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A B S T R A C T

The proper functioning of any society heavily depends on its critical infrastructures (CIs), such as power grids,
road networks, and water and waste-water systems. These infrastructures consist of facilities spread across a
community to provide essential services to its residents. Their spatial expansion and functional in-
terdependencies make them highly vulnerable against natural/manmade disasters. Functional interdependencies
mean that the functionality of components in one CI relies on the services provided by others. These features,
combined with decentralized decision-making structure of CIs and the stochastic nature of post-disaster envi-
ronments, highly complicate the optimization process for restoring CIs damaged in disasters. Optimizing CI
restorations is critical to maximizing the post-disaster resilience of communities.

In this paper, we integrate and leverage Reinforcement Learning (RL) and optimization strengths to design a
novel distributed modeling and solution approach for advancing the restoration process for interdependent CIs
after disasters. The proposed approach (1) bridges the gap between integrative and distinct decision-making,
enabling coordinated restoration planning for CIs within a decentralized decision-making context; (2) handles
post-disaster uncertainties (e.g., uncertainty in recovery times of disrupted components); (3) generates adaptive
solutions that cope with post-disaster dynamics (e.g., varying numbers of recovery teams); and (4) is flexible
enough to handle several restoration decisions (e.g., restoration scheduling and resource allocation)
simultaneously.

To evaluate its performance, we focus on restoring the road and power CIs in Sioux Falls, South Dakota,
disrupted by several tornado scenarios. The numerical results show that coordinated policies in the restoration
process of interdependent CIs consistently yield higher service for the community. The overperformance of the
coordinated restoration policies can be as high as 27.9 %. The impact of coordination is more significant in
severe disasters with higher disruptions and in the absence of efficient recovery resources.

1. Introduction

The proper functioning of any society heavily relies on its critical CIs,
including road networks, power grids, and water/wastewater systems
(Bush, 2003). Each CI comprises a set of physical components (e.g.,
cables, transmitters, and power generators in power CIs; roads,

highways, bridges, and tunnels in road CIs; and pipes and water pro-
cessing facilities in water/wastewater CIs) that span an area to provide
key services to a community (Hafeznia & Stojadinović, 2023; Chertkov
et al., 2015; Sharkey et al., 2015). Due to their spatial expansion and the
increasing number of disruptive (natural or man-made) events, CIs are
often subject to different types of disruption (Rezapour et al., 2021). For
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example, Hurricane Sandy, which hit the East Coast of the U.S. in 2012,
significantly impacted several CIs: (1) the disruption in the power grid
left 4.5 million customers without power for several days (Anon., Office
of Electricity Delivery & Energy Reliability, 2012); (2) the closure of
subway lines in New York City disrupted the road infrastructure
(Kaufman et al., 2012); and (3) damage to wastewater treatment plans
resulted in 10 billion gallons of sewage being spilled (Kenward et al.,
2013). The total cost of restoring CIs damaged during this disaster was
estimated at $65 billion (Anon., US Department of Housing & Urban
Development, 2013). More recently, the tornado outbreak on March 31,
2023, affected at least eight states in the South and Midwest of the U.S.,
leaving 32 dead and dozens injured. Based on aggregated data from
PowerOutage.us, >400,000 customers were without power. Although
most roads were passable, traffic flow in the affected regions was very
slow due to non-functional traffic signals (Moritz et al., 2023).

To enhance the resilience of communities against disruptive events,
developing an efficient restoration policy for CIs is mandatory. The
increasing interconnections among CIs have made them more vulner-
able to disruptive events (Rinaldi et al., 2001; Fan et al., 2024),
complicating their restoration efforts (Xu et al., 2024). CIs within a
community are functionally interdependent, meaning the functionality
of components in one CI depends on the services provided by other CIs
(Huang & Wang, 2024). These interdependencies cause disruptions to
cascade across communities (Amini et al., 2017; Sang et al., 2021; Lee II
et al., 2007; Lee II et al., 2008; McDaniels et al., 2007, 2008). For
example, a disruption in the power CI can lead to a wastewater treat-
ment plant in the wastewater CI losing power and becoming inoperative,
illustrating the propagation of disruptions across CIs. Similarly, resto-
ration operations in CIs are interdependent. For instance, clearing roads
of fallen trees in a road CI may only be possible after removing fallen
power cables from the roads, a task carried out by the restoration crew of
the power CI. This emphasizes the procedural interdependencies be-
tween restoration operations of CIs (Pinedo, 2012) and underscores the
importance of coordinated restoration planning.

In practice, restoration efforts for CIs often disregard procedural
interdependencies and are typically planned independently, with little
to no communication (Leavitt & Kiefer, 2006; McGuire & Schneck,
2010). Recently, a few studies have focused on the concurrent restora-
tion of interdependent CIs (Nurre et al., 2012; González et al., 2016;
Cavdaroglu et al., 2013; Lee II et al., 2007; Garay-Sianca & Pinkley,
2021; Talebiyan & Dueñas-Osorio, 2023; Fan et al., 2024; Xu et al.,
2024). Assuming a centralized decision-maker for all CIs, these studies
primarily employ optimization techniques to schedule restoration

efforts. However, the practical feasibility of this approach is very
limited. CIs do not have full access to each other’s information and
conflicts of interest may arise among CIs due to differing priorities
during restoration. For instance, a private power company might prefer
to restore services to its higher-priority customers before addressing the
power demands of other CIs. Observations from Emergency Operating
Centers during previous disasters reveal that restoration decisions for
CIs are made by different decision-makers, with local emergency man-
agers facilitating communication among CIs (Sharkey et al., 2015). This
highlights the necessity of coordinated restoration planning in a
decentralized context for interdependent CIs. The importance of coor-
dination and information-sharing in restoring CIs has already been
underscored by many researchers (Caruson &MacManus, 2008; Somers
& Svara, 2009; Kapucu & Garayev, 2013; Sharkey et al., 2015).

The restoration of CIs is conducted in challenging post-disaster en-
vironments. Due to resource scarcity (e.g., limited facilities, supplies,
and manpower) following a disaster, the restoration of disrupted com-
ponents cannot be initiated simultaneously (Oruc & Kara, 2018; Farza-
neh et al., 2023; Aksu & Ozdamar, 2014; Sahin et al., 2016). Resource
constraints typically lead to sequential restoration efforts that extend
throughout the disaster response phase (Farzaneh et al., 2023). All
restoration activities occur in chaotic post-disaster situations charac-
terized by varying levels of uncertainty and dynamism, such as uncer-
tain damage levels and restoration times for disrupted components, and
the dynamic number of facilities and recovery crews available for
restoration. These facts highlight the importance of developing
modeling and solution techniques to address the necessity of generating
sequential, stochastic, and adaptive restoration policies for CIs. These
complexities are compounded in the coordinated restoration of inter-
dependent CIs.

The above discussions demonstrate that coordinated restoration of
interdependent CIs needs a distributed decision-making approach that
preserves the autonomy and decentralization of CIs while enabling them
to coordinate their decisions with limited information sharing. As will be
discussed in detail in Section 2, the CI restoration literature lacks a
decision-making approach to handle these requirements. To design such
a distributed decision-making approach, the following research ques-
tions are answered in this paper:

■ Research question 1 - To address the problem of restoring inter-
dependent CIs, what decision-making elements are needed within
this distributed approach? To address the decentralization of CI
restorations, this approach needs several distinct decision-making

Fig. 1. The structure of the coupled RL-OPs for road and power CIs.
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elements, one for each CI. These elements should be able to make
restoration decisions for their corresponding CI, operating in sto-
chastic and dynamic post-disaster circumstances with limited resto-
ration resources. As shown in Fig. 1, the decision-making element of
each CI combines the strengths of Reinforcement Learning (RL) and
optimization, called an RL-OP. This combination facilitates sequen-
tial, stochastic, and adaptive decision-making for each CI.

■ Research question 2 – To include interdependencies, how can we
coordinate the restoration decisions made by distinct RL-OPs? To
consider CI interdependencies in the decision-making process of each
RL-OP, we will design and embed a “coordinator” within the
distributed decision-making approach (see Fig. 1). The coordinator
assists RL-OPs in partially exchanging restoration information, pre-
venting them from making infeasible (or non-executable) decisions,
and enabling the evaluation of the consequences of their decisions on
other CIs. This results in a coupled RL-OPs that make coordinated
decisions, improving the performance of all CIs in providing better
services to the community, rather than distinct decisions only
improving the performance of their own CIs.

■ Research question 3 – In comparison to current practices where CI
interdependencies are ignored in the restoration processes, how
much improvement is expected from the restoration policies gener-
ated by this novel distributed decision- making approach, coupled
RL-OPs? The post-disaster performance of CIs in providing services
to the community will be compared under two groups of distinct and
coordinated restoration policies under several disruption scenarios.
This comparison will provide a good estimation of the improvement
achievable by using this new decision-making approach.

The application of the proposed approach is not limited to interde-
pendent CIs and not just to restoration decisions. This modeling struc-
ture is generalizable for making coordinated decisions for a broad range
of decentralized yet interdependent systems (DISs). A DIS represents a
fusion of diverse, autonomous, yet interdependent systems operating in
various physical, social, cyber, or technical contexts. Within this intri-
cate arrangement, the behavior and performance of one system intri-
cately intertwine with those of others. DISs find prominent applications
in the contemporary world, including cyber-physical-social systems, the
Internet of Things, and supply chains. The proposed mechanism can be
widely used to optimize DIS decisions.

The paper’s organization is as follows: Section 2 reviews the litera-
ture on CI restoration and highlights the paper’s contributions. A
detailed description of the problem is included in Section 3. The pro-
posed coupled RL-OPs approach is developed in Section 4. Section 5
explains the case study, presents numerical results, and discusses
derived insights. Section 6 concludes the research.

2. Literature review

The literature on resilient CIs comprises two groups of research: (1)
pre-disaster preparation, which addresses strengthening and fortifying
CIs to reduce their vulnerability against disasters (Dobson et al., 2001;
Botterud et al., 2005; Chen et al., 2005; Bienstock &Mattia, 2007; Fang
& Zio, 2019; Ouyang, 2017; Bhuiyan et al., 2020; Fakhry et al., 2022);
and (2) post-disaster response, which pertains to the efficient restoration
of damaged CIs. Of course, another possibility is the integration of pre-
and post-disaster operations (Sütiçen et al., 2023). The problem inves-
tigated in this paper belongs to the post-disaster restoration of CIs. In
this section, we review the papers of the second group and discuss the
contributions of the research against two research streams in
post-disaster CI restoration: (i) concurrent restoration of interdependent
CIs (will be reviewed in Section 2.1) and (ii) optimization of CI resto-
ration in stochastic and dynamic post-disaster circumstances (will be
reviewed in Section 2.2).

2.1. Concurrent restoration of interdependent CIs

In this section, we review the decision-making context (e.g.,
centralized or decentralized) of models that have been proposed in the
literature for concurrent restoration of interdependent CIs and the
restoration decisions optimized by these models. There are some studies
that only focus on modeling interdependencies and commodity flow (e.
g., Lee II et al., 2007) or forecasting failure cascading (e.g., Loggins &
Wallace, 2015) in interdependent CIs. They do not make any restoration
decisions and are out of the scope of this paper. In this paper, the
restoration decisions that deal with determining the sequence/-
concurrency of recovering disrupted components are named “restoration
scheduling,” and the decisions of assigning limited recovery resources
(restoration crews, facilities, machineries, etc.) to the disrupted com-
ponents selected to be recovered simultaneously are called “resource
allocation”.

Nurre et al. (2012) propose an optimization model to restore power,
water, and emergency good supply networks concurrently. The model
assigns disrupted links to a set of recovery crews to install them into the
networks. The model pays no attention to the importance of links,
limiting the assignment of only one team to each disrupted link for
restoration. Resource allocation is not addressed in this model. In this
model, restoration decisions for all CIs are centrally made by a single
decision-maker with complete access to the information of all CIs.
González et al. (2016) introduce the Interdependent Network Design
and Scheduling (INDS) problem, focusing on designing a reconstruction
strategy for a partially destroyed system of CIs. They propose a mixed
integer optimization model to determine which disrupted components
should be restored in each CI and the optimal sequence for restoring
these components. This research does not address resource allocation
decisions and makes all restoration decisions of CIs centrally. The au-
thors solve the problem using a simulation-optimization approach,
testing it on power, water, and gas CIs in Shelby County, TN, U.S.

