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Abstract—Efficient water use, particularly in the realm of
irrigation, has emerged as a critical concern in regions suffering
from persistent drought, such as California and Florida. With
the advent of smart irrigation controllers encouraged by envi-
ronmental policies, a new paradigm of water management is
gaining traction. Among these, the Rachio smart controller has
garnered significant attention. However, without direct feedback
or actual water usage data, optimizing these irrigation systems
for enhanced efficiency remains challenging. This paper intro-
duces Water-COLOR, a novel recommendation system integrated
within the Rachio smart controller’s framework to address this
challenge. The system leverages similar landscape profiles to
suggest irrigation schedules that are both water-efficient and
user-preferable. By analyzing manual user interactions with the
controller, Water-COLOR infers user satisfaction, which, along
with estimated water usage, informs the adaptation of irrigation
plans. The system eschews the need for additional sensors,
thereby reducing infrastructure requirements. Qur evaluation
demonstrates consistent performance across diverse climatic
regions and indicates that the system’s recommendations could
significantly contribute to water conservation efforts. The results
not only showcase the potential of Water-COLOR to enhance
the efficiency of existing smart irrigation systems but also
open avenues for deploying real-time, data-driven environmental
solutions.

I. INTRODUCTION

Over the past two decades, as urban areas continue to
expand, irrigation water systems serving housing with lawns
and yards have rapidly been developed and deployed [6]. In the
United States, this growth is particularly notable in states like
California and Florida, where prolonged drought conditions
have persisted for years [8]. In these regions, reducing irriga-
tion demand is an effective strategy for conserving potable
water [7]. Recognizing the importance of efficient outdoor
water use, the state of California has actively encouraged
the replacement and installation of smart irrigation controllers
in landscaping through rebate programs [9]. Furthermore, an
investigation [10] involving 838 single-family homes across
the U.S. revealed that irrigation accounts for half of their total
water consumption.

In 2011, there were a few choices of commercial controllers
available in the market, whereas in 2020, there are more than
700 controller models with EPA WATER-SENSE Label [11].
Irrigation controller first improved from manual operation to
an automatic controller, named “Timer”, that starts and stops
irrigation based on preset fixed schedule, e.g fixed days in a
week, starting time and duration time. Timer relieves humans
from having to interact with the controller, but according to
[12] homes with a traditional timer used 47% more water than
homes without. Essentially, timers just brought convenience to
people, but lacked any consideration of irrigation efficiency.

Therefore, homeowners looking for potential water bill
savings need smart controllers to conventional systems with a
traditional timer. Sensor-based controllers are coming to mar-
ket, with Soil Moisture Sensors (SMS) being a representative
example [13]. Soil moisture sensors are installed underground
in the root zones and transmit moisture data to the controller.
This allows for irrigation schedules to be triggered only when
moisture levels fall below a threshold. Based on this idea,
scholarly research [17], [18] has extended to other sensor
types, such as those measuring temperature, humidity, and us-
ing webcams to monitor plants/vegetation. Such systems often
leverage PID (Proportional, Integral, Derivative) in feedback
control systems or ANN (Artificial Neural Network) models
to devise an optimal irrigation schedule, aiming for efficient
water use while maintaining plant health [16].

Another type of controller called weather-based or ET-based
has become popular in the market due to the recognition of
evapotranspiration (ET) as a critical factor for determining
when to irrigate [13]. ET is the combination of evaporation
from the soil plus transpiration from plants and depends
on weather factors such as sunlight, temperature, wind, and
humidity [15]. ET-based irrigation controllers adjust irrigation
events based on historical or on-site weather data.

