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Abstract—Efficient water use, particularly in the realm of
irrigation, has emerged as a critical concern in regions suffering
from persistent drought, such as California and Florida. With
the advent of smart irrigation controllers encouraged by envi-
ronmental policies, a new paradigm of water management is
gaining traction. Among these, the Rachio smart controller has
garnered significant attention. However, without direct feedback
or actual water usage data, optimizing these irrigation systems
for enhanced efficiency remains challenging. This paper intro-
duces Water-COLOR, a novel recommendation system integrated
within the Rachio smart controller’s framework to address this
challenge. The system leverages similar landscape profiles to
suggest irrigation schedules that are both water-efficient and
user-preferable. By analyzing manual user interactions with the
controller, Water-COLOR infers user satisfaction, which, along
with estimated water usage, informs the adaptation of irrigation
plans. The system eschews the need for additional sensors,
thereby reducing infrastructure requirements. Our evaluation
demonstrates consistent performance across diverse climatic
regions and indicates that the system’s recommendations could
significantly contribute to water conservation efforts. The results
not only showcase the potential of Water-COLOR to enhance
the efficiency of existing smart irrigation systems but also
open avenues for deploying real-time, data-driven environmental
solutions.

I. INTRODUCTION

Over the past two decades, as urban areas continue to

expand, irrigation water systems serving housing with lawns

and yards have rapidly been developed and deployed [6]. In the

United States, this growth is particularly notable in states like

California and Florida, where prolonged drought conditions

have persisted for years [8]. In these regions, reducing irriga-

tion demand is an effective strategy for conserving potable

water [7]. Recognizing the importance of efficient outdoor

water use, the state of California has actively encouraged

the replacement and installation of smart irrigation controllers

in landscaping through rebate programs [9]. Furthermore, an

investigation [10] involving 838 single-family homes across

the U.S. revealed that irrigation accounts for half of their total

water consumption.

In 2011, there were a few choices of commercial controllers

available in the market, whereas in 2020, there are more than

700 controller models with EPA WATER-SENSE Label [11].

Irrigation controller first improved from manual operation to

an automatic controller, named “Timer”, that starts and stops

irrigation based on preset fixed schedule, e.g fixed days in a

week, starting time and duration time. Timer relieves humans

from having to interact with the controller, but according to

[12] homes with a traditional timer used 47% more water than

homes without. Essentially, timers just brought convenience to

people, but lacked any consideration of irrigation efficiency.

Therefore, homeowners looking for potential water bill

savings need smart controllers to conventional systems with a

traditional timer. Sensor-based controllers are coming to mar-

ket, with Soil Moisture Sensors (SMS) being a representative

example [13]. Soil moisture sensors are installed underground

in the root zones and transmit moisture data to the controller.

This allows for irrigation schedules to be triggered only when

moisture levels fall below a threshold. Based on this idea,

scholarly research [17], [18] has extended to other sensor

types, such as those measuring temperature, humidity, and us-

ing webcams to monitor plants/vegetation. Such systems often

leverage PID (Proportional, Integral, Derivative) in feedback

control systems or ANN (Artificial Neural Network) models

to devise an optimal irrigation schedule, aiming for efficient

water use while maintaining plant health [16].

Another type of controller called weather-based or ET-based

has become popular in the market due to the recognition of

evapotranspiration (ET) as a critical factor for determining

when to irrigate [13]. ET is the combination of evaporation

from the soil plus transpiration from plants and depends

on weather factors such as sunlight, temperature, wind, and

humidity [15]. ET-based irrigation controllers adjust irrigation

events based on historical or on-site weather data.

Although SMS based irrigation controllers can be more

effective according to [10], it requires additional infrastructure

and investment, making it impractical for installation in every

household. ET-based controllers, in contrast, get rid of sensors
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Fig. 1. Rachio irrigation smart controller workflow

making them a more viable option. However, ET-based con-

trollers often rely on user input for landscape configuration

for correct crop type, soil type etc. If the input information

is not accurate, the ET coefficient calculation is not accu-

rate, making the controller not optimal for water efficiency.

