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From lattice-regularized models, devoid of any non-Hermitian (NH) skin effects, here we compute the
electrical (σxy), thermal (κxy), and spin (σ sp

xy ) Hall, and the electrical (Gxx) and thermal (Gth
xx) longitudinal

conductivities for appropriate NH planar topological insulators and superconductors related to all five nontrivial
Altland-Zirbauer symmetry classes in their Hermitian limits. These models feature real eigenvalues over an
extended NH parameter regime, only where the associated topological invariants remain quantized. In this
regime, the NH quantum anomalous and spin Hall insulators show quantized σxy and Gxx , respectively, the
NH p + ip (p ± ip) pairing shows half-quantized κxy (Gth

xx), while the NH d + id pairing shows quantized κxy

and σ sp
xy in the clean and weak disorder (due to random pointlike charge impurities) regimes. We compute these

quantities in experimentally realizable suitable six-terminal setups using the Kwant software package. But, in
the strong disorder regime, all these topological responses vanish and with the increasing non-Hermiticity in the
system this generic phenomenon occurs at weaker disorder.

DOI: 10.1103/PhysRevB.110.L241402

Introduction. Topological crystals displaying the hallmark
bulk-boundary correspondence in terms of robust gapless
modes living on their boundaries [1–21] typically encounter
the notorious non-Hermitian (NH) skin effect in open sys-
tems interacting with a bath or the environment [22–45]. It
corresponds to an accumulation of all the right and left eigen-
vectors at opposite ends of the system with open boundary
conditions. Even though topological invariants can be defined
in NH systems, their signatures on the the boundary modes
get masked by the NH skin effect. Theoretically, this obsta-
cle can be bypassed through the bi-orthogonal bulk-boundary
correspondence, devoid of any NH skin effect [32]. Neverthe-
less, any direct manifestation of the topological invariants on
experimentally measurable quantities even in an NH toy topo-
logical model remains illusive [46], leaving aside their actual
measurements in open quantum systems. In this quest, two-
dimensional NH topological models stand as cornerstones,
since in the Hermitian or closed systems their topological
invariants can be computed and measured in six-terminal
Hall-bar setups [47–56].

Here, we consider skin effect-free NH generalization of
square lattice models for all five nontrivial Hermitian Altland-
Zirnbauer symmetry classes [57] that over an extended NH
parameter regime feature real eigenvalue spectrum and nonva-
nishing topological invariants [58]. Using the Kwant software
package [59–62], we numerically compute their electrical
(σxy), thermal (κxy), and spin (σ sp

xy ) Hall, and electrical (Gxx)
and thermal (Gth

xx) longitudinal conductivities in six-terminal
setups (Fig. 1), to arrive at the following conclusions.

The NH quantum anomalous Hall insulator (QAHI) and
quantum spin Hall insulator (QSHI) belonging to class A and
class AII in the Hermitian limit, respectively, show quantized
σxy and Gxx in units of e2/h (Fig. 2). Here e (h) is the elec-
trical charge (Planck’s constant). By contrast, the NH p + ip

(p ± ip) paired state, belonging to class D (class DIII) in
Hermitian systems, supports half-quantized κxy (Gth

xx) in units
of κ0 = π2k2

BT/(3h) as the temperature T → 0, where kB

is the Boltzmann constant (Fig. 3). Finally, the NH d + id
paired state, falling in class C in the Hermitian limit, accom-
modates quantized κxy (in units of κ0) and σ

sp
xy (in units of

σ
sp
0 = h̄/(8π )). See Fig. 4. These conclusions hold in the en-

tire topological regime in a clean and weakly disordered (due
to pointlike random charge impurities) systems. In the strong
disorder regime, all these responses vanish. However, with in-
creasing non-Hermiticity in the system, the onset of vanishing
topological responses occur at weaker disorder (Fig. 5). This
phenomenon takes place via quantum phase transitions at fi-
nite disorder, but the associated critical disorder strength (Wc)
can only be pinned from numerical simulations in sufficiently
large systems, which is beyond the scope of our numerical
resources.