Cavdaroglu et al. (2013) investigate the challenge of restoring power
and telecommunication CIs following unexpected events that disrupt
their services. They devise a mixed-integer optimization model to opti-
mize the recovery sequence of disrupted links for each recovery group.
The objective is to minimize the total costs associated with flow, unmet
demand, and new installations throughout the restoration timeframe. In
this model, each disrupted component is assigned to only one recovery
team, and no decision is made regarding resource allocation. A single
authority centrally makes restoration decisions for all CIs. Almogha-
thawi et al. (2019) focus on the restoration challenges in a network of
interdependent power-water CIs following a disruptive event. They
develop a multi-objective restoration model: the primary objective is to
enhance the resilience of the CIs while minimizing the overall restora-
tion costs. Again, they assume that each disrupted component can only
be restored by a single team, without the possibility for multiple teams
to collaborate simultaneously on components to expedite their recovery
processes. The decision-making nature of the problem is centralized.

Garay-Sianca and Pinkley (2021) propose an integrated network
design and scheduling problem for a system of two interdependent
power and road CIs with the movement of restoration machines. They
formulate the problem as mixed integer programming and solve it using
a rolling horizon solution procedure. The model makes three key de-
cisions for each CI: (i) identifying damaged links that should be restored,
(ii) allocating the appropriate machinery for the restoration process of
each link, and (iii) establishing the order of restoration tasks assigned to
each machine. This model considers the dynamic movements of ma-
chinery as they navigate through the evolving layout of the road CI. The
restoration decisions of CIs are made centrally by a single authority.
Sütiçen et al. (2023) study pre-disaster reinforcement and post-disaster
restoration within interdependent CIs. They model the problem as a
scenario-based two-stage optimization model. In the initial stage, de-
cisions regarding reinforcement are made, while in the subsequent
stage, restoration activities are strategized for repair teams across
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various potential disaster scenarios. Their approach assumes that
simultaneous restoration of impaired links is prohibited. So, there is no
need for resource allocation. Oversight of reinforcement and repair
operations for interdependent CIs is entrusted to a central
decision-maker possessing complete information.

Maraqa et al. (2022) introduce a multi-objective model to optimize
the restoration sequence and crew allocation for interdependent CIs.
However, this model empowers a singular governing authority pos-
sessing comprehensive information on all CIs to make informed de-
cisions regarding their restoration process. Alkhaleel et al. (2022)
develop a mixed-integer linear programming model to optimize the
restoration process for a set of interdependent CIs, including power and
water CIs. In this model, a single decision-maker with full CI information
access identifies failed components for restoration and assign work
crews to those components. The model allows multiple crews to work
simultaneously on a single component to enhance system resilience. Fan
et al. (2024) employ mixed-integer second-order cone programming to
optimize the coordinated restoration process for interdependent power,
gas, and transportation CIs. The decision-making structure of the model
is centralized, with objectives to maximize the restored power and gas
demand and enhance traffic load capacity in the community. The model
only determines the sequence of restoring disrupted links in each CI.
Huang and Wang (2024) address post-disaster centralized restoration
planning for interdependent CI systems, specifically focusing on electric
power and potable water networks. Using a bi-objective optimization
model combined with Monte Carlo simulation, their research seeks
Pareto-optimal solutions that balance trade-offs between losses in social
services and economic production during the recovery process. The
model determines the optimal sequence for restoring disrupted CI
components. Xu et al. (2024) study centralized restoration planning for
interdependent CI systems, focusing on electric power and gas systems.
These systems are modeled as an undirected integrated network with
bidirectional dependencies. Initially, a deterministic model is developed
using mixed-integer linear programming to optimize the repair sequence
and maximize system resilience. The model is then extended to a
two-stage stochastic model that accounts for uncertainty in repair times,
represented by a set of scenarios with known distribution functions.

In all the studies reviewed above, restoration decisions for CIs are
made in a centralized context using optimization techniques by a single
decision-maker with full access to the information of all CIs. Acknowl-
edging the limitations of optimization, there are a few studies that
employ other techniques to interdependent CI restoration. For example,
Sun and Zhang (2020) propose a model that integrates agent-based
simulation and RL to determine the optimal sequence for restoring dis-
rupted components in a network of interdependent CIs, including
transportation, power generation, and wastewater treatment facilities.
Again, the proposed model operates in a centralized context, with a
single RL agent making restoration decisions for all CIs. At each
decision-making step, only one team can be assigned to each disrupted
component. Hafeznia and Stojadinović (2023) propose the Resilience
Quantification Iterative Optimization-based Simulation (ResQ-IOS)
framework to study the seismic resilience of interdependent CI systems
(CISs) in Shelby County, USA. This framework integrates simulation and
optimization methods to assess resilience, emphasizing bi-directional
interdependencies between power generation and natural gas produc-
tion, and between power generation and water supply sectors. The
simulation component employs a heuristic approach using a
criticality-based strategy to specify the restoration sequence of damaged
components. For example, nodes with the largest demand are repaired
first and links with the largest capacity are repaired first. The optimi-
zation component only determines the optimal flow of resources and
services from and to each node in CIs to minimize the loss of resilience at
each step of the recovery process. The framework does not make any
resource allocation decision. However, they just analyze the impact of
changing resource availability in a few scenarios on the resilience of the
CI system.

There are very few studies in literature considering decentralized
decision-making for the restoration of interdependent CIs. One such
study is Smith et al. (2020). They propose an ad hoc sequential
game-theoretic model, representing a discrete time noncooperative
game between CI decision-makers, to optimize restoration sequence in
an interdependent CI system. In this formulation, restoration decisions
of CIs are made sequentially by their corresponding decision-makers
rather than concurrently. Additionally, the computational complexity
of game models compels the authors to significantly simplify the resto-
ration operations. For example, they assume that the required resources
to recover all disrupted components (links or nodes) in all CIs are the
same and equal to 1. Talebiyan and Dueñas-Osorio (2023) propose an
auction-based approach to allocate recovery resources among a set of
disrupted interdependent CIs in a decentralized fashion. Each
decision-maker employs a mixed-integer optimization model to devise
the minimum-cost restoration plan, considering resource and opera-
tional constraints. The objective function includes network flow cost, arc
and node restoration cost, under and oversupply penalties, and site
preparation cost. The auctions entail no communication among decen-
tralized decision-makers, implying lack of coordination during the
decision-making process. This is the main point differentiating their
study from this paper.

This literature review highlights the lack of a systematic modeling
and solution approach for coordinately restoring interdependent CIs in a
decentralized context. We address this methodological gap by devel-
oping a new distributed decision-making approach capable of meeting
the following requirements: (1) restoration decisions of CIs are made in a
decentralized context (by separate decision-makers) but are coordinated
through partial information sharing among CIs, (2) it preserves privacy
of CIs by minimizing information sharing, and (3) the proposed
approach is flexible enough to make several restoration decisions (e.g.,
restoration scheduling and resource allocation) simultaneously.

2.2. Optimization of CI restoration in stochastic and dynamic post-
disaster circumstances

In this section, we review the post-disaster complexities (e.g., un-
certainties and dynamics in restoration operations) considered in the
literature in modeling CI restoration. We aim to highlight the additional
contributions of the paper to the literature by discussing the extra
flexibility added by the coupled RL-OPs approach to modeling restora-
tion processes.

In the aftermath of a disaster, the environment is often chaotic,
characterized by numerous uncertainties and dynamics arising from
incomplete information and predictions. However, the majority of
studies examining restoration operation, even in a single CI, operate
under deterministic and static assumptions. For example, Averbakh
(2012) and Averbakh and Pereira (2012) employ mixed-integer pro-
gramming to optimize the recovery sequence for damaged links in a
transportation CI by one and several recovery teams. The models are
completely deterministic without any temporal variations. Matisziw
et al. (2010) propose a deterministic multi-objective model to optimize
the sequence of recovering damaged links and nodes in a CI. The model
analyzes the tradeoff between two objective functions: recovery cost
minimization and system flowmaximization. They assume all nodes and
links have the same recovery times and can be restored within a single
time unit. Baxter et al. (2014) propose an integer programming model
for the incremental reconstruction of a damaged network. The objective
is to minimize the cost of clearing/opening damaged links and to
minimize the penalty of not satisfying demands. The model is static and
deterministic. Nurre and Sharkey (2014) investigate the problem of
network-based CI restoration when several identical machines are
working in parallel. This problem includes designing a network of fa-
cilities (each facility includes multiple machines) and efficiently
scheduling restoration activities on machines. However, the number of
facilities is fixed over the restoration horizon and the recovery times of
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damaged components are known in advance.
Morshedlou et al. (2018) investigate the problem of routing recovery

teams to recover disrupted links/nodes in a single CI. They develop two
optimization models to dispatch and route recovery teams towards
disrupted components in the CI to maximize network resilience progress
over the restoration horizon. The number of recovery teams is fixed, and
no uncertainty is included in the models. Fan et al. (2024) assume that
the capacity of restoration resources in the CI restoration process is static
and recovery time of disrupted components is deterministic and uni-
form. For example, at two-hour intervals per step, they assume that
recovery teams in the power CI repair 2 links per step, those in the
natural gas CI repair 1 link, and teams in the transportation CI recover 2
roads per step. Other recent studies, such as Sun and Zhang (2020) and
Hafeznia and Stojadinović (2023), also assume the fixed recovery re-
sources and fixed recovery times in their restoration planning models.

The number of studies considering post-disaster dynamics is very
limited. For example, Aksu and Ozdamar (2014) propose a dynamic
path-based model (formulated as integer programming) to maximize
network accessibility in a road CI after a disaster. They assume that
recovery times of disrupted components are different but deterministic.
However, the number of recovery resources (e.g., teams and facilities)
are dynamic and may change over time. Ulusan and Ergun (2018) pre-
sent an innovative index inspired by network science to assess the crit-
icality of components within a disrupted road CI. They propose a
restoration heuristic aimed at prioritizing restoration activities accord-
ing to this index. They ignore uncertainties and assume the presence of
complete information about the debris level and recovery times of
blocked links. However, the number of recovery teams may change over
time.

Very little research addresses the challenge of incomplete informa-
tion or uncertainty in disaster restoration operations. Xu et al. (2016)
propose a stochastic integer model to schedule inspection, damage
assessment, and repair tasks for optimizing post-earthquake restoration
in a power CI. The objective is to minimize each customer’s average time
without power. The expected recovery time for each disrupted compo-
nent is uncertain, and to simplify the model, they define several limited
scenarios representing uncertainty in recovery times of disrupted nodes.
Following a similar approach, Alkhaleel et al. (2022) define scenarios to
represent uncertainty in the recovery times of disrupted components.
Similarly, Huang and Wang (2024) employ Monte Carlo simulation to
generate scenarios representing damage levels and repair times of dis-
rupted components. Farzaneh et al. (2023) explore the challenges
stemming from incomplete data on damage and the lack of coordination
among post-disaster restoration operations. To address the lack of
complete damage information, they employ a real-time damage assess-
ment and data collection mechanism that requires pre-disaster Un-
manned Aerial Vehicles (UAVs) prepositioning. Without a real-time
damage assessment mechanism similar to our problem, considering
uncertainty in damage levels and required recovery times significantly
increases modeling accuracy. It avoids sub-optimality or even infeasi-
bility of generated restoration policies when nominal values do not
materialize for those parameters.

This literature review reveals the lack of a systematic modeling
approach for CI restoration that can address complexities of post-
disaster circumstances without imposing unrealistic simplifying as-
sumptions (e.g., discrete scenarios for recovery times) and locating pre-
disaster monitoring facilities (e.g., pre-positioned UAVs). The modeling
and solution approach proposed in this paper can address these gaps and
contribute to the literature on CI restoration in the following ways: (1) It
is capable of handling post-disaster uncertainties in the recovery times
of disrupted components; and (2) It generates adaptive solutions that
cope with post-disaster dynamics of varying numbers of recovery teams.

2.3. Research contributions

The contributions of this paper to the CI restoration literature can be

summarized as follows:

■ This paper proposes the first systematic distributed decision-making
approach, coupled RL-OPs, to generate coordinated restoration pol-
icies for a set of interdependent CIs operating in a decentralized
context. This approach allows CI decision-makers to preserve the
information privacy of their CIs while coordinating their policies
with partial information sharing.

■ The problem decomposition capability added to the proposed
approach by RLs enables it to handle post-disaster complexities, such
as uncertainty in the recovery time of disrupted components and the
dynamic number of recovery teams over the restoration process of
CIs.

■ The proposed approach generates comprehensive restoration pol-
icies that not only determine the restoration schedule for disrupted
components but also identify the best resource allocation to the
components selected for concurrent restoration.