Using ET controllers requires users to have some degree of

agricultural knowledge or experience, or to be educated by

a smart controller provider or local district water agencies.

Meanwhile, if the homeowners experience challenges while

using the smart controllers, their level of satisfaction with the

technology degrades [6]. Consumer feedback-based designs

haven’t been much considered in the current smart controller

market, but understanding their preference and feedback helps

to create more effective water conservation programs [14].

To address the above challenges and issues, we have de-

veloped a recommendation system for an ET-based smart

irrigation controller aimed at enhancing irrigation efficiency.

Without direct feedback data such as water usage data and soil

moisture level data, we bring the idea from recommendation

models to match similar landscape houses and recommend

preferable and water effective schedules. Thus, our system

does not require additional sensors to be installed, allowing for

sharing effective irrigation schedules from both experienced

and agriculturally educated users. Moreover, we consider user

satisfaction by analyzing the frequency of manual interactions

with the controller. This data is used to refine and adjust the

irrigation schedules, ensuring they not only conserve water but

also meet the user’s needs and expectations more accurately.

The rest of the paper is organized as follows: in section II,

we list related works on smart irrigation controllers designs,

and basic recommendation models as well as their applica-

tions. In section III, we present the problem setting with data

schema descriptions, assumptions, and problem formulation.

Section IV presents the system architecture and details about

data flow and algorithms we choose for each module. Section

V contains the evaluation metrics and experiment results. Fi-

nally, the conclusions and potential future work are discussed

in Section VI.

II. WORKFLOW

A. Rachio’s Controller Workflow

We implement our recommendation with the Rachio smart

irrigation controller. Rachio makes the top-rated smart sprin-

kler controller in the United States nation [41]. It has a

customer base of over one million users and has won many

prestigious awards. In this section, we will first describe the

Fig. 2. Rachio irrigation smart controller integrated with recommendation
model workflow

original workflow of Rachio’s smart controller to understand

its functionality. Following that, we explain our architecture

to integrate the recommendation model into this workflow.

The original workflow is shown in Figure 1. After installing

the irrigation controller and wiring the sprinklers in the yard,

users can segment their yard into limited numbers of zones

(general max number: 8 or 16, according to device model)

based on distinct characteristics like plant and soil types. Each

zone can then be configured within the Rachio app. Following

the zone configuration, the app will generate a watering

schedule plan accordingly, which contains the watering dates

and starting times, and durations, along with other tunable

parameters. If the user select a FLEX type of schedule, the

app accesses weather data from either cloud services or local

weather stations to smartly calculate the plant need according

to ET demand and build an irrigation schedule to most

efficiently water the plants. All Rachio schedules can also skip

irrigation during rainy, windy, or snowy days. Additionally,

users can always manually start or stop the controller for

immediate irrigation or stop an ongoing watering event. All

related data, including records of each operation, is uploaded

to Rachio’s cloud platform.

Our goal is to recommend for users irrigation schedules

derived not just from zone configurations but also from an in-

telligent recommendation model, to enhance water efficiency.

Our solution is to integrate a recommendation model into the

Rachio workflow as shown in Figure 2. Using the zone config-

uration and irrigation log as input, our recommendation model

can benefit other similar user’s schedules and recommend less-

experienced users schedules with better water efficiency.

B. Data Description

The user begins with defining and configuring each zone

by specifying basic yard features, which are saved in the zone
detail table. Those features include zone size, crop type, soil

type, crop root depth, nozzle type etc. Those features will

determine how much water the yard needs, and the system will

provide a watering schedule based on the features. Customers

lacking knowledge of their zone configuration can choose to

leave every setting as a default value, which leads the system

to provide a basic but potentially non-optimal watering plan.

Irrigation watering plan is called schedule and its attributes are
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stored in the schedule detail table, which has the schema as

{schedule type, the days of watering, start time, duration}. The

schedule type attribute includes FIXED and FLEX categories.