Although SMS based irrigation controllers can be more
effective according to [10], it requires additional infrastructure
and investment, making it impractical for installation in every
household. ET-based controllers, in contrast, get rid of sensors
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Fig. 1. Rachio irrigation smart controller workflow

making them a more viable option. However, ET-based con-
trollers often rely on user input for landscape configuration
for correct crop type, soil type etc. If the input information
is not accurate, the ET coefficient calculation is not accu-
rate, making the controller not optimal for water efficiency.
Using ET controllers requires users to have some degree of
agricultural knowledge or experience, or to be educated by
a smart controller provider or local district water agencies.
Meanwhile, if the homeowners experience challenges while
using the smart controllers, their level of satisfaction with the
technology degrades [6]. Consumer feedback-based designs
haven’t been much considered in the current smart controller
market, but understanding their preference and feedback helps
to create more effective water conservation programs [14].

To address the above challenges and issues, we have de-
veloped a recommendation system for an ET-based smart
irrigation controller aimed at enhancing irrigation efficiency.
Without direct feedback data such as water usage data and soil
moisture level data, we bring the idea from recommendation
models to match similar landscape houses and recommend
preferable and water effective schedules. Thus, our system
does not require additional sensors to be installed, allowing for
sharing effective irrigation schedules from both experienced
and agriculturally educated users. Moreover, we consider user
satisfaction by analyzing the frequency of manual interactions
with the controller. This data is used to refine and adjust the
irrigation schedules, ensuring they not only conserve water but
also meet the user’s needs and expectations more accurately.

The rest of the paper is organized as follows: in section II,
we list related works on smart irrigation controllers designs,
and basic recommendation models as well as their applica-
tions. In section III, we present the problem setting with data
schema descriptions, assumptions, and problem formulation.
Section IV presents the system architecture and details about
data flow and algorithms we choose for each module. Section
V contains the evaluation metrics and experiment results. Fi-
nally, the conclusions and potential future work are discussed
in Section VI.

II. WORKFLOW
A. Rachio’s Controller Workflow

We implement our recommendation with the Rachio smart
irrigation controller. Rachio makes the top-rated smart sprin-
kler controller in the United States nation [41]. It has a
customer base of over one million users and has won many
prestigious awards. In this section, we will first describe the
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Fig. 2. Rachio irrigation smart controller integrated with recommendation
model workflow

original workflow of Rachio’s smart controller to understand
its functionality. Following that, we explain our architecture
to integrate the recommendation model into this workflow.

The original workflow is shown in Figure 1. After installing
the irrigation controller and wiring the sprinklers in the yard,
users can segment their yard into limited numbers of zones
(general max number: 8 or 16, according to device model)
based on distinct characteristics like plant and soil types. Each
zone can then be configured within the Rachio app. Following
the zone configuration, the app will generate a watering
schedule plan accordingly, which contains the watering dates
and starting times, and durations, along with other tunable
parameters. If the user select a FLEX type of schedule, the
app accesses weather data from either cloud services or local
weather stations to smartly calculate the plant need according
to ET demand and build an irrigation schedule to most
efficiently water the plants. All Rachio schedules can also skip
irrigation during rainy, windy, or snowy days. Additionally,
users can always manually start or stop the controller for
immediate irrigation or stop an ongoing watering event. All
related data, including records of each operation, is uploaded
to Rachio’s cloud platform.

Our goal is to recommend for users irrigation schedules
derived not just from zone configurations but also from an in-
telligent recommendation model, to enhance water efficiency.
Our solution is to integrate a recommendation model into the
Rachio workflow as shown in Figure 2. Using the zone config-
uration and irrigation log as input, our recommendation model
can benefit other similar user’s schedules and recommend less-
experienced users schedules with better water efficiency.