Model. For all the gapped topological phases belonging
to any one of the five nontrivial Altland-Zirnbauer symmetry
classes in two dimensions, the model Hamiltonian on a square
lattice take the following universal form

H = α
∑

k

�
†
k

( 3∑
j=1

d j (k)� j

)
�k ≡ α

∑
k

�
†
kH(k)�k. (1)

The internal structure of the spinor �k with momentum
k = (kx, ky) and representation of the Hermitian � matri-
ces depend on the symmetry class. They always satisfy
the anticommuting Clifford algebra {� j, �k} = 2δ jk . The
third component of the d(k)-vector takes the form d3(k) =
m0 − t0[cos(kxa) + cos(kya)], and unless otherwise stated
d1(k) = t1 sin(kxa) and d2(k) = t1 sin(kya), where a is the
lattice spacing. Within the topological regime (|m0/t0| < 2),
for topological insulators (superconductors) d3(k) features
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FIG. 1. Six-terminal setup with a rectangular scattering region
(black sites) of length L and width D connected to six semi-infinite
leads (red sites), for the calculation of electrical (σxy), thermal (κxy),
and spin (σ sp

xy ) Hall, and electrical (Gxx) and thermal (Gth
xx) longitudi-

nal conductivities. For the computation of σxy and Gxx , an electrical
current (Iel ) flows due to a voltage bias (	x ≡ 	V ) between the
horizontal leads, and we extract voltages xi ≡ Vi on the vertical leads
with i = 2, 3, 5, 6. Due to a temperature gradient (	x ≡ 	T ), a ther-
mal current (Ith) flows between the horizontal leads and temperature
develops at the vertical leads with xi ≡ Ti, when we compute κxy and
Gth

xx . While calculating σ sp
xy , a spin current (Isp) flows between the

horizontal leads, subject to a magnetic field bias with 	x ≡ 	H ,
yielding magnetization at the vertical leads with xi ≡ mi. The scat-
tering region is maintained at a fixed voltage V (for σxy and Gxx) or
temperature T (for κxy and Gth

xx) or magnetic field H (for σ sp
xy ). For all

calculations (Figs. 2–5), we set L = 180 and D = 90.

a band inversion (Fermi surface) near the � = (0, 0) and
M = (1, 1)π/a points of the Brillouin zone (BZ) when 0 <

m0/t0 < 2 and −2 < m0/t0 < 0, respectively, with α = 1
(α = 1/2 due to the Nambu doubling). Throughout, we set
t1 = t0 = 1.

Note that d3(k) and �3 do not break any crystal symme-
try, and H⊥(k) = d1(k)�1 + d2(k)�2 is also invariant under
all the crystal symmetries. So, H(k) transforms under the
trivial A1g representation. Then the anti-Hermitian operator
HAH(k) = �3H⊥(k)/t1 does not break any crystallographic
symmetry either. Finally, we introduce the desired NH topo-
logical operator

HNH(k) = H(k) + t2HAH(k) (2)

that is symmetric under all crystal symmetries, such as reflec-
tions, four-fold rotations, and inversion. Hence, it is devoid
of any NH skin effect for all parameter values [58]. Here,
t2 determines the strength of non-Hermiticity in the system.
Eigenvalues of HNH(k) are ±ENH(k), where

ENH(k) = [(
t2
1 − t2

2

){d2
1 (k) + d2

2 (k)} + d2
3 (k)

]1/2
. (3)

They are purely real when t2 < t1. Then HNH(k) fosters
nontrivial topological invariants, when |m0/t0| < 2. Our con-
struction from Eq. (2) is applicable to any lattice systems,
such as the triangular one, where the parent Hamiltonian also
assumes the universal form of Eq. (1) [14]. The resulting NH
operator respects the corresponding crystal symmetries, such
as three-fold rotations.

