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Quantum critical metals and loss of 
quasiparticles

Haoyu Hu    1,2  , Lei Chen    1   & Qimiao Si    1 

Strange metals develop near quantum critical points in a variety of 
strongly correlated systems. Some of the issues that are central to the field 
include how the quantum critical state loses quasiparticles, how it drives 
superconductivity and to what extent the strange-metal physics in different 
classes of correlated systems are interconnected. In this Review, we survey 
some of these issues from the vantage point of heavy-fermion metals. We 
describe the notion of Kondo destruction and how it leads to several crucial 
effects. These include a transformation of the Fermi surface from large to 
small when the system is tuned across the quantum critical point, a loss of 
quasiparticles everywhere on the Fermi surface when it is perched at the 
quantum critical point and a dynamical Planckian scaling in various physical 
properties including charge responses. We close with a discussion about the 
connections between the strange-metal physics in heavy-fermion metals 
and its counterparts in the cuprates and other correlated materials.

Large classes of quantum materials host strongly correlated electrons1,2 
and many of them feature unconventional superconductivity. One 
connection among the strongly correlated systems is illustrated in 
Fig. 1a, which shows the superconducting transition temperature Tc 
and the effective Fermi temperature T0, the temperature for Fermi 
degeneracy, for various strongly correlated superconductors. The 
ratio of Tc/T0 is several per cent, with each temperature scale spanning 
about three decades. This qualifies these systems as high-Tc supercon-
ductors, given that this ratio is about two orders of magnitude smaller 
in conventional superconductors. Another connection lies in their 
normal states at temperatures above the superconducting transition 
temperature (so, when T > Tc), which are often strange metals that have 
an electrical resistivity that is linear in temperature and a slew of other 
exotic properties.

The link between the strange-metal normal state and unconven-
tional superconductivity in heavy-fermion systems, which are charac-
terized by electronic excitations whose effective masses are orders of 
magnitude larger than the free electron mass, is particularly striking. 
Indeed, heavy-fermion metals represent a prototypical setting in which 
quantum critical metallicity has been elucidated3, in part because Tc is 
relatively small in absolute magnitude in these materials, so it opens 
up a large window of temperature over which the strange-metal prop-
erties can be explored. These systems often have antiferromagnetic 

(AF) correlations. The existence of heavy-fermion superconductors is 
a venerable topic, and this material family has now grown to about 50 
members. In contrast, the strange-metal behaviour and its association 
with quantum criticality have been the focus only relatively recently.

It is natural for quantum criticality to drive unusual properties4. 
Indeed, as a system is tuned towards its quantum critical regime at 
a given low (but non-zero) temperature, the entropy is expected to 
be maximized5,6. This behaviour was demonstrated in ref. 7 and is 
illustrated in Fig. 1b, which presents the experimental observations 
in CeCu6−xAux as a function of multiple tuning parameters. Tuning the 
system in the directions that are orthogonal to the gradient of entropy, 
the distance to the quantum critical point (QCP) remains unchanged. 
The gradient of the entropy vanishes precisely at the QCP, which indi-
cates the accumulation of entropy in the quantum critical regime. In 
this sense, quantum critical systems are particularly soft and are prone 
to the formation of unusual excitations and exotic phases.

That strange metals develop via quantum criticality is clearly dem-
onstrated in heavy-fermion metals. We illustrate the point in YbRh2Si2 
and CeRhIn5, via their respective phase diagrams shown in Fig. 1c,d. 
The quantity γ—which is plotted as the colour scale—represents the 
exponent of the resistivity’s dependence on temperature, so regions 
where γ ≈ 1 represent the strange-metal regime. Both materials show an 
AF order at ambient conditions. In YbRh2Si2, a magnetic field applied 
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show the strange-metal behaviour given that the quasiparticles, being 
long-lived, will short-circuit the electrical transport.

To realize the strange-metal behaviour, it is necessary to destroy 
the quasiparticles on the entire Fermi surface. This takes place in the 
second type of theory for metallic quantum criticality, which goes 
beyond the Landau framework19–21.

Here we survey the beyond-Landau quantum criticality. We start by 
considering how quasiparticles can be critically destroyed. The central 
theme here is that, for bad metals such as heavy-fermion systems, the 
quasiparticles are fragile to begin with and their formation takes place 
through a process that is non-perturbative in electron correlations, and 
yet well understood. This understanding sets the stage for confront-
ing the central challenge, which is how the quasiparticles are lost. For 
heavy-fermion metals, the Kondo effect underlies the formation of 
heavy quasiparticles, whereas the Kondo destruction leads to their 
suppression. We suggest that these understandings are relevant to the 
loss of quasiparticles in a variety of strongly correlated systems, includ-
ing the doped cuprates, the iron chalcogenides and certain organic 
superconductors. In addition to surveying the theoretical issues, we 
describe some of the salient experimental developments22–28.

perpendicular to its tetragonal plane of about 0.7 T (or one applied 
within the plane of about 66 mT) tunes the system to its QCP8, where a 
T-linear resistivity9 occurs over more than three decades in tempera-
ture10. In CeRhIn5, a quantum critical fan develops near a pressure of 
2.3 GPa (refs. 11,12) with a nearly T-linear resistivity13.