B. Data Description

The user begins with defining and configuring each zone
by specifying basic yard features, which are saved in the zone
detail table. Those features include zone size, crop type, soil
type, crop root depth, nozzle type etc. Those features will
determine how much water the yard needs, and the system will
provide a watering schedule based on the features. Customers
lacking knowledge of their zone configuration can choose to
leave every setting as a default value, which leads the system
to provide a basic but potentially non-optimal watering plan.
Irrigation watering plan is called schedule and its attributes are
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stored in the schedule detail table, which has the schema as
{schedule type, the days of watering, start time, duration}. The
schedule type attribute includes FIXED and FLEX categories.
The FIXED schedule operates independently of daily weather
conditions, executing irrigation on predetermined dates, such
as every two days and disabling the skip operation. In contrast,
the FLEX schedule takes weather data into account, creating
a schedule to optimally water according to ET demand. Users
with FIXED or FLEX schedules can opt to skip watering in
response to weather conditions, such as rainy days. Users can
also adjust the schedule by manipulating those parameters.
Event datasets record customer’s daily irrigation log for each
enabled zone. The log includes start time and end time of each
scheduled irrigation, as well as all user’s manual operations.
The user operations involve manually triggering or stopping
irrigation, affording users the ability to instantly water their
garden. In the later case, the irrigation will be labeled as
manual, otherwise schedule.

III. SYSTEM ARCHITECTURE
A. Assumptions

Our goal is to enhance water efficiency for irrigation by
recommending to users one or more schedules suitable for
the zone, which are optimized for water conservation. Two
questions arise: First, for a given user, which watering sched-
ules should be considered as candidates for recommendation?
We note that similar zone configurations often share similar
irrigation schedules, as the needs of plants in these zones
are likely to match closely. We can also augment the zone
configuration to include features such as location and ET
(evapotranspiration) value. Thus, the candidate set of recom-
mendations correspond to those that are being used by other
users with similar zones/landscapes.

Note that candidate schedules identified based on zone
similarity might not be suitable for a zone since it may result
in under-watering or over-watering of plants. This leads to
the second question - of all the candidate schedules, how to
determine which schedules are suitable for the zone/landscape
of a given zone? To address the question, we make an
assumption that most users equipped with a smart sprinkler
controller are not willing to have their plants over or under
watered. Therefore, they will interact with the controller if
they are not satisfied with the current scheduled irrigation plan.
That being said, when plants are under-watered, users will
interact with the schedule by either updating it or performing
manual watering operations as needed. Conversely, if plants
are receiving excessive water, users are expected to manually
halt the scheduled irrigation for that day. Either way they
will leave a record in the event data for manual operations.
By counting the number of user interactions and/or duration
of total interactions for each month, we can interpret that,
the more interactions with the controller, the less the user is
satisfied with the current irrigation plan. While this assumption
might not be true for all users, it does reflect a reasonable
expectation of why users would manually control their system.
Customers who have yards or gardens and are willing to
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invest in a smart irrigation controller typically have interest
in ensuring the health and vitality of their plants. The ideal
case is to have an optimal irrigation plan so that users are
hand-off for the irrigation task.

Finally, for all the suitable schedules which we can recom-
mend, we need to address which one we should recommend.
Since our goal is water conservation it is natural to choose
a schedule based on estimating the water usage for the given
schedule.

B. System Architecture Overview

In Figure 3, we provide an overview of the system architec-
ture, with a more detailed examination of each module and our
methodologies to follow in subsequent sections. The system
starts with retrieving recent data from the cloud platform via
a ConnectAPI, which outlines the schema of the data to be
fetched and the event data over a specified time interval. This
data is then stored in a local PostgreSQL database [2], utilizing
the same table schema as that used on the cloud platform.
Given a target zone specified by users, the system aims to
recommend a water-efficient schedule plan. To this end, the
system first identifies the top-k zones most similar to the
target zone. However, since zones in raw data may include
non-numerical attributes, an encoder module is required to
convert the non-numerical data into numerical vectors to facil-
itate later similarity computation. The similarity computation
engine identifies the top-k most similar zones as candidates.
Recommendation engine is responsible for recommending the
best schedule from the candidates based on the execution
statistics in current watering plans and the estimation of water
usage per zone area (square feet) from the event data in the
last six months.

