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Statistical and dynamic model of surface morphology evolution during polishing
in additive manufacturing

Adithyaa Karthikeyan , Soham Das , Satish T.S. Bukkapatnam , and Ceyhun Eksin

Department of Industrial and Systems Engineering, Texas A&M University, College Station, TX, USA

ABSTRACT
Many industrial components, especially those realized through 3D printing undergo surface finishing
processes, predominantly, in the form of mechanical polishing. The polishing processes for custom
components remain manual and iterative. Determination of the polishing endpoints, i.e., when to
stop the process to achieve a desired surface finish, remains a major obstacle to process automation
and in the cost-effective custom/3D printing process chains. With the motivation to automate the
polishing process of 3D printed materials to a desired level of surface smoothness, we propose a
dynamic model of surface morphology evolution of 3D printed materials during a polishing process.
The dynamic model can account for both material removal and redistribution during the polishing
process. In addition, the model accounts for increased material flow due to heat generated during
the polishing process. We also provide an initial random surface model that matches the initial sur-
face statistics. We propose an optimization problem for model parameter estimation based on empir-
ical data using KL-divergence and surface roughness as two metrics of the objective. We validate the
proposed model using data from polishing of a 3D printed sample. The procedures developed makes
the model applicable to other 3D printed materials and polishing processes. We obtain a network
formation model as a representation of the surface evolution from the heights and radii of asperities.
We use the network connectivity (Fiedler number) as a metric for surface smoothness that can be
used to determine whether a desired level of smoothness is reached or not.
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1. Introduction

The North American metal polishing market registered a
market value of around USD 13.2 billion in 2019. It is
poised to witness unprecedented growth at a compound
annual growth rate of about 9% over the forecast period of
2021–2027, due to the rising applications of additive manu-
facturing in various industry verticals such as healthcare,
automotive, aerospace and defense sectors (Anon, 2020).
Metal Additive Manufacturing techniques allow for the cre-
ation of freeform components out of hard-to-process alloys
with unique material properties. The rapid solidification and
cooling rates during AM can result in a fine-grained micro-
structure, leading to improved mechanical properties such as
higher strength and enhanced fatigue resistance.
Nevertheless, existing Additive Manufacturing (AM) meth-
ods are often accompanied by post-processing techniques
such as polishing in order to improve surface finish and
reduce surface porosity (Franco et al., 2017; Tammas-
Williams et al., 2017). Such finishing operations find high
utility in industrial applications where surface morphology
and aesthetics are of great importance to the end use cus-
tomers (Iquebal et al., 2017).

Whereas AM parts offer unique advantages in terms of
design flexibility and rapid prototyping, their machinability
can pose challenges compared with cast or wrought counter-
parts, primarily due to strength anisotropy, which is associ-
ated with directional solidification and columnar grain
growth (Ananda-Kumar et al., 2018). In addition, some
alloys fabricated via AM tend to have low thermal conduct-
ivity, and exhibit shear localization during their processing
(Iquebal et al., 2019). The initial surface roughness of AM
parts is typically higher due to the layer-by-layer build-up
process. They also have a high tendency towards the occur-
rence of internal defects such as porosity or voids. This
means that AM parts may require more extensive polishing
to achieve the same level of smoothness as cast/wrought
parts (Lass et al., 2020; Shiyas and Ramanujam, 2021).
Polishing techniques for AM parts can require specialized
approaches such as laser polishing or vibratory polishing in
conjunction with manual interventions to achieve the
desired results. The choice of tools, abrasives, and processes
might need to be adapted considering factors such as the
type of AM technology, material properties, complex geome-
tries and surface features.

Though the practice of polishing has been in existence
from time immemorial, the exact mechanism behind
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polishing is still not completely known. Early theories put
forth by Hooke and Newton (Newton, 1730), followed by
Herschel (Archard, 1985) viewed polishing as a material
removal process at a very fine scale resulting in gradual flat-
tening of the surface. Later, Beilby proposed surface flow
and material redistribution as the dominant mechanism due
to localized melting at the asperity–abrasive contact based
on observations from microscopic images (Beilby, 1921).
Experiments conducted by Winter and McDonald (1969)
and Everaerts et al. (2019), showed the development of
high-residual compressive stress at the metal surface during
polishing, thereby providing indications of plastic flow on
the surface. Iquebal et al. (2019) presented experimental evi-
dence through Scanning Electron Microscope (SEM) images
to show that material removal prevailed only during the ini-
tial stages of polishing, and surface smoothening was largely
a result of material flow and redistribution. The SEM obser-
vations at later stages of polishing revealed viscous flow at
the asperity–abrasive sliding contacts, involving material
flow towards the asperity sides in the form of thin fluid-like
layers—see Figure 1. This lateral flow of material continued
until the effective distance between neighboring asperities
reduced to a critical value, after which bridging occurred
resulting in a uniformly smooth surface. Inspired by these
experimental observations, here we propose a lumped mass
system model that captures the surface morphology evolu-
tion due to material removal and redistribution.

Modeling and simulation of polishing processes pose a
unique set of challenges, due to the stochastic nature of the
asperity–abrasive interaction compared with other material
removal processes such as milling and turning. The decision
making involved in polishing process as to when to change
the polishing pad and when to stop polishing relies heavily
on the practitioner’s visual inspection and prior experience.
Repeated stoppages and surface inspections consume a

significant amount of process time. Jin et al. (2019) pro-
posed Gaussian process-based decision rules for determining
pad change and endpoint condition for polishing, by detect-
ing change patterns in correlation characteristics of the
surface.