Theories of metallic QCPs have two general types. One class of 
theory is based on the fluctuations of Landau’s order parameter, as 
described by the Hertz–Millis–Moriya approach14,15. Typically, this 
order parameter corresponds to a spin-density-wave (SDW) order at 
an AF wavevector Q. In this case, the non-zero ordering wavevector 
Q links narrow hot regions of the Fermi surface to each other. The 
order-parameter fluctuations couple to electrons from a small por-
tion (hot region) of the Fermi surface, as shown in Fig. 2. Meanwhile, 
the majority of the Fermi surface remains cold in the sense that the 
order-parameter fluctuation connects one point on the cold region 
of the Fermi surface to another point in the Brillouin zone where the 
energy level lies substantially away from the Fermi energy. Correspond-
ingly, for the electronic states in the cold region of the Fermi surface, 
the quantum critical fluctuations have a minimal effect and the qua-
siparticles retain their integrity16–18. The electrical transport will not 
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Fig. 1 | Strange metallicity and superconductivity. a, Superconducting 
transition temperature (Tc) versus the effective Fermi temperature (T0, extracted 
from entropy and other means) for various superconductors from different 
material families. The red solid line indicates the linear proportionality between 
the two temperature scales. All materials, marked by the different colours and 
symbols, approximately follow this behaviour and are located within the region 
bounded by the two green dashed lines. The error bars reflect the uncertainties 
in the measurements and analyses. b, Illustration of the evolution in the 
entropy near a QCP, based on measurements of the uniaxial Grüneisen ratios 
in CeCu6−xAux at its critical concentration xc = 0.1. Shown here is the parameter 
space of the uniaxial stress (p) along the crystalline ab c axis. σ(ab) represents the 
shear pressure. The red arrow marks the direction with the steepest slope of 
entropy ∇S, with the directions perpendicular to it marked by the red plane.  
c,d, Temperature-control parameter phase diagrams of YbRh2Si2 under a 

magnetic field (B) applied along the crystalline c direction of the system 8,112 (c) 
and CeRhIn5 under pressure (P)13 (d). The colours represent the temperature 
exponent γ of the resistivity (ρ), determined by a logarithmic derivative of Δρ(T) 
≡ ρ(T) − ρ(T = 0) with respect to logT, signifying a Tγ dependence. In panel c, the 
black solid line tracks the evolution in the Hall coefficient and thermodynamic 
quantities that indicate a crossover between large and small Fermi surfaces. The 
error bars reflect the uncertainty of the extracted crossover location. In panel d, 
the phase boundaries are displayed for the local-moment antiferromagnetic (AF) 
order, the superconducting (SC) phase, and the regions (below the black dotted 
line) where the resistivity follows a T2 temperature dependence, characteristic of 
a Landau Fermi liquid (FL). The cone-shaped green region denotes the non-Fermi 
liquid (NFL) regime with a sub-linear T-dependence in the resistivity. Panels 
adapted with permission from: a, ref. 111, Springer Nature Ltd; b, ref. 7, Springer 
Nature Ltd; c, 112, Springer Nature Ltd; d, ref. 13, Springer Nature Ltd.
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Quantum critical metals: how to destroy 
quasiparticles
Robust and fragile quasiparticles
For quantum many-body systems, the physics at low energies is ana-
lysed in terms of building blocks and their symmetry-allowed interac-
tions2. Traditionally, one takes bare electrons as the building blocks and 
treats the electron–electron interactions order by order in perturbation 
theory29. The notion of quasiparticles survives up to infinite order of the 
perturbation series. In that sense, quasiparticles are rather robust. For a 
long time, the validity of Fermi liquid theory was largely unquestioned 
for systems in dimensions higher than one; indeed, a Fermi liquid was 
considered to be the only fixed point of the renormalization-group (RG) 
flow in such dimensions30,31. A quasiparticle corresponds to a sharp 
peak in the electron spectral function as a function of energy for a 
fixed wavevector. The wavevectors of zero-energy excitations form a 
Fermi surface; the volume enclosed by the Fermi surface, according to 
Luttinger’s theorem, is proportional to the number of the underlying 
electrons even in the presence of interactions32. The quasiparticle has 
the physical meaning of a dressed electron; its quantum numbers are 
exactly those of a bare electron or hole, namely, charge ±e and spin-ℏ/2, 
where ℏ is the reduced Planck constant. Their Fermi statistics dictates 
a decay rate that goes as (kBT)2, where kB is the Boltzmann constant, or 
as E2 as the energy measured from the Fermi energy, E, goes to zero. 
In the language of Green’s functions, the momentum k and frequency 
ω-dependent self-energy Σ(k, ω) retains the Fermi liquid form up to 
infinite orders of the perturbative expansion29. This turns out to ensure 
a non-zero value for the quasiparticle weight, Zk.