C. Architecture Component Detail

a) ConnectAPI to cloud platform: 10T devices generate
data that is saved to cloud platform. In our implementation,
the system is built locally and thus a data sourcing module
is required to allow downloading and updating data from the
cloud platform. There are two reasons, first, network latency
makes it impractical to query and process complex models
in real-time online. Secondly, it allows us to selectively store
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essential datasets (such as the most recent six months of event
data from years of accumulated data, and zone data specific to
users in a targeted area like California) rather than the entire
United States, which further reduces the processing latency.
The ConnectAPI module allows access to the cloud platform
under authorization to fetch data using SQL query. The data
is saved and stored in a local PostgreSQL database.

b) Encoding Module: As the raw data of zone configu-
ration contains non-numerical values (e.g., the category value
sand under attribute zone soil type), we implement a encoding
module to transform non-numerical values into numerical val-
ues in the zone configuration vector. The transformation relies
on a set of rules specified by agriculture experts. In particular,
each rule defines a one-to-one mapping from a category-
type attribute to a numerical-type attribute. For example, the
attribute zone soil type is mapped to a numerical attribute
called water retention capacity, and the sand value is mapped
to 0.05 denoting the water retention capacity for different types
of soil. We further normalize the transformed numerical values
such that they are in the same range to facilitate later similarity
computation. For instance, one feature in zone configuration
called zone_root_zone_depth spans the range [101.6, 381.0],
whereas another feature called infiltrationRateValues spans the
range [0.0007, 0.004]. We take the normalization formula as
below to avoid this problem:

Yt (z — min(z))(b — a)

max(x) — min(z) M
where a and b are the desired lower bound and upper bound
after normalization, in our case, we assign a = 0.1,b = 1.

c) Similarity Computation: The similarity computation
module takes normalized zone configuration vectors as input,
for a given target zone vector, generates top-k most similar
zone vectors.

Given two encoded zone vectors z; and z,, we compute the
cosine function value as their similarity score, denoted by

Z1 22

 llzallllz2ll”

Sim(z1, 22) ()
The cosine value, which falls within the range of [0, 1], can be
interpreted as a similarity score. A similarity score closing to
1 signifies that two vectors are very similar or closely aligned.

A standard method for computing similarity using the
cosine function involves creating a cosine similarity matrix, as
mentioned in [35]. By retrieving the i;;, row (or the ¢;;, column,
due to the matrix’s symmetry), one can obtain the cosine sim-
ilarity values between the i;, element and all other elements.
However, this straightforward approach to computing cosine
similarity can incur significant computational and storage cost
when dealing with large input sizes. (e.g., in our case, the
number of zone vectors) For instance, computing a cosine
similarity matrix for 40,000 vectors (where each vector has 20
dimensions) on a personal laptop (e.g., Apple M2 chip, RAM
16GB) takes about 10 seconds. The computational cost jumps
to around 40 seconds when the number of vectors with the
same dimension increases to 50,000, observing a significant
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quadratic increasing of computational cost with vector size.
Additionally, large vector size also incurs significant resource
consumption due to a potential large similarity matrix. More-
over, as the need arises to include more zone tuples in the
future, the matrix size will expand quadratically, which makes
the similarity matrix impractical to be stored in memory. To
address this challenge, we store the vector of zones in vector
databases [36] to speed up similarity computation and save
storage cost. In particular, vector databases directly store a
set of vectors instead of the large similarity matrix, and they
support index-based fast similarity computation [37] under
various similarity metrics, such as cosine similarity, Euclidean
distance, or L2 norm. In our implementation, we use the
PostgreSQL extension pgvector [39] to store vectors and
compute similarities. We employ the HNSW [38] graph-based
indexing strategy, currently recognized as the state-of-the-art
method.

d) Schedule Metric: In a general recommendation sys-
tem such as online shopping or movie recommendation sys-
tem [40], user feedback is often captured by rating scores of
products or movies, reflecting their satisfaction with the item.
Unlike these systems, our watering schedule recommendation
system doesn’t have a direct rating mechanism provided by
users. Therefore, we use a satisfaction score over usage per
unit ratio to qualify a schedule, which serves as rating score in
our recommendation system, allowing us to assess the quality
of each watering schedule.