Various analytical models published in the literature
focus on estimating the polishing pad and surface asperity
contact temperature rise for different materials. Jaeger
(1942) provided flash temperature estimates at the asperity–
abrasive sliding contact by considering two semi-infinite
planes of different geometrical configurations with constant
heat flux over the instantaneous surface of contact. Bulsara
et al. (1997) determined the maximum and average tempera-
ture rise at the abrasive – workpiece contact in a polishing
process assuming the workpiece to be perfectly rigid and
nondeformable. Horng et al. (2004) proposed an analytical
model for temperature rise at asperity–abrasive contact dur-
ing polishing by combining the micro-contact model and
contact temperature model, and studied the effects of par-
ticle size, particle density, pad hardness and surface rough-
ness values on temperature. A transient heat transfer model
was proposed by Mondal et al. (2015) to estimate the flash
temperature in a pin-on-disk tribometer in view of the vari-
ation in coefficient of friction. Iquebal et al. (2019) probed
the estimated flash temperature for Ti-6Al-4V as a function
of asperity–abrasive contact radii and asperity heights using
Carslaw and Jaegar’s circular moving heat source model
(Carslaw and Jaeger, 1959). The heat partition between the
asperity and the abrasive particle was determined based on
Blok’s postulate (Blok, 1937) by setting equal the maximum
(quasi-steady state) temperatures of asperity and abrasive
particle within the contact. Several models and simulation
studies for estimating material removal rate during polishing
have been reported in the literature (Evans et al., 2003; Jeng
et al., 2003). However, none of them explain the surface

Figure 1. SEM images showing the evolution of spherical asperity structure of 3D printed Ti-6Al-4V samples due to polishing as a result of complex material flow
patterns (Iquebal et al., 2019).
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plastic flow and material redistribution phenomenon that
has been experimentally observed in polishing of metals.
Therefore, understanding the exact phenomenology that
governs the surface morphology evolution during post-proc-
essing stages is essential for developing accurate mathemat-
ical models to achieve desired specifications.

The literature provides clear evidence that surface modifi-
cation during polishing of additive manufactured metals
takes place due to material redistribution (Iquebal et al.,
2019) as well as material removal (Jeng and Huang, 2005).
Currently, there does not exist a single model that captures
surface evolution in polishing that combines both material
removal and material redistribution phenomena. Here, we
provide an analytical lumped mass system model coupled
with network formation dynamics to capture the following:
(i) the effect of load distribution under various asperity dis-
persion; (ii) the effect of heat generated during polishing, as
well as the resulting material property modification; and
finally, (iii) the phenomenon of bridging that is responsible
for smoothing of surfaces, due to material redistribution.
Specifically, the model represents a surface asperity distribu-
tion by a set of spherically curved tops with different heights
and diameters. The distribution of the heights and radii
determine the load-bearing asperities during the polishing
process and the surface roughness. The dynamic model cap-
tures the increasing asperity temperatures due to the energy
released upon contact. The temperature modulates the
material flow versus removal, which determines the rate of
decrease in heights and increase in radius of each load-bear-
ing asperity.

The dynamic model requires an initialization of the set of
asperities and their properties that best matches the surface
roughness of the work piece. We provide a random surface
model for determining initial asperity heights and radii that
matches the empirical surface characteristics, e.g., density
and roughness. We also propose a novel objective for model
parameter fitting based on experimental data. The objective
considers a weighted combination of difference in surface
roughness and Kullback–Leibler (KL) divergence between
the model and empirical height distributions. We observe
that minimizing a suitably chosen weighted combination of
these metrics yields more desirable parameter fits than mini-
mizing solely either of these metrics (difference in surface
roughness or KL divergence).

We use the surface measurements from a prior experi-
mental study to fit the model and track the evolution of
surfaces for both the model and the experiments. The
experiments were conducted in the Smart Manufacturing
Lab at the Department of Industrial and Systems
Engineering in Texas A&M University on 3D printed
Ti-6Al-4V alloy samples. We show that our proposed model
is able to capture the time evolution of a surface, and accur-
ately estimate the height distribution of asperities at various
polishing stages, with consistent small KL divergence values
and minimal difference in surface roughness, when com-
pared to experimental surface measurements. More impor-
tantly, this modeling methodology can be generalized to
multiple material systems because of the use of lumped

mass system approach using the algorithms/procedures pro-
vided. Lastly, we map the heights and radii distribution of
the surface asperities to a network. This mapping provides a
novel network formation model coupled with the lumped
mass system dynamics, wherein the network connectivity
serves as a metric for tracking surface evolution. The contri-
butions of this article are fourfold:

1. We propose the first lumped mass system model that
captures the evolution of the surface during polishing
due to material removal and redistribution.

2. The model allows for apportioning the surface modifi-
cation due to the contribution of material removal vs.
redistribution. Specifically, we identify that although
material removal is a major factor at the beginning,
material redistribution is the major driver of surface
smoothing in the later stages of polishing.

3. We propose a novel objective for parameter fitting, that
is a weighted combination of KL divergence and differ-
ence in surface roughness between the model and
experimental height distributions. This weighted object-
ive is able to identify surface characteristics that are in
better agreement with empirical data than either of the
individual metrics (KL divergence, and difference in
surface roughness) considered alone.

4. We propose a novel initial surface model that system-
atically generates a distribution of asperity heights and
radii in accordance with the empirical surface metrics.
Together with the parameter fitting procedure, the ini-
tialization allows for a mapping of the validated sur-
face model to a network formation model which can
then be used as a criterion to determine when to stop
polishing.

1.1. Related literature on modeling surface polishing

Prior models of surface polishing focus on either material
removal or redistribution driven by experimental evidence.

1.1.1. Material removal

The goal is to characterize Material Removal Rate (MRR) as
a function of the downward pressure, relative velocity and
tool wear via a physical model (Jeng and Huang, 2005;
Jackson and Streator, 2006; Guiot et al., 2011; Rao et al.,
2013). All of these studies build on a micro-contact model
that describe the relation between two surfaces in contact.
The essence of these models is that all surfaces are micro-
scopically rough, and the roughness of the surface can be
represented by a distribution of asperities represented by
spheres (Greenwood and Williamson, 1966), ellipses (Jeng
and Wang, 2003) or multi-scale asperities (Majumdar and
Bhushan, 1990). Given the contact geometry and asperity
distribution, e.g., density and asperity size, the effective force
on each asperity is computed so that the total down force is
balanced by the sum of the forces acting on each asperity.
The balance of forces corresponds to a separation distance
between the polishing pad and the surface, which
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determines the active surface area on each asperity.
Together with the relative velocity, the active surface area
corresponds to a MRR that is dependent on the material
hardness (density of particles) (Jeng and Huang, 2005).
These models are inherently static, i.e., rely on a snapshot of
the surface, and do not consider changes in the surface pro-
file as a result of material removal. Moreover, in many cases
it is unlikely that material abrasion is the main driver of
surface smoothing given that material removal would only
expose subsurface pores (Beilby, 1921).