Sufficiently strong electron correlations can lead to more suitable 
choices for the building blocks of the low-energy physics. For example, 
heavy-fermion systems involve local f-electron-derived moments and 
itinerant spd-electron bands as the starting point for the description 
of their low-energy properties2,3,33–35. In that case, quasiparticles are 
fragile, with a weight that is exponentially small.

An example is given by the Kondo-lattice Hamiltonian, which is 
described in Box 1. We start from the parameter regime when the Kondo 
interaction between the local moments and the itinerant electrons suc-
ceeds in driving the formation of a Kondo singlet, which can be pictured 

as a bound state between a local moment and a triplet particle–hole 
combination of the conduction electrons. Breaking the bound state 
leads to not only bare conduction electrons but also a composite heavy 
fermion formed between the local moment and a conduction electron. 
The composite fermions have the same quantum numbers as bare 
electrons, and they hybridize with the conduction electrons to form 
heavy quasiparticles. These quasiparticles have a large effective mass 
and a small quasiparticle weight Z that is exponentially small and, in 
practice, is of the order 10−3.

When the quasiparticles are this fragile, competing interactions 
can readily destroy them.

Quantum criticality from Kondo destruction
The notion of Kondo-destruction quantum criticality invokes fluctua-
tions that go beyond a Landau order parameter. For Kondo-lattice 
systems, it captures the dynamical competition between the Kondo 
interaction described above and RKKY interactions, which are interac-
tions between the local moments mediated by the spins of the itinerant 
electrons, as described in Box 1. The corresponding QCP3,19 is illustrated 
in Fig. 3a, in the space of temperature and the non-thermal control 
parameter, δ = T0

K /I, which is the ratio of the bare Kondo temperature 
to the RKKY interaction I.

When δ is sufficiently large, the Kondo interaction dominates and 
a Kondo singlet is formed in the ground state, as illustrated in Fig. 3c. 
As the RKKY interaction is increased, meaning when the parameter δ is 
tuned downwards, the RKKY interaction becomes important and pro-
motes correlations of a spin singlet between the local moments. This 
process is detrimental to the formation of the Kondo singlet. When it 
suppresses the Kondo singlet in the ground state, the composite heavy 
quasiparticles are lost.

Thus, both the formation and loss of quasiparticles can be consid-
ered by analysing the fate of the Kondo singlet or, more specifically, 
the amplitude of the Kondo singlet in the ground state. Our strategy is 
to start from the Kondo side, and see whether and how the dynamical 
competition of the RKKY interaction brings about the suppression of 
this Kondo-singlet amplitude. One can, in principle, also work from 
the opposite end, by analysing the Kondo lattice in terms of a quantum 
nonlinear sigma model representation; the results of such analyses36–43 
are consistent with the conclusions we present here.

Box 1 provides further details on how the dynamical competition 
from the RKKY interactions suppresses the Kondo singlet and, by 
extension, quasiparticles. The key is a new fixed point, marked red in 
panel b of Box 1 figure. Here, the Kondo-singlet amplitude vanishes in 
the ground state, and the weight of the Landau quasiparticle goes to 
zero. This fixed point is interacting (as opposed to Gaussian), where 
kBT is the only energy scale.

Global phase diagram
The introduction of Kondo destruction has inspired considerations of 
new quantum phases in the AF Kondo-lattice systems. These phases 
are distinguished not only by the Landau order parameters but also 
by the existence or absence of the Kondo singlet in the ground state. 
This has led to a global phase diagram36,44,45, as shown in Fig. 4, in the 
two-parameter space of JK, the Kondo coupling, and G, which specifies 
the extent of the quantum fluctuations in the local-moment magnet-
ism. The G axis captures the tuning of dimensionality46 or geometri-
cal frustration47–50. The quantum phases are distinguished by their 
magnetic behaviour and the size of their Fermi surfaces. Here, P and 
AF represent the paramagnetic and AF phases, respectively, and the 
subscripts S and L denote small and large Fermi surface, respectively. 
As we explain in Box 1, a large Fermi surface denotes that both the local 
moments and conduction electrons contribute to the Fermi volume 
through the Kondo effect, whereas a small Fermi surface signifies the 
absence of the Kondo effect, with only the conduction electrons con-
tributing to the Fermi volume.

Q

√T

Fig. 2 | Schematic illustration of the Fermi surface for an SDW QCP. States 
in a small portion of the Fermi surface (red stripes with a width of the order of 
√T for three dimensions) can be scattered by the low-energy critical bosons of 
wavevector Q. These states are hot in that they experience strong scattering by 
the order-parameter fluctuations. Meanwhile, the majority of the Fermi surface 
remains cold (blue region), where Landau quasiparticles are left intact. The 
electrical transport is dominated by the contributions from the cold region of the 
Fermi surface and therefore will not show strange-metal behaviour.
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Box 1

Kondo-lattice system
Consider the Kondo-lattice Hamiltonian:

HKL = ∑
k,σ

εkc†kσckσ +∑
ij
IijSi ⋅ Sj +∑

i
JKSi ⋅ c†i

σ
2 ci. (6)

The involved building blocks are the f electrons in the form of local 
moments, Si, and a band of spd conduction electrons, ckσ with an 
energy dispersion εk. At each site i, an AF Kondo interaction JK couples 
the spin of the local moment and that of the conduction electrons, 
sc,i = (1/2)c†i σci, where σ denote the three Pauli matrices. Across the 
sites, the local moments are coupled to each other via an RKKY 
interaction Iij.