Satisfaction Score (sc): We define the monthly user sat-
isfaction score on a schedule S by counting the numbers of
scheduled operations divided by the numbers of total irrigation
operations, including scheduled and manual operations for
each month:

#scheduled

- #scheduled + #manual

If the schedule is applied to more than one zone, we average
the satisfaction scores among all applied zones. The definition
of satisfaction score (sc) in Equation 3 is consistent with the
assumption we made in Section III.A, indicating that more
user interactions and manual operations suggest a lower user
satisfaction with the existing irrigation schedule plan.

Schedule Quality: We use the ratio between user satisfac-
tion score (sc) and the estimated water usage per unit to define
the schedule metric for a given schedule S:

sc(S)

Q(S ) = . )
> daysemonth duration(day)/z;.area
where @) denotes the quality, and duration is each irrigation

duration time, regardless of manual or scheduled operation,
that is saved in minutes, and area is one given zone z;’s area
in square feet. The denominator aggregates the total irrigation
time over a month, to overcome the bias of different month,
we takes into account for up to last six month’s records and
average it to get the quality of a given schedule S. If one
schedule has been created recently, e.g has been used for one
or two months, we can eliminate the case and search for other
longer candidates.

sc(S) 3)

“)
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e) Recommendation Model: The recommendation mod-
ule takes the input of the top-k similar candidate zones, fetches
out those zones’ current schedules, computes each schedule’s
quality using Equation 4, and outputs a recommended sched-
ule, noted by S. The process for recommendation is shown in
Algorithm 1.

Taking the input with candidate schedule lists and quality
lists of those schedules, we introduce a Correlated Weighted
Majority Vote(CWMV) algorithm as the recommendation
strategy. For a tuple of schedule S, it consists of a list of
attributes {s;, -, S}, where m = 16 but can be varied
according to different feature selection methods. The schedule
attributes are categorical data type or boolean type, in which
the domain values for each attribute are finite. Therefore,
generating a recommended schedule, denoted by S, is equiv-
alent to assigning a specific value (from possible domain
values) for each attribute. To determine the optimal value
for each attribute, we use weighted majority vote on each
attribute among the schedules in the candidate zones. The
weight coefficient of each schedule S is defined by Q(S) in
Equation 4. However, the majority voting mechanism needs
to consider the correlated relationship between attributes. If
there exist correlated attributes, the majority vote mechanism
should take them as a group and count on the group values.
Therefore, a correlation analysis for schedule attributes needs
to be done before-hand.

To capture the correlation, we use phi-coefficient between
two attributes [1]:

I > CTE (7 )

Vo @ — T i - 0
where ¢ is the correlated coefficient in the range [-1,1].
If ¢ = —1 or ¢ = 1, it indicates a strong negative or
positive correlation relationship between those two attributes,
respectively.

Based on the correlation analysis, attributes that are corre-
lated can be grouped together, treating their possible domain
values as a collective group value. The Correlated Weighted
Majority Vote (CWMV) approach is outlined in Algorithm 2.
For each schedule attribute s; (or a group of correlated
attributes), a Python dictionary is constructed. This dictionary
is then used to iterate over the list of schedules from candidate
zones, logging each encountered domain value and accumu-
lating a sum by the quality of the schedule Q(S;), which
serves as the weight for that domain value. Upon completing
each iteration, the domain value with the highest total weight
is selected. By determining the value for each attribute, we
generate the recommended schedule S as output of CWMV.