The FIXED schedule operates independently of daily weather

conditions, executing irrigation on predetermined dates, such

as every two days and disabling the skip operation. In contrast,

the FLEX schedule takes weather data into account, creating

a schedule to optimally water according to ET demand. Users

with FIXED or FLEX schedules can opt to skip watering in

response to weather conditions, such as rainy days. Users can

also adjust the schedule by manipulating those parameters.

Event datasets record customer’s daily irrigation log for each

enabled zone. The log includes start time and end time of each

scheduled irrigation, as well as all user’s manual operations.

The user operations involve manually triggering or stopping

irrigation, affording users the ability to instantly water their

garden. In the later case, the irrigation will be labeled as

manual, otherwise schedule.

III. SYSTEM ARCHITECTURE

A. Assumptions

Our goal is to enhance water efficiency for irrigation by

recommending to users one or more schedules suitable for

the zone, which are optimized for water conservation. Two

questions arise: First, for a given user, which watering sched-

ules should be considered as candidates for recommendation?

We note that similar zone configurations often share similar

irrigation schedules, as the needs of plants in these zones

are likely to match closely. We can also augment the zone

configuration to include features such as location and ET

(evapotranspiration) value. Thus, the candidate set of recom-

mendations correspond to those that are being used by other

users with similar zones/landscapes.

Note that candidate schedules identified based on zone

similarity might not be suitable for a zone since it may result

in under-watering or over-watering of plants. This leads to

the second question - of all the candidate schedules, how to

determine which schedules are suitable for the zone/landscape

of a given zone? To address the question, we make an

assumption that most users equipped with a smart sprinkler

controller are not willing to have their plants over or under

watered. Therefore, they will interact with the controller if

they are not satisfied with the current scheduled irrigation plan.

That being said, when plants are under-watered, users will

interact with the schedule by either updating it or performing

manual watering operations as needed. Conversely, if plants

are receiving excessive water, users are expected to manually

halt the scheduled irrigation for that day. Either way they

will leave a record in the event data for manual operations.

By counting the number of user interactions and/or duration

of total interactions for each month, we can interpret that,

the more interactions with the controller, the less the user is

satisfied with the current irrigation plan. While this assumption

might not be true for all users, it does reflect a reasonable

expectation of why users would manually control their system.

Customers who have yards or gardens and are willing to

Fig. 3. System Architecture

invest in a smart irrigation controller typically have interest

in ensuring the health and vitality of their plants. The ideal

case is to have an optimal irrigation plan so that users are

hand-off for the irrigation task.

Finally, for all the suitable schedules which we can recom-

mend, we need to address which one we should recommend.

Since our goal is water conservation it is natural to choose

a schedule based on estimating the water usage for the given

schedule.

B. System Architecture Overview

In Figure 3, we provide an overview of the system architec-

ture, with a more detailed examination of each module and our

methodologies to follow in subsequent sections. The system

starts with retrieving recent data from the cloud platform via

a ConnectAPI, which outlines the schema of the data to be

fetched and the event data over a specified time interval. This

data is then stored in a local PostgreSQL database [2], utilizing

the same table schema as that used on the cloud platform.

Given a target zone specified by users, the system aims to

recommend a water-efficient schedule plan. To this end, the

system first identifies the top-k zones most similar to the

target zone. However, since zones in raw data may include

non-numerical attributes, an encoder module is required to

convert the non-numerical data into numerical vectors to facil-

itate later similarity computation. The similarity computation

engine identifies the top-k most similar zones as candidates.

Recommendation engine is responsible for recommending the

best schedule from the candidates based on the execution

statistics in current watering plans and the estimation of water

usage per zone area (square feet) from the event data in the

last six months.

C. Architecture Component Detail

a) ConnectAPI to cloud platform: IoT devices generate

data that is saved to cloud platform. In our implementation,

the system is built locally and thus a data sourcing module

is required to allow downloading and updating data from the

cloud platform. There are two reasons, first, network latency

makes it impractical to query and process complex models

in real-time online. Secondly, it allows us to selectively store
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essential datasets (such as the most recent six months of event

data from years of accumulated data, and zone data specific to

users in a targeted area like California) rather than the entire

United States, which further reduces the processing latency.