1.1.2. Material redistribution

The premise is that the plastic flow of the surface is the
dominant mechanism in the smoothing of the surface dur-
ing polishing instead of abrasion. Indeed, the formation of a
Beilby layer, i.e., plastic flow resulting in filling of pores and
bridging asperities, is documented by experimental findings
for different materials (Beilby, 1921; Bowden and Hughes,
1937; Sundaram et al., 2012; Iquebal et al., 2019). Some of
these works also indicate that the plastic flow of material
may be due to high flash temperatures in the range 700–
900K reached during polishing (Iquebal et al., 2019). Given
the experimental evidence and the inadequacy of the mater-
ial removal theory, recent efforts focused on modeling
material flow and formation of bridges.

A recent modeling approach in this direction represents
the surface as a random planar graph with each node (asper-
ity) having a disk shape, i.e., a radius (Bukkapatnam et al.,
2018; Iquebal et al., 2019). A link represents a merger or
bridging between two asperities. The radius of an asperity
grows as the polishing continues. As the disks approach
each other, the probability of forming a link grows. While it
is noted that the thermomechanical state of the material, as
well as the process parameters (down force and velocity),
determine the rate of change in radii, these efforts rely on in
situ images to quantify the change in radii. In contrast, here
we provide a physical model of how thermomechanical and
micro-contract structures can together affect the changes in
asperity geometry.

In doing this, we consider a spherical asperity whose con-
tact with the polishing pad depends on the down force bal-
ancing as per the approach of Greenwood and Williamson
(1966). The contact at an asperity leads to material removal
and material flow dynamics. The material flow at an asperity
means a reduction in height and growth in its radius. The
speed of change in asperity features (height and radius)
depends on the local temperature. The local temperature
rises with the down force and the relative velocity. Together
these mechanisms and feedbacks constitute a lumped mass
dynamical system of material surface morphology during
polishing that account for the two experimentally validated
major drivers of surface polishing: material removal and
flow.

This article is organized as follows. Section 2 describes
the principle behind using a lumped mass system approach
and the governing differential equations that capture the
time evolution of asperity heights, radii and temperature

as a result of polishing. Section 3 describes the initial sur-
face model and a procedure for finding the optimized
model parameters based on experimental data. Section 4
presents the polishing data that is used in Section 5 for
initial surface model generation and parameter fitting.
Section 6 provides a mapping of the model state (heights
and radii of asperities) to a spatial network. With this
mapping, the lumped mass system model is represented as
a network formation model where the connectivity of the
network represents the surface smoothness. We end with
concluding remarks in Section 7.

2. Thermomechanical interactions and surface
asperity dynamics during a polishing process

The surface is composed of a distribution of asperities with
a specific geometry, here conically shaped with spherically
curved tops. Such a realization of asperity geometry at the
surface becomes possible as we systematically control the 3D
printing process such as Direct Energy Deposition, Electron
Beam Melting and Selective Laser Melting (Iquebal et al.,
2019). In many AM processes it is not unusual for the surfa-
ces to bear some signatures of the powders, especially when
printed under low power settings. These signatures tend to
be non-directional and the asperity structure tends to be
radially symmetric (Karayel and Bozkurt, 2020). In this
model, we represent the surface of a 3D printed workpiece
using N asperities, each having a spherical radius Ri at its
top, height hiðtÞ and temperature TiðtÞ at a particular instant
of time t where i 2 f1, 2, 3, :::,Ng (Faraon, 2005). The sur-
face radius riðtÞ is initially assumed to be Ri � sin (1�) at
time t ¼ 0 and increases with time as a result of flattening
of the asperity top due to polishing.

A polishing process, as depicted in Figure 2(a), applies a
total down force FðtÞ on the workpiece surface via the pol-
ishing pad that rotates at speed sðtÞ: The total force acting
on the surface is borne by a set of asperities, denoted as
“active asperities”. The force acting on each asperity Fi is
calculated based on Hertz theory (Johnson, 1985) as follows:

FiðtÞ ¼ 2
3

ffiffiffiffiffiffiffiffiffi
riðtÞ

p
E0maxððhiðtÞ − dðtÞÞ3=2, 0Þ, (1)

where the constant E0 ¼ 1−�21
E1
þ 1−�22

E2
with E1 and E2, and �1

and �2 are the elastic moduli and Poisson’s ratio of the two
bodies in contact, respectively. The term dðtÞ in (1) repre-
sents the height of the polishing pad that is obtained by

equating the sum of forces acting on each asperity, i.e., F ¼PN
i¼1 FiðtÞ where FiðtÞ is given in (1) (see Figure 2(b) for a

pictorial description). The max operator in (1) means that
an asperity is “active”, i.e., bears a load, if dðtÞ < hiðtÞ: We
solve for dðtÞ at every time t using an iterative process
where we increase its value starting from zero until the sum
of individual forces equal to the total down force F. The
applied load gets distributed to all the active asperities. As
polishing continues, i.e., t increases, the heights of active
asperities decrease, and new active asperities emerge as they
come in contact with the pad.
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The down force acting on the asperity FiðtÞ and the rela-
tive speed between the pad and workpiece sðtÞ increases the
temperature of the asperity Ti,

@Ti

@t
¼ −aðTiðtÞ − ToÞ þ ðj1FiðtÞ þ j2sðtÞÞ, (2)

where a is the cooling constant, T0 is the room tempera-
ture (20�C), and j1 and j2 are heating constants that
depend on the abrasive pad and the workpiece. We note
that the temperature is determined by repeated flashing at
the point of contact between the surface asperity and the
polishing pad (Iquebal et al., 2019). The flash temperature
at the contact point is significantly higher compared with
other regions in the asperity. We consider the temperature
Ti in (2) as the “bulk” temperature affected by energy
released through repeated flashing. In conventional finish-
ing processes, this temperature increase is generally
neglected due to the high thermal conductivity of the
material as well as the use of large volumes of coolant
and slurry. However, such temperature variations and their
influence on the material properties cannot be ignored
under ultraprecision manufacturing.