¢zy

(&)

IV. EVALUATION

To assess a recommendation system effectively, it is es-
sential to have accurate ground truth data, indicating if the
recommendations align with expectations. However, in this
application setting, we lack precise ground truth data, includ-
ing actual irrigation usage and user feedback on the smart

Algorithm 1: Recommendation Algorithm

Input: z;
candidate K zones: {z1, - 2z}  similarity(z;, k)
candidateSchedulesList := []
candidateSchedulesQualityList := []
for z; € {z1, -~ 2z} do
Fetch z;’s schedule S;
candidateSchedulesList.append(S;)
6 Compute Q(S;)
candidateSchedulesQuality List.append(Q(S;))

S« CW MV (candidateSchedules List,
candidateSchedulesQualityList)
Return S

72 T I S

® 2

]

Algorithm 2: CWMYV: Correlated Weighted Majority
Vote
Input: SchedulesList, SchedulesQualityList

1 for attribute s; € {S.s1, -+ ,S.5m} do
AttributeValue := {value : weight}
for index j in range SchedulesList do

S;.si <= SchedulesList[j].s;

if S;.s; not in AttributeV alue then

| AttributeV alue[S;.s:] = 0

Qj + SchedulesQualityList[j]
8 AttributeValuelS;.si] += Q;

9 | S.si < maz(AttributeV alue[S;.s;])

N7 I SRR NY

=

10 Return S

irrigation controller. Obtaining household level data and feed-
back at the community scale is infeasible; smart controllers
(e.g. Rachio device) utilize evapotranspiration (ET) estimate to
assess household water usage at desired levels of granularity.
Detailed information would require homeowners to install
additional hardware/equipment to measure volumetric flow in
the outdoor irrigation system. Our methodology is to choose a
subset of data (zones) that can serve as representative ground
truth data with the designed constraints. In the following
sections, we will first outline our evaluation metrics under
the assumption that ground truth data is available. Then, we
explain our method for selecting a subset of data to serve
as a stand-in for ground truth. Lastly, we will present our
experiment results.

Designing Evaluation Metrics for Household Water Conser-
vation: For a given zone z;, an ideal schedule or ground truth
schedule is denoted by S* - this ideal schedule is expected
to achieve highly positive user feedback and a reasonably low
irrigation usage. Generally speaking, S* is the ideal schedule
that users can rely on; it allows users to operate the daily
irrigation task in a hands-off manner. We denote this ideal
schedule set by D;geal

a) Precision: We next define the precision of a recom-
mendation schedule S wrt the ideal schedule S* as follows:

|5* N S|

6
5] (6)

Precision(S) =
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This precision represents the proportion of schedules where
S has an intersection with S*. More precisely, each attribute
of the schedule takes on a discrete value - the type of this
value may be float, string or boolean. The intersection in
the above equation indicates the number of attributes where
the recommended schedule and ideal schedule have the same
value. The overall precision is thus calculated as :

1 3 1SN Sy
|D7',deal| Si€D;deal |SZ*| ’

b) Accuracy: We next define the accuracy by calculating
the mean square error between quality of a recommended
schedule S and an ideal schedule S*. The overall accuracy
for is as follows:

1
RMSE = ——
|Dideal| \/

A. Prepare Ground truth data

Precision =

@)

Y (@) —-Q(s)>2.

Si€Dideal

®)

We select schedules as members of D40, according to
following constraints:

o The schedule has to belong to an active user’s zones.
Active user means having event records in the last 180
days.

e The schedule associated zone configuration containing
more non-default values are preferable, since users are
willing to customize their zone configuration are assumed
to be more active to the irrigation controller, therefore
their satisfaction scores sc are closer to the real situation.

e Our goal is to recommend an ideal schedule S* that
should has equal or better quality than the current one.
Thus, we should select ground truth data only with ideal
schedules, i.e high quality schedules with high satisfac-
tion score and reasonably low irrigation usage. Therefore,
experiment result should show that the recommended
schedule S is close to S* in terms of evaluation metric.

B. Experimental Results

a) Precision and MSE vs. Similarity methods: In total,
we chose 96398 numbers of zones around the Orange County,
California area, and we selected 9221 zones as a testing
dataset. Assume that their schedule is ground truth schedule
S*, and we recommend a schedule S for each of the zone in
the testing dataset. For comparison, we also test the zones
in other areas that have different weather conditions and
precipitation patterns than the state of California. We selected
Seattle, Washington, which is one of the most rainy cities in
the US. We also select cities near Orlando, Florida, which
conversely to California, is dry in winter and humid in summer
season. The precision and MSE result is shown in Table 1.