The calculations that have provided the basis for the notion of 
Kondo destruction is the EDMFT113–115; for a recent review, see ref. 116. 
This approach treats the dynamical interplay between the Kondo  
and RKKY interactions of a Kondo-lattice described by panel a.  
The EDMFT approach corresponds to a non-perturbative summation 
of an infinite series of skeleton diagrams. They are generated  
by an effective action functional and are systematic and  
conserving.

In this approach, the fate of the Kondo-singlet amplitude is 
characterized by the nature of local correlation functions. The latter 
are determined from a Bose–Fermi Kondo/Anderson model:

HBFK = ∑
k,σ

Ekc†kσckσ +∑
p
ωpϕ†

pϕp

+JKS ⋅
c†0σc0

2
+ g ∶ S ∶ ⋅∑

p
(ϕp + ϕ†

−p) + hlocSz.
(7)

Here the dispersion Ek and ωp are associated with a fermionic and a 
bosonic bath characterized by a fermionic field ckσ, at momentum k 
and spin σ, and a bosonic field 𝜙p, at momentum p. Their couplings 
to the local moment have the strength of JK and g, respectively. In 
addition, hloc denotes an effective static magnetic field, which is 
spontaneously generated and is coupled to the z-component of the 
local spin. Self-consistency equations are expressed in terms of the 
local correlators of the Bose–Fermi Kondo model.

The Kondo destruction is seen from the RG flow of the Bose–Fermi 
Kondo model. The RG is analysed at one loop from an ϵ expansion, 
first carried out in the model with Ising anisotropy113 and subsequently 
extended to the model with SU(2) spin symmetry117,118. For the SU(2) 
and xy-spin symmetry cases, the RG analysis has been carried out to 
two and higher loops119,120. Here ϵ describes the power-law spectrum 
of the bosonic bath, which also contains a high-energy cutoff Λ:

ρb(ω) ≡ ∑
p
δ(ω −wp) ∝ |ω|1−ϵ for |ω| < Λ . (8)

Panel b illustrates the flow that is associated with the RG 
beta-functions in the ϵ expansion, for a positive ϵ. The RG flow 
diagram illustrates two categories of stable fixed points: one 
associated with an infinite JK, representing the Kondo screened 
phases, and the other characterized by JK = 0, indicating 
Kondo-destroyed phases. An unstable fixed point corresponds  
to a Kondo-destruction QCP. In the absence of the bosonic  
Kondo coupling (when g = 0), any non-zero JK flows away from  
the decoupled fixed point and towards the Kondo fixed point121.  
The bosonic coupling g leads to two new fixed points and a  

separatrix in the JK–g plane. The critical (red) fixed point controls  
the physics on the separatrix, corresponding to a critical destruction 
of the Kondo phase. On the right of the separatrix, the system  
flows to a Kondo-destroyed (green) fixed point where JK vanishes 
altogether.

The nature of the critical (red) Kondo-destruction fixed point is to 
be contrasted with that of the Kondo fixed point. The Kondo fixed 
point is characterized by a non-zero Kondo-singlet amplitude, b*, and 
the renormalized f electron energy scale, ε∗f , for a pole122,123 of the 
conduction-electron self-energy in energy space:

Σ(k,ω) = (b∗)2

ω − ε∗f
. (9)

Here the self-energy is specified via the Dyson equation: 
Gc(k,ω) = [ω − εk −Σ(k,ω)]−1. Correspondingly, in the 
Kondo-lattice model, the conduction-electron Green’s function 
contains two poles, respectively at energies

E±k = 1
2 [ εk + ε∗f ±√(εk − ε∗f )

2 + 4(b∗)2 ] . (10)

C

b c

Si

Sc,i

JK

g L LC L’