We assume the bulk temperature of an asperity TiðtÞ
affects the material redistribution at the asperity – polishing
pad contact by determining the rate of change in the asper-
ity height hiðtÞ as follows,

@hi
@t
¼ −riðtÞTiðtÞFiðtÞ, (3)

where

@ri
@t
¼ b

T0

@Ti

@t
, (4)

and temperature diffusion constant b � 0: The height of an
asperity decreases with down force FiðtÞ: The rate of

decrease in height of active asperities is proportional to its
current temperature TiðtÞ and heat carrying capacity riðtÞ
modeled as a first-order approximation proportional to the
total rate of change in the temperature as per (4).

The radii of active asperities at the point of contact
increase at a rate proportional to the decrease in height (see
Figure 2(c)). In particular, the radius of asperity i, denoted
with riðtÞ, evolves as follows

@ri
@t
¼ −giðtÞqiðtÞ

@hi
@t

: (5)

where giðtÞ is the fraction of material redistributed, and
qiðtÞ > 0 maps the decrease in height of asperity i to an
increase in radius of the asperity. Material redistribution
rate is always between zero and one, where giðtÞ ¼ 1 means
material is fully conserved whereas giðtÞ ¼ 0 means material
is fully removed during polishing. Empirically, we find that
material removal is dominant in the initial stages, i.e., giðtÞ
is small, and material redistribution tends to dominate in
later stages, i.e., giðtÞ tends to increase toward one. The
mapping qiðtÞ depends on the spherical shape of the initial
asperity and the ratio between height and radius. In particu-
lar, the larger is the height compared to the radius, the
faster is the growth in radius per unit of height reduction.
In Section 5.2, we provide a functional form for giðtÞ and
qiðtÞ based on experimental data obtained from polishing
3D printed Ti-6Al-4V samples.

2.1. Remarks on the surface asperity dynamics

When the down force F ¼ 0 is zero and polishing speed
sðtÞ ¼ 0 (i.e., there is no spin), solving for polishing pad

height in (1) and F ¼PN
i¼1 FiðtÞ yields that dðtÞ ¼

maxi¼1, :::,NhiðtÞ: Thus, the heights and radii of surface

Figure 2. (a) Pictorial representation of the polishing process. (b) Graphic describing the contact between polishing pad and surface asperities during the polishing
process. Here dðtÞ indicates the height of the polishing pad and d refers to the gap between polishing pad and active asperities used in calculating their load distri-
bution. (c) Geometric representation of an asperity peak with its top getting progressively flattened as a result of polishing.
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asperities (hiðtÞ and riðtÞ) remain invariant with time even
when TiðtÞ > T0 if F ¼ 0:

The dynamics begin to develop when the down force F
and material redistribution fraction giðtÞ are positive ð> 0Þ
for i ¼ 1, :::,N: To see this, note that there is at least one
load-bearing asperity with FiðtÞ > 0 when F > 0: This is
because dðtÞ < hiðtÞ holds true for at least one asperity i ¼
1, :::,N irrespective of the radii and height values. For a
load-bearing asperity i, the temperature will always be above
the room temperature, i.e., TiðtÞ > T0: Accordingly, the
force acting on the asperity will reduce the asperity height
and increase its radius for a positive fraction of material
redistribution giðtÞ > 0 as per (3) and (5), respectively.

Under a constant down force F, once a spherical asperity
becomes active, its radius begins to increase at a rate pro-
portional to the rate of decrease of its height as per (5). This
results in the pad height (displacement) to equate acting and
bearing forces at higher values. As a result, the total down
force gets distributed to all active asperities in a manner
proportional to the square root of the radii at their points of
contact and also ensures the pad height to continuously
decrease along with the decrease in heights of active asper-
ities, as indicated in Figure 3. We note that the initial asper-
ity structure and the dominant mechanism in polishing can
differ for different materials fabricated via different 3D
printing methodologies. However, the lumped mass system
framework and the governing differential equations can be
altered accordingly to capture the variations in the initial
asperity structure and track the surface morphology evolu-
tion for different polishing speeds and down force.

The model makes a few simplifying assumptions regard-
ing the polishing process. Note that the pad’s relative speed
affects the temperature as per (2). However, a positive down
force will continue to change the surface asperity configur-
ation, even if the relative speed of the pad is zero. This is
not quite realistic, and thus we assume that the polishing
pad always has a positive relative speed. This means our
model ignores the effects of the pad’s relative speed on the
changes in the radii and heights through the redistribution

rate. The prior works on polishing showed that the polishing
speed affects the pad–workpiece tribology, including the
asperity wear mechanism and friction (Luo and Dornfeld,
2001). However, significant effects on MRRs were observed
only with very high polishing speeds (> 1000 rpm) as in the
case of magnetic float polishing (Jiang et al., 1998). Other
approaches discussed the effect of polishing speed on the
thermal aspects of the process (Komanduri and Hou (2000,
2001a, 2001b)). Similarly, we assume, per (4) that the mater-
ial softens linearly with temperature. This may hold true
when the temperature values are far from the glass transi-
tion temperature of the material (Beilby, 1921; Iquebal et al.,
2019).

3. Initial surface model and parameter fitting

3.1. Initial surface model

The model described in the previous section expects a set of
N asperities with initial heights (hið0Þ), radii (rið0Þ), and
temperature values Tið0Þ: We assume all asperities are at
room temperature initially. We determine the number of
asperities, and initial height of each asperity using statistics
and material properties available in practice. In particular,
we rely on (i) surface packing density, (ii) surface roughness
of the material, and (iii) surface measurements obtained
from optical profilers. We generate empirical distributions
of heights by using surface data obtained via, e.g., white
light interferometry (see Section 4 for details). Given empir-
ical data and material characteristics, we implement the fol-
lowing steps to initialize our model.

