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AVERAGE SUBMODULARITY OF MAXIMIZING
ANTICOORDINATION IN NETWORK GAMES\ast 

SOHAM DAS\dagger AND CEYHUN EKSIN\dagger 

Abstract. We consider the control of decentralized learning dynamics for agents in an antico-
ordination network game. In the anticoordination network game, there is a preferred action in the
absence of neighbors' actions, and the utility an agent receives from the preferred action decreases as
more of its neighbors select the preferred action, potentially causing the agent to select a less desirable
action. The decentralized dynamics that are based on the synchronous best-response dynamics con-
verge for the considered payoffs. Given a convergent action profile, we measure anticoordination by
the number of edges in the underlying graph that have at least one agent in either end of the edge not
taking the preferred action. A designer wants to find an optimal set of agents to control under a finite
budget in order to achieve maximum anticoordination (MAC) on game convergence as a result of the
dynamics. We show that the MAC is submodular in expectation over all realizations of the payoff
interaction constants in bipartite networks. The proof relies on characterizing well-behavedness of
MAC instances for bipartite networks, and designing a coupling between the dynamics and another
distribution preserving selection protocol, for which we can show the diminishing returns property.
Utilizing this result, we obtain a performance guarantee for the greedy optimization of MAC. Finally,
we provide a computational study to show the effectiveness of greedy node selection strategies to
solve MAC on general bipartite networks.

Key words. game theory, submodular optimization, anticoordination games, approximation
algorithms, games on graphs

MSC codes. 93A16, 91A26, 91A43, 05C57, 37N40

DOI. 10.1137/22M1506614

1. Introduction. Anticoordination games can be used to study competition
among firms [5, 6], public goods scenarios [15], free-rider behavior during epidemics
[2, 12], and network security [21]. In each of these scenarios, there is a desired action
for each agent, e.g., not taking the costly preemptive measures during a disease out-
break, not investing in insurance/protection etc., in the absence of other agents. When
other agents are around, they can affect the benefits of the desired action, providing
incentives for agents to switch. Here we consider networked interactions, where the
actions of an agent are only affected by its neighbors (a subset of the population)---see
[13, 23] for more details on network games. Specifically, the action space of agents is
the entire spectrum of real numbers in the range [0,1] with 0 and 1 representing the
most costly and most easy action polarities, respectively. Agents are engaged in an
anticoordination game where their payoffs from playing the costlier actions increase
with more of their neighbors playing the easier action.

The selfish behavior can lead to the failure of anticoordination in the population,
when anticoordination is desirable for the well-being and safety of the system as a
whole. That is, some of the agents may continue to take the individually preferred ac-
tion, endangering their peers and the rest of the population despite the peer influences.
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2640 SOHAM DAS AND CEYHUN EKSIN

In such scenarios, we can envision the existence of a central coordinator with the goal
to induce behavior that supports the well-being of the society. Here, we consider one
such mechanism where the centralized coordinator intervenes by controlling a few
agents in the network to incentivize anticoordination among agents that repeatedly
take actions to maximize individual payoffs. In particular, the players follow a form
of synchronous best-response dynamics, where the players best-respond considering
the worst and best possible action profile of their neighbors (section 3). We showed
in [11] that such dynamics will converge in finite time and eliminate all dominated
strategies in the anticoordination network game considered here. Given such adap-
tive behavior of agents, the centralized player can steer the convergent action profile
toward socially desirable outcomes by controlling the actions of a few players during
the learning phase.

We define the goal of the central coordinator as to maximize anticoordination
between connected pairs of agents upon convergence of