3. Problem description

Without sacrificing generality, in this section, we concentrate on
developing coordinated restoration policies for interdependent road and
power CIs (as displayed in Fig. 1). The structure of the disrupted power
and road CIs, the restoration decisions for each CI, and their in-
terdependencies are explained in the subsequent sections. However, it is
worth noting that the mathematical and computational foundations of
the proposed approach can be extended to any set of interdependent CIs
managed within a decentralized context.

3.1. Power CI

We represent the power CI in the disaster-affected community using
a network: GP(NP,LP). The set of nodes in the network includes supply
nodes that generate power (NPS), intermediate nodes that transfer power
(NPI ), and demand nodes representing aggregated households in
municipal sites (NPD): NP = NPS ∪ NPI ∪ NPD. These nodes are connected
through cables represented as links in the network, l = (n, nʹ) where n
and nʹ ∈ NP. The daily power generation capacity at each supply node is
denoted by PCPn

(
∀n ∈ NPS

). The parameter DDPn (∀n ∈ NPD) represents the
daily demand at the demand nodes of the network. Additionally, there is
a flow capacity for the links/cables of the network represented by TCP

l
(∀l ∈ LP). Under power generation and transmission limitations, the
power distribution plan in a power CI determines how the daily gener-
ated power at the supply nodes should be routed throughout the
network to fulfill the daily demands materialized at the demand nodes.

Extreme events (e.g., thunderstorms, hail, lightning, tornados, and
hurricanes) may damage the power CI by disrupting some of the links (e.
g., downing some power lines) in the network. This may distort its power
distribution plan and leave some of the demand nodes without power. A
restoration plan for the power CI includes two groups of decisions: (1)
restoration scheduling, which determines the sequence or concurrency
of restoring disrupted links in the network, and (2) resource allocation,
which determines the best scheme to assign recovery teams to the links
selected for concurrent restoration. The objective of the restoration plan
is to minimize the total unfulfilled power demand during the restoration
period, represented by T. Limitation of restoration teams, uncertainty in
the recovery times of disrupted links, interdependencies between the
road and power CIs, and the decentralized decision-making structure of
CIs are the key barriers complicating restoration optimization for power
CIs.

The main assumption related to the power CI is that we employ a
linear DC model to approximate the nonlinear AC model used for power
distribution planning in the power network. The accuracy of this
approximation has been shown by Bienstock and Mattia (2007).
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3.2. Road CI

The road CI in the community is represented by another network,
GR(NR, LR), in which urban sites constitute nodes of the network (NR),
connected through roads/highways represented by links (LR). Each link
has a traffic flow capacity (FCR

l , ∀l ∈ LR). When an extreme event
damages the road CI, some roads/highways become disrupted and
impassable, decelerating the post-disaster traffic flow in the affected
area. The post-disaster traffic need is represented as a set of Origin-
Destination (OD) pairs, where OD pairs correspond to daily traffic
flow moving from origin (NRO) to destination (NRD) nodes of the road CI
through intermediate nodes (NRI

)
: OD =

{od = (m,

mʹ)
⃒⃒m ∈ NRO and mʹ ∈ NRD

}. The traffic demand of each pair od is denoted
by TFR

od (∀od ∈ OD).
Developing a restoration plan for a road CI involves strategizing the

restoration schedule and resource allocation for disrupted roads to
maximize the acceleration of post-disaster traffic flow within the
restoration period, T. This optimization process must account for con-
straints such as limited and dynamic resources (e.g., a finite and dy-
namic number of recovery teams) and uncertainties such as incomplete
information regarding the recovery time of blocked or damaged roads
and highways.

In this paper, the focus is on short-term restoration of critical CIs that
starts immediately after a disaster in a community. These operations
should be accomplished within a short planning horizon after the
disaster (e.g., within a couple of weeks) (FEMA, Anon., 2018). That is
why we introduced the planning horizon T in the problem. Within this
short interval after the disaster, the travel flow in the affected region is
usually limited to relief operations such as transferring casualties to
hospitals, transporting relief commodities from stocks and airports to
affected regions, and relocating affected residents to shelters. Therefore,
we assume that routine pre-disaster traffic flows that may cause traffic
jams do not exist in the area. In Section 4.2.2, we will explain how this
assumption can be relaxed in the problem.

3.3. Interdependencies between road and power CIs

We define several sets to model restoration interdependency be-
tween the road and power CIs. ΠP

l includes the set of prerequisite links in
the road CI that should be restored before restoring link l ∈ LP. Similarly,
ΠR

l includes the set of prerequisite links in the power CI that should be
restored before restoring link l ∈ LR. In this paper, our goal is to coor-
dinately optimize the restoration plans for the damaged power and road
CIs, considering their interdependencies, to minimize the total unful-
filled power demand in the power CI and travel time/cost in the road CI.

The restoration decisions for CIs are made in a decentralized context by
separate decision-makers.

4. Problem formulation

Fig. 1 demonstrates the general structure of the approach developed
to generate coordinated restoration policies for the road and power CIs,
referred to as the coupled RL-OPs mechanism. This mechanism includes
a distinct RL-OP for each CI dealing with its restoration decisions.
Having a separate RL agent for each CI is consistent with the decen-
tralized nature of the problem. Having a separate learning environment
for each agent enables us to handle the heterogeneous operational
environment of CIs. To harmonize the decisions of agents and generate
coordinated policies, we will design and locate a “coordinator” to
facilitate limited information sharing among the RL agents.

RL is a machine learning technique consisting of an agent and a
learning environment. It trains the agent by using feedback from the
learning environment to guide the agent toward optimal solutions. RL
mimics the trial-and-error learning process employed by humans to
achieve their goals (Li, 2023). For more information about the principles
of RL refer to Ding et al. (2020), Meyn (2022), and Morales (2020).

Fig. 2 demonstrates the structure of the RL-OP that is generated for
each CI in this paper. The agent of the RL-OP will make restoration
decisions for the CI that include restoration schedule and resource
allocation. Since scheduling is a sequential process (we want to identify
the sequence of restoring damaged links), wemodel the decision-making
structure of the agent of the RL-OP as a Markov Decision Process (MDP)
which permits the agent to have several decision-making stages. In each
stage, a new set of restoration decisions will be made by the agent for the
CI. The consequence/reward of the restoration decisions made in each
stage is evaluated in its learning environment. The learning environment
is an optimization model that replans the flow (traffic or power flow)
movement in the CI after restoring selected links and calculates the
improvement in its performance (e.g., total reduction in the unfulfilled
demand of the power CI or reduction in travel cost/time of the road CI).
Fig. 2 shows the flow of information between the agent and the envi-
ronment of an RL-OP in one learning iteration. These iterations train the
agent to learn more about the reward achievable by making any decision
in each stage of the RL-OP and gradually guide the agent to make better
decisions with higher rewards in MDP stages. After a high number of
iterations, the agent is trained enough to select the optimal decision for
each MDP stage.

More details about the RL-OPs designed for the power and road CIs
are respectively explained in Sections 4.1 and 4.2. Section 4.3 includes
the development of the “coordinator” to harmonize the decisions of the
RL-OPs’ agents. Connecting agents of the RL-OPs through the

Fig. 2. The structure of the RL-OP for each CI.
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“coordinator” results in the coupled RL-OPs mechanism that is able to
make coordinated restoration decisions for the power and road CIs.

4.1. RL-OP development for the power CI

In this section, we explain the procedure for developing a distinct RL-
OP for the power CI. The decision-making process for the agent of the
power RL-OP and the reward generation process in its learning envi-
ronment are explained in Sections 4.1.1 and 4.1.2, respectively. Section
4.1.3 details the solution approach for the power MDP, including the
learning procedure used by the agent of the power RL-OP to train and
ultimately generate uncoordinated restoration policies for the disrupted
power network.

4.1.1. Decision-making process for the agent of the power RL-OP
As explained before, in the presence of limited recovery resources (e.

g., limited recovery teams), the agent of the power RL-OP should
determine the best sequence and concurrency for recovering disrupted
links in the power network. Therefore, we formulate the problem of
restoration scheduling and resource allocation by the agent as a MDP
with sequential decision-making stages.

In the context of the power network, let ĹP be the set of disrupted
links. At each decision-making stage of the power MDP (∀kP ∈ KP), the
agent is tasked with two key decisions: (1) selecting a subset of disrupted
links for restoration (LʹP

k ⊂LʹP); and (2) allocating recovery teams (ΛP
k)

available at stage kP to the links selected for restoration in that stage.
The number of recovery teams (ΛP

k) is dynamic and may change from
stage to stage. The process of allocating recovery teams to a subset of
links (e.g., LʹP

k ) that can be selected for restoration at stage kP is explained
the next section, addressing resource allocation decisions. The process of
modeling LʹP

k selection in each stage of the MDP will be explained in the
later section, addressing restoration scheduling decisions (the notation
used in the paper is summarized in Table A1 in Appendix A.).

4.1.1.1. Resource allocation decisions. The recovery time needed to
restore each link in set LʹP

k depends on the number of recovery teams
allocated to that link. The resource allocation process aims to minimize
the restoration time for the selected links in LʹP

k , ensuring their swift
recovery. We develop an optimization model to assign recovery teams to
the links of set LʹP

k . In this model, variable wP
l indicates the number of

teams allocated to link l ∈ LʹP
k , while σl demonstrates the average

restoration time for link l if only one team were allocated to it (where σl
is a random variable ranging from σ̌l to σ̂ l). The optimal allocation of
teams to the links in set LʹP

k is determined by Model (1–4):

Minimize ϑLP
k
= MAX

∀l∈L’P
k

ϑl =
(

σl
wP

l

)
(1)

Subject to : wP
l ≤ Cl ∀l ∈ LʹP

k (2)
∑

l∈LʹP
k

wP
l ≤ Λ

P
k (3)

wP
l ≥ 0 and integer ∀l ∈ LʹP

k (4)

Objective function (1) allocates recovery teams to the links of set LʹP
k in a

way to minimize the maximum time needed to recovery of each link in
that set. It is assumed that the allocated teams will remain dedicated to
their assigned links throughout the recovery process, and the restoration
of links in LʹP

k will be considered complete once all links are restored.
This assumption is commonly adopted in literature (Çelik et al., 2015;
Averbakh, 2012; Tzeng et al., 2007). Constraint (2) ensures that the
number of allocated teams to each link does not exceed the maximum
number of teams that can work simultaneously on that link (Cl). Addi-
tionally, constraint (3) guarantees that the number of allocated teams at
stage k does not exceed the total number of available teams at that stage
(ΛP

k). The process of linearizing and solving Model (1–4) is explained in
Appendix B.

4.1.1.2. Restoration scheduling decisions. This section explains the pro-
cess of modeling LʹP

k selection by the agent of the power RL-OP at each
stage of its MDP. As depicted in Fig. 3, the MDP consists of several
decision-making stages. Each stage corresponds to a state-decision ma-
trix. The states (or rows) of a matrix represent potential configurations
that the power network may have at the beginning of its corresponding
stage. The decisions (or columns) of the matrix represent the potential
restoration decisions that can be selected by the agent. The remainder of
this section explains the interconnections among the decisions made at
different stages of the MDP.

In the state-decision matrix of stage k, the initial configuration of the
power network is represented by set SP

k =
{sP

k
}. Each state (∀sP

k ∈ SP
k)

corresponds to a set of disrupted links that remain unrecovered up to
that stage. In the first stage (kP = 1), there exists a single state encom-
passing all links in LʹP available for restoration (see Stage 1 in Fig. 3). The
decision space in state sP

k , denoted by APsk =
{

aPsk

}
, encompasses all

feasible subsets of links that can be selected for restoration in that state.
Decision aPsk is feasible if solving Model (1–4) yields a finite minimum
recovery time ϑ∗

LʹP
k =aPsk

and the optimal team allocation scheme

Fig. 3. The sequence of decisions made by the agent in the power MDP.
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{wP∗
l
}

LʹP
k =aPsk

for the selected links in that decision. In the initial stage (kP

= 1), the decision space includes a maximum of 2|LʹP | decisions. How-
ever, depending on the availability of recovery teams (ΛP

k=1), some of
these decisions may become infeasible. In the case in which decision
aPs1=LʹP1 is selected by the agent in stage 1 for restoration, the pool of
available links for restoration in stage 2 diminishes to LʹP − LʹP1 , conse-
quently reducing the maximum size of the decision space to 2|LʹP−LʹP

1 |.
As shown by red arrows in Fig. 3, the initial state of the power CI in

stage k + 1 (sP
k+1) depends on its initial state in stage k (sP

k) and the
restoration decision made by the agent in stage k

(
aPsk

)
: sP

k+1←(aPsk |sP
k).

