.

Algorithm 2: Algorithm Apr for approximate sum

Input stream: ay, ..
on {-1,0,1}"

Given parameters: y > 0, B > y\n

Goal: Va € {-1,0,1}", |Apr(a, r)— Z;}:l aj‘ < %\/ﬁ with

., an, drawn from joint distribution D

probability at least 1 — # over the private randomness
r ~ RAPT

Let p = min {6000 log?n - (%) , 1} {probability of
sampling}

1:

: A < 0 {A maintains an approximation for p - (Z ja ])}
: { « 0 {{ approximates p - (Zj 1aj¢0)}

: T <0 {T computes (Zj aj) exactly when A/p is not a

good approximation}

5. for j = 1tondo

6. if { <20logn - pBthen

7: Let rj be 1 with probability p and 0 otherwise

8: if rj = 1 then

9: Ae—A+a;j

10: { < {+14;20 {Sample a; and update the
counters with probability p}

11: end if

122 elseif { > 20logn - pB then

13: '—T+a;j

14:  endif

15: end for

16: return max{min{A/p + T, n}, —n}
within [-n, n]}

{Project A/p+T

In Theorems 2.4 and 2.5, we establish the approximation and
information cost guarantees for the algorithm Apr. Before, we note
that Apr uses private randomness at Step 7 of the algorithm and

define R?pr to be a Ber(p) random variable for all j € [n].

%,B > y+/n, the output of Algorithm 2

(Apr) on every input stream a € {—1,0,1}" satisfies the following
with probability at least 1 — % over the private randomness r ~ RAP",

THEOREM 2.4. Vy >

n
Apr(a,r) — Zaj < gx/ﬁ
j=
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which further implies that V distribution D on {—1, 0, 1}”, Algorithm 3: Single pass algorithm O using k-pass algo-
" 2 rithm M for computing majority
E,prorier || Apr(ar) — Z aj| | <v*n. Input: a stream of n i.i.d uniform {-1,1} bits Y3, ..., Y,
| = Given parameters: y > 0,B > y\n

Goal: approximate Z?:l Y;.
THEOREM 2.5. Vy > -, B > y+/n, distributions D on {-1,0,1}"

Vn’ 1: Sample m(’), mi,...,m}(_l ~ (Mo, M1,...,Mr_1)
such that E,.p [Z?zl 1aj¢o] < B, memory states of Algorithm 2 2 img — (mg,mi, .. -,m;c_l)
(Apr) satisfies the following: 3: Vi € [k], m’i,o) — m’(i_l)
B 4: Initialize Algorithm 2 (Apr) with parameters y and B
Vj€{0,...,n},H(Apr;) < 40+ 6loglogn + 2log (—) 5: Sample aprg ~ Apr,  {For Algorithm 2, the starting state
yvn is deterministic}
Here, Apr; denotes the random variable for Apr’s memory state after 6: for j=1tondo
reading j input elements, and it depends on input a, as well as the 7. i
private randomness r ~ RP" used by the algorithm. (Pr [X~ —1|M ! Mo =m' |- 1)
J (<k,j-1) (<k,j-1)"V'<k <k 2
2.2.3  Single-Pass Algorithm O for Computing Majority Using k-Pass {Can be calculated using im;_1}
Algorithm M. After introducing the two components, we now de- 8 if B; > 0 then
scribe the one-pass algorithm O that approximates the sum almost 9: if y; = 1 then
as well as the k-pass algorithm M, while having similar informa- 10: x;. —yj
tion cost to M. O runs Algorithm 1 (Im) to imitate the k passes 11: else
of M — Im modifies input bit y; at the j-th time-step to bit x}. In 12: x} « y; with probability 1 — 2§}, and x} —1
parallel, O runs Algorithm 2 (Apr) on the modification - the j-th otherwise
input element to Apris (y; — x;.) € {-1,0,1}. After reading y;, O 13: end if
runs jth time-steps of algorithms Im and Apr (the input to Apr is 14:  elseif §; < 0then
generated on the fly), and stores the jth memory states of both the 15: if y; = 1 then
algorithms. While describing O formally in Algorithm 3 (where pa- 16: x} « y; with probability 1 + 2§}, and x;. — -1
rameters y and B would be decided later), we will restate algorithm otherwise
Im and use Apr as a black-box. As used in Subsection 2.2.2, RAPT 17: else
represents the private randomness used by algorithm Apr at the jth 18: x} <y
time-step and Apr; represents the random variable for jth memory 19: end if
state (r; and apr; represent their instantiations). The input to Apr 20:  endif