We also test with different similarity methods other than
the default cosine similarity. We choose the L2 norm, also
known as Euclidean distance, and inner product to capture the
similarity between zone vectors. The results of L2 norm is
shown in Table II, and the results of inner product is shown
in Table III.
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In interpreting the experiment’s results, particularly the
precision metric hovering around 0.53, it’s crucial to consider
the nature of the output and ground truth within the context
of the system. Precision in our experiment is defined by
the ratio of intersection between the model’s output and a
human-selected ground truth. Given that both consist of tuples
with 16 attributes characterized by boolean or categorical
data, the likelihood of an exact match decreases due to the
combinatorial complexity of the attribute space. The first point
to consider is the presence of attributes that may be “None”,
which does not necessarily reflect a predictive error but rather
a gap in the available data. Secondly, the high number of
possible values for certain attributes, such as Schedule Cycle
Time, naturally makes exact matches less likely. Furthermore,
the ground truth, being a product of human selection, may not
necessarily represent the actual reality, as the real ground truth
is inaccessible.

In terms of different dataset, from the three tables result
we can observe that, our recommendation system performs
equally well in different dataset, and being consistent for
different location and weather users.

b) Precision and MSE vs. Top-k coefficient: The num-
bers of nearest neighbors of given zone is denoted by k, and it
determines the number of candidate zones we select. Choosing
an optimized k can have impact on the recommendation system
performance. If k is too small, e.g k& < 10, the Correlated
Weighted Majority Vote can not provide a high confidence
result due to lack of enough voting members. On the other
hand, if k is too large, e.g k > 200, one may include too many
candidate zones, and the fact of majority default settings may
impact on the Correlated Weighted Majority Vote algorithm
and thus the default setting may poison the vote result. In
addition, large k can also lead to longer latency, due to the
fact that the system has to analyse more event data.

We use the cosine similarity on three cities
testing dataset, and vary the top-k coefficient in set
{10, 30, 50, 80, 100, 150, 200}. From the precision experiment
varying with k coefficient, the result in Figure 4(a) has shown
that, precision initially rises with an increase in k, but starts
to decline if % continues to increase. This observation aligns
with the analysis that was described previously.

The result in Figure 4(b) shows a clear decrease trend of
Mean Squared Error (MSE) as k increases. MSE is the metric
that evaluate how the recommended schedule close to the
selected ground truth schedule through a regression model.
As k increases, more candidate schedules can be included
for training to refine the regression model, and thus the error
decreases. However, when k exceeds 50, the result implies
that adding more schedules does not significantly enhance the
model’s performance, as the error rate approaches a stable
minimum.

¢) Baseline: Precision and MSE vs. Top-k coefficient:
To demonstrate the performance of our recommendation sys-
tem, we conducted an experiment comparing it to a baseline
method. Since there are no existing studies using recom-
mendation models or learning-based algorithms for irrigation
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PRECISION AND MSE RESULT IN DIFFERENT CITIES; USING COSINE

SIMILARITY METHOD

Cities testing zones | Precision MSE

OrangeCounty, CA 9221 0.5335 0.0098

Seattle, WA 4930 0.5225 0.0163

Orlando, FL 6905 0.5356 0.0091
TABLE T

Cities testing zones | Precision MSE

OrangeCounty, CA 9221 0.536 0.0105

Seattle, WA 4930 0.5231 0.0178

Orlando, FL 6905 0.5363 0.0109
TABLE 1T

PRECISION AND MSE RESULT IN DIFFERENT CITIES; USING L2 NORM
SIMILARITY METHOD

scheduling like us, we used a random strategy to assign
values to each attribute of the schedule. We report the average
precision and MSE of datasets corresponding to three regions
to highlight the differences between our method and the
baseline method in Figure 5. Our method outperforms the
baseline in precision and MSE for each different K value.
d) Execution Latency: During the experiment, latency
is also an important feature. To query one recommended
schedule for a given zone, it takes 0.017ms, 0.012ms, and
0.014ms, on Orange County CA, Seattle WA and Orlando FL.
dataset, respectfully. On average, the latency is typically small
making the technique suitable for real-time application.