This transition function interconnects decisions made in sequential
stages of an MDP. The reward of selecting decision aPsk in state sk, rep-
resented by θP

k
(

aPsk

)
, is calculated based on the total increase that

making this decision (recovering the selected links) will make in ful-
filling power demand of the community from the moment that the
restoration for decision aPsk ends up to T. This reward will be calculated
in the learning environment of the power RL-OP that will be elaborated
in Section 4.1.2.

MDP is one of the most well-known approaches for making sequen-
tial decisions in stochastic environments. That is why it is used to frame
the decision-making process for the agents of RL-OPs. It can handle
uncertainties that may arise in the implementation process of selected
decisions, which affect transition functions (sP

k+1←(aPsk |sP
k)) (Nilim and

Ghaoui, 2005) and uncertainties that may occur in rewards generated
after implementing decisions (θP

k
(

aPsk

)
) (Paschalidis & Kang, 2008). In

this paper, we focus only on uncertainties in recovery times that impact
rewards. However, employing MDPs provides the opportunity to
consider other types of uncertainties in the problem formulation.

4.1.2. Learning environment of the power RL-OP
Assume that decision aPsk is selected at stage k (corresponds to the

decision-making moment of tk), and the total time needed to restore the
links of this decision is ϑ∗

LʹP
k =aPsk

, calculated by Model (1–4). The reward of
making this decision, θP

k
(

aPsk

)
, would be equal to the total power demand

that can be fulfilled by the power CI in [tk + ϑ∗
aPsk
, T] interval in the

presence of links of set aPsk minus the total power demand that can be
fulfilled by the power CI in [tk + ϑ∗

aPsk
, T] interval in the absence of links

of set aPsk . The demand that can be fulfilled by the power CI with a given
set of active links in each time unit (e.g., a day) is calculated usingModel
(5–13). This model optimizes the power distribution in the power CI,
GP(NP, LP), under different link availability scenarios. To include link
availability scenarios, we will assign a binary parameter (βP

l ) to each link
in the power network. Parameter βP

l = 1 if directed link l = (ń, n̅→) ∈ LP is
active and can be employed for transferring power in the power
network, and 0 otherwise.
Minimize ZP =

∑

n∈NP
D

UDP
n (5)

Subject to :

∑

nʹ∈NP
xP

l=(n, nʹ̅̅→
)

≤ PCP
n
(
∀n ∈ NP

S
) (6)

∑

nʹ∈NP
xP

l=(nʹ, n̅̅→
)

=
∑

nʹ́ ∈NP
xP

l=(n, nʹ́̅̅→
)

(
∀n ∈ NP

I
) (7)

∑

nʹ∈NP
xP

l=(nʹ, n̅̅→
)

= DDP
n − UDP

n
(
∀n ∈ NP

D
) (8)

xP
l=(nʹ, n̅̅→

)

≤ TCP
l=(nʹ, n̅̅→

)

.βP
l=(nʹ, n̅̅→

)

.yP
l=(nʹ, n̅̅→

)

(
∀l ∈ LP) (9)

yP
l=(nʹ, n̅̅→

)

+ yP
l=(n, nʹ̅̅→

)

≤ 1 (∀l ∈ LP) (10)

bP
l .xP

l=(nʹ, n̅̅→
)

≤ (φnʹ −φn) + M
(
1− yP

l=(nʹ, n̅̅→
)

) (
∀l ∈ LP) (11)

bP
l .xP

l=(nʹ, n̅̅→
)

≥ (φnʹ −φn) − M
(
1− yP

l=(nʹ, n̅̅→
)

) (
∀l ∈ LP) (12)

xP
l , bP

l ,φn ≥ 0 and yP
l ∈ {0,1} (∀n ∈ NP) (∀l ∈ LP) (13)

Objective function (5) minimizes the total unfulfilled demand at the
demand nodes of the power CI during a day. Variable UDP

n measures the
daily demand that cannot be fulfilled at node n ∈ NP

D under the link
availability scenario of {βP

l |∀l ∈LP}. Therefore, the maximum demand
that can be fulfilled per day is equal to ∑

n∈NP
D

DDP
n − Z∗P. Based on constraint

(6), the total power flow originating from a supply node cannot violate
its generation capacity (PCP

n). At intermediary nodes, the sum of power
inflow must equal the sum of power outflow (constraint (7)). At each
demand node, the total power inflow is equal to the fulfilled portion of
the demand at that node (constraint (8)). Constraint (9) ensures that the
power flows only through the links available in that scenario and in the
movement direction identified by variable yP

l=(nʹ, n̅̅→
)

. Variable yP
l=(nʹ, n̅̅→

)

is 1
if the movement direction of power is from node n’ toward node n, and
0 otherwise. Through each link, the power flow is only possible in one
direction (constraint (10)). Constraints (11) and (12) are related to
physics of the power network that is approximated as a linear DC model.
In the DC model, the power flow through each link should be consistent
with the reactance of that link (bP

l ) and the phase angle of its connecting
nodes (φn and φnʹ). For more details, refer to Nurre et al. (2012).

Model (5–13) optimizes the power distribution in the power network
under the link availability scenario of {βP

l |∀l ∈LP}. This optimization
model constitutes the learning environment of the power RL-OP and
provides reward θP

k for the restoration decisions aPsk made by the agent of
the power RL-OP. The process of calculating rewards based on the
outcomes of Model (5–13) is detailed in Section 4.1.3.

4.1.3. Solution approach: the learning and optimal policy generation by the
agent in the power RL-OP

To link the rewards of decisions made across different power MDP
stages, counter-cumulative improvements, denoted as Q values, are
calculated for the cells of its state-decision matrices. The Q values in the
power MDP of Fig. 3 represent the best counter cumulative rewards
achievable by making each decision in each state of the state-decision
matrices. For example, Q

(
sP
k , aPsk

)
quantifies the maximum expected

improvement attainable from stage k to the final stage |K| if decision ak→ is
selected by the agent in state sP

k at stage k. To reduce the computational
complexity of calculating Q values of all matrices, RL is used in this
paper to estimate Q values. We explain the process of estimating Q
values and training the power agent in this section.

In each iteration of power RL-OP, the first restoration decision is
made by the agent at time 0 (kP = 1), and a subset of disrupted links,
aP

sk=1 = , LʹP
k=1 is selected for recovery using the ε-greedy approach

(Jasmin et al., 2011). The restoration process of these links will end at
time ϑ∗

aPsk=1=LʹP
k=1

, if average recovery times are materialized for the links of
set LʹP

k=1. To consider uncertainty in the recovery times, random values
from the variation ranges of

[
σ̌l − σ̂ l

]
will be assigned to each link,

denoted as σ̃l. These random values are used to calculate the actual time
it may take to restore the selected links (ϑʹaPsk=1=LʹP

k=1):
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ϑʹ
L Ṕ

k=1
= MAX

∀l∈L Ṕ
k=1

{
σ̃l

wP∗
l

}
(14)

where wP∗
l values are calculated by Model (1–4). Selecting disrupted

links of aPsk=1 = LʹP
k=1 for recovery will make some improvement in the

daily demand that can be fulfilled by the power CI. This improvement,
θP

k=1
(

aPsk=1 = LʹP
k=1
)
, is calculated using Model (5–13) in the RL-OP’s

learning environment as follows:

This reward will be used to update the Q estimation of cell
(

sP
k=1,

aPsk=1

)
in the power MDP using the Bellman’s equation (Sutton & Barto,

1999):

Qτ+1
(

sP
k=1, aP

sk=1

)
= (1− α)Qτ

(
sP

k=1, aP
sk=1

)

+ α

[
θP

k=1
(

aP
sk=1

)
+ γmax

aPsk=2
Qτ
(

sP
k+1=2, aP

sk+1=2
)]

(16)

where α and γ respectively control the convergence speed of the learning
process and the weight of future rewards. The selected decision is stage 1
determines the state of the network in stage 2: sP

k=2←(aPsk=1 |sP
k=1). Then,

the second restoration decision is selected by the agent from the action
set of state sP

k=2 in the second stage (kP = 2) which includes another
subset of disrupted links, LʹP

k=2, that have not been recovered by time
ϑʹ

LʹP
k=1

. The reward of making this decision and the Q estimation of the
selected cell,

(
sP
k=2, aPsk=2 = LʹP

k=2
)
, are calculated using the same

approach. The agent continues this decision-making process until all
disrupted links are restored. This is the end of the first learning iteration.

Using the ε-greedy approach, in different iterations of the RL-OP,
different decisions are selected by the agent in MDP stages, and Q
values are updated continuously. After a high number of iterations
(τ→∞), the Q values of the power MDP, estimated by Eq. (16), converge
to their actual values. After convergence, the agent derives the optimal
link restoration policy for the power CI (πP∗

: SP→AP) as follows:

πP∗ = Argmax
πP∗

(
∑|KP |

kP=1
γkP

.θP
k

)
(17)

This policy recommends the best restoration schedule and resource
allocation for the disrupted links of the power CI with stochastic re-
covery times and dynamic number of recovery teams. However, the
interdependencies of these decisions to the restoration decisions of the
road CI are completely ignored in this policy. Therefore, some restora-
tion decisions of the recommended policy may not be executable in
practice.

4.2. RL-OP development for the road CI

This section explains the process of developing a distinct RL-OP for
the road CI. Section 4.2.1 explains the decision-making process for the
agent of the road RL-OP. The consequence/reward of the decisions made
by the agent is evaluated in the road RL-OP’s learning environment,
which will be elaborated in Section 4.2.2. The learning procedure for the

agent which helps it generate an uncoordinated restoration policy for
the disrupted links of the road network is explained in Section 4.2.3.

4.2.1. Decision-making process for the agent of the road RL-OP
Similar to the power RL-OP, the problem of identifying the best

restoration schedule and team allocation for the disrupted links in the
road network is formulated as an MDP. Assuming that LʹR is the set of
disrupted links in the road network, at each decision-making stage of the
road MDP (∀kR ∈ KR), the agent selects a subset of disrupted links for

restoration (LʹR
k ⊂LʹR) and allocates recovery teams (ΛR

k ) to those links
(wR

l , l ∈ LʹR
k ). The method used for team allocation is similar to the power

RL-OP. Model (1–4) is used to determine the best pattern of assigning
recovery teams to the links selected for simultaneous restoration in LʹR

k ,{wR∗
l
}

LʹR
k
.

The decision-making procedure used by the agent of the road RL-OP
for the restoration schedule is the same as for the power RL-OP. At each
stage of the road MDP, the initial configuration of the road network is
represented by a set of potential states: SR

k =
{sR

k
}. Each state corre-

sponds to a set of disrupted links that have not been recovered up to that
stage. In state sR

k , the decision space, denoted as ARsk =
{

aRsk

}
, encom-

passes all feasible subsets of links eligible for restoration. The reward
associated with selecting decision aRsk in state sk is determined by
quantifying the overall reduction in post-disaster travel time/cost
resulting from making decision aRsk (i.e., restoring the chosen roads of
this decision). This reduction will be calculated from the moment that
the restoration operation ends for decision aRsk up to T. This reward is
calculated in the learning environment of the road RL-OP, which will be
elaborated in Section 4.2.2.

4.2.2. Learning environment of the road RL-OP
In the case in which decision aRsk is selected at stage k (corresponds to

the decision-making moment tk), the time needed to complete this
restoration operation is ϑʹaRsk

. This means the links of decision aRsk will be
available for use at time tk + ϑʹaRsk

. So, the reward of making this decision,
θR

k
(

aRsk

)
, would be equal to the total travel time/cost in the road CI in

[tk + ϑʹaRsk
, T] interval in the absence of the links of set aPsk minus the total

travel time/cost in the road CI in [tk + ϑʹaRsk
, T] interval in the presence of

links of set aPsk . The post-disaster travel time/cost in the road CI in each
time unit (e.g., each day) is calculated using Model (18–23). This model
optimizes the traffic routing over the road CI, GR(NR,LR), under different
link availability scenarios. The availability of links in the network is
determined by a binary parameter βR

l . Parameter βR
l = 1 if link l = (n, nʹ)

is active and available for traveler usage, and βR
l = 0 otherwise.