C’
JK K

g

1 > s > s*

tij

Iij

JK

a

Kondo lattice model and renormalization-group fixed points.  
a, Schematic illustration of the Kondo-lattice model, which contains 
the Kondo coupling JK between local moments and conduction 
electrons, hopping parameters tij between the conduction electrons, 
and RKKY interactions Iij between the local moments. b,c, RG flow 
of the Bose–Fermi Kondo/Anderson model from studies based on 
an ϵ expansion119 (b) and the continuous-time quantum Monte Carlo 
method125 and a large-S-expansion approach126 at 1 > s > s*, where s* is 
the threshold value of the power-law exponent for the spectrum of the 
bosonic bath (see equation (8)). (c).In panel c, L and L' mark two stable 
fixed points characterizing two local moment phases respectively, 
with LC denoting the quantum critical point between them. C and C’ 
characterize two Kondo-destruction quantum critical points between 
the local moment phases and the Kondo phase, which is denoted by K. 
Panels adapted with permission from: a, ref. 19, Springer Nature Ltd; b, 
ref. 119, APS; c, ref. 125, APS.
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The stability of the AFS phase has been analysed in terms of a quan-
tum nonlinear sigma model representation of the Kondo lattice36–39. 
Using the AFS phase as the starting point, there are three routes for quan-
tum phase transitions to the paramagnetic heavy-fermion (PL) phase. 
Trajectory I describes a direct transition, with a Kondo-destruction 
QCP at the border of the AF order. Trajectory II passes through an 
intermediate AFL phase, which corresponds to the SDW order from 
the heavy quasiparticles of the PL phase. A Kondo-destruction transi-
tion takes place inside the AF order, while the QCP from the AF order 
to the paramagnetic phase is of the SDW type. Trajectory III passes 
through an intermediate PS phase, which could involve non-magnetic 
order such as a valence-bond solid or an underlying spin liquid. Generi-
cally, the Luttinger theorem of the Kondo lattice is obeyed, as can be 
seen from how the local-moment part and conduction electrons21,51 
respond to the adiabatic insertion of an external flux32. The paramag-
netic heavy-fermion phase itself, as described earlier, represents the 
standard phase of a Kondo lattice.

From the perspective of the paramagnetic heavy-fermion phase, 
the three trajectories of quantum phase transitions delineate a variety 
of ways for the Landau quasiparticles to be destroyed. Since the initial 
advancement of the global phase diagram36, there has been consider-
able effort in exploring this phase diagram, both theoretically37–43,52,53 
and experimentally46–50. In addition to the Hall effect and quantum 
oscillations measurements, which we describe below, thermopower has 
been utilized to probe the Fermi surface reconstruction and elucidate 
the global phase diagram54. To illustrate the underlying physics, we will 
for the most part keep our discussion focused on the trajectory I of the 
global phase diagram, which is represented by the phase diagram shown 
in Fig. 3a in the space of temperature (T) and control parameter (δ).

Dynamical Planckian scaling
At the QCP, kBT is the only energy scale, and this leads to dynamical 
properties in which ℏω scales with kBT. The dynamical spin susceptibil-
ity at the AF wavevector Q is found19,55 to have the following dynamical 
Planckian scaling form:

χ(Q,ω) = 1
(−iℏω)α

W−1 ( ℏωkBT
) . (1)

Here W = Aℳ(ω/T ), with A being a constant prefactor and

ℳ(ω/T ) = ( T
−iω )

α
exp[αψ(1/2 − iω/2πT ) ] , (2)

where ψ is the digamma function.

The calculated exponent α is fractional, and is close to being  
0.75 for the Ising anisotropic case (between 0.72 and 0.78 when differ-
ent methods are used for the calculation)56–59 and about 0.71 for the case 
with SU(2) spin symmetry60. At a general wavevector q, the dynamical 
spin susceptibility takes the following form:

χ(q,ω) = 1
θ(q) + A (−iω)αℳ(ω/T )

. (3)

Here, θ(q) = IQ − Iq, where Iq is the RKKY interaction expressed in 
wavevector space. The comparable critical exponents, obtained from 
calculations at the QCPs of the Ising anisotropic and SU(2)-symmetric 
Kondo-lattice models, imply the universal quantum critical behaviours 
of the dynamical spin susceptibility.

These theoretical results provide the understanding of the inelas-
tic neutron-scattering data measured in CeCu6−xAux at its quantum criti-
cal concentration xc = 0.1 (ref. 25, see also ref. 26). The experiments show 
not only the ℏω/kBT scaling form but also a fractional exponent α ≈ 0.75.

The Kondo-destruction QCP also predicted the temperature 
dependence of the NMR relaxation rate. When the hyperfine form factor 
does not have a strong dependence on the wavevector, the NMR relaxa-
tion rate 1/T1 is determined by the local spin susceptibility, leading to19,55:

1
T1

∝ constant . (4)

In contrast, if the hyperfine coupling has a strong q dependence leading 
to a cancellation of the contributions from the dynamical spin suscepti-
bility near the AF wavevector (as in the well-known case of the oxygen-site 
NMR relaxation rate of the optimally hole-doped cuprates61,62), the NMR 
relaxation rate has the following temperature dependence63:

1
T1

∝ Tα . (5)

The results from the silicon-site NMR experiments in YbRh2Si2 found 
the NMR relaxation rate to be strongly dependent on the applied mag-
netic field64,65. When combined with the muon spin spectroscopy (μSR) 
results, they have allowed the extraction of the relaxation rate 1/T1 at 
the quantum critical magnetic field63,64, and the result is consistent with 
the prediction of equation (4). Whereas the measured copper-site NMR 
relaxation rate in CeCu6−xAux, at the quantum critical concentration xc 
= 0.1, is compatible with the expectation of equation (5)63.