The ConnectAPI module allows access to the cloud platform

under authorization to fetch data using SQL query. The data

is saved and stored in a local PostgreSQL database.

b) Encoding Module: As the raw data of zone configu-

ration contains non-numerical values (e.g., the category value

sand under attribute zone soil type), we implement a encoding

module to transform non-numerical values into numerical val-

ues in the zone configuration vector. The transformation relies

on a set of rules specified by agriculture experts. In particular,

each rule defines a one-to-one mapping from a category-

type attribute to a numerical-type attribute. For example, the

attribute zone soil type is mapped to a numerical attribute

called water retention capacity, and the sand value is mapped

to 0.05 denoting the water retention capacity for different types

of soil. We further normalize the transformed numerical values

such that they are in the same range to facilitate later similarity

computation. For instance, one feature in zone configuration

called zone root zone depth spans the range [101.6, 381.0],

whereas another feature called infiltrationRateValues spans the

range [0.0007, 0.004]. We take the normalization formula as

below to avoid this problem:

x′ = a+
(x−min(x))(b− a)

max(x)−min(x)
, (1)

where a and b are the desired lower bound and upper bound

after normalization, in our case, we assign a = 0.1, b = 1.

c) Similarity Computation: The similarity computation

module takes normalized zone configuration vectors as input,

for a given target zone vector, generates top-k most similar

zone vectors.

Given two encoded zone vectors z1 and z2, we compute the

cosine function value as their similarity score, denoted by

Sim(z1, z2) =
z1 · z2

‖z1‖‖z2‖ . (2)

The cosine value, which falls within the range of [0, 1], can be

interpreted as a similarity score. A similarity score closing to

1 signifies that two vectors are very similar or closely aligned.

A standard method for computing similarity using the

cosine function involves creating a cosine similarity matrix, as

mentioned in [35]. By retrieving the ith row (or the ith column,

due to the matrix’s symmetry), one can obtain the cosine sim-

ilarity values between the ith element and all other elements.

However, this straightforward approach to computing cosine

similarity can incur significant computational and storage cost

when dealing with large input sizes. (e.g., in our case, the

number of zone vectors) For instance, computing a cosine

similarity matrix for 40,000 vectors (where each vector has 20

dimensions) on a personal laptop (e.g., Apple M2 chip, RAM

16GB) takes about 10 seconds. The computational cost jumps

to around 40 seconds when the number of vectors with the

same dimension increases to 50,000, observing a significant

quadratic increasing of computational cost with vector size.

Additionally, large vector size also incurs significant resource

consumption due to a potential large similarity matrix. More-

over, as the need arises to include more zone tuples in the

future, the matrix size will expand quadratically, which makes

the similarity matrix impractical to be stored in memory. To

address this challenge, we store the vector of zones in vector

databases [36] to speed up similarity computation and save

storage cost. In particular, vector databases directly store a

set of vectors instead of the large similarity matrix, and they

support index-based fast similarity computation [37] under

various similarity metrics, such as cosine similarity, Euclidean

distance, or L2 norm. In our implementation, we use the

PostgreSQL extension pgvector [39] to store vectors and

compute similarities. We employ the HNSW [38] graph-based

indexing strategy, currently recognized as the state-of-the-art

method.
d) Schedule Metric: In a general recommendation sys-

tem such as online shopping or movie recommendation sys-

tem [40], user feedback is often captured by rating scores of

products or movies, reflecting their satisfaction with the item.