Minimize ZR =
∑

∀od∈OD

∑

∀l∈LR
xR,od

l=(n,nʹ).ttl=(n,nʹ) (18)

Subject to :

∑

∀od∈OD
xR,od

l=(nʹ,n) ≤ FCR
l=(nʹ,n).β

R
l=(nʹ,n)

(
∀l ∈ LR) (19)

∑

n∈NR
xR,od

l=(m,n) = TFR
od(∀od=(m,mʹ) ∈ OD) (20)

θP
k=1
(

aP
sk=1

)
= ZP∗(βP

l = 0 (∀l ∈ LʹP), βP
l = 1 (∀l ∈ LP − LʹP)).

(
T − ϑʹ

ĹP
k=1

)
− ZP∗(βP

l = 0 (∀l ∈ LʹP − LʹP
k=1
)
, βP

l = 1 (∀l ∈ LP − LʹP + LʹP
k=1
))
.
(

T − ϑʹ
ĹP

k=1

)

(15)
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∑

n∈NR
xR,od

l=(n,mʹ) = TFR
od(∀od=(m,mʹ) ∈ OD) (21)

∑

n∈NR
xR,od

l=(n,nʹ)|nʹ∕=m,mʹ =
∑

nʹ́ ∈NR
xR,od

l=(nʹ,nʹ́ )|nʹ∕=m,mʹ(∀od=(m,mʹ) ∈ OD) (22)

xR,od
l ≥ 0(∀l ∈ LR) and (∀od ∈ OD) (23)
Objective function (18) minimizes the total post-disaster travel time/

cost in the road network. Parameter ttl represents the travel time/cost
for a traveler moving through link l ∈ LR. According to constraint (19),
traffic can only flow through active links (when βR

l = 1), and the flow
volume cannot exceed the capacity of the link (FCR

l ). Constraint (20)
ensures that the total traffic outflow from the origin node of each OD
pair is equal to the traffic demand of that OD. Similarly, the total traffic
inflow to the destination node of each OD is equal to the OD’s traffic
demand (constraint (21)). At intermediate nodes, which are neither the
origin nor the destination of an OD pair, the sum of inflow must equal
the sum of outflow, as expressed by constraint (22).

As explained before in Section 3.2, we assume that routine pre-
disaster traffic flows that may cause traffic jams in roads do not exist
in the area. In the cases in which we expect traffic jams (more than travel
flow capacity) and delayed travel time in the links of the road CI, we can
replace parameter ttl (that shows the travel time/cost for a traveler
moving through link l ∈ LR) with a function that connects the travel
time/cost of a link to its capacity and traffic flow. One of these functions
that is suggested by the Bureau of Public Roads (Bureau of Public Roads,
Anon., 1964) and widely used in the literature is:

ttl

(
∑

∀od∈OD
xR,od

l

)
= c0

⎡
⎣1+ 0.15

(∑
∀od∈ODxR,od

l
FCR

l

)4⎤
⎦

In this function, traversing link l is associated with a positive cost/
time of ttl for travelers, which is a function of its traffic flow ( ∑

∀od∈OD
xR,od

l ),

free-flow travel time (c0), and nominal capacity (FCR
l
). Also, we need to

modify constrain (19) in Model (18–23) as: ∑
∀od∈OD

xR,od
l=(nʹ,n) ≤ M.βR

l=(nʹ,n)

where M is a very large positive value.
Model (18–23) determines the best post-disaster traffic pattern in the

road CI with the minimum travel cost/time under the link availability
scenario of {βR

l |∀l ∈LR}. As the learning environment of the road RL-OP,
this model provides rewards for the restoration decisions made by the
agent of the road RL-OP at each stage of its MDP. The process of
calculating rewards based on the outcomes of Model (18–23) is detailed
in Section 4.2.3.

4.2.3. Solution approach: the learning and optimal policy generation by the
agent in the road rl-op

The RL mechanism, similar to the power CI, is used in this section to
estimate Q values for state-decision matrices of the road MDP. In each
learning iteration, the first set of restoration decisions (kR = 1) is made
at time 0, and a subset of disrupted links, aRsk=1 = LʹR

k=1, is selected by the
agent for recovery using the ε-greedy approach. The restoration process
of these links will end at time ϑʹ

LʹR
k=1

. This decision will make some
improvement in daily traffic time/cost throughout the road CI, which
will be calculated using Model (18–23) in the RL-OP’s learning envi-
ronment. The outcomes of the model used to calculate the decision’s
reward as follows:

θR
k=1
(

aR
sk=1

)
=ZR∗(βR

l =0(∀l∈LʹR), βR
l =1(∀l∈LR−LʹR)).

(
T−ϑʹ

LʹR
k=1

)

−ZR∗(βR
l =0(∀l∈LʹR−LʹR

k=1
)
, βR

l =1(∀l∈LR−LʹR+LʹR
k=1
))
.
(

T−ϑʹ
LʹR

k=1

)

(24)
Eq. (24) calculates the total reduction in travel time/cost during T if

we select to restore links of set aR
sk=1 at kR = 1. This reward is used to

update the Q estimation of cell
(

sR
k=1,aR

sk=1

)
in the road MDP as follows:

Fig. 4. The decision-making structure of the coupled RL-OPs.
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Qτ+1
(

sR
k=1, aR

sk=1

)
= (1− α)Qτ

(
sR

k=1, aR
sk=1

)

+ α

[
θR

k=1
(

aR
sk=1

)
+ γmax

aRsk=2
Qτ
(

sR
k=2, aR

sk=2

)]
(25)

The similar procedure is repeated to update Q values for other stages
of the MDP. After a high number of iterations (τ→∞), the Q values of the
road MDP converge to their actual values. After convergence, the agent
derives the optimal link restoration policy for the road CI (πR∗

: SR→AR)
as follows:

πR∗ = Argmax
πR∗

(
∑|KR |

kR=1
γkR

.θR
k

)
(26)

This policy determines the best uncoordinated restoration schedule
and resource allocation for the disrupted links of the road CI.

4.3. Coupled RL-OPs for coordinated restoration of road and power CIs

4.3.1. Coordinator development
There is no communication or information sharing between the

agents of the power and road RL-OPs developed in Sections 4.1 and 4.2.
This lack of coordination results in overlooking procedural in-
terdependencies (represented by sets ΠP

l (∀l ∈ LP) and ΠR
l (∀l ∈ LR)) in

the restoration policies generated by their RL-OPs. Therefore, the un-
coordinated policies generated by distinct RL-OPs may be infeasible or
suboptimal. Infeasibility means the recommended policy for a CI cannot
be executed in practice as is because the prerequisites of the links
selected for restoration in each decision-making stage may not have
been restored in the interdependent CI. To facilitate communication
between the agents of RL-OPs, we will design a “coordinator” that en-
ables partial information sharing between the agents in the coupled RL-
OPs. This coordinator prevents them from making infeasible restoration
decisions and coordinates their decisions to be more beneficial for the
entire community, not just their own CI. The coordinator includes two
modules (see Fig. 4):

■ Feasibility Module (FM): After accomplishing each restoration
decision in each RL-OP, the information of the recovered links and
their availability times are stored in the FM module (represented by
sets ΛP

k and ΛR
k and parameters ψP

k and ψR
k ). This information will be

available for the agents of other RL-OPs and will prevent them from
making infeasible restoration decisions.

■ Prediction Module (PM): This module shares the maximumQ value
that is achievable in each state of each MDP stage with agents of
other RL-OPs (represented by arrays Ω

P,τ
k and Ω

R,τ
k ). This information

helps those agents predict the consequences of their decisions in each
stage on interdependent CIs and select decisions that result in better
aggregated rewards (summation of rewards achieved by the agent
and the agents of its interdependent CIs) rather than individual
rewards.

This means the agent of each RL-OP does not have any information
about the network structure (e.g., the number and location of nodes and
links in networks), operational limitations (e.g., supply capacities and
demand quantities), and restoration operations (e.g., number of recov-
ery teams and recovery times of disrupted links) of other networks. They

only have access to the limited information shared through the coordi-
nator. Fig. 4 demonstrates how the decision-making structure of the
agents should be modified in the proposed coupled RL-OPs mechanism.
There is no change in the RL-OPs’ learning environments. In the rest of
this section, we explain the flow of information among the state-decision
matrices of RL-OPs and the modules of the coordinator:

■ Information sharing through FM: After making a restoration decision in
each stage of an RL-OP, the information of the recovered links and
their recovery accomplishment times are recorded in the FM module
of the “coordinator” (depicted as solid green arrows in Fig. 4). In the
under-study problem of coordinated restoration planning for power
and road CIs, there are two RL-OPs. Therefore, the FM module will
include two sets:
Λ

P
k =

{(lP, ctP
l
)} and Λ

R
k =

{(lR, ctR
l
)} (27)

Set ΛP
k includes all the links that have been restored in the power CI

up to the stage kP (lP) and their recovery accomplishment times (ctP
l ).

The same information is recorded in set ΛR
k for the road CI. Also, we need

to keep a record of the decision-making moments throughout the stages
of the MDPs:
ψP

k =ψP
k−1+ϑ’

L’P
k−1

(1< kP ≤
⃒⃒KP ⃒⃒) and ψ

R
k =ψR

k−1+ϑ’

L’P
k−1

(1< kR ≤
⃒⃒KR ⃒⃒)

(28)
Parameter ψP

k represents the time at which the restoration decisions
are made at stage kP of the power MDP. ψR

k demonstrates the same time
for the road MDP (ψP

1 = ψR
1 = 0).

■ Feasibility checking through FM: Before making any decision in each
stage of an MDP, the feasibility of these decisions will be checked
with the sets of the FM (depicted as dashed yellow arrows in Fig. 4).
For example, the decision aRsk is feasible in stage kR of the road MDP if
all of its prerequisites in set ∪

l∈aRsk
ΠR

l exist in set ΛP
k , and their recovery

accomplishment times are less than or equal to ψR
k :

ctP
l ≤ ψR

k for ∀l ∈ ∪
l∈aRsk

ΠR
l (29)

The sets of feasible decisions in each stage of the power and road
MDPs are represented by ÂP

sk =
{

âP
sk

}
and ÂR

sk =
{

âR
sk

}
.

■ Consequence predicting through PM: The PM of the coordinator helps
the agent of each RL-OP to predict the consequences of its decisions
on its interdependent CIs. This guides the agent to make coordinated,
rather than distinct, decisions because it will consider the impacts of
decisions not only on its own CI but also on the interdependent CIs.
For this purpose, the PM records the maximum Q value that is
achievable in each state of each MDP stage (depicted as solid blue
arrows in Fig. 4). These values are not fixed and updated in the it-
erations of RLs (τ):

Ω
P,τ
k =

[
MQP,τ(sP

k
)
= max

aPsk
Qτ
(

sP
k , aP

sk

)]
and Ω

R,τ
k =

[
MQR,τ(sR

k
)
= max

aRsk
Qτ
(

sR
k , aR

sk

)]
(30)
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The information of these sets is shared with the agents of all RL-OPs
(partial information sharing) to help them select coordinated decisions
(depicted as dashed orange arrows in Fig. 4). To employ these pre-
dictions in the decision-making process of agents, we revise the Bell-
man’s equation, Eq. (16), as follows:

Qτ+1
(

sP
k , aP

sk

)
= (1− α)Qτ

(
sP

k , aP
sk

)

+ α

[
θP

k
(

aP
sk

)
+ γmax

aPsk+1
Qτ
(

sP
k+1, aP

sk+1

)
+ λMQR,τ(sR

k
)
]

(31)

According to (31), the agent of the power RL-OP not only considers
the impact of the decisions made at stage kP on the future achievable
rewards in the power CI, term max

aPsk+1
Qτ
(

sP
k+1,aP

sk+1

)
, but also considers the

sequence of these decisions on the maximum achievable reward in the
road CI, term MQR,τ(sR

k
). Parameter λ represents the importance of the

road CI performance for the agent of the power RL-OP. Similarly, the Q
values for the road CI’s agent will be calculated as follows:

Qτ+1
(

sR
k , aR

sk

)
= (1−α)Qτ

(
sR

k , aR
sk

)

+ α

[
θR

k
(

aR
sk

)
+ γmax

aRsk+1
Qτ
(

sR
k+1, aR

sk+1

)
+ λMQP,τ(sP

k
)
]

(32)

For the decision-maker (or agent) of a CI, the priority of rewards
achievable within its own CI may be higher than those from interde-
pendent CIs. This is why we included the parameter "λ" in Eqs. (31) and

(32). In Eq. (31), this parameter represents the importance of the reward
achievable in the road CI for the decision-maker of the power CI. When
λ=1, the rewards of both CIs have equal priority for the decision-maker
of the power CI. When λ<1, the reward in the power CI has higher
priority than that of the road CI. When λ=0, the decision-maker of the
power CI prioritizes the individual reward of its own CI.