V. RELATED WORK

In this section, we briefly review related work on smart
irrigation controllers and the recommended models used in
the IoT area.

A. Smart Irrigation Controllers

To provide an optimized irrigation schedule, sensor-based
smart irrigation controllers (e.g., [19]-[21]) typically use off-
the-shelf components (e.g. Arduino boards, Raspberry-Pis)
that can be programmed to deploy. Moisture sensors that

Cities testing zones | Precision MSE

OrangeCounty, CA 9221 0.5257 0.0312

Seattle, WA 4930 0.4565 0.0076

Orlando, FL 6905 0.5313 0.0085
TABLE TIT

PRECISION AND MSE RESULT IN DIFFERENT CITIES; USING INNER
PRODUCT SIMILARITY METHOD

Precision vs. top-k coefficient MSE vs. top-k coefficient
065 Y
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Fig. 4. Precision and MSE varies with top-k as parameter.
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linked on those components can monitor the moisture level of
soil. If the moisture level is below a threshold, the smart irri-
gation controller can trigger an irrigation event. Other than soil
moisture sensors, [24] adds a sensor data analyzer to predict
the irrigation schedule using truth tables that determine not just
when to irrigate, but also where to irrigate. [16] utilizes PID-
based control mechanisms that implement a feedback loop for
precise irrigation control. Simulation-based approaches have
studied the use of fuzzy methods, [26] ; such techniques
are challenging to realize in commercial implementations on
actual homeowner landscapes. Efforts to create sustainable
solutions that consider not just effective water conservation
but also aim to reduce overall energy costs have also been
explored [25] A range of smart irrigation applications have
been developed using ET-based irrigation controllers [27] -
such devices measure ET and use water balance models in
conjunction with other types of sensor data. However, since
the ET value is closely related to local weather conditions,
such apps are limited certain type of landscapes, crops and
regions [28].

In the last decade, machine learning mechanisms such
as regression models have been used for better irrigation
scheduling. [29] considers irrigation planning as an optimal
control problem that aims to minimize total irrigation usage.
These algorithms leverage models derived whole-year weather
data, that introduces uncertainty and complexity when applied
to real deployments [28]. To estimate moisture data without
sensors, [30], artificial neural network(ANN) and fuzzy logic
approaches have been used to model and predict moisture data
for irrigation scheduling. However, since the ANN models are
trained using historical weather data, the prediction accuracy
is impacted as the weather trends change,

B. Recommendation Model in IoT applications

A typical IoT ecosystem involves several devices that gen-
erate and upload heterogeneous data to cloud platforms, and
utilize data analysis tools such as recommendation systems to
mine and build different applications. For example, [33], [31]
and [32] explore the use of recommendation systems for travel
and tourism applications based on information from uploaded
photos. From an algorithmic perspective, techniques used
in traditional recommendation systems (RS) (such as movie
/content recommendations on websites/web applications) such
as collaborative filtering can also be used for recommendations
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in an IoT setting such as ours, the latter faces additional
challenges due to cold start, diversity, and scalability [34].

VI. CONCLUSION

In this paper we present a recommendation system in-
tegrated in Rachio smart irrigation controller workflow. In
absence of water usage data, we interpret water efficiency and
user feedback through the irrigation event log. The Correlated
Weighted Majority Vote is been designed as a recommendation
strategy, offering user a better satisfaction over usage ratio
watering plan. The experiments on three different cities dataset
have shown that our recommendation system performs consis-
tent over different area and weather conditions, along with a
low execution latency that allows future real time deployment.
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