NH QAHI. For � j = τ j and ��
k = (c+, c−)(k), where

cτ (k) is the fermionic annihilation operator on orbital with

FIG. 2. Electrical Hall conductivity (σxy) of an NH QAHI for
(a) a fixed strength of non-Hermiticity (t2) as a function of m0 and
(b) two fixed values of m0 with varying t2, showing σxy = C in units
of e2/h, where C is the first Chern number. Electrical longitudinal
conductivity (Gxx) of an NH QSHI for (c) a fixed t2 as a function
of m0 and (d) two fixed values of m0 with varying t2, showing
Gxx = Csp (in units of e2/h), where Csp is the spin Chern number.
For t2 > 1, σxy = Gxx = 0.

parity eigenvalue τ = ± and momentum k, we find the NH
incarnation of the Qi-Wu-Zhang model for QAHI [63]. The
Pauli matrices {τ j} act on the orbital index. Then the NH
operator takes the form HNH(k) = ∑3

j=1 dNH
j (k)τ j , with

dNH
1 (k) = t1 sin(kxa) − it2 sin(kya), dNH

2 (k) = t1 sin(kya) +
it2 sin(kxa), and dNH

3 (k) = d3(k). The first Chern number of
HNH(k) reads [58,64]

C =
∫

BZ

d2k
4π

[
∂kx d̂

NH
(k) × ∂ky d̂

NH
(k)

] · d̂
NH

(k), (4)

where d̂
NH

(k) = dNH(k)/
√

[dNH(k)]2. The momentum inte-
gral is performed over the first BZ. For any |t2| < 1, we find
C = −1 (+1) for 0 < m0/t0 < 2 (−2 < m0/t0 < 0). Next, we
discuss the ramification of nontrivial C on the quantized σxy,
computed in a six-terminal setup (Fig. 1), detailed in the Sup-
plemental Material (SM) [65], with all the numerical codes
available on Zenodo [66].

A voltage gradient is applied between two horizontal leads,
yielding a longitudinal electrical current (Iel ) between them.
The transverse leads, serving as the voltage probes, carry no
electrical current. The current-voltage relation is then given by
Iel = GelV, with V� = (−	V/2,V2,V3,	V/2,V5,V6) and
I�

el = (Iel , 0, 0,−Iel , 0, 0). Upon computing the conductance
matrix Gel using Kwant [59], containing only the transmis-
sion blocks of the scattering matrix, we extract different
voltages from the current-voltage relation. Subsequently, we
compute the transverse electrical resistance Rel

xy = (V2 + V3 −
V5 − V6)/(2Iel ), and find σxy = 1/Rel

xy = C (in units of e2/h).
See Figs. 2(a) and 2(b), and SM [65].

NH QSHI. An NH generalization of the Bernevig-Hughes-
Zhang model for QSHI is realized with � = (�01, �32, �03),
where �μν = σμτν and the Pauli matrices {σμ} operate on the
spin index [5]. The four-component spinor reads as ��

k =
(c↑

+, c↑
−, c↓

+, c↓
−)(k), where cσ

τ (k) is the fermionic annihilation
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FIG. 3. Thermal Hall conductivity (κxy) of an NH p + ip paired
state for (a) a fixed t2 as a function of m0 and (b) two fixed values of
m0 with varying t2, showing half-quantization κxy = C/2 (in units
of κ0). Thermal longitudinal conductivity (Gth

xx) of an NH p ± ip
superconductor for (c) a fixed t2 with varying m0 and (d) two fixed
values of m0 with varying t2, showing Gth

xx = Csp/2 (in units of κ0).
For t2 > 1, κxy = Gth

xx = 0.

operator with parity τ = ±, spin projection σ =↑,↓ in the
z direction, and momentum k. Following the same steps,
highlighted for the NH QAHI model, we compute the Chern
number for individual spin components, given by C↑ and C↓.
Within the topological regime, we find that the total Chern
number of the model is Ctotal = C↑ + C↓ = 0. Nevertheless,
we can define an invariant, the spin Chern number Csp =
|C↑ − C↓| which is nontrivial in the entire topological regime
(|m0/t0| < 2 and |t2| < 1), given by Csp = 2.