4.3.2. Reward normalization
When the rewards of CIs are on completely different scales, it is

necessary to normalize the rewards generated by the learning environ-
ments of the RL-OPs. This ensures that they (and consequently Q values)
are on a common scale, making them comparable with each other. For
example, in the problem of coordinated restoration planning for the
power and road CIs, the reward for restoring a given set of links in a
stage of the power MDP is calculated as follows:

Reward =

(Total unfulfilled power demand during the remaining
portion of T in the absence of the selected links

)

−

(Total unfulfilled power demand during the remaining
portion of T in the presence of the selected links

)

For normalization, we need to adjust the reward calculation in the
power MDP as follows:

Similarly, the reward for restoring a given set of links in a stage of the
road MDP can be normalized as follows:

Fig. 5. The road and power CIs of the study region.

Normalized reward =

(Total unfulfilled power demand during the remaining
portion of T in the absence of the selected links

)
−

(Total unfulfilled power demand during the remaining
portion of T in the presence of the selected links

)

Total unfulfilled power demand during T in the absence of any restoration activity

Normalized reward =

( Total travel cost/time during the remaining
portion of T in the absence of the selected links

)
−

( Total travel cost/time during the remaining
portion of T in the presence of the selected links

)

Total travel cost/time during T in the absence of any restoration activity
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Table 1
Implementation bias of uncoordinated restoration policies generated for interdependent CIs.
Scenario Features of Scenarios Policies generated by distinct RL-OPs Implementation bias

Power CI Road CI Nominal
reward for
power CI

Nominal
reward for
road CI

Nominal
reward in both
CIs

Feasibility of
policies

Actual
reward for
power CI

Actual
reward for
Road CI

Actual
reward in
both CIs

In
power
CI

In
road
CI

In
both
CIs# of

disrupted
links

# of
recovery
teams

# of
disrupted
links

# of
recovery
teams

Power
CI

Road
CI

1 3 3 3 3 5800 11,200 17,000 5200 11,200 16,400 11.5 % 0.0 % 3.6 %

2 3 6 3 6 5800 11,600 17,400 5200 11,200 16,400 11.5 % 3.6 % 6.1 %

3 3 9 3 9 5800 11,600 17,400 5200 11,200 16,400 11.5 % 3.6 % 6.1 %

4 7 3 7 3 15,600 23,000 38,600 15,000 21,600 36,600 4.0 % 6.5 % 5.5 %

5 7 6 7 6 15,800 23,220 39,020 15,800 22,030 37,830 0.0 % 5.4 % 3.1 %

6 7 9 7 9 16,800 23,850 40,650 16,500 22,620 39,120 1.8 % 5.4 % 3.9 %

7 9 3 9 3 16,400 42,330 58,730 13,800 33,410 47,210 18.8 % 26.7
%

24.4%

8 9 6 9 6 18,600 45,400 64,000 18,200 42,800 61,000 2.2 % 6.1 % 4.9 %

9 9 9 9 9 18,800 45,400 64,200 17,700 43,560 61,260 6.2 % 4.2 % 4.8 %

10 10 3 10 3 16,300 62,300 78,600 13,000 56,920 69,920 25.4 % 9.4 % 12.4%

11 10 6 10 6 18,000 65,530 83,530 16,700 64,500 81,200 7.8 % 1.6 % 2.8 %

12 10 9 10 9 18,700 66,810 85,510 17,300 63,380 80,680 8.1 % 5.4 % 6.0 %

13 11 3 11 3 15,600 127,580 143,180 15,300 118,880 134,180 2.0 % 7.3 % 6.7 %

14 11 6 11 6 17,300 133,930 151,230 16,200 117,390 133,590 6.8 % 14.1
%

13.2%

15 11 9 11 9 18,500 135,550 154,050 17,600 126,750 144,350 5.1 % 6.9 % 6.7 %

16 12 3 12 3 14,900 141,740 156,640 13,600 105,570 119,170 9.6 % 34.2
%

31.4%

17 12 6 12 6 18,200 142,140 160,340 17,100 129,850 146,950 6.4 % 9.5 % 9.1 %

18 12 9 12 9 18,300 143,710 162,010 18,000 140,380 158,380 1.7 % 2.4 % 2.3 %
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Table 2
Actual rewards of coordinated and uncoordinated restoration policies.
Scenario Features of Scenarios Policies generated by distinct RL-OPs Policies generated by coupled RL-OPs Improvement percentage Computational

time for coupled
RL-OPsPower CI Road CI Actual

reward for
power CI

Actual
reward for
road CI

Actual
reward for
both CIs

Reward
for power
CI

Reward
for road
CI

Aggregated
reward for
both CIs

Feasibility of
policies

Power
CI

Road
CI

Both
CIs

# of
disrupted
links

# of
recovery
teams

# of
disrupted
links

# of
recovery
teams

Power
CI

Road
CI

1 3 3 3 3 5200 11,200 16,400 5200 11,200 16,400 +0.0
%

+0.0
%

+0.0
%

5:16:12

2 3 6 3 6 5200 11,200 16,400 5600 11,000 16,600 +7.7
%

−1.8
%

+1.2
%

3:05:04

3 3 9 3 9 5200 11,200 16,400 5600 11,000 16,600 +7.7
%

−1.8
%

+1.2
%

3:13:00

4 7 3 7 3 15,000 21,600 36,600 15,600 21,610 37,210 +4.0
%

+0.0
%

+1.7
%

5:39:36

5 7 6 7 6 15,800 22,030 37,830 16,300 22,220 38,520 +3.2
%

+0.9
%

+1.8
%

5:54:46

6 7 9 7 9 16,500 22,620 39,120 16,600 23,250 39,850 +0.6
%

+2.8
%

+1.9
%

5:52:00

7 9 3 9 3 13,800 33,410 47,210 17,000 40,340 57,340 +23.2
%

+20.7
%

+21.5
%

9:11:17

8 9 6 9 6 18,200 42,800 61,000 18,700 43,420 62,120 +2.7
%

+1.4
%

+1.8
%

8:03:47

9 9 9 9 9 17,700 43,560 61,260 19,100 43,810 62,910 +7.9
%

+0.6
%

+2.7
%

17:39:23

10 10 3 10 3 13,000 56,920 69,920 16,300 60,680 76,980 +25.4
%

+6.6
%

+10.1
%

12:47:42

11 10 6 10 6 16,700 64,500 81,200 18,100 65,570 83,670 +8.4
%

+1.6
%

+3.0
%

11:15:25

12 10 9 10 9 17,300 63,380 80,680 18,600 67,820 86,420 +7.5
%

+7.0
%

+7.1
%

13:22:39

13 11 3 11 3 15,300 118,880 134,180 16,200 122,490 138,690 +5.9
%

+3.0
%

+3.4
%

22:52:46

14 11 6 11 6 16,200 117,390 133,590 17,400 128,540 145,940 +7.4
%

+9.5
%

+9.2
%

23:51:41

15 11 9 11 9 17,600 126,750 144,350 18,100 129,160 147,260 +2.8
%

+1.9
%

+2.0
%

26:06:50

16 12 3 12 3 13,600 105,570 119,170 15,400 137,010 152,410 +13.2
%

+29.8
%

+27.9
%

5 days,
3:47:58

17 12 6 12 6 17,100 129,850 146,950 17,200 140,010 157,210 +0.6
%

+7.8
%

+7.0
%

4 days, 16:05:51

18 12 9 12 9 18,000 140,380 158,380 18,500 148,870 167,370 +2.8
%

+6.0
%

+5.7
%

4 days, 12:05:51
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This normalization process converts rewards into ratios within [0, 1]
interval, bringing them to a common scale and making them
comparable.

4.3.3. Sequence of decisions in the coupled RL-OPs
In the first learning iteration, the sequence of decisions in the

coupled RL-OPs of the road and power CIs is as follows:

■ Using the ε-greedy approach and considering ΛR
k=1 = ∅ in the FM and

Ω
R,τ=1
k=1 =

[
0→
]
in the PM, the agent of the power RL-OPmakes the first

set of restoration decisions, âP
sk=1 , for the power CI at stage kP = 1.

After making these decisions, the information of the links selected for
recovery and their restoration accomplishment times is added to set
ΛP

k=2 in the FM. After updating Q values using Eq. (31), set Ω
P,τ=1
k=1 is

updated in the PM. Note that the time at the moment of making these
decisions is ψP1 = 0. After making these decisions, the time increases
to ψP2 = ψP1 + ϑʹ

âP
sk=1

in the power RL-OP.
■ Then, using the ε-greedy approach and considering ΛP

k=1 = ∅ in the
FM and Ω

P,τ=1
k=1 in the PM, the agent of the road RL-OP makes the first

set of restoration decisions, âR
sk=1 , for the road CI at stage kR = 1. The

information of the links selected for recovery and their restoration
accomplishment times is added to set ΛR

k=2 in the FM. After updating
Q values using Eq. (32), set Ω

R,τ=1
k=1 is updated in the PM. Also, the

decision-making time increases to ψR
2 = ψR

1 + ϑʹ
âR

sk=1
in the road RL-

OP.
■ Then, considering ΛR

k=2 in the FM and Ω
R,τ=1
k=2 =

[
0→
]
in the PM, the

agent of the power RL-OP makes the second set of restoration de-
cisions, âP

sk=2 , for the power CI using the ε-greedy approach. The in-
formation of selected links is added to set ΛP

k=3 in the FM, used to
calculate new Q values and update set Ω

P,τ=1
k=2 in the PM, and

employed to increase the power RL-OP time to ψP3 = ψP2 + ϑ∗
âP

sk=2
.

■ This procedure continues for all stages in the coupled RL-OPs. In the
other iterations, all the calculations will be the same, but the Q
values of the previous iteration will substitute the zero values of Q in
the MDP matrices.

5. Experimental results

5.1. Study region

Tornadoes are a prevalent natural disaster in the U.S., with an
average of 1200 occurrences annually (Perkins, 2002). The U.S. expe-
riences a higher frequency of severe tornadoes, including those cate-
gorized as EF4 and EF5, compared to other regions worldwide.
Particularly, these severe tornadoes are common in the central U.S.,
predominantly on the eastern side of the Rocky Mountains. The term
“Tornado Alley” is often used to denote the most tornado-prone areas in
the U.S., stretching from northern Texas to the Canadian prairies and
encompassing several states such as Texas, Louisiana, Oklahoma, Kan-
sas, Nebraska, Iowa, and South Dakota (Broyles et al., 2004). To eval-
uate the performance of the proposed approach, coupled RL-OPs, we
have chosen Sioux Falls, located in South Dakota, as our study region.
The road and power CIs of the study region are respectively represented
in Fig. 5a and b (for more details about these CIs refer to He et al., 2016).
For performance evaluation, we generated several tornado scenarios for
the study region that concurrently cause some disruptions in the power
and road CIs.

5.2. Scenario generation

Tornado forecasts and warnings in the U.S. are exclusively issued by
the National Weather Service, operating under the National Oceanic and
Atmospheric Administration (NOAA). According to NOAA reports, tor-
nadoes exhibit variable movement patterns, although their predominant
trajectories are typically from southwest to northeast and from west to
east (Roger, 2021). Most tornadoes have durations of<10 min. Utilizing
data on tornado path lengths since 1950, the average distance covered
by tornadoes is approximately 3.5 miles. This information serves as the
basis for generating realistic tornado scenarios.

For scenario generation, we consider four primary movement di-
rections for the tornado: southwest→northeast, west→east, south-
east→northwest, and east→west. Additionally, we consider three
options for tornado path length (2.5, 3.5, and 4.5 miles) and severity
(low, medium, and high). Within the tornado’s movement path (yellow
line segments in Fig. 5c and d) and its affected region (green areas in
Fig. 5c and d), a varying percentage (30 %, 60 %, and 90 %) of links are
disrupted at different severity levels. For example, at the low severity
level, only 30 % of the links located within the tornado’s affected area
are randomly selected as disrupted links. This ratio increases to 60 %
and 90 % for medium and high severity levels, respectively. This
approach enables us to generate small, medium, and large size problem

Fig. 6. The implementation bias of the uncoordinated restoration policies.
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instances. In Fig. 5c and d, we show a sample tornado trajectory with a
southwest→northeast movement direction to provide more details
about the scenario generation process. Fig. 5c shows that links (21–24),
(21–22), (20–22), (15–19), (19–20), (18–20), and (17–19) in the road CI
are located within the tornado’s potential damage area. According to
Fig. 5d, links (16–18), (15–16), (14–15), (13–14), (14–19), (19–20), and
(23–24) in the power CI are located within the tornado’s potential
damage area. In a scenario with a high severity level, all of these links
are considered disrupted in the road and power CIs. In a scenario with a
low severity level, three links are randomly selected from these sets as
disrupted links for that scenario.