A. Number of asperities and initial radii: We determine
the number of asperities N and radii values (riðtÞ) via a ran-
dom circle packing algorithm that aims to match the desired
surface packing density. A surface packing density is given
by the ratio of circles to that of the area of a square grid.
We consider a random circle packing algorithm by
Semechko (2018) that takes in the minimum and maximum
allowable radii of circles as input, and employs rejection
sampling technique to randomly populate the interior of the

Figure 3. Model dynamics indicating the heights, radii and temperature change of active asperities during the first 5minutes of polishing. The number of active
asperities coming in contact with the pad increases with time during the polishing process (inner panel). The model parameters used in this case are as follows:
½a, b,r0� ¼ ½0:3046, 2:42� 10−4, 1:82� 10−3� (Refer Section 5.2 for model parameter fitting).
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grid with non-overlapping circles into a given 2D surface
area with radii belonging to the given range. We determine
the range of radii, i.e., minimum and maximum values, so
that the desired surface packing density can be achieved.
The algorithm yields the number of asperities (N) and their
associated radii (see Figure 4(b) for an instance of the algo-
rithm, and Procedure A in Algorithm 1, developed based on
SEM observations as depicted in Figure 4(a)).

B. Initial heights: We determine N height values based on
empirical height distributions measured using white light
interferometry. In particular, we fit a distribution to empirical
height distribution, and sample N height values according to
the fitted height distribution (see Procedure B in Algorithm 1).

C. Mapping heights to asperities: In the last step, we associ-
ate the realized N height values with N asperities so that the
surface characteristics match the average surface roughness
value. We measure the surface roughness by estimating the
standard deviation or the Sa1 value of heights of asperities.
Estimating the standard deviation of heights empirically
involves collecting height measurements from random loca-
tions on the workpiece. This implies that the height values are
not drawn uniformly at random, but rather proportional to
the radii of the asperity. In the initialization of our model, we
implement a mapping procedure to assign each height value
to an asperity (with a given radii) so that the initial surface is
true to the estimated surface roughness (procedure C in
Algorithm 1). The mapping procedure begins with arbitrarily
assigning the N height values to N asperities. For each assign-
ment, we obtain multiple height samples from each asperity
proportional to its radii considering the curvature of the
asperity, i.e., sampled points further away from the center
have smaller height values than the height at the center node
– see Algorithm 1 in Supplementary Materials for details. The
histograms of the sampled heights and data are compared
using the Kolmogorov–Smirnov (KS) Test. We shuffle the
height values assigned to each asperity until we get a

significant p-value from the KS Test and the surface rough-
ness is close to the empirical data.

Algorithm 1 Initial surface generation

1: procedure A. Determine the number of asperities and
their radii

2: Input: Surface dimensions d1 � d2, surface packing
density 0 < q < 1 and

3: Maximum and minimum allowable circle radius
/max > /min > 0:

4: Implement random circle packing algorithm.
5: Output: N 2 N and R ¼ fRigNi¼1
6: end procedure
7: procedure B. Generate asperity heights

8: Input: Empirical height values ~h: (obtained from metal
sample before polishing)

9: Fit a distribution lh to ~h
10: Draw N height values from lh
11: Output: h ¼ fhið0ÞgNi¼1
12: end procedure
13: procedure C. Map heights to asperities
14: Input: Heights hð0Þ 2 R

N�1, sphere radii fRigNi¼1,
surface radii rð0Þ 2 R

N�1,
15: minimum sampling size k, approximation level L,

threshold p-value �p,
16: and threshold Sa value difference �t
17: while p > �p OR jjSamodel − Sadatajj > �t do
18: See the Algorithm in Supplementary Materials for

details.
19: end while
20: Output: fðrið0Þ, hið0ÞÞgNi¼1
21: end procedure

3.2. Parameter fitting

We have a system of parameterized differential equations
(1)-(5) which govern the evolution of the surface features in
response to the polishing process. The evolution of the

Figure 4. (a) SEM image showing the surface asperities of Ti-6Al-4V metal sample (Reproduced from Iquebal et al. (2019)). (b) Spatial distribution of N asperities in
a 0.25mm x 0.25mm grid with surface packing density of 0.70 generated using a random circle packing algorithm.

1Standard deviation is the average squared difference of heights from the
mean. Sa value is the average absolute difference of heights from the mean.
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surface heights, radii, and temperature depends on the val-
ues of the model parameters. The model parameters,
denoted using n, include the cooling constant (a), temporal
diffusion constant (b), initial value for rið0Þ (r0), and any
parameter that may come from the functional forms of qiðtÞ
and giðtÞ in (5). We formulate an optimization problem to
tune the model’s parameters so that the height and radii
dynamics accurately follow the changes in empirical height
distribution of asperities and surface characteristics at differ-
ent stages of polishing.

At each stage of model fitting, we assume that we have
the height distribution of the asperities on the workpiece,
denoted using P, and the surface roughness Sa defined as

SaðhÞ :¼ 1
N

XN
i¼1
jhi − �hj (6)

given the empirical height vector h 2 R
N of surface asper-

ities, and �h ¼ 1
N

PN
i¼1 hi is the arithmetic mean of the height

values.
For the objective function of the optimization problem,

we use a weighted combination of the symmetrized KL
divergence and the difference between Sa values of the
simulated and experimental height distributions. Formally,
for two probability distributions P and Q defined on the
same state space X , the KL divergence is defined as

DKLðPjjQÞ :¼
X
x2X

PðxÞ log 2
PðxÞ
QðxÞ
� �

(7)

We know that DKLðPjjQÞ � 0 and DKLðPjjQÞ ¼ 0 if and
only if P ¼ Q: In our work we consider the symmetrized
KL-divergence which is defined as

DðPjjQÞ :¼ 1
2
ðDKLðPjjQÞ þ DKLðQjjPÞÞ (8)

In symmetrized KL-divergence we have an additional
term DKLðQjjPÞ: If P is the empirical height distribution of
the surface asperities at a particular stage obtained experi-
mentally, and Q is the height distribution obtained compu-
tationally by running the dynamics, then we can interpret
DKLðPjjQÞ as the expected excess surprise from using the
distribution Q as a model when the actual distribution is P.
Adding the extra term DKLðQjjPÞ to our objective helps to
serve as a role reversal between the distributions obtained.
That is, we emphasize the surface information obtained via
solution of the model dynamics and experimental observa-
tions equally as valid representations of reality.