Importantly, charge response, particularly the optical conductiv-
ity, has also been found to be critical27. This would have been unusual 
for an SDW QCP, where the singular fluctuations are in the magnetic 

They describe the heavy-fermion bands. The non-zero b* specifies a 
Kondo resonance and leads to a large Fermi surface, where both the 
local moments and conduction electrons contribute. The 
quasiparticle weight is ZL ∝ (b∗)2 (Fig. 5). The damping rate has the 
Fermi liquid (kBT)2 and E2 form.

For the Kondo-destruction phenomena, we highlight three 
key characteristics. First, in the Kondo-destroyed phases, 
the Kondo-singlet amplitude b* vanishes in the ground state. 
Consequently, the poles in the conduction-electron self-energy 
disappear, leading to a small Fermi surface for which only the 
conduction electrons contribute.

Second, for the Kondo-destruction QCP, the vanishing of the 
Kondo-singlet amplitude in the ground state implies that the weight 
of any Landau quasiparticle goes to zero. This can also be explicitly 
seen from the finite-size spectrum of the many-body excitations as 
determined by the numerical RG approach: the spectrum can no 
longer be fit in terms of a combination of any quasiparticles124.

Third, the Kondo-destruction QCP is interacting (as opposed to 
being Gaussian). Thus, kBT is the only energy scale. Accordingly, 
singular responses such as the local spin and charge susceptibilities 
have a dynamical Planckian (ℏω/kBT) scaling. This has been seen 
both in the Kondo-destruction fixed point of the Bose–Fermi Kondo/
Anderson model as determined by a dynamical-large-N (where the 
index N appears in the spin channel) approach66,68 and in the SU(2) 
case66,124.

We note on the extra fixed points that exist beyond the ϵ 
expansion. It turns out that, for small ϵ, the SU(2) Bose–Fermi Kondo/
Anderson model has more fixed points beyond those that are 
accessed by the ϵ-expansion method. Panel c shows the RG flow 
diagram when ϵ is sufficiently small (or s = 1 − ϵ is sufficiently large)125. 
As ϵ further increases, the fixed points are pair-wise annihilated, 
and this has recently been understood analytically based on a 1/S 
expansion (where S is the spin size)126.

(continued from previous page)
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sector. Theoretically, at the Kondo-destruction QCP, the engagement 
of the Kondo process in the quantum criticality suggests the relevance 
of the single-particle and charge sectors to quantum criticality66. The 
corresponding responses, including the optical conductivity, obey 
dynamical Planckian scaling. Experimental evidence for the involve-
ment of the charge sector in quantum criticality has also been provided 
in β-YbAlB4 (ref. 67). Further evidence for a singular charge response 
has come from other theoretical studies68–70.

Finally, as kBT is the only energy scale at the QCP, the electronic 
scattering rate takes the form 1/τ ∝ (kBT)/ℏ. With the Umklapp scattering 
that is generically present in quantum critical metals, this relationship 
leads to strange-metal behaviour in the temperature dependence of 
the electrical resistivity.

Transformation of large-to-small Fermi surface 
and loss of quasiparticles
Large-to-small Fermi surface transformation across the QCP
An important characteristic of the Kondo-destruction quantum criti-
cality is a transformation of a large to a small Fermi surface across the 

QCP. This turns out to be intimately connected to a loss of quasiparti-
cles everywhere on the Fermi surface at the QCP. In the paramagnetic 
phase, the ground state has a non-zero amplitude of the Kondo singlet, 
describing the strength of the spin singlet between the local moments 
and conduction electrons, as illustrated in Fig. 3c. Correspondingly, 
composite-heavy-fermion excitations, as described by Fig. 3e, develop 
in the low-energy single-electron spectrum; as mentioned above, the 
Fermi surface is large in the sense that it incorporates both the conduc-
tion electrons and the Kondo-induced composite fermions, which we 
describe in Box 1.

On the other side of the QCP, the Kondo-singlet amplitude van-
ishes, as illustrated by Fig. 3b. The well-defined composite-fermion 
excitation is absent, and the single-particle excitations are entirely 
described by the renormalized conduction electrons as shown in 
Fig. 3d. This leads to a small Fermi surface as shown in Figs. 3f and 5a, 
which incorporates the conduction electrons only, as further described 
in Box 1.

The jump of the large-to-small Fermi surface across the QCP 
is experimentally testable19–21,55,71. Across the field-induced QCP in 
YbRh2Si2, a remarkable sequence of measurements22,23 have identified 
a rapid isothermal crossover in the Hall coefficient (more specifically, 
the normal Hall coefficient). The crossover width extrapolates to zero 
in the T = 0 limit. This jump of the Hall coefficient provides evidence 
for a jump in the Fermi surface across the QCP. Moreover, the location 
of the crossover maps out a new temperature scale22,23,72, as shown by 
the solid line in Fig. 1c. Separately, in CeRhIn5, measurements of the de 
Haas–van Alphen effect have provided evidence of a sharp jump of the 
Fermi surface across the pressure-induced QCP24. Additional evidence 
for a Fermi-surface transformation across the QCP has come from Hall 
effect measurements in pressurized CeRhIn5 (ref. 73).