The recovery time for each disrupted link is proportional to its length
and is considered a random variable with a uniform distribution, vary-
ing 20 % around its average value. Each scenario is evaluated under
three different numbers of recovery teams (3, 6, and 9 crews) to assess
the approach’s performance across varying levels of resource avail-
ability. The prerequisite set for each disrupted link in a CI is determined
based on spatial closeness. For example, the prerequisite set of a dis-
rupted link in a power CI includes 0, 1, 2, or 3 randomly selected dis-
rupted links in the road CI that are located in a given spatial proximity to
that power link.

The learning and exploration parameters used in the original (Eqs.
(16) and (25)) and revised (Eqs. (31) and (32)) Bellman’s equations for
distinct and coupled RL-OPs are as follows: α = 0.25, γ = 1, and λ =

0.1. The RL-OPs are coded using Python 3.10.0 and PyCharm IDE. The
optimization models within the learning environment of RLs are coded
using Gurobi Optimizer version 9.5.2. The computer used to run the
scenarios is 2.40 GHz Intel Core i9- 10885H CPU with 64 GB of RAM.

5.3. Results

The results of solving the generated scenarios are summarized in
Tables 1 and 2. Each scenario is solved by two different approaches: (1)
distinct RL-OPs (explained in Sections 4.1 and 4.2), which generate
uncoordinated restoration policies for the power and road CIs without
considering their interdependencies, and (2) coupled RL-OPs (explained
in Section 4.3), which generate coordinated policies that account for
interdependencies between the CIs.

The restoration policies generated by these two approaches will be
evaluated from two perspectives: (i) the feasibility of the policies: this
determines the ratio of policies that can be implemented in practice as
they are and can generate nominal rewards predicted by their corre-
sponding approach, and (ii) the quality of the policies: this determines
the actual reward provided by the policies to the community. For
feasible policies, the nominal and actual rewards are equal. Infeasible
policies must be modified according to CI interdependencies, resulting
in actual rewards lower than the nominal predicted values.

5.3.1. Restoration policies generated by the distinct RL-OPs
The policies generated by distinct RL-OPs may be infeasible in

practice as they are, because the agents (representing CI decision-
makers) do not consider CI interdependencies during policy genera-
tion. Columns 9 and 10 in Table 1 show the feasibility of policies
generated by distinct RL-OPs for the power and road CIs. The actual
rewards achieved by infeasible policies (measured by the improvement
in the service they provide to the community) differ from the nominal
rewards predicted by RL-OPs. To calculate their real reward, we modi-
fied the implementation of these policies to account for CI in-
terdependencies. For instance, the implementation of a decision
(including a set of selected disrupted links) in a generated policy is
delayed until all prerequisite links in interdependent CIs are restored.
Meanwhile, restoration priority is given to the next decision in the policy
that is implementable due to its prerequisites. If there is no such deci-
sion, the teams remain idle for a time unit (e.g., a day) and check the
decisions again in the next time unit. After this modification, the actual
rewards of the policies (e.g., increased demand fulfillment capability for
the power CI and reduced travel time/cost for travelers in the road CI)
are recalculated. These actual rewards and their nominal values are
summarized in Columns 11–13 and Columns 6–8 of Table 1, respec-
tively. A comparison of actual and nominal rewards highlights the
implementation bias resulting from uncoordinated restoration planning
for interdependent CIs.

Results summarized in Columns 9 and 10 of Table 1 show that 94.4
percent of policies generated by distinct RL-OPs for the power and road
CIs are not feasible and implementable in practice. As in current prac-
tices, adopting and implementing these policies will result in some
implementation bias.

A comparison of actual and nominal rewards for the power CI in
different disaster scenarios reveals that the actual additional service (e.
g., extra fulfilled power demand) provided by uncoordinated policies is
up to 25.4 % lower than their nominal predicted values (Fig. 6a). This
reduction ratio is called implementation bias of uncoordinated restora-
tion for the power CI. Similarly, for the road CI, the actual extra service
(e.g., reduction in total traffic time/cost of the road network) provided
by uncoordinated policies can be up to 34.3 % less than their nominal
predicted values (Fig. 6a). Aggregation of extra services provided by
both power and road CIs (equal to the sum of the extra services provided
by each CI) shows that the lack of coordination among CI decision-
makers in the post-disaster restoration process leads to an imple-
mentation bias ranging from 2.3 % to 31.4 % (Fig. 6b). These results are
summarized in the following observation:
Observation 1. The lack of coordination among decision-makers in the
post-disaster restoration process of interdependent CIs results in infeasible
policies in 94.4 percent of the time. Modification of these policies to make
them implementable may lead to up to a 31.4 % reduction in their expected

Fig. 7. The impact of the number of recovery teams on the nominal rewards of uncoordinated policies.
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service provision capabilities. These numerical results demonstrate that the
lack of coordination among CI decision-makers imposes a substantial burden
on the post-disaster resilience of communities facing potential disasters.

5.3.2. Influential factors in the implementation bias of uncoordinated
restoration policies

As depicted in Table 1 and Fig. 7, the nominal extra services (called
rewards) expected to be provided by the uncoordinated restoration
policies increase with the number of recovery teams. This trend is
observed across the nominal rewards of the power CI, road CI, and their
aggregated rewards. The rationale behind this lies in the dependency of
each disrupted link’s recovery time on the number of teams assigned to
it. By increasing the number of recovery teams, more teams can be
assigned to the links selected for restoration. Therefore, less time is
needed to restore these links in the CIs, and links become operative more
quickly. This swift availability of links enables the CIs to provide better
services to the community.

However, a similar trend is not necessarily seen in the actual rewards
of uncoordinated policies (refer to Columns 11–13 in Table 1). This
happens because the implementation bias amount in each scenario de-
pends on two sets of factors: (1) First Influential Factor Set (FIFS): This
includes the number and recovery times of prerequisite links for the
disrupted links within that scenario, and (2) Second Influential Factor
Set (SIFS): This entails the number of recovery teams available for the
CIs within that scenario.

■ Impacts of FIFS: In scenarios in which the number and recovery times
for prerequisite links of important disrupted links (links whose
disruption significantly reduce the service provision capability of the
CI) are high, we expect a substantial implementation bias (e.g.,
Scenarios 7 with the aggregated implementation bias of 24.4 % and
Scenario 16 with the aggregated implementation bias of 31.4 % in
Table 1). This occurs because uncoordinated policies prioritize these
important links in the restoration schedule. However, in practice,
their restoration and activation in the network is contingent upon the
recovery of their prerequisites in other CIs. The high number and
extended recovery times of these prerequisites lead to significant
restoration delays for these important links in modified policies. This
delay significantly increases the implementation bias of these
scenarios.

■ Impacts of SIFS: The restoration times of disrupted links depends on
the number of teams assigned to those links. By increasing the
number of recovery teams, more teams can be assigned to the links
selected for recovery and average restoration times of links reduce.
This reduction accelerates the restoration process of CIs. This means

delays caused in the absence of prerequisite links will be shorter
under uncoordinated policies, leading to a reduction in the imple-
mentation bias.

According to this discussion, by increasing the number of recovery
teams in a scenario, two outcomes may occur:

■ If the increase in the number of recovery teams does not significantly
alter the restoration schedule of disrupted links, the impact of SIFS
on reducing implementation bias is more substantial than the impact
of FIFS on changing it. As a result, the implementation bias reduces
by increasing the number of teams. In the tested scenarios, we can
see this trend in Scenarios 7–9 and 16–18 (Column 16 in Table 1).

■ If the increase in the number of recovery teams significantly alters
the restoration schedule of disrupted links, predicting its impact on
the implementation bias becomes challenging. If this rescheduling
prioritizes links with a high number and recovery times of pre-
requisites (since uncoordinated policies do not account for pre-
requisites), it may increase the implementation bias (as explained in
the impacts of FIFS). On the other hand, increasing the number of
recovery teams may reduce the implementation bias (as explained in
the impacts of FIFS). In this case, the tradeoff between these factors
determines the change (reduction or increase) in the implementation
bias caused by the increased number of teams. In the tested sce-
narios, we can see this trend in Scenarios 1–3, 4–6, 10–12, and 13–15
(Column 16 in Table 1).

In our numerical results (summarized in Table 1), the average
implementation bias in the power CI for scenarios with 3 recovery teams
is 11.9 %. This average bias reduces to 5.8 % and 5.7 % for scenarios
with 6 and 9 teams, respectively. For the road CI, the average imple-
mentation bias for scenarios with 3, 6, and 9 recovery teams is 14.0 %,
6.7 %, and 4.7 %, respectively. The same trend persists when increasing
the number of recovery teams involved in the restoration process of both
CIs. The average aggregated bias for scenarios with 3, 6, and 9 recovery
teams is 14.0 %, 6.6 %, and 5.0 %, respectively. These findings can be
summarized as follows:
Observation 2. The implementation bias caused by the lack of coordi-
nation in the restoration process of interdependent CIs is expected to be more
significant under the scarcity of recovery resources. This underscores the
importance of coordination in disasters with limited recovery resources.

5.3.3. Comparison of coordinated and uncoordinated restoration policies
In Table 2, Column 9 illustrates the additional power demand that

can be met by the power CI over the T horizon when implementing the

Fig. 8. The comparison of the aggregated rewards generated by the coordinated and uncoordinated policies.

N. Saha et al. Sustainable Cities and Society 114 (2024) 105761 

17 



coordinated restoration policy generated by the coupled RL-OPs. Col-
umn 10 displays the reduction in post-disaster travel time/cost for
travelers in the road network over the T horizon when the restoration
policy generated by the coupled RL-OPs is applied. Column 11 includes
the aggregated rewards of implementing coordinated policies for both
CIs. Columns 6, 7, and 8 provide the same information for the uncoor-
dinated policies generated by the distinct RL-OPs. As shown in Columns
12 and 13, all the policies generated by the coupled RL-OPs are feasible
and can be implemented without any modifications.

The improvement percentage in the rewards resulting from coordi-
nated policies relative to those generated by uncoordinated policies is
displayed in Columns 14, 15, and 16 for the power CI, road CI, and both
CIs, respectively. Column 17 shows the computational time for the
coupled RL-OPs approach. This time represents the running time
required to complete the iterations of the coupled RL-OPs approach. The
iterations terminate either when the maximum number of iterations
defined for the approach is reached or when the Q values converge.
Convergence occurs when the differences between Q values in two
successive iterations become smaller than a small, predetermined
threshold.

The comparison of aggregated rewards resulting from uncoordinated
and coordinated restoration policies reveals that (see Fig. 8):
Observation 3. The implementation of coordinated policies in the resto-
ration process of interdependent CIs consistently yields higher aggregated
service for the community. The overperformance of the coordinated resto-
ration policy can be as high as 27.9 %. The average improvement caused by
coordination in scenarios with 3, 6, and 9 recovery teams is 10.7 %, 4.0 %,
and 3.4 %, respectively. This implies that the average improvement caused by
coordination is more significant in post-disaster circumstances with lower
resource availability.

5.3.4. Importance of coordination in large disaster scenarios with a high
number of disruptions

As seen in Fig. 8, the difference between the extra service provision
capability of CIs restored using coordinated and uncoordinated policies
is more significant in large disaster scenarios with numerous disrupted
links (the difference between the orange and blue bars in Fig. 8 grows as
the number of disrupted links increases). The improvement due to co-
ordination in large disaster scenarios with 18, 20, 22, and 24 disrupted
links (averaged across different numbers of recovery teams) is 8.7 %, 6.7
%, 4.9 %, and 13.5 %, respectively. In contrast, these values drop to 0.8
% and 1.8 % in small scenarios with 6 and 14 disrupted links.

A comparison of improvements due to coordination in the aggre-
gated service/reward of CIs (see Column 16 in Table 2) indicates that the

above-mentioned trend is not strict and exhibits some fluctuations.
These variations occur because the improvement is scenario-specific and
depends on the prerequisites (the number of prerequisite links and their
recovery times) of the disrupted links in that scenario. In scenarios in
which links with challenging prerequisites (a high number of pre-
requisites and long recovery times) are disrupted, coordination yields
more significant improvements. Overall, the rough trend of improve-
ment due to coordination is an increasing function of scenario size. We
can summarize these findings as follows:
Observation 4. In large disaster scenarios, it is more likely that pre-
requisites of disrupted links in one CI will be disrupted in its interdependent
CI. In such situations, coordinating restoration activities between CIs becomes
crucial to ensure that the prerequisites of links selected for restoration in each
decision-making stage of a CI have already been recovered in its interde-
pendent CIs. This underscores the critical role of coordination in restoring
interdependent CIs during severe disasters that cause extensive link disruption
in their networks.