We compute the difference in Sa values between two
height distributions P and Q, denoted as DSaðP,QÞ, by
computing the Sa values for heights sampled from each dis-
tribution and then computing their differences, i.e.,

DSaðP,QÞ :¼ jSaðhÞ − Sað~hÞj: (9)

where h and ~h are respectively empirical and model height
vectors sampled from P and Q.

Given the two metrics (DðPjjQÞ and DSaðP,QÞ) defined
above, we have the following optimization problem for par-
ameter fitting

min kDðPjjQÞ þ ð1 − kÞDSaðP,QÞ
n

s:t: Q ¼ f�t ðx0; nÞ
(10)

where k 2 ½0, 1� is the weight constant, P is the given (empir-
ical) height distribution, ftð�Þ is the model dynamics in (1)-(5)
that takes an initial height, radii and temperature values x0 :¼
fhið0Þ, rið0Þ,Tið0Þ, rið0Þgi2N , model parameters n and time
horizon �t as inputs, and outputs a height distribution Q at
time �t > 0: The weight k gauges the relative importance of the
KL divergence term versus the difference in empirical and
model’s Sa values. Figure 5 shows the resulting BACs as k
varies for a given empirical distribution. As k increases from
zero to one, the KL divergence value decreases, but DSa
increases. The figure also shows that when the difference in
surface roughness is the only metric used as a part of the
objective function, i.e., when k ¼ 0, it leads to an overesti-
mation of surface planarization due to polishing. As k is
increased the Bearing Area Curve (BAC) curve obtained from
the model more closely matches the empirical BAC curve, but
suffers from a higher mismatch of surface roughness.

Remark: Let PðXÞ be the set of all probability distributions
defined on the state space X : For a reference distribution
P0, we can consider a subset C � PðXÞ which does not
contain P0: A solution Q0 ¼ argminQ2C DKLðQjjP0Þ can be
interpreted as the orthogonal projection of P0 onto C. When
C is additionally known to be convex, the minimizer Q0 is
unique, and DKLðQ0jjP0Þ measures the distance between P0
and the set C (Lesne, 2014). KL-divergence is often pre-
ferred as a distance measure between distributions.

4. Experiments and data

We consider polishing data from a prior experimental study
conducted on a 3D printed Ti-6Al-4V sample (Jin et al.,
2019). The sample was polished for a total of 16.5 hours
approximately by a Buehler Metaserv Grinder-Polisher
(model 95-C2348-160) using 800-grit polishing pads made of
silicon carbide (SiC). The head and base speeds of the polisher
were kept at 100 and 50 rpm, respectively. The down force
applied on the workpiece during the polishing process was
kept constant at 10 lbs. The polishing process is split into mul-
tiple stages where ZeGageTM 3D optical profiler, a.k.a “Zygo”,
was used to collect surface measurements from 32 different
locations on the workpiece after each polishing stage. We con-
densed 3D data to a reduced form by sampling height values
from the associated BACs at every location for all stages. The
locations on the BAC from which samples were drawn were
determined based on a hypothesis test.

In this article, we will consider the first hour of polishing,
equivalently six stages, to tune our model parameters and to
compare the results of our model. The stages have different
polishing time intervals, where each stage lasts 5, 10 and
15minutes in the first two stages (Stages 1-2), in Stages 3-5,
and in Stage 6, respectively. We note that the experimental
height measurements of the sample at all stages of polishing
were captured using a top-bottom setting in “Zygo” where
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the zero line (reference) was set at the top most point of the
surface. We subtract our model height values from the max-
imum height to obtain positive height values. We compare
height values between the empirical and model-generated
distributions based on these positive values. Here, we use
the Stage 0 surface data to initialize the state of the nonlin-
ear dynamics (1)-(5) as per the initial surface generation
steps in Section 3, and use the remaining six stages to iden-
tify best model parameters.

5. Results

5.1. Initial surface realization

For Ti-6Al-4V metal alloys, we consider a desired surface
packing density (ratio of circles to the total area) of 0.7
(q ¼ 0:7). Such a close packed representation of surface
asperities is essential to better understand the elastic–plastic
contact mechanism between the surfaces; the polishing pad
and the workpiece. We respectively choose the minimum
and maximum allowable radii as /min ¼ 3:65 lm and /max

¼ 25:05 lm so that the random circle packing algorithm
can realize the desired packing density given the grid size of
250lm � 250lm. One such realized model surface has a
total number of N ¼ 374 asperities.

The empirical asperity heights is fitted with aWeibull distribu-
tion lh as shown in Figure 6(a) (Iquebal et al., 2019). We then

draw height values for allN asperities in ourmodel from this fitted
Weibull distribution corresponding to the height histogram. In
the last step, we implement the mapping algorithm using a p-
value threshold of �p ¼ 0:05 for the KS test and surface rough-
ness gap threshold chosen as �t ¼ 1 lm. We employ a min-
imum sampling size of k ¼ 2 points for the smallest asperity
and an approximation level of L ¼ 3 in calculating the heights
for the additionally sampled points (refer to Procedure C in
Algorithm 1). The height distributions of the realized model
surface is shown in Figure 6(b). The BAC for this realized sur-
face is compared with the actual stage 0 data, as depicted in
Figure 6(c). Figure 6(d) shows the Q-Q plot between Stage 0
experimental data and the simulated model surface. The KL
divergence or the relative entropy between the distributions is
also low estimated at 0.0073. The empirical surface roughness
values, measured using standard deviation and Sa, are close to
the ones obtained from the mapping process. In particular, the
measured standard deviation and Sa values of the metal sam-
ple before polishing are 9.8 and 7.9 lm while that of the initial
generated model surface are 10.6 and 8.6 lm, respectively.

