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Magnetic catalysis in weakly interacting hyperbolic Dirac materials
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Due to the linearly vanishing density of states, emergent massless Dirac quasiparticles resulting from the free
fermion motion in a family of two-dimensional half-filled bipartite hyperbolic lattices feature dynamic mass
generation through quantum phase transitions only for sufficiently strong finite-range Coulomb repulsion. As
such, strong nearest-neighbor Coulomb repulsion V favors the nucleation of a charge-density-wave (CDW) order
with a staggered pattern of average fermionic density between two sublattices of bipartite hyperbolic lattices.
Considering a collection of spinless fermions (for simplicity), here we show that application of strong external
magnetic fields by virtue of producing a finite density of states near the zero energy triggers the condensation of
the CDW order even for infinitesimal V . The proposed curved space magnetic catalysis mechanism is operative
for uniform and inhomogeneous (bell-shaped) magnetic fields. We present scaling of the CDW order with the
total flux enclosed by hyperbolic Dirac materials for a wide range of (especially subcritical) V .

DOI: 10.1103/PhysRevB.110.245117

I. INTRODUCTION

Massless Dirac fermions living above one spatial dimen-
sion feature a vanishing density of states (DOS) near half
filling or zero energy. As a result, dynamic mass generation of
the bosonic order parameter field, a composite of underlying
fermionic degrees of freedom, through the spontaneous break-
ing of any discrete and/or continuous symmetries in Dirac
materials occurs only at strong coupling in terms of quantum
phase transitions. At the same time, the fermionic sector also
becomes massive due to Yukawa-like interactions mediated
by retarded short-range interactions via the Anderson-Higgs
mechanism. Such quantum phase transitions are typically trig-
gered by the finite-range components of Coulomb repulsion
[1–4]. Crystalline symmetry protection of the Dirac points in
the Brillouin zone, where the filled valence and empty conduc-
tion bands touch each other, severely restricts the number of
Euclidean lattices on which free-fermion motion gives birth
to massless Dirac quasiparticles at half filling. Graphene’s
honeycomb [5] and π -flux square [6] lattices are the lone
members of this family, leaving aside some frustrated (such
as kagome) lattices featuring Dirac fermions away from half
filling.

Negatively curved hyperbolic quantum crystals in this
respect open a new direction. Throughout we characterize
two-dimensional Euclidean and hyperbolic lattices, realized
by repeated arrangements of polygons with p arms of equal
length (p-gons), each vertex of which is accompanied by q
equidistant nearest-neighbor (NN) sites, by a pair of integers
(p, q) (the Schläfli symbol). Then, a honeycomb [square]
lattice is denoted by (6,3) [(4,4)]. The geometric diversity
of hyperbolic lattices, stemming from the inequality (p −
2)(q − 2) > 4, gives rise to a variety of electronic band
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structures, captured by a simple NN tight-binding model for
free fermions [7–15]. In particular, a family of hyperbolic
lattices with q = 3 harbors emergent massless Dirac fermions
near half filling when p/2 is an odd integer [15], hereafter
called hyperbolic Dirac materials (HDMs). All hyperbolic
lattices with odd p/2 are bipartite in nature because then the
NN sites belong to two sublattices, say, A and B (see Fig. 1).

HDMs constitute an ideal platform to explore (theoretically
and possibly experimentally) novel effects of electronic in-
teractions among massless Dirac fermions living on a curved
space. For example, strong NN Coulomb (V ) and on-site Hub-
bard (U ) repulsions support sublattice symmetry-breaking
charge-density-wave (CDW) and antiferromagnetic orders, re-
spectively, displaying a staggered pattern of electronic density
and magnetization between two sublattices. Furthermore, with
increasing curvature or p, the critical strengths of V and
U for these two orderings decrease monotonically and are
also smaller than their counterparts on a relativistic flatland
(honeycomb lattice) [15]. While this observation strongly sug-
gests a fascinating phenomenon, a curvature-induced quantum
phase transition at weak coupling, no ordering develops for in-
finitesimal interactions in HDMs due to the linearly vanishing
DOS near half filling. This situation changes dramatically in
the presence of external magnetic fields, when HDMs enclose
finite magnetic flux, fostering magnetic catalysis of the CDW
order at weak interactions. Next, we summarize the main
findings of this work.