Unlike these systems, our watering schedule recommendation

system doesn’t have a direct rating mechanism provided by

users. Therefore, we use a satisfaction score over usage per

unit ratio to qualify a schedule, which serves as rating score in

our recommendation system, allowing us to assess the quality

of each watering schedule.
Satisfaction Score (sc): We define the monthly user sat-

isfaction score on a schedule S by counting the numbers of

scheduled operations divided by the numbers of total irrigation

operations, including scheduled and manual operations for

each month:

sc(S) =
#scheduled

#scheduled+#manual
. (3)

If the schedule is applied to more than one zone, we average

the satisfaction scores among all applied zones. The definition

of satisfaction score (sc) in Equation 3 is consistent with the

assumption we made in Section III.A, indicating that more

user interactions and manual operations suggest a lower user

satisfaction with the existing irrigation schedule plan.
Schedule Quality: We use the ratio between user satisfac-

tion score (sc) and the estimated water usage per unit to define

the schedule metric for a given schedule S:

Q(S) =
sc(S)∑

days∈month duration(day)/zi.area
, (4)

where Q denotes the quality, and duration is each irrigation

duration time, regardless of manual or scheduled operation,

that is saved in minutes, and area is one given zone zi’s area

in square feet. The denominator aggregates the total irrigation

time over a month, to overcome the bias of different month,

we takes into account for up to last six month’s records and

average it to get the quality of a given schedule S. If one

schedule has been created recently, e.g has been used for one

or two months, we can eliminate the case and search for other

longer candidates.
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e) Recommendation Model: The recommendation mod-

ule takes the input of the top-k similar candidate zones, fetches

out those zones’ current schedules, computes each schedule’s

quality using Equation 4, and outputs a recommended sched-

ule, noted by Ŝ. The process for recommendation is shown in

Algorithm 1.

Taking the input with candidate schedule lists and quality

lists of those schedules, we introduce a Correlated Weighted

Majority Vote(CWMV) algorithm as the recommendation

strategy. For a tuple of schedule S, it consists of a list of

attributes {si, · · · , sm}, where m = 16 but can be varied

according to different feature selection methods. The schedule

attributes are categorical data type or boolean type, in which

the domain values for each attribute are finite. Therefore,

generating a recommended schedule, denoted by Ŝ, is equiv-

alent to assigning a specific value (from possible domain

values) for each attribute. To determine the optimal value

for each attribute, we use weighted majority vote on each

attribute among the schedules in the candidate zones. The

weight coefficient of each schedule S is defined by Q(S) in

Equation 4. However, the majority voting mechanism needs

to consider the correlated relationship between attributes. If

there exist correlated attributes, the majority vote mechanism

should take them as a group and count on the group values.

Therefore, a correlation analysis for schedule attributes needs

to be done before-hand.

To capture the correlation, we use phi-coefficient between

two attributes [1]:

φxy =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
, (5)

where φ is the correlated coefficient in the range [-1,1].

If φ = −1 or φ = 1, it indicates a strong negative or

positive correlation relationship between those two attributes,

respectively.

Based on the correlation analysis, attributes that are corre-

lated can be grouped together, treating their possible domain

values as a collective group value. The Correlated Weighted

Majority Vote (CWMV) approach is outlined in Algorithm 2.

For each schedule attribute si (or a group of correlated

attributes), a Python dictionary is constructed. This dictionary

is then used to iterate over the list of schedules from candidate

zones, logging each encountered domain value and accumu-

lating a sum by the quality of the schedule Q(Sj), which

serves as the weight for that domain value. Upon completing

each iteration, the domain value with the highest total weight

is selected. By determining the value for each attribute, we

generate the recommended schedule Ŝ as output of CWMV.