5.2. Model parameters

After we generate our initial model surface that accurately
reflects the characteristics of Stage 0 experimental data, our
objective is to capture the dynamics that bring about

Figure 5. Comparison of the BACs obtained from simulated height distributions after the initial 5minutes (Stage 1) using optimal parameter values obtained using
k 2 f0, 0:5, 0:8, 1g weights on the KL divergence term in the objective function (10). BAC is a cumulative distribution function plotted against the quantile values.
For each k, we obtain the optimal parameters ½a,b,r0� by solving (10) using simulated annealing—see the Appendix for details. The dashed lines and solid line
corresponds to BACs for the empirical asperity height distributions and that of actual surface at the end of the first stage of polishing.
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changes in height distribution of asperities and surface char-
acteristics at different stages of polishing. We begin by
determining the functional forms of the height to radius
mapping rate qiðtÞ and the redistribution rate giðtÞ defined
in (5),

qiðtÞ ¼
hiðtÞ
4riðtÞ , and giðtÞ ¼ exp −

�
hiðtÞ
A0

�w1

þ
�

A1

riðtÞ
�w2

 !" #
:

(11)

The formulation of coefficient qi in (11) captures the dif-
ferential radii change at the surface of asperities based on
the geometry of the spherical curvature at the asperity top
by conserving the material volume during each time step of
polishing. The formulation of the redistribution rate giðtÞ
captures the transition from initial significant material
removal to increased material redistribution later during
polishing.

In simulation of the model dynamics, we observed that
constant A0 values in the order of magnitude 102, A1 and
w1 in the order of 101 and w2 in the order of 100:1 yield
comparable and desirable trajectories for the height distribu-
tion. The specific values used in this simulation study are
A0 ¼ 60, A1 ¼ 2:5, w1 ¼ 2 and w2 ¼ 0:0833: We also set
the heating constants j1 ¼ 15 and j2 ¼ 3: Our exploratory
numerical experiments showed that the effects of varying

these constants on the dynamics can be captured by modify-
ing the cooling constant a:

Next we solve the model-fitting problem in (10) for the
cooling constant (a), temporal diffusion constant (b) and
initial value for ri (r0) parameters, i.e., n¼ ða,b,r0Þ given
the empirical height distributions and surface statistics at
each polishing stage. As discussed in Section 3.2, Figure 5
pits the simulated height distributions for Stage 1 against
the empirical surface characteristics at Stage 1 using optimal
parameter values ½a,b, r0� obtained via different weights on
the KL divergence term (k 2 f0, 0:5, 0:8, 1g) in the objective
function (10). As per Figure 5, small values of the weight
constant k tend to overestimate the extent of surface plana-
rization due to polishing. Given this observation, we fix the
weight constant in the objective of (10) to k ¼ 0:8 for all
the stages.

To compute the objective at a particular stage k, we take
the asperity heights hk obtained computationally and pass it
through a post-processing operation where we sample add-
itional points at every asperity i proportional to its radii R2

i

as in step 3 of Algorithm 1. This allows us to have an

expanded height vector ~hk that accounts for more accurate
geometric information of the actual surface profile thereby
increasing the accuracy of our calculations. We obtain the
empirical height distribution ~P from the height samples
obtained experimentally at stage k.

Figure 6. (a) and (b): Comparison between the distribution of asperity heights of the metal sample before polishing and that of model-generated surface using the
random circle packing and asperity height mapping algorithm. The corresponding p-value from the two sample KS Test is 0.058. (c) and (d): Comparison of BACs
and Q-Q plots between Stage 0 experimental data and simulated model surface.

1340 A. KARTHIKEYAN ET AL.



Figure 7 shows the optimal values for a, b and r0, and
the corresponding BACs for the six stages (Stages 1-6). We
observe that the height distributions and surface roughness
values obtained from the model closely match those
obtained from the data validating that the model can repli-
cate the surface morphology evolution for an hour of polish-
ing (Stages 1-6). The DSa values varies between 0.89 and
3.53, and KL-divergence values range between 0.05 and 0.53
over the stages. Initially, the model slightly overestimates the
extent of surface planarization—see Stage 1. In later stages,
we find the model surface to slightly underestimate the level
of planarization—see Stage 5.

6. Network formation dynamics

An important goal for modeling surface polishing dynamics
is to be able to automatically determine when to stop polish-
ing based on surface smoothness (Bukkapatnam et al.,
2018). To do this, we propose a method for tracking the
surface smoothness based on a network representation of
the surface characteristics obtained from the validated
model.

We consider the set of asperities as the set of nodes in
the network and use Delaunay triangulation to determine
the neighborhood structure of each asperity. Accordingly,

Figure 7. Comparison of BACs between actual surface and modeled surface computed using values for the parameters a, b, and r0 for Stages 1-6 respectively
(ordered top to bottom, left to right) of the polishing process assuming the weight on the entropy term is k ¼ 0:8 in (10).
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asperities that are part of the same triangle are potential
neighbors. The existence of an edge between asperity i and
its neighbor j depends on whether the two asperities form a
bridge as depicted in Figure 1(f-g). As in Bukkapatnam
et al. (2018), we consider a probabilistic model of edge
(bridge) formation between nodes i and j. The probability of
existence of edge i − j ðeijÞ depends on distance between
asperities dij and their radii riðtÞ and rjðtÞ,

eijðtÞ /
nijðtÞn−1e−nijðtÞ=2
ðn − 1Þ! (12)

where nijðtÞ :¼ 2pq ðdij − ðriðtÞ þ rjðtÞÞÞ2, n is the number of
nodes in the graph, and recall that q is the surface packing
density. According to (12), the edge probability eijðtÞ increases
as nijðtÞ decreases over time with increasing asperity radii.