_ o S
is denoted by a. Let f].Apr (j € [n]) represent the jth transition 2t aj — (y; *j ) {Setting jth input element to Apr}

22z Sample apr; ~ Apr;(aprj-1,a;)

. . . _ Apr
function for algorithm Apr, that is, apr;j = f] (aprj-1,aj,rj). Let 25 Sample (m,(l N m,(z . "’ml(k 4)) from the joint
Apr;(aprj-1,a;) denote the random variable for the jth memory o J J -
state, when the jth input element is aj, (j — 1)th memory state is distribution on ((M(l,j)’ M(Z,j)’ cees M(k,j))) condition
) . s Apr

aprj—1 and private .randomness rj is drawn fro.m Rj - on (M(sk,j—l) = m/(gk,j—l)’ Mo = m’<k’ Xj= x;)

The random variables Y, X" are as defined in Subsection 2.2.1, 2 im; — (m), .,m m mm’ m,. )

: ; s ctributi n ’ ‘ J (L) 77(25) 7 (k) O T -1
where Y is drawn from uniform distribution on {-1, 1} and X]. 25 o0; « (im;, apr;)
corresponds to value x;. as in Algorithm 3. Let D be the joint 26: endjfor ! !
distr.ib.utior.l g§ner'ated by Algorit’hm 3 ori inputs to A,pr that is, Output: o, = (imp, apry) = (m/(sk,n)’ m/<k’ apry)
the joint distribution on (Y; — X, Y2 = X5, ..., Yy — X,). Let Aj
be the random variable for the jth input element to Apr, that is,
Aj =Y - X}'.. Let {M,(l-’j)}ie[k],je{o ,,,,, ny and M’ be random
variables as defined in Subsection 2.2.1 (these are random variables computes the majority bit. Recall that, M is a k-pass algorithm such
for corresponding values that appear in Algorithm 3). that H(M;) < n? forall i € {0, ..., k}. We immediately have the
For the approximation algorithm Apr, we show following corollary.
n n COROLLARY 2.6. As H(M;) < nt, Vi€ {0,...,k},
Eawn | ) Taj0| =B| D Lyex: | < V- H(Mp).
Jj=1 j=1 n n
Eg- Ia,20| =E| > 1y.x:| < Vn- Vknt

Informally, we relate the probability of modification at step j to the a~D ; a;#0 ; Yi#X; \ "
information that end memory states have about X, conditioned
on the previous memory states. The claim follows from the fact Corollary 2.6 suggests a value for parameter B that Algorithm 3
that the sum of this information over j, is bounded by the entropy should run Algorithm Apr on, so as to use approximation guaran-
of the end states. Note that the above claim is tight if an end state tees from Claim 2.4. Let O be Algorithm 3 with parameters y = 5
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and B = Vk - n!**, We prove the following lemmas regarding in-
formation cost and output of algorithm O. See the full version for
detailed proofs of these lemmas.

100 "3 > 0, IC(0) < MIC,ppnq(M) + 1 -

Vi
)
Once we have IC(Im) < MIC,,,q(M) and Proposition 2.5 in

place, Lemma 2.7 follows from careful disentanglement of the in-
formation costs for subroutines Im and Apr used in Algorithm O.

LEMMA 2.7. Forall ¢ >

k-n
22

(50 + 6loglogn +log (

100
LEMMA 2.8. Foralle > i’
n 2
EM(k,n) (E ZX] M(k,n) = m(k,n)]) >e¢en
J=1
2
& £
— Eo, |E ;yjo,,:o,, > on.

Intuitively, Lemma 2.8 shows that if output of the k-pass algo-
rithm M gives information about }’ ; X;j (measured by reduction in
the variance), then the output of one-pass algorithm O also gives
information about }; ; Y;j — sum of the input stream to O. The former
guarantee implies the output of O contains information about )’ ; X ]’
(the modified input); as O stores an approximation for 3’ ; (Y; —XJ’.),
this implies that it also has information about }}; Y;. All that re-
mains to show is that the approximation for modification has an
additive error of at most O(eyn), with high probability. For this,

weuse E,.p [Z;’zl laj;eo] < +/n-H(M_g) and ¢, approximation
guarantee for Apr from Theorem 2.4.