IV. EVALUATION

To assess a recommendation system effectively, it is es-

sential to have accurate ground truth data, indicating if the

recommendations align with expectations. However, in this

application setting, we lack precise ground truth data, includ-

ing actual irrigation usage and user feedback on the smart

Algorithm 1: Recommendation Algorithm

Input: zi
1 candidate K zones: {z1, · · · zk} ← similarity(zi, k)
2 candidateSchedulesList := []
3 candidateSchedulesQualityList := []
4 for zj ∈ {z1, · · · zk} do
5 Fetch zj’s schedule Sj

candidateSchedulesList.append(Sj)
6 Compute Q(Sj)

candidateSchedulesQualityList.append(Q(Sj))

7 Ŝ ← CWMV (candidateSchedulesList,
8 candidateSchedulesQualityList)

9 Return Ŝ

Algorithm 2: CWMV: Correlated Weighted Majority

Vote
Input: SchedulesList, SchedulesQualityList

1 for attribute si ∈ {S.s1, · · · , S.sm} do
2 AttributeV alue := {value : weight}
3 for index j in range SchedulesList do
4 Sj .si ← SchedulesList[j].si
5 if Sj .si not in AttributeV alue then
6 AttributeV alue[Sj .si] = 0

7 Qj ← SchedulesQualityList[j]
8 AttributeV alue[Sj .si] += Qj

9 Ŝ.si ← max(AttributeV alue[Sj .si])

10 Return Ŝ

irrigation controller. Obtaining household level data and feed-

back at the community scale is infeasible; smart controllers

(e.g. Rachio device) utilize evapotranspiration (ET) estimate to

assess household water usage at desired levels of granularity.

Detailed information would require homeowners to install

additional hardware/equipment to measure volumetric flow in

the outdoor irrigation system. Our methodology is to choose a

subset of data (zones) that can serve as representative ground

truth data with the designed constraints. In the following

sections, we will first outline our evaluation metrics under

the assumption that ground truth data is available. Then, we

explain our method for selecting a subset of data to serve

as a stand-in for ground truth. Lastly, we will present our

experiment results.

Designing Evaluation Metrics for Household Water Conser-

vation: For a given zone zi, an ideal schedule or ground truth

schedule is denoted by S∗ - this ideal schedule is expected

to achieve highly positive user feedback and a reasonably low

irrigation usage. Generally speaking, S∗ is the ideal schedule

that users can rely on; it allows users to operate the daily

irrigation task in a hands-off manner. We denote this ideal

schedule set by Dideal

a) Precision: We next define the precision of a recom-

mendation schedule Ŝ wrt the ideal schedule S∗ as follows:

Precision(Ŝ) =
|S∗ ∩ Ŝ|
|S∗| . (6)
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This precision represents the proportion of schedules where

Ŝ has an intersection with S∗. More precisely, each attribute

of the schedule takes on a discrete value - the type of this

value may be float, string or boolean. The intersection in

the above equation indicates the number of attributes where

the recommended schedule and ideal schedule have the same

value. The overall precision is thus calculated as :

Precision =
1

|Dideal|
∑

Si∈Dideal

|S∗
i ∩ Ŝi|
|S∗

i |
. (7)

b) Accuracy: We next define the accuracy by calculating

the mean square error between quality of a recommended

schedule Ŝ and an ideal schedule S∗. The overall accuracy

for is as follows:

RMSE =
1

|Dideal|
√ ∑

Si∈Dideal

(Q(Ŝ)−Q(S∗))2. (8)

A. Prepare Ground truth data

We select schedules as members of Dideal according to

following constraints:

• The schedule has to belong to an active user’s zones.

Active user means having event records in the last 180

days.

• The schedule associated zone configuration containing

more non-default values are preferable, since users are

willing to customize their zone configuration are assumed

to be more active to the irrigation controller, therefore

their satisfaction scores sc are closer to the real situation.

• Our goal is to recommend an ideal schedule S∗ that

should has equal or better quality than the current one.

Thus, we should select ground truth data only with ideal

schedules, i.e high quality schedules with high satisfac-

tion score and reasonably low irrigation usage. Therefore,

experiment result should show that the recommended

schedule Ŝ is close to S∗ in terms of evaluation metric.