Loss of quasiparticles at the QCP
As the system approaches the Kondo-destruction QCP from the side 
of a large Fermi surface, the Kondo-singlet amplitude goes to zero. 
The residue of the pole in the conduction-electron self-energy Σ(k, ω) 
of equation (9) in Box 1 vanishes. Correspondingly, the quasiparticle 
weight on the large Fermi surface, ZL vanishes, as illustrated in Fig. 5a. 
Continuity dictates that the quasiparticle weight on the small Fermi 
surface, ZS, vanishes as well upon approaching the QCP from the other 
side of the phase diagram, as shown in Fig. 5a.

Direct spectral evidence of the destruction of quasiparti-
cles at the QCP is hard to obtain because in heavy-fermion metals, 
angle-resolved photoemission spectroscopy measurements have yet 
to reach adequate resolution to address the issue. However, scanning 
tunnelling spectroscopy in the heavy-fermion compound YbRh2Si2  
(ref. 74) has provided evidence that the single-particle excitations are 
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in contrast to the paramagnetic phase, in which the Kondo singlets in the ground 
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a part of its quantum criticality75. Related evidence has come from the 
probe of Kondo-driven excitations in the quantum critical regime by 
time-resolved terahertz spectroscopy76. Recently, the current shot 
noise has been used as a new probe of strongly correlated metals.  
The observed reduction of the Fano factor provides fairly direct evi-
dence for the loss of quasiparticles in the quantum critical regime of 
YbRh2Si2 (refs. 77,78).

Dynamical Kondo effect and high-Tc superconductivity as 
implications of the singular charge response
The fact that charge responses are singular and obey dynamical Planck-
ian scaling at a magnetic QCP carries a special importance. It implicates 
a charge-spin entanglement in the Kondo-destruction quantum critical 
state, despite a vanishing amplitude of the Kondo singlet in the ground 
state. In fact, it has been shown that a dynamical Kondo correlation 
persists in this regime: a non-zero Kondo coupling in the Hamiltonian 
dictates that the cross local moment–conduction-electron spin cor-
relations operate at non-zero frequencies60. More generally, recent 
work, both theoretical79 and experimental80, has provided evidence 
for amplified entanglement at the Kondo-destruction QCP.

Qualitatively, the Kondo-destruction QCP, described in Figs. 3 and 
5, features quantum fluctuations between a phase that has a Kondo 
singlet in the ground state and with an accompanying large Fermi 
surface on the one hand, and a phase that has no Kondo singlet in the 
ground state and with a corresponding small Fermi surface on the other 

hand. As the composite heavy fermions carry both charge and spin, the 
fact that they are critically suppressed at the Kondo-destruction QCP 
means that the charge sector is an inherent component of the quantum 
criticality, as shown in Fig. 5b.

This dynamical Kondo effect has important implications for how 
unconventional superconductivity develops out of the strange-metal 
normal state. The Kondo-destruction quantum criticality is robust in 
that a large entropy—amounting to a substantial portion of Rln2, where 
R is the ideal gas constant, per f site—is encoded in the quantum fluctua-
tion spectrum. The primary degrees of freedom that are involved in this 
amplified quantum fluctuations are spin in nature. Indeed, a recent cal-
culation using the cluster version of the extended dynamical mean-field 
theory (EDMFT) found large intersite spin-singlet correlations in this 
quantum critical fluid81. Through the dynamical Kondo effect, such 
amplified quantum fluctuations strongly influence the charge sector. 
In turn, the singlet spin correlations lead to pronounced spin-singlet 
pairing correlations. The calculations show that this process drives 
unconventional superconductivity with high-Tc: the transition tem-
perature reaches a few per cent of the effective Fermi temperature81.

Implications and broader contexts
Delocalization–localization transition in other correlated 
systems
We have emphasized how Kondo-destruction corresponds to a delocali-
zation–localization transition of the f electrons across the QCP. Such an 
effect also appears in more complex f-electron systems, which involve 
entwined local degrees of freedom of both spins and orbitals82–84. Locali-
zation–delocalization transitions of this kind in a metallic environment 
is emerging as a unifying theme across the correlated material classes.

In the hole-doped cuprates, strange-metal behaviour is well 
established85–90. Hall effect measurements in YBa2Cu3Oy (YBCO), 
when combined with the results in underdoped La2−xSrxCuO4 (LSCO) 
and overdoped Tl2Ba2CuO6+δ have implicated a transition between 
phases with carrier concentrations p and 1 + p near the optimal doping91 
(Fig. 6a). This is accompanied by the observation of mass enhancement 
in YBCO near optimal doping92 (Fig. 6b). While this remains an issue 
of active discussions93,94, the notion that the Fermi surface undergoes 
a small-to-large transformation as a function of hope doing has also 
been reported based on angle-dependent magnetoresistance meas-
urements in La1.6−xNd0.4SrxCuO4 (ref. 95). Moreover, recent inelastic 
measurements have implicated a QCP near the optimal doping in 
LSCO96. All these provide evidence for the relevance of a QCP involving 
an electronic localization–delocalization to the physics of optimally 
hole-doped cuprates.