The nontrivial Csp leaves its footprint on the quantized
Gxx for which we employ the same six-terminal arrangement,
previously discussed for the NH QAHI. In this case, σxy =
0 as Ctotal = 0 therein. But, from the same current-voltage
relationship, we now compute the longitudinal electrical re-
sistance Rxx = (V3 − V2)/Iel = (V5 − V6)/Iel , in turn yielding
Gxx = R−1

xx = Csp (in units of e2/h), as shown in Figs. 2(c)
and 2(d), due to the associated counter-propagating helical
edge modes.

NH p + ip pairing. For an NH p + ip paired state among
spinless or spin-polarized fermions ��

k = (ck, c†
−k), where ck

(c†
k) is the fermionic annihilation (creation) operator with mo-

mentum k. The Pauli matrices {τ j} operate on the Nambu or
particle-hole index [21]. The effective single-particle NH Bo-
goliubov de-Gennes operator HNH(k) has the topological in-
variant C [Eq. (4)]. It manifests via a half-quantized κxy. Now,
a thermal current (Ith) flows between two horizontal leads,
held at fixed but different temperatures (Fig. 1). Four vertical
or transverse leads serve as the temperature probe, carry no
thermal current. The thermal current-temperature relation is a
matrix equation Ith = AthT, where I�

th = (Ith, 0, 0,−Ith, 0, 0)
and T� = (−	T/2, T2, T3,	T/2, T5, T6). The elements of
Ath are

Ath,i j =
∫ ∞

0

E2

T

(
−∂ f (E , T )

∂E

)
[δi jμ j − Tr(t†

i jti j )]dE , (5)

FIG. 4. Thermal Hall conductivity (κxy) of an NH d + id pairing
for (a) a fixed t2 with varying m0 and (b) two fixed values of m0

with varying t2, showing κxy = C (in units of κ0), where C = 2. Its
spin Hall conductivity (σ sp

xy ) for (c) a fixed t2 as a function of m0 and
(d) two fixed values of m0 with varying t2 shows σ sp

xy = C (in units of
σ

sp
0 ). For t2 > 1, κxy = σ sp

xy = 0.

where f (E , T ) = 1/(1 + exp [E/(kBT )]) is the Fermi-Dirac
distribution function at energy E and temperature T , μ j de-
notes the number of propagating modes in the jth lead, ti j

is the transmission part of the scattering matrix between the
leads i and j, and the trace (Tr) is taken over the conduct-
ing channels. From Ath, we extract temperatures at various
leads. The transverse thermal resistance is then given by
Rth

xy = (T2 + T3 − T5 − T6)/(2Ith) [60–62,67], from which we
compute κxy = 1/Rth

xy at T = 0.01, showing kxy = αC in units
of κ0 (Figs. 3(a) and 3(b), and SM [65]), where α = 1/2
accounts for the Nambu doubling. Thus, model NH p + ip
paired state features a half-quantized κxy in the entire topolog-
ical regime.