B. Experimental Results

a) Precision and MSE vs. Similarity methods: In total,

we chose 96398 numbers of zones around the Orange County,

California area, and we selected 9221 zones as a testing

dataset. Assume that their schedule is ground truth schedule

S∗, and we recommend a schedule Ŝ for each of the zone in

the testing dataset. For comparison, we also test the zones

in other areas that have different weather conditions and

precipitation patterns than the state of California. We selected

Seattle, Washington, which is one of the most rainy cities in

the US. We also select cities near Orlando, Florida, which

conversely to California, is dry in winter and humid in summer

season. The precision and MSE result is shown in Table I.

We also test with different similarity methods other than

the default cosine similarity. We choose the L2 norm, also

known as Euclidean distance, and inner product to capture the

similarity between zone vectors. The results of L2 norm is

shown in Table II, and the results of inner product is shown

in Table III.

In interpreting the experiment’s results, particularly the

precision metric hovering around 0.53, it’s crucial to consider

the nature of the output and ground truth within the context

of the system. Precision in our experiment is defined by

the ratio of intersection between the model’s output and a

human-selected ground truth. Given that both consist of tuples

with 16 attributes characterized by boolean or categorical

data, the likelihood of an exact match decreases due to the

combinatorial complexity of the attribute space. The first point

to consider is the presence of attributes that may be “None”,

which does not necessarily reflect a predictive error but rather

a gap in the available data. Secondly, the high number of

possible values for certain attributes, such as Schedule Cycle
Time, naturally makes exact matches less likely. Furthermore,

the ground truth, being a product of human selection, may not

necessarily represent the actual reality, as the real ground truth

is inaccessible.

In terms of different dataset, from the three tables result

we can observe that, our recommendation system performs

equally well in different dataset, and being consistent for

different location and weather users.

b) Precision and MSE vs. Top-k coefficient: The num-

bers of nearest neighbors of given zone is denoted by k, and it

determines the number of candidate zones we select. Choosing

an optimized k can have impact on the recommendation system

performance. If k is too small, e.g k < 10, the Correlated

Weighted Majority Vote can not provide a high confidence

result due to lack of enough voting members. On the other

hand, if k is too large, e.g k > 200, one may include too many

candidate zones, and the fact of majority default settings may

impact on the Correlated Weighted Majority Vote algorithm

and thus the default setting may poison the vote result. In

addition, large k can also lead to longer latency, due to the

fact that the system has to analyse more event data.

We use the cosine similarity on three cities

testing dataset, and vary the top-k coefficient in set

{10, 30, 50, 80, 100, 150, 200}. From the precision experiment

varying with k coefficient, the result in Figure 4(a) has shown

that, precision initially rises with an increase in k, but starts

to decline if k continues to increase. This observation aligns

with the analysis that was described previously.

The result in Figure 4(b) shows a clear decrease trend of

Mean Squared Error (MSE) as k increases. MSE is the metric

that evaluate how the recommended schedule close to the

selected ground truth schedule through a regression model.

As k increases, more candidate schedules can be included

for training to refine the regression model, and thus the error

decreases. However, when k exceeds 50, the result implies

that adding more schedules does not significantly enhance the

model’s performance, as the error rate approaches a stable

minimum.

c) Baseline: Precision and MSE vs. Top-k coefficient:
To demonstrate the performance of our recommendation sys-

tem, we conducted an experiment comparing it to a baseline

method. Since there are no existing studies using recom-

mendation models or learning-based algorithms for irrigation
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Cities testing zones Precision MSE
OrangeCounty, CA 9221 0.5335 0.0098

Seattle, WA 4930 0.5225 0.0163
Orlando, FL 6905 0.5356 0.0091

TABLE I
PRECISION AND MSE RESULT IN DIFFERENT CITIES; USING COSINE

SIMILARITY METHOD

Cities testing zones Precision MSE
OrangeCounty, CA 9221 0.536 0.0105

Seattle, WA 4930 0.5231 0.0178
Orlando, FL 6905 0.5363 0.0109

TABLE II
PRECISION AND MSE RESULT IN DIFFERENT CITIES; USING L2 NORM

SIMILARITY METHOD

scheduling like us, we used a random strategy to assign

values to each attribute of the schedule. We report the average

precision and MSE of datasets corresponding to three regions

to highlight the differences between our method and the

baseline method in Figure 5. Our method outperforms the

baseline in precision and MSE for each different K value.

d) Execution Latency: During the experiment, latency

is also an important feature. To query one recommended

schedule for a given zone, it takes 0.017ms, 0.012ms, and

0.014ms, on Orange County CA, Seattle WA and Orlando FL

dataset, respectfully. On average, the latency is typically small

making the technique suitable for real-time application.