2.2.4 Solving Multiple Instances of the Coin Problem. We gener-
alize our multi-pass streaming lower bounds to solving multiple
instances of the coin problem simultaneously. Informally, given ¢
interleaved input streams generated by n i.i.d. uniform bits each,
the goal of a multi-pass streaming algorithm is to output the ma-
jority of an arbitrary stream at the end of k passes. We show that
any k-pass streaming algorithm that solves the t-Coins Problem

. t]
requires Q( 8"

=) bits of memory (for t < n5). As for the single
coin case, we reduce the multiple coin case to the analogous result
for one-pass streaming algorithms proven by [9]. We simulate the
multi-pass algorithm for the ¢-Coins Problem using a one-pass al-
gorithm that maintains ¢ approximations for modifying each input
stream to a valid stream for the k-pass algorithm. For the gener-
alization, we utilize the fact that the single coin simulation works
even when the output of the first pass has poly(n) entropy; for
the t-Coins Problem problem, we work with memories as large as
tlogn.

2.3 Multi-pass Streaming Lower Bound for the
Needle Problem

Since we have shown that MIC(M, Dy) is upper bounded by
2ksn, it suffices to give an Q(1/p?) lower bound for MIC(M, D)
as we formally present in Lemma 2.9. In the following, we give the
intuition behind Lemma 2.9.

In the needle problem, we use the notion MIC(M, D) as we defined
before, where Dy stands for the uniform distribution. For simplicity,
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Algorithm 4: Communication Protocol For MostlyEq

Input: z € [¢]™
Output: ans € {0,1}
1 Recall: S = {p1,...,pm}
1: for player j from 1 to m do
2 letX) =z;
3:  uniformly sample X 41, -+, Xp,,,—1 from [¢]
4: end for
5: Player m simulates M (1, 1) = M(X4, ..
sends My 5, 1) to Player 1
. forifrom1tok—1do
for j from 1 to m do
Player j simulates
M(ipjia-1) = M(Mip; -1, Xp,. . Xpjuy-1)
Player j sends M(ip;i-1) to Player j + 1 (send to

.,Xpl,l) and

Player 1 when j = m)
end for
: end for
: return the output of Player m

we write MIC(M) in the needle problem, and it could be easily dis-
tinguished from the notion MIC,,, (M) used in the coin problem.

LEMMA 2.9. In the needle problem, if a k-pass streaming algorithm
M distinguishes between Do and D1 with high probability, then we
have MIC(M) = Q(1/p?).

Let us first consider the special case when p = 1/2. A useful
observation is that the needle problem with p = 1/2 is very similar
to the MostlyDIS) communication problem [35]. Viewing the needle
problem with p = 1/2 as a multiparty communication problem (we
name it MostlyEq), we have the following definition:

Definition 2.10 (m-party MostlyEq problem). There are m parties
in the communication problem, where the i-th party holds an inte-
ger z; € [t]. We promise that (z1, ..., 2z;,) are sampled from either
of the following distributions :

(1) Uniform distribution (denoted by Py): each z; is sampled

from [¢t] independently and uniformly.

(2) Mostly equal distribution (denoted by Pgg): first uniformly

sample an element « (needle) from [¢]. Then each z; indepen-
dently with probability 1/2 equals @, and uniform otherwise.

The goal of the players is to distinguish which case it is.

The MostlyEq problem and the needle problem with p = 1/2 are
closely related. For the MostlyEq problem, we prove a information
complexity lower bound, formalized by the following theorem:

THEOREM 2.11. For any communication protocol II that solves the
m-party, wherem < t /100, MostlyEq problem with failure probability
smaller than 0.1, we have that,

I(H(PU);PU) =Q(1),

In other words, the information complexity of T is Q(1).

Here, the failure probability for a protocol IT is defined by
Pr[II(Py) = 1] + Pr[[I(Pgq) = 0].
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By a standard reduction to MostlyEq (constructing a commu-
nication protocol by simulation streaming algorithm), we know
the mutual information I(M; X) between M = (M; j))ie[k],je[n]
and input X = (X1, -, Xy) is also Q(1). Then, we can prove that
MIC(M) > I(M, X) > Q(1) with information theory calculations.