NH p ± ip pairing. This paired state occurs among spin-
1/2 fermions, with p + ip and p − ip pairing symmetries
for opposite spin projections. The associated four-component
spinor is �k = (ψk, σ2ψ

�
−k) with ψk = (c↑, c↓)(k), where

cσ (k) is the fermionic annihilation operator with spin pro-
jection σ =↑,↓ and momentum k. The involved � matrices
are �1 = σ0τ1, �2 = σ3τ2, and �3 = σ0τ3. Similar to the situ-
ation in NH QSHI, Ctotal = 0 but Csp = 2 for the NH p ± ip
paired. We numerically confirm that now κxy = 0. Neverthe-
less, from the longitudinal thermal resistance Rth

xx = (T3 −
T2)/Ith = (T6 − T5)/Ith, we find that Gth

xx = (Rth
xx )−1 = αCspκ0

with α = 1/2, as shown in Figs. 3(c) and 3(d).
NH d + id pairing. In the same Nambu-doubled spinor

basis, a spin-singlet NH d + id paired state is realized with
d1(k) = t1[cos(kxa) − cos(kya)], d2(k) = t1 sin(kxa) sin(kya),
and � j = σ0τ j [21,68]. Within the topological regime
(|m0/t0| < 2 and |t2| < 1), the Chern number of the
corresponding NH operator for each spin projection is
C = 2, and thus its total Chern number is 2C = 4. This
NH paired state accommodates κxy = C (in units of κ0), as
shown in Figs. 4(a) and 4(b). The spin-charge separation
allows this NH paired state to harbor quantized spin Hall
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FIG. 5. Disorder averaged (a) electrical Hall conductivity 〈σxy〉 in QAHI, (b) electrical longitudinal conductivity 〈Gxx〉 in QSHI, (c) thermal
Hall conductivity 〈κxy〉 in p + ip paired state, (d) thermal longitudinal conductivity 〈Gth

xx〉 in p ± ip superconductor, and (e) 〈κxy〉 and (f) spin
Hall conductivity 〈σ sp

xy 〉 in d + id paired state in Hermitian (t2 = 0) and NH (t2 = 0.1, 0.5) systems. The error bars correspond to the saturated
(after averaging over a large number of disorder realizations) standard deviations [65].

conductivity (σ sp
xy ), for which a spin current (Isp) passes

through the scattering region due to a difference in the
magnetic field bias between the two horizontal leads. Then
magnetization (mj) develops in the vertical leads, which
we compute from the spin current-magnetization matrix
relation Isp = GspM, where I�

sp = (Isp, 0, 0,−Isp, 0, 0) and
M� = (−	H/2, m2, m3,	H/2, m5, m6), and Gsp is the
spin conductance matrix, extracted using Kwant [62]. From
its solutions, we compute the spin Hall resistance Rsp

xy =
(m2 + m3 − m5 − m6)/(2Isp), yielding σ

sp
xy = (Rsp

xy )−1 = C
(in units of σ

sp
0 ), see Figs. 4(c) and 4(d).

Disorder. Finally, we unfold the effects of disorder on
all the topological responses, discussed so far in clean
NH systems. We consider only pointlike charge impurities,
the dominant source of elastic scattering in any real ma-
terial. In the above NH systems, we introduce the terms
V (r)τ0,V (r)σ0τ0,V (r)τ3,V (r)σ0τ3, and V (r)σ0τ3, respec-
tively, where V (r) is uniformly and randomly distributed
within the range [−W/2,W/2] at each site of the scattering
region and W denotes the strength of disorder. The results are
shown in Fig. 5. All the topological transport quantities (disor-
der averaged) retain robust (half-)quantized values in the weak
disorder regime, while they all vanish in the strong disorder
regime. Furthermore, with the introduction of non-Hermiticity
in the system as t1 →

√
t2
1 − t2

2 [Eq. (3)], fermions become
weakly dispersive and the latter event occurs at weaker disor-
der, which can be seen by comparing the results for t2 = 0 and
0.5. However, even L = 2D = 180 systems (Fig. 1) turn out

to be insufficient to compare the results for different finite t2
values. Numerical simulations in larger systems become too
time expensive for us to pursue at this stage. Nevertheless,
most of the results from Fig. 5 strongly suggest that with
increasing t2, the disappearance of the topological responses
occurs at weaker disorder. It can be seen by comparing the
results for t2 = 0.1 and 0.5. Then the transport quantities
deviate from their (half-)quantized values at weaker disorder
for t2 = 0.5 than for t2 = 0.1, except for the d + id paired
state, for which the curves are very close to each other. The
prominent finite size effects in the d + id paired state due
to longer range hopping encoded in d2(k) is confirmed by
numerically computing disorder averaged σ