Evidence for a localization–delocalization transition has also been 
observed in other correlated electron material classes. For example, an 
orbital-selective Mott transition, with a large-to-small Fermi surface 
transformation, has been demonstrated in FeTe1−xSex by angle-resolved 
photoemission spectroscopy measurements97, as shown in Fig. 6c,d. In a 
doped Mott insulator of organic charge-transfer salts, some preliminary 
evidence for a rapid Fermi surface change in a doped Mott insulator has 
also emerged from Hall98 and thermoelectric99 measurements. In moiré 
systems, related properties are also being uncovered100,101. Intriguingly, 
Tc/T0 of the moiré systems is also on the order of a few per cent100. Finally, 
kagome and related metals with frustrated lattices, with active flat bands, 
have recently emerged as a platform for strange-metal behaviour102–104. 
A Kondo-lattice description105,106 allows for strange metallicity in terms 
of localization–delocalization of electrons in compact molecular orbit-
als107; this approach leads to a phase diagram of temperature and control 
parameter that has now been supported by an experimentally deter-
mined temperature–pressure phase diagram in a kagome metal108.

QCP versus quantum critical phase
One of the topical issues in the realm of quantum criticality concerns 
the possibility of a quantum critical phase. The global phase diagram 
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for quantum critical heavy-fermion metals, described earlier in the 
‘Global phase diagram’ section and Fig. 4, delineates the close rela-
tionship between the two possibilities. Here a quantum critical phase 
can develop in the regime PS, where quantum fluctuations prevent the 
system from acquiring a long-range order. The global phase diagram 
suggests that both the quantum critical phase and the beyond-Landau 
Kondo-destruction QCPs descend from the same phenomenon, namely, 
the strong dynamical competition between the Kondo and RKKY inter-
actions. In a heavy-fermion compound with geometrical frustration 
(due to a distorted kagome lattice), CePdAl, a quantum critical phase 
has been implicated in its pressure–magnetic field phase diagram47. 
Evidence for a quantum critical phase has also come from thermoelec-
tric measurements in an organic charge-transfer salt99.

In the cuprates, we have already discussed evidence for the rel-
evance of a QCP91,92,95,96. In the LSCO family, the evidence for a QCP 
developing near optimal superconductivity includes the observation 
of a peak in the specific heat (and, correspondingly, the maximiza-
tion of entropy), and the presence of low-energy collective spin fluc-
tuations with an energy scale comparable to temperature96. On the 
other hand, experimental observations have revealed that both the 
linear-T behaviour in the resistivity for LSCO109,110 and a quadrature 
scaling in the magnetoresistance for Tl2Ba2CuO6+δ and Bi2Sr2CuO6+δ 
(ref. 110) occur at doping levels beyond p*, raising the possibility of a 
quantum critical phase. Regardless of whether the physics is driven 
by a QCP or a quantum critical phase, the phenomenology suggests 
that both collective spin fluctuations and the electron localization–
delocalization transition are involved in the low-energy physics in 

the strange-metal regime. This resembles the phenomena observed 
in heavy-fermion systems.

Summary and outlook
We have highlighted the theme that quasiparticles are fragile to begin 
with in strongly correlated metals such as heavy-fermion systems and 
that, in the Kondo-destruction quantum criticality, the quasiparticles 
are lost at the delocalization–localization transition of the f electrons. 
This theme unveils a hidden Mott transition in an unlikely setting, 
namely, between two metallic phases. As such, the unusualness of the 
properties here rivals what happens in the case of the standard Mott 
transition. By certain measure, it is even more striking because, with 
both sides of the transition being metallic, the Coulomb interactions 
are screened and it is more natural to have the quantum phase transition 
to be continuous. The loss of quasiparticles at the Kondo-destruction 
QCP is accompanied not only by the dynamical Planckian scaling in the 
spin and charge dynamics but also by a sudden transformation between 
large and small Fermi surfaces across the QCP.

These salient properties allow one to connect the strange metal-
licity of heavy-fermion metals with that of a variety of strongly cor-
related systems. The strange metallicity in the cuprates and organic 
systems naturally develop in the backdrop of the parent Mott insulator 
phase. In the iron-based superconductors, recent experiments have 
provided evidence for the proximate orbital-selective Mott phase. 
Finally, in moiré and frustrated lattice systems, where strange-metal 
behaviour has also been observed, correlated insulating phases may 
well be considered as the result of electron localization. It appears to 
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be no coincidence that the strange-metal behaviour develops in all 
these strongly correlated material classes and that superconductivity 
emerges with a high transition temperature. By extension, it seems 
likely that, in most if not all of these systems, strange metallicity is 
underlined by the loss of quasiparticles on the entire Fermi surface. 
Exploring the issues in diverse settings and from varied perspectives 
promises to deepen the understanding about quantum critical met-
als and to uncover new connections that the strange-metal physics 
of heavy-fermion metals may have with that of a broad range of other 
correlated material classes.
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