Now, let us consider general p < 1/2. We first use decompose
the needle problem into many local needle problems by redefining
the sampling process of D; as follows:

(1) Sample a set S C [n] with each element j € [n] contained
in S independently with probability 2p.
(2) Uniformly sample a needle & € [¢].
(3) For each j ¢ S, the jth streaming sample is uniformly ran-
dom.
(4) For each j € S, the jth streaming sample equals to @ with
probability 1/2 and uniformly random otherwise.
It is easy to see that the data stream sampled by the process above
follows Dj. Thus, solving the needle problem with general p is
equivalent to solving the needle problem with p = 1/2 hiding in
a secret location S. Then, we define local needle distribution DS as
the distribution D condition on that the set sampled in Step (1)
equals S, and define local needle problem as distinguishing between
DS and Dy within a small error. Since the streaming algorithm M
does not know S, if M solves the needle problem for general p, M
must distinguish between D and Dy for at least a constant faction
of S.
If M solves the local needle problem with S = {p1, p2,-- -, pm},
then by a reduction shown in Algorithm 4 and Theorem 2.11, it
holds that

1{{M(ip,-1) 1 %, 1) = Q1.
This comes from viewing the state of the streaming algorithms as

the transcripts of the communication protocols. In addition, further
information theory calculations show that
i

k-1 m
D020 D MM 1) Xpe | M(gip-1)s M(<i g 1) = (1),
i=1 j=1 =1

where we define p,41 as p1. Finally, by taking an expectation over

S, the L.H.S. of the inequality above is about MIC(M)/O(p?) since
each term

IM i j)s Xe | M(<ie—1), M(<i-1,j))

IM (i jys Xe | M(<iz1,0-1), M(<i-1,j))
of MIC(M) appears in the L.H.S. for an O(p?) fraction of S. Conse-
quently, we have MIC(M) = Q(1/p?) as desired.

2.4 Algorithms for the Needle Problem

We introduce the idea behind the following two algorithms in this
section: (1) M1, which solves the needle problem with p > 1/+/n
in O(loglog n(logloglogn)) space in the communication model;

(2) M2, which solves the needle problem with p < 1/+/nlog® n in

o(1/ (pzt)) space in the streaming model. As with previous work [9,
11, 52] for finding #,-heavy hitters we partition the stream items into
contiguous groups (in previous work, these groups contain @(+/n)
stream items). These works sample O(1) items in each group and
track them over a small number of future groups - this is sometimes
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called pick and drop sampling. A major difference between our
algorithms and these is that we cannot afford to store the identity
of an item and track it, as that would require messages of length at
least log n bits. A natural idea is to instead track a small hash of an
item but there will be a huge number of collisions throughout the
stream if we use fewer than log n bits.

We start by choosing each group to be of size ®(1/p), so each
group has one occurrence of the needle with constant probability
under distribution D1. We discuss the algorithm M; for p = 1/+4/n
first, so the group size is v/n. This can be generalized to any p >
1/+/n (see the full version). For universe [¢], we randomly sample
a hash function projecting [¢] to [Cz], where C; is a constant. For
each group, we randomly sample a subset of [¢] with size C1t/+/n.
Then, M; runs in v/n rounds, and processes one data group in each
round. In round i, we set C2 new counters: for each j € [C2], we set
a counter that tracks j; and when processing the following groups,
we check if each element x exists in i’s random subset; if it is in,
we update its corresponding counter (the counter of group i with
the hash value of x). After processing each group, we check each
counter to see if it is at least a constant times the number of groups
processed after it was initialized. If not, we drop it. The intuition is
that (1) a counter that does not track the needle survives r rounds
with probability less than e ", and (2) a counter tracking the needle
has constant probability to survive. We may accumulate many
counters and the space may hit our O((loglogn)(logloglogn))
bound - if so, we throw away all counters and start over. We show
that at the critical time when we start processing the needle we
will not throw it away.

For the second algorithm M3, the idea is to divide the domain
[¢] into 1/(p®n) blocks and simultaneously run 1/(p?n) algorithms
similar to M; on each block, checking if the needle exists. We show

we only need O(1/(p®n)) space in total when p < 1/ /nlog®n
holds. Note that this algorithm is in the standard streaming model
since we can afford an additive log n bit counter to track the index
of current group.

3 FUTURE DIRECTIONS

Using the single-pass notion of information complexity in [9], that
we extend to multiple passes, Brown, Bun and Smith [12] showed
single-pass streaming lower bounds for several learning problems.
A natural question is if our multi-pass techniques can be useful for
learning problems. Another potential application is that of Dinur
[18], who shows streaming lower bounds for distinguishing random
functions from random permutations. Also, Kamath et al. [35] study
the heavy hitters problem for O(1) pass algorithms. These results
have a logarithmic factor gap and use more classical notions of
information complexity. Can our techniques apply here?
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