sp
xy in a smaller

L = 2D = 120 system [65].
Discussions. Here we identify a family of NH operators,

devoid of NH skin effects, for planar topological insulators
and superconductors that manifests the topological invariant
through (half-)quantized electrical, thermal, and spin transport
quantities, closely mimicking the ones previously found in
Hermitian systems [61,62]. For any |t2| > 1, when the bulk
topological invariants (C and Csp) vanish, there is no quantiza-
tion of any transport quantity. In the SM, we analytically show
that the topological bound state exists only when t2 < 1 [65].
However, in order to observe vanishing transport responses we
need to set t2 to be slightly bigger than unity to bypass finite
size effects [Figs. 2–4]. In model NH operators, displaying the
NH skin effect, besides the topological edge modes all the left
and right eigenvectors reside near the opposite edges of the
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scattering region by definition, ruining any (half-)quantized
transport responses therein. Even though the requisite six-
terminal Hall bar arrangement is well-developed by now,
controlled synthesis of NH quantum crystals remains far from
reality. Nevertheless, optical lattices of neutral atoms consti-
tute a promising testbed for our theoretical predictions, where
a plethora of topological band engineering protocols has been
proposed [69] and realized [70]. Simplicity of our construc-
tion, in which the NH operators result from nearest-neighbor
hopping modulations, makes them achievable on such highly
tunable platforms that also harbor superfluids (charge-neutral

superconductors). In such systems, the Hall conductivity can
be obtained from the “heating effect” [71], for example, which
can also be employed to measure quantized longitudinal trans-
ports.
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of the manuscript.

[1] M. Z. Hasan and C. L. Kane, Colloquium: Topological insula-
tors, Rev. Mod. Phys. 82, 3045 (2010).

[2] X.-L. Qi and S.-C. Zhang, Topological insulators and supercon-
ductors, Rev. Mod. Phys. 83, 1057 (2011).

[3] C.-K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, Classifica-
tion of topological quantum matter with symmetries, Rev. Mod.
Phys. 88, 035005 (2016).

[4] C. L. Kane and E. J. Mele, Z2 topological order and the quantum
spin Hall effect, Phys. Rev. Lett. 95, 146802 (2005).

[5] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Quantum spin
Hall effect and topological phase transition in HgTe quantum
wells, Science 314, 1757 (2006).

[6] L. Fu, C. L. Kane, and E. J. Mele, Topological insulators in
three dimensions, Phys. Rev. Lett. 98, 106803 (2007).

[7] L. Fu and C. L. Kane, Topological insulators with inversion
symmetry, Phys. Rev. B 76, 045302 (2007).

[8] J. E. Moore and L. Balents, Topological invariants of time-
reversal-invariant band structures, Phys. Rev. B 75, 121306(R)
(2007).

[9] R. Roy, Topological phases and the quantum spin Hall effect in
three dimensions, Phys. Rev. B 79, 195322 (2009).

[10] S. Ryu, A. P. Schnyder, A. Furusaki, and A. W. W. Ludwig,
Topological insulators and superconductors: Tenfold way and
dimensional hierarchy, New J. Phys. 12, 065010 (2010).

[11] A. Kitaev, Periodic table for topological insulators and super-
conductors, AIP Conf. Proc. 1134, 22 (2009).

[12] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig,
Classification of topological insulators and superconductors in
three spatial dimensions, Phys. Rev. B 78, 195125 (2008).

[13] L. Fu, Topological crystalline insulators, Phys. Rev. Lett. 106,
106802 (2011).

[14] R.-J. Slager, A. Mesaros, V. Juričić, and J. Zaanen, The space
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