V. RELATED WORK

In this section, we briefly review related work on smart

irrigation controllers and the recommended models used in

the IoT area.

A. Smart Irrigation Controllers

To provide an optimized irrigation schedule, sensor-based

smart irrigation controllers (e.g., [19]–[21]) typically use off-

the-shelf components (e.g. Arduino boards, Raspberry-Pis)

that can be programmed to deploy. Moisture sensors that

Cities testing zones Precision MSE
OrangeCounty, CA 9221 0.5257 0.0312

Seattle, WA 4930 0.4565 0.0076
Orlando, FL 6905 0.5313 0.0085

TABLE III
PRECISION AND MSE RESULT IN DIFFERENT CITIES; USING INNER

PRODUCT SIMILARITY METHOD

Fig. 4. Precision and MSE varies with top-k as parameter.

Fig. 5. Compare with baseline: Precision and MSE varies with top-k
as parameter.

linked on those components can monitor the moisture level of

soil. If the moisture level is below a threshold, the smart irri-

gation controller can trigger an irrigation event. Other than soil

moisture sensors, [24] adds a sensor data analyzer to predict

the irrigation schedule using truth tables that determine not just

when to irrigate, but also where to irrigate. [16] utilizes PID-

based control mechanisms that implement a feedback loop for

precise irrigation control. Simulation-based approaches have

studied the use of fuzzy methods, [26] ; such techniques

are challenging to realize in commercial implementations on

actual homeowner landscapes. Efforts to create sustainable

solutions that consider not just effective water conservation

but also aim to reduce overall energy costs have also been

explored [25] A range of smart irrigation applications have

been developed using ET-based irrigation controllers [27] -

such devices measure ET and use water balance models in

conjunction with other types of sensor data. However, since

the ET value is closely related to local weather conditions,

such apps are limited certain type of landscapes, crops and

regions [28].

In the last decade, machine learning mechanisms such

as regression models have been used for better irrigation

scheduling. [29] considers irrigation planning as an optimal

control problem that aims to minimize total irrigation usage.

These algorithms leverage models derived whole-year weather

data, that introduces uncertainty and complexity when applied

to real deployments [28]. To estimate moisture data without

sensors, [30], artificial neural network(ANN) and fuzzy logic

approaches have been used to model and predict moisture data

for irrigation scheduling. However, since the ANN models are

trained using historical weather data, the prediction accuracy

is impacted as the weather trends change,

B. Recommendation Model in IoT applications

A typical IoT ecosystem involves several devices that gen-

erate and upload heterogeneous data to cloud platforms, and

utilize data analysis tools such as recommendation systems to

mine and build different applications. For example, [33], [31]

and [32] explore the use of recommendation systems for travel

and tourism applications based on information from uploaded

photos. From an algorithmic perspective, techniques used

in traditional recommendation systems (RS) (such as movie

/content recommendations on websites/web applications) such

as collaborative filtering can also be used for recommendations
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in an IoT setting such as ours, the latter faces additional

challenges due to cold start, diversity, and scalability [34].

VI. CONCLUSION

In this paper we present a recommendation system in-

tegrated in Rachio smart irrigation controller workflow. In

absence of water usage data, we interpret water efficiency and

user feedback through the irrigation event log. The Correlated

Weighted Majority Vote is been designed as a recommendation

strategy, offering user a better satisfaction over usage ratio

watering plan. The experiments on three different cities dataset

have shown that our recommendation system performs consis-

tent over different area and weather conditions, along with a

low execution latency that allows future real time deployment.
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