Figure 8. Network evolution with stages as a result of material redistribution due to polishing.
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We construct an evolving network by considering the
edge probabilities in (12) for each pair of potential neigh-
boring asperities. We note that while the network represen-
tation of the surface is due to Bukkapatnam et al. (2018),
the model dynamics in (1)-(11) drive the changes in the
radii riðtÞ: In contrast, Bukkapatnam et al. (2018) estimates
the asperity radii from images taken after every stage.
Figure 8 shows the realized network after each stage where
the edge probabilities are color coded and x and y axes in l
m. When we assume there is an edge between nodes i and j
if eijðtÞ > �e where �e ¼ 0:85 is a chosen threshold, we find
the size of the largest connected component to grow from
18 in Stage 1 to 330 in Stage 3. At the end of Stage 6, all
but one of the asperities (N − 1 ¼ 373) are connected based
on the threshold �e: We show the distribution of connected
components for Stages 1 and 2 in Figure 9(a-b). As
expected, the number of disconnected nodes decreases, and
the size of the largest connected component increases. We
consider the second largest eigenvalue of the largest con-
nected component (Fiedler number) as a measure for the
smoothness of the surface per Rao et al. (2015) and
Bukkapatnam et al. (2018). Figure 9(c) shows that the
Fiedler number begins to increase after Stage 3 when the
largest connected component reaches a size comparable to
the number of nodes in the network, N ¼ 374: The network
connectivity measured by the distribution of the connected
components and Fiedler number of the largest connected
component parameterized by the threshold �e can serve as a
guide in determining the smoothness of the surface and
when to terminate the polishing process.

7. Conclusions and discussion

In this article, we developed a dynamic model of surface
morphology evolution of 3D printed materials during a pol-
ishing process. The dynamic model can account for both
material removal and redistribution during the polishing
process. In addition, the model accounts for increased
material flow due to heat generated during the polishing
process. We provide a set of procedures for model initializa-
tion and parameter estimation based on empirical data. We
used these procedures to validate the proposed model on a

3D printed Ti-6Al-4V sample polished by a Buehler
Metaserv Grinder-Polisher (model 95-C2348-160) using pol-
ishing pads made of silicon carbide (SiC). The model fitting
confirms prior results that material removal is limited to
early stages of polishing. The procedures developed make
the model applicable for other 3D printed materials and pol-
ishing processes.

A major motivation for the model is to automate the pol-
ishing process of 3D printed components. An important
goal in automating the polishing process is to determine
whether or not the workpiece has reached the desired
smoothness level. Graphical representations of the spatio-
temporal evolution of surface morphology have been effect-
ive in enabling endpoint detection and prediction
capabilities in the finishing of additively manufactured com-
ponents (Bukkapatnam et al., 2018). We obtain a network
formation model as a representation of the surface evolution
from the distribution of asperity heights and radii where the
active asperities in contact with the polishing pad act as
nodes and the likelihood of asperities to merge is indicated
by edge weights connecting the nodes. We propose a novel
method using Delaunay triangulation to model the surface
connectivity evolution as a result of surface plastic flow at
different stages of polishing. We consider the distribution of
connected components and network connectivity (Fiedler
number) as metrics for surface smoothness that can be used
to determine whether a desired level of smoothness is
reached or not.
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Appendix
A simulated annealing algorithm for parameter
estimation

We utilize an instance of the simulated annealing algorithm (Burke
and Kendall, 2014) to obtain a solution to (10). Let the vector n consist
of an assignment for the values of the parameters n ¼ ½a, b, r0�: Let
f ðnÞ represent the objective value for the chosen parameters n in (10).
We run the dynamics f�t ðx0; nÞ for the duration of the stage �t in order
to compute the objective function value in (10).

Algorithm 2 Simulated Annealing Algorithm

1: Initialize nstart , C0, L0
2: k 0
3: n nstart
4: while stopcriterion is FALSE do
5: for l ¼ 1, :::L do
6: Generate n

0
from NðnÞ

7: if f ðn0 Þ � f ðnÞ then
8: n n

0

9: else
10: if exp ½ðf ðnÞ − f ðn0 ÞÞ=Ck� > U½0, 1Þ then
11: n n

0

12: end if
13: end if
14: end for
15: k kþ 1
16: Update Ck

17: end while

The simulated algorithm (Algorithm 2) begins with an initial solution
nstart 2 X, where X represents the set of all possible values for the param-
eters. Here, we consider a warm-start where we draw 10,000 random
points from X, and pick the one that obtains the minimum objective
value. We define a neighborhood of a solution n 2 X as NðnÞ, where
Nð�Þ : X! 2X, is a hyper-rectangular space around n: In contrast to
iterative improvement procedures where in each step we move to a solu-
tion in the neighborhood with a better objective value, here we allow for
controlled violations, i.e., accept, in a limited way, solutions that have
worse objective values. The control parameter Ck for every stage k man-
ages the probability of accepting solutions of poorer quality (Step 10).
We update the values for these control parameters using the function
(Step 16). For our implementation, we consider the geometric update
rule where the value of Ck is lowered at every stage using Ckþ1 ¼
dCk, d 2 ð0, 1Þ: Initially at large values of Ck, large deteriorations are
accepted. As Ck decreases, only smaller deteriorations are accepted, and
finally as the value of Ck ! 0, solutions that obtain better objective value
are accepted. For the stopping criterion, we set the algorithm to stop
when the value of the optimal objective does not change by an order of
magnitude of 10−6 over a series of iterations.

Since P ¼ f�t ðx0; nÞ is the solution of a set of coupled nonlinear
ordinary differential equations, the objective function is non-convex
and has potentially multiple local solutions. Here we do not make ana-
lytical claims on the quality of the solution. Instead, we judge the
effectiveness of the solution based on whether the dynamics attain a
height distribution and Sa values that qualitatively match those given
by the experimental data (see Figures 5, 6 and 7).
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