5.3.5. Impact of coordination on the individual performance of each CI
An individual examination of the improvements made by coordi-

nated restoration policies on the power and road CIs reveals interesting
results. In some of the disaster scenarios, the coupled RL-OPs approach
attempts to identify and propose feasible/executable restoration policies
that are Pareto-optimal compared to the infeasible/un-executable
restoration policies generated by distinct RL-OPs. For example, in Sce-
narios 2 and 3, the reward from the coordinated policy of the coupled
RL-OPs is 1.8 % lower for the road CI but 7.7 % higher for the power CI
(refer to Columns 14 and 15 in Table 2). However, in other scenarios, the
coordinated restoration policies generated by the coupled RL-OPs
dominate the uncoordinated policies of distinct RL-OPs (see Fig. 9).
For example, in Scenario 16, the rewards from the coordinated resto-
ration policy are 13.2 % higher for the power CI and 29.8 % higher for
the road CI. Similarly, in Scenario 13, coordinated policies lead to a 5.9
% higher reward for the power CI and a 3.0 % higher reward for the road
CI. These findings can be summarized as follows:
Observation 5. The proposed coupled RL-OPs approach always generate
feasible solutions. These solutions are optimal or at least pareto-optimal in
comparison to the infeasible policies generated by distinct RL-OPs.

6. Closing remark

In this paper, we developed a new approach called coupled RL-OPs,
which leverages the decision-making strengths of optimization models
through RL. This technique has been used to make restoration decisions

Fig. 9. The improvement percentage made by the coordinated restoration policies in the service provision capabilities of CIs.
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for a set of disrupted interdependent CIs operating in a decentralized
context. The proposed technique enables us to make several contribu-
tions to the field of CI resilience: (i) It facilitates coordinated restoration
for a set of interdependent CIs controlled by separate decision-makers
with limited intention for information sharing, (ii) It incorporates un-
certain recovery times and dynamic numbers of recovery times in CI
restoration planning, and (iii) The approach is flexible enough to make
several restoration decisions (e.g., restoration scheduling and resource
allocation) simultaneously.

The coupled RL-OPs approach was applied to make restoration de-
cisions for the road and power CIs in Sioux Falls, South Dakota, under
several tornado scenarios. Numerical results demonstrate the effective-
ness of the coupled RL-OPs in generating superior restoration policies
that outperform uncoordinated policies neglecting interdependencies.
The ineffectiveness of uncoordinated policies becomes more pro-
nounced in the presence of insufficient restoration resources (e.g., when
there are few recovery teams) in most scenarios. On average, the
advantage of coordination is expected to be more significant in large-
scale disasters with significant disruptions across the interdependent
CIs of a community. The proposed approach clearly enhances the post-
disaster resilience of communities and cities against disruptive events
and disasters affecting their CIs.

The suggested future research directions to expand this study are as
follows: (1) Theoretical expansion: The computational time of the
coupled RL-OPs increases exponentially with the size of problem in-
stances. Enhancing the computational efficiency of this mechanism is
possible by incorporating and integrating deep learning; (2) Application
expansion: Beyond disaster management, the proposed coupled RL-OPs
can be applied to make synergistic decisions in a wide range of decen-
tralized yet interdependent systems, such as designing risk mitigation
policies for interdependent yet autonomous companies within supply
chains and devising infection control policies for a set of interdependent
wards in healthcare facilities.
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Appendix A

Table A1
Notation used in the paper.
Sets
GP(NP,LP) The power network as a directed graph with a set of nodes, NP and a set of links, LP={l = (n,nʹ)} where n and nʹ ∈ NP

NPS The set of supply nodes in the power network that generate power
NPI The set of intermediate nodes in the power network that transfer power
NPD The set of demand nodes in the power network, representing aggregated households in municipal sites
NP = NPS ∪ NPI ∪ NPD The set of all nodes in power network
GR(NR,LR) The road network as a directed graph with a set of nodes, NR and a set of links, LR

NR The set of all nodes in the road network, representing urban sites
LR The set of all links in the road network, representing roads/highways connecting urban sites
NR

O The set of all origin nodes for daily traffics in the road network
NID The set of all intermediate nodes in the road network
NRD The set of all destination nodes for daily traffics in the road network
OD The set of all OD pairs in the road network, OD =

{od = (m,mʹ)|m ∈NR
O and mʹ ∈ NRD

}

ΠP
l The set of prerequisite links in the road network that should be restored before restoring link l ∈ LP in the power network

ΠR
l The set of prerequisite links in the power network that should be restored before restoring link l ∈ LR in the road network

LʹP The set of all disrupted links in the power network
KP =

{kP} The set of decision-making stages in the power MDP
LʹP

k A subset of disrupted links in the power network that can be selected for restoration at stage k
SP

k The set of potential states, including potential network configurations, in the power network at stage k
APsk =

{
aPsk

} The set of actions, including all subsets of links that can be selected for restoration in state sk, in the power network

(continued on next page)
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Table A1 (continued )
LʹR The set of disrupted links in the road network
KR =

{kR} The set of decision-making stages in the road MDP
LʹR

k A subset of disrupted links in the road network that can be selected for restoration at stage k
SR

k The set of potential states, including potential network configurations, in the road network at stage k
ARsk =

{
aRsk

} The set of actions, including all subsets of links that can be selected for restoration in state sk, in the road network
Parameters
PCPn The daily power generation capacity at supply node n ∈ NPS of the power network
DDPn The daily power demand at demand node n ∈ NPD of the power network
TCP

l The flow capacity of link l ∈ LPin the power network
FCR

l The traffic flow capacity of link l ∈ LR in the road network
TFR

od The traffic demand of pair od ∈ OD in the road network
T The post-disaster restoration horizon
σ(n,nʹ) The average restoration time of link l = (n,nʹ)
σ(n,nʹ) The actual restoration time of link l = (n,nʹ)
σ̌(n,nʹ) The lower bound for the restoration time of link l = (n,nʹ)
σ̂(n,nʹ) The upper bound for the restoration time of link l = (n,nʹ)
βP

l The binary parameter βP
l is 1 if link l ∈ LP is active in the power network; and 0 otherwise

α The learning convergence speed in RL
γ The weight of future rewards in RL
βR

l The binary parameter βR
l is 1 if link l ∈ LR is active in the road network; and 0 otherwise

ttl The travel time/cost for a traveler moving through link l ∈ LR in the road network
ctP

l The recovery accomplishment time for link l ∈ LP in power network
ctR

l The recovery accomplishment time for link l ∈ LR in power network
Cl The maximum number of teams that can work concurrently on link l
τ This index represents RL iterations
M A big positive value
ΛP

k The number of recovery teams available in the power network at stage k
ΛR

k The number of recovery teams available in the road network at stage k
λ The importance of the reward achievable in an interdependent CI for the decision-maker/agent of a CI.
Variables
ϑʹ

LʹP
k

The actual time needed to recover the links of set LʹP
k

ϑ∗
LʹP

k
The minimum time needed to recover the links of set LʹP

k if average recovery times occur for the links of this set
θP

k
(

aPsk

) The reward of selecting decision aPsk in state sk in the power MDP
ZP The total unfulfilled demand at the demand nodes of the power network during a day
Q
(

sP
k ,aPsk

) The maximum counter-cumulative improvement achievable from stage k to the final stage |K|, if decision aPsk is selected by the power agent in state sP
k at stage k

πP∗ The optimal link restoration policy for the power network
ϑʹ

LʹR
k

The actual time needed to recover the links of set LʹR
k

ϑ∗
LʹR

k
The minimum time needed to recover the links of set LʹR

k if average recovery times occur for the links of this set
θR

k
(

aRsk

) The reward of selecting decision aRsk in state sk in the road MDP
ZR The total post-disaster travel time/cost in the road network
Q
(

sR
k ,aRsk

) The maximum counter-cumulative improvement achievable from stage k to the final stage |K|, if decision aRsk is selected by the road agent in state sR
k at stage k

πR∗ The optimal link restoration policy for the road network
ψP

k The time at which the restoration decisions are made in stage k of the power MDP
ψR

k The time at which the restoration decisions are made in stage k of the road MDP
Ω

P,τ
k The maximum Q values that are achievable in states of stage k in the power MDP

Ω
R,τ
k The maximum Q values that are achievable in states of stage k in the road MDP

Decision Variables
wP

l The number of recovery teams assigned to link l ∈ LʹP
k in the power network

UDPn The daily demand that cannot be fulfilled at node n ∈ NPD in the power network
xP

l=(nʹ, n̅̅→
)

The total power flow from node n’ toward node n in the power network

yP
l=(nʹ, n̅̅→

)

1 if the movement direction of power is from node n’ toward node n, and 0 otherwise

bP
l The reactance of link l ∈ LP in the power network

φn The phase angle of node n ∈ NP in the power network
wR

l The number of recovery teams assigned to link l ∈ LʹR
k in the road network

xR,od
l The traffic flow through link l related to traffic demand of OD pair od in the road network

Appendix B

Initially, we replace objective function (1) with “Min ϑLʹP
k

” and incorporate constraint (B2) into the model:
Min ϑLʹP

k
(B1)

S.T. ϑLʹP
k
≥

σl
wPl

∀l ∈ LʹP
k (B2)
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wPl ≤ Cl ∀l ∈ LʹP
k (B3)

∑

l∈LʹP
k

wPl ≤ ΛP
k (B4)

wPl ≥ 0 and integer ∀l ∈ LʹP
k (B5)

Next, to linearize the model, we define the set of all possible numbers of teams that can be assigned to link l as Φl = {1, 2, 3,…, Cl}. We introduce a
binary variable vl

θ, where vl
θ = 1 if θ ∈ Φl crews are assigned to link l, and vl

θ = 0 otherwise. Consequently, we replace the term σl
wP l

with
(

σl
1vl

1+2vl
1+…+ClvlCl

)

and constraint ∑
l∈LʹP

k

wPl ≤ ΛP
k with ∑

l∈LʹP
k

∑
θ∈Φl

θvl
θ ≤ ΛP

k . Additionally, to ensure that exactly one option is selected as the number of assigned crews to each

link, we incorporate constraint (B9) into the model:
Min ϑLʹP

k
(B6)

S.T. ϑLʹP
k
≥

σl
1vl

1 + 2vl
1 + … + ClvlCl

∀l ∈ LʹP
k (B7)

∑

l∈LʹP
k

∑

θ∈Φl

θvl
θ ≤ ΛP

k (B8)

∑

θ∈Φl

vl
θ = 1 ∀l ∈ LʹP

k (B9)

vl
θ ∈ {0,1} ∀l ∈ LʹP

k and ∀θ ∈ Φl (B10)

We proceed by redefining constraint (B7) as [1(ϑLʹk × vl
1
)
+ 2 (ϑLʹk × vl

2
)
+ …+ Cl

(
ϑLʹk × vl

Cl

)
] ≥σl, and replacing ϑLʹk × vl

θ with vʹl
θ . Since ϑLʹk is

continuous and vl
θ is binary, v́ l

θ must be either 0 or ϑLʹk . To enforce this condition, we introduce three additional constraints, (B13)-(B15), to the model.
The resulting linearized model is as follows:
MinϑLʹP

k
(B11)

S.T. 1.vʹl
1 + 2.vʹl

2 + … + Cl⋅vʹl
Cl ≥ σl ∀l ∈ LʹP

k (B12)

vʹl
θ ≤ M.vl

θ ∀l ∈ LʹP
k and ∀θ ∈ Φl (B13)

vʹl
θ ≤ ϑLʹk + M(1− vl

θ

)
∀l ∈ LʹP

k and ∀θ ∈ Φl (B14)

vʹl
θ ≥ ϑLʹk − M(1− vl

θ

)
∀l ∈ LʹP

k and ∀θ ∈ Φl (B15)
∑

θ∈Φl

vl
θ = 1 ∀l ∈ LʹP

k (B16)

∑

l∈LʹP
k

∑

θ∈Φl

θvl
θ ≤ ΛP

k (B17)

vl
θ ∈ {0,1} and vʹl

θ ≥ 0 ∀l ∈ LʹP
k and ∀θ ∈ Φl (B18)
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