A. Key results

We show that the application of strong magnetic fields
(Fig. 1) in HDMs creates a finite DOS near zero energy or
half filling that scales quadratically with the total flux en-
closed by the system (see Fig. 2). Consequently, a sufficiently
weak or subcritical NN Coulomb repulsion then nucleates a
CDW order in these systems, a mechanism known as magnetic

2469-9950/2024/110(24)/245117(9) 245117-1 ©2024 American Physical Society

https://orcid.org/0000-0001-9330-1192
https://ror.org/012afjb06
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.110.245117&domain=pdf&date_stamp=2024-12-09
https://doi.org/10.1103/PhysRevB.110.245117


BITAN ROY PHYSICAL REVIEW B 110, 245117 (2024)

FIG. 1. Magnetic flux attachment to a (p, q) = (10, 3) hyper-
bolic lattice on a Poincaré disk through Peierls substitution. The
black lines represent a real and uniform hopping amplitude t between
the nearest-neighbor (NN) sites belonging to the A and B sublattices.
When accompanied by the red or blue arrows, the NN hopping ampli-
tude becomes complex in its direction, with the phases shown in the
legend. Then α0 (α1) amount of magnetic flux, measured in units of
�0/(2π ), where �0 = h/e is the flux quantum, pierces through the
plaquette(s) belonging to the zeroth (first) generation. This construc-
tion can be generalized to mimic an arbitrary flux profile to arbitrary
generation on any hyperbolic lattice.

catalysis [16–23]. These outcomes hold for a uniform mag-
netic field and a bell-shaped inhomogeneous magnetic field,
for which the field strength decreases monotonically from the
center of the system toward its boundary (Fig. 3). Formation
of the CDW order splits the zero-energy manifold and gives
rise to a correlated insulator at half filling (Fig. 4). We arrive
at these conclusions from numerical self-consistent solutions
of the CDW order for (10,3), (14,3) and (18,3) HDMs with
the open boundary condition in the presence of uniform and
inhomogeneous magnetic fields for a wide range of subcritical
NN Coulomb repulsion within the Hartree-Fock or mean-
field approximation. Throughout we consider a collection of
spinless fermions for simplicity. Additional numerical results
supporting this mechanism are shown in Figs. 5–7.

B. Organization

The rest of this paper is organized as follows. In Sec. II,
we specify the system details for HDMs and the profiles of
the magnetic fields (uniform and inhomogeneous) adopted in
this work. In Sec. III, we show how to capture the orbital
effects of the external magnetic fields via Peierls substitution
in the tight-binding model for free fermions and discuss the
scaling of the DOS near zero energy with the magnetic flux.
In Sec. IV, we introduce the NN Coulomb repulsion and
arrive at the effective single-particle Hamiltonian after the
Hartree decomposition. Section V is devoted to promoting the
magnetic catalysis of CDW order in HDMs. We summarize

the findings and present a discussion on related issues in
Sec. VI. Additional discussions and results are relegated to
two Appendixes.

II. SYSTEM SPECIFICATIONS AND MAGNETIC
FLUX PROFILES

First, we outline the details of the systems and the mag-
netic flux profiles considered in this work. All the numerical
analyses are performed on third-generation (10,3) and second-
generation (14,3) and (18,3) hyperbolic lattices containing
2880 (421), 1694 (155), and 4050 (271) lattice sites (p-gons or
plaquettes), respectively. The center plaquette corresponds to
the zeroth generation, and each successive layer of plaquettes
constitutes the progressively next generation of the hyperbolic
lattice. When the field is uniform, equal flux α0 threads all the
plaquettes. A bell-shaped inhomogeneous magnetic field is
modeled by threading α0, 0.85α0, 0.70α0, and 0.55α0 amounts
of magnetic flux through all the plaquettes belonging to the
zeroth, first, second, and third generations of the (10,3) hyper-
bolic lattice, respectively. On the (14,3) and (18,3) hyperbolic
lattices α0, 0.75α0, and 0.50α0 magnetic fluxes pierce through
each plaquette belonging to the zeroth, first, and second gen-
erations, respectively. We measure the magnetic flux in units
of �0/(2π ), where �0 = h/e is the magnetic flux quantum.

Although in this work we consider (10,3), (14,3), and
(18,3) hyperbolic lattices with a finite number of sites in the
system with the open boundary condition, such tessellations,
always respecting the inequality (p − 2)(q − 2) > 4, can be
accommodated only on a negatively curved space, not on
the flat Euclidean plane. Thus, all the outcomes (such as the
quadratic dependence of the DOS near zero energy with total
flux enclosed by the system, which is discussed in the next
section) manifest the underlying curved hyperbolic space on
which the lattice sites reside.

III. FREE FERMIONS AND ZERO MODES

We begin the discussion with a tight-binding Hamiltonian
for free fermions H0 allowed to hop only between the NN sites
of the hyperbolic lattices, subject to external magnetic fields.
For spinless fermions, only the orbital effect of the external
magnetic field is pertinent, captured by the Peierls substitution
[24]. Then

H0 = −
∑
j∈A

∑
k∈B

′t jk c†
j exp[iα jk] ck + H.c., (1)

where i = √−1, c†
j (c j) is the fermionic creation (annihila-

tion) operator on the jth site, and the prime symbol restricts
the summation within the NN sites. The sublattice labeling of
the sites is arbitrary, manifesting an Isinglike sublattice ex-
change symmetry. The spin-independent NN hopping ampli-
tude t jk is assumed to be constant t , which we set to be unity.
As shown in Fig. 1, this prescription can be employed on any
hyperbolic lattice to mimic any spatial profile of the magnetic
field. As such uniform magnetic fields can display many pe-
culiar phenomena on hyperbolic lattices [25–29], such as the
Hofstadter butterfly, devoid of fractal structures [28].

We focus near the zero energy of half-filled HDMs subject
to magnetic fields. They possess a particle-hole symmetry
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(a) (b) (c)

(d) (e) (f)

FIG. 2. Scaling of the density of states (DOS) at zero energy, defined as ρ(0) = ρ0(�total ) − ρ0(0), where ρ0(�total ) [ρ0(0)] is the DOS
with (without) magnetic field, with the total flux �total enclosed by the (a) and (d) (10,3), (b) and (e) (14,3), and (c) and (f) (18,3) hyperbolic
lattices in the presence of (a)–(c) uniform and (d)–(f) bell-shaped inhomogeneous magnetic fields. For details see Sec. II. As there are not
many states near zero energy in a finite system, we use Gaussian smoothing to obtain a smooth curve, producing a background DOS at zero
field ρ0(0), which we subtract to define ρ(0), which increases with �total, as detailed in Appendix A. However, the quadratic dependence of
ρ(0) on �total is obtained even without any Gaussian smoothing (see Fig. 5).

about the zero energy and keep all the negative (positive) en-
ergy states occupied (empty). The average fermionic density
at each site is then 1/2, manifesting the sublattice exchange
symmetry. In Euclidean Dirac systems, application of external
magnetic fields produces zero-energy states, the number of
which is proportional to the total magnetic flux enclosed by
the system �total, irrespective of the magnetic field profile:
Aharonov-Casher index theorem [30]. This index theorem
has been verified from honeycomb-lattice-based exact numer-
ical diagonalization [22] and possibly also extends to HDMs
[31,32].

Here we compute the DOS near the zero-energy ρ(0) from
exact numerical diagonalization of H0 [Eq. (1); see Fig. 2].
The absence of infinitely degenerate zeroth and other Landau
levels in HDMs even when the magnetic field is uniform pos-
sibly stems from their nontrivial spatial curvature. In the small
flux regime ρ(0) scales quadratically with �total for both
uniform and bell-shaped inhomogeneous magnetic fields. In
the large flux regime, the scaling of ρ(0) deviates from the
quadratic dependence on �total when the magnetic length
becomes comparable to the lattice constant. These observa-
tions qualitatively conform to the Aharonov-Casher index
theorem, extended to HDMs, possibly indicating a topologi-
cal protection of the magnetic-field-induced near-zero-energy
modes. Most crucially, when immersed in magnetic fields,
HDMs always support a finite DOS near zero energy. The
appearance of a finite number of states near half filling can
be conducive to the nucleation of ordered phases even for

sufficiently weak finite-range Coulomb repulsion, which we
discuss next.

Note that the quadratic dependence of ρ(0) on �total,
depicted in Fig. 2, is obtained after Gaussian smoothing,
as detailed in Appendix A. However, such scaling holds
even without the Gaussian smoothing (see Fig. 5). Note that
the quadratic dependence of ρ(0) on �total in hyperbolic
Dirac systems is distinct from the linear dependence of ρ(0)
on �total for Dirac fermions living on the flat space [30].
Such a scaling unfolds the imprint of the underlying nega-
tively curved hyperbolic plane, decorated by the sites of the
hyperbolic lattices.

IV. NEAREST-NEIGHBOR INTERACTION

The zero-energy manifold in HDMs, featuring a finite DOS
and sourced by external magnetic fields, can be split by weak
enough NN Coulomb repulsion V through a dynamic breaking
of the sublattice exchange symmetry. For a collection of N
spinless fermions, the corresponding Hamiltonian reads

HV = H0 + V

2

∑
〈 j,k〉

n jnk − μN. (2)

Here n j = c†
j c j is the fermionic density on site j, μ is the

chemical potential in the half-filled system, and 〈· · · 〉 restricts
the summation to the NN sites.
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FIG. 3. Scaling of the charge-density-wave (CDW) order parameter δ [Eq. (4)], computed over the entire (a) and (d) (10,3), (b) and (e)
(14,3), and (c) and (f) (18,3) hyperbolic lattices with the open boundary condition in the presence of (a)–(c) uniform and (d)–(f) bell-shaped
inhomogeneous magnetic fields, with the total magnetic flux enclosed by the system �total for a wide range of NN Coulomb repulsion V among
spinless fermions. For details see Sec. II. The zero magnetic field critical NN Coulomb repulsion for the CDW ordering is Vc ≈ 0.69, 0.67,
and 0.66 in the (10,3), (14,3), and (18,3) hyperbolic lattices, respectively [15]. Therefore, application of strong magnetic fields by virtue of
developing a finite DOS near zero energy (Fig. 2) catalyzes the formation of the CDW order for sufficiently weak NN Coulomb repulsion
(V � Vc), yielding a correlated insulator near half filling (Fig. 4).

Hartree decomposition of the quartic term then leads to the
following effective single-particle Hamiltonian [22,33,34]:

HHar
V = H0 + V

∑
〈 j,k〉

[〈nA, j〉nB,k + 〈nB, j〉nA,k] − μN, (3)

where 〈nA〉 (〈nB〉) corresponds to the site-dependent self-
consistent average fermionic density on sublattice A (B).
We measure the densities relative to the uniform density
at half filling according to 〈nA, j〉 = 1/2 + δA, j and 〈nB, j〉 =
1/2 − δB, j . To maintain the system at half filling, we choose
μ = V/2 and ensure that

∑
j (δA, j − δB, j ) = 0. The positive-

definite quantities δA and δB yield the CDW order parameter
in the whole system, defined as

δ = 1

N

( ∑
j

δA, j +
∑

j

δB, j

)
. (4)

We numerically compute δA, j and δB, j and subsequently δ

in the entire system with the open boundary condition for a
wide range of V , especially for its subcritical strengths, in the
presence of uniform and inhomogeneous magnetic fields of
varying �total. For details on various systems and flux profiles,
see Sec. II. The results are shown in Fig. 3, which we discuss
next.

V. MAGNETIC CATALYSIS OF CDW

The zero-magnetic-field critical strengths of the NN
Coulomb repulsion (obtained within the Hartree approxima-
tion) for the CDW ordering are Vc = 0.69, 0.67, and 0.66
in the (10,3), (14,3) and (18,3) hyperbolic lattices of the
specified generation number, respectively, as mentioned in
Sec. II [15]. As shown in Fig. 3, in the presence of finite
magnetic fluxes δA and δB, concomitantly, δ becomes finite
in the entire system even when V � Vc in these three HDMs.
The spatial profile of the CDW order for various generations
of the HDMs in the presence of magnetic flux is shown in
Fig. 6 and discussed in Appendix B. This outcome holds
for uniform as well as bell-shaped inhomogeneous magnetic
field, piercing the system. As external magnetic fields produce
finite ρ(0) (Fig. 2), a sizable condensation of the CDW order
parameter δ takes place only in the large flux limit when
V � Vc. Such an outcome can be appreciated from its BCS
like scaling,

δ = a exp (−b/[�total − �th]) (5)

for �total > �th and any fixed V < Vc, resulting from the
finite DOS near zero energy [35]. Here a, b, and �th are fit-
ting parameters. For example, with uniform [inhomogeneous]
magnetic fields (a, b,�th ) ≈ (0.071, 70, 260) [(0.090, 175,
215)], (0.051, 17, 111) [(0.075, 70, 85)], and (0.050,50,180)
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(a) (b) (c)

(d) (e) (f)

FIG. 4. Density of states ρ vs energy E in the absence (black dashed lines) and presence (black solid lines) of magnetic flux without
the charge-density-wave order in the (a) and (d) (10,3), (b) and (e) (14,3), and (c) and (f) (18,3) hyperbolic lattices in the presence of
(a)–(c) uniform and (d)–(f) inhomogeneous magnetic flux. Red solid lines correspond to ρ with the field-induced charge-density-wave order
for the nearest-neighbor Coulomb repulsion V = 0.4 (� Vc). The total magnetic flux threading the system �total is (a) 842, (b) 310, (c) 542,
(d) 488, (e) 163, and (f) 281 [in units of �0/(2π )]. Insets depict the formation of correlated insulators with a sharp spectral gap near zero
energy for subcritical V via the curved space magnetic catalysis mechanism. Recall that Vc ≈ 0.69, 0.67, and 0.66 in the (10,3), (14,3), and
(18,3) hyperbolic lattices, respectively [15].

[(0.050, 50, 180)] in the (10,3), (14,3), and (18,3) HDMs
for V = 0.55, respectively. A nonzero �th stems from the
finite-size effect for weak V , which was also previously no-
ticed for the weak coupling antiferromagnetism driven by
Hubbard repulsion in Bernal stacked bilayer graphene [36]
and the onset of a diffusive metal for weak enough disorder
in double-Weyl semimetals [37]. Nevertheless, a finite CDW
order develops in the entire system for any subcritical strength
of V and for any �total, supporting the magnetic catalysis
mechanism of this order in HDMs. As the strength of sub-
critical V increases, δ becomes appreciable for small �total,
and �th decreases monotonically. To unambiguously establish
the magnetic catalysis mechanism of HDMs, we compute
the difference between finite- and zero-magnetic-field CDW
order parameters. For all choices of V < Vc and �total, this
quantity are positive definite, confirming that the formation
of the CDW order for subcritical NN Coulomb interaction is
solely due to the magnetic fields. See Fig. 7 and the discussion
in Appendix B. For V > Vc, δ is finite even in the absence of
magnetic field, which then increases as δ ∼ �2

total in the small
flux regime.

When δ is finite, HDMs become correlated insulators at
half filling by spontaneously breaking the sublattice exchange
symmetry through the curved space magnetic catalysis mech-
anism for V < Vc. To demonstrate this outcome we define
a two-component superspinor �
 = (cA, cB), where cA (cB)

is an N-dimensional spinor constituted by the annihilation
operators on the sites of sublattice A (B). In this basis, the
tight-binding Hamiltonian in the presence of magnetic fields
and the Hamiltonian with the CDW order parameter are

ĥ0 =
(

0 t
t† 0

)
, ĥCDW =

(
� 0
0 −�

)
, (6)

respectively, where 0 is an N-dimensional null matrix, t and
t† are the intersublattice hopping matrices with Peierls phase
factors, and ±� are N-dimensional diagonal matrices, whose
entries are the self-consistent solutions of δA and δB at various
sites of the system, respectively. As ĥ0 and ĥCDW mutually
anticommute, the CDW order acts like a mass for gapless
fermions on HDMs, subject to external magnetic fields. Thus,
the spontaneous nucleation of the CDW order (Fig. 3) causes
insulation near half filling even for small V , as shown in Fig. 4
for both uniform and inhomogeneous magnetic fields on the
(10,3), (14,3), and (18,3) hyperbolic lattices.

VI. SUMMARY AND DISCUSSION

We showed that the application of external uniform or
inhomogeneous magnetic fields in HDMs featuring a linearly
vanishing DOS in the pristine condition gives rise to a finite
DOS near zero energy which increases quadratically with the
total flux enclosed by the system. Then the curved space
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magnetic catalysis becomes operative in the entire HDM
family, through which a CDW ordering nucleates even for
subcritical NN Coulomb repulsion among (spinless) fermions.
Inclusion of the spin degrees of freedom brings the on-site
Hubbard repulsion onto the stage, which is conducive to the
formation of an antiferromagnetic order if it is sufficiently
strong [15]. When a magnetic field penetrates HDMs, an easy-
plane (perpendicular to the field direction) antiferromagnet,
accompanied by a Zeeman-coupling-induced ferromagnetic
order in the field direction, is expected to emerge as the
ground state for a subcritical strength of the Hubbard repul-
sion [20,23]. A detailed study of this competition is left for a
future investigation. It would also be fascinating to develop a
field-theoretic description of this phenomenon in terms of the
Gross-Neveu model [38] for Dirac fermions on curved space,
subject to magnetic fields.

Designer electronic materials [39–42] and cold atomic se-
tups [43–45] are two promising platforms where our predicted
magnetic catalysis of CDW order in HDMs can be experimen-
tally observed. A hyperbolic designer material can be created
by growing its substrate on a suitable material with a differ-
ent thermal expansion coefficient, such that under cooling, a
curved substrate is generated. It then can be decorated with
the sites of the desired HDM. When placed in strong mag-
netic fields, designer HDMs can exhibit magnetic catalysis of
dynamic mass generation. In cold atomic setups, hyperbolic
tessellations can be achieved by suitable arrangements of the
laser traps, and magnetic fields can be introduced through
the coupling of neutral fermions with synthetic gauge fields
[46,47] to showcase the magnetic catalysis of CDW. As the
magnetic catalysis of the CDW order by external magnetic
fields occurs in the entire hyperbolic lattice (bulk and bound-
ary) with the open boundary condition, whose magnitude
increases with increasing field strength and interaction (see
Figs. 3 and 6 and the discussion in Appendix B), the predicted
outcomes should be observable in real materials, which are
always synthesized with open boundaries.
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APPENDIX A: DETAILS OF DOS CALCULATION

In this Appendix, we present the details of the DOS calcu-
lations using Gaussian smoothing. The formula for the DOS
is then given by

ρ(E ) = 1

N

∑
j

1√
2πσ 2

exp

[
− (E − ε j )2

2σ 2

]
, (A1)

where N is the total number of sites on the hyperbolic lattice,
ε j is the energy eigenvalue, and σ is the smoothing parameter.

(a) (b)

FIG. 5. Scaling of the DOS at zero energy, defined as ρ(0) =
ρ0(�total ) − ρ0(0), where ρ0(�total ) [ρ0(0)] is the DOS with (with-
out) magnetic field, with the total flux �total enclosed by the (10,3)
hyperbolic lattice in the presence of (a) uniform and (b) bell-shaped
inhomogeneous magnetic fields. Here we compute the DOS within
the energy window 
E = 0.11 and do not employ any Gaussian
smoothing. Still, we find ρ(0) ∼ �2

total. For details see Sec. II and
Appendix A.

For Fig. 2, σ is equal to 0.08 for the (10,3) hyperbolic lattice
and 0.06 for the (14,3) and (18,3) hyperbolic lattices. These
values are large, so it is necessary to subtract the background
DOS at zero energy in the absence of magnetic fields. For
the DOS computed in Fig. 4, the smoothing parameter σ is
equal to 0.015 for the (10,3) and (14,3) hyperbolic lattices and
σ = 0.0105 for the (18,3) hyperbolic lattice.

In Fig. 2, the quadratic dependence of the DOS near
zero energy with the total flux enclosed by the system is
reported using Gaussian smoothing. However, even without
such smoothing, the same scaling behavior is observed, as
shown in Fig. 5.

APPENDIX B: ADDITIONAL NUMERICAL RESULTS

In this Appendix, we present some additional numerical
results to unambiguously establish the curved space magnetic
catalysis mechanism of HDMs.

To show that for a subcritical strength of the nearest-
neighbor Coulomb repulsion (V < Vc) the CDW order
develops in the entire system when it is subject to an exter-
nal magnetic field, we define a local CDW order parameter
over the sites belonging to the nth generation of the hy-
perbolic lattice containing Nn sites, according to [similar to
Eq. (4)]

δn = 1

Nn

( ∑
j∈n

δA, j +
∑
j∈n

δB, j

)
. (B1)

The variations of δn with n when the (10,3), (14,3), and
(18,3) hyperbolic lattices are immersed in uniform and in-
homogeneous magnetic fields for subcritical strengths of the
nearest-neighbor Coulomb repulsion are shown in Fig. 6.
Figure 6 shows that δn is finite for any n, and for different val-
ues of n, all δn are comparable, establishing that the magnetic
catalysis mechanism is operative over the entire system.

A discussion of the spatial variation of the CDW order
in the presence of external magnetic fields in HDMs with
open boundary conditions is due at this point. Note that in
the presence of uniform magnetic fields, the CDW remains
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V=0.6
V=0.5

V=0.6
V=0.5

V=0.6
V=0.5

V=0.6
V=0.5

V=0.6
V=0.5

V=0.6
V=0.5

FIG. 6. The local CDW order parameter δn [see Eq. (B1)] developed on the sites, belonging to the nth generation of the (a) and (d) (10,3),
(b) and (e) (14,3), and (c) and (f) (18,3) hyperbolic lattices in the presence of (a)–(c) uniform and (d)–(f) inhomogeneous magnetic flux for
the nearest-neighbor Coulomb repulsion V = 0.6 and V = 0.5. The total flux enclosed by the system �total is (a) 673.6, (b) 248.0, (c) 271.0,
(d) 683.2, (e) 244.5, and (f) 281.0 [in units of �0/(2π )]. For specifications of these systems and the magnetic flux threading systems see
Sec. II. Note that V = 0.6, 0.5 < Vc (critical nearest-neighbor Coulomb repulsion for the CDW order in the absence of any magnetic field) in
all the systems, showing that the CDW order develops in the entire system via the magnetic catalysis mechanism. Recall that Vc ≈ 0.69, 0.67,
and 0.66 in the (10,3), (14,3), and (18,3) hyperbolic lattices, respectively [15]. For details see Appendix B.

almost constant in the bulk of the system, while it dips slightly
at the edges but remains finite and comparable to that in
the bulk, as shown in Figs. 6(a)–6(c). On the other hand,
when HDMs are subject to bell-shaped inhomogeneous mag-
netic fields, whose strength decreases almost linearly from
the bulk to the edge of the system (see Sec. II for details),
the CDW order parameter also decreases almost linearly, as
shown in Figs. 6(d)–6(f). In this case, the local CDW order
closely follows the profile of the external magnetic field while
remaining finite everywhere in the system. In addition, the
amplitude of the CDW order increases monotonically with
increasing strength of the subcritical NN repulsion V , mak-
ing them observable in real systems and the thermodynamic
limit with open boundary conditions. These outcomes are
qualitatively similar to the ones previously reported for a hon-
eycomb lattice hosting massless Dirac fermions in flat space
subject to external magnetic fields with the open boundary
condition (see Fig. 8 in Ref. [22]). Given that the scaling
of the interaction-induced gap computed within the Hartree

approximation, following the magnetic catalysis mechanism,
successfully explained the experimentally observed scaling of
the interaction-induced gap within the zeroth Landau level of
graphene [23], this mechanism should also be operative in
HDMs, and the weak-coupling instability of the CDW order in
the presence of external magnetic field should be observable
in real materials in the thermodynamic limit.

Finally, note that numerical estimation of the zero-
magnetic-field critical strength of the nearest-neighbor
Coulomb repulsion Vc for the CDW ordering from a real space
Hartree-Fock analysis is affected by the finite-size effect. We
therefore compute the quantity 
δ, the difference between
the magnetic-field-induced CDW order δ(�total ) and the zero-
field CDW order δ(0), as a function of the total flux enclosed
by the system �total for a wide range of nearest-neighbor
Coulomb repulsion, including both V < Vc and V > Vc. For
any choice of V , we find that 
δ is a positive-definite quantity,
as shown in Fig. 7, endorsing the curved space magnetic
catalysis.
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(a) (b) (c)

(d) (e) (f)

FIG. 7. The difference between the charge-density-wave orders in the presence [δ(�total )] and absence [δ(0)] of magnetic field, defined
as 
δ = δ(�total ) − δ(0) as a function of the total flux enclosed by the system �total for a wide range (both subcritical and above critical) of
the nearest-neighbor Coulomb repulsion V . Positive-definite 
δ confirms the curved space magnetic catalysis mechanism in hyperbolic Dirac
materials. The results are shown for the (a) and (d) (10,3), (b) and (e) (14,3), and (c) and (f) (18,3) hyperbolic lattices in the presence of
(a)–(c) uniform and (d)–(f) bell-shaped inhomogeneous magnetic fields. For details see Appendix B and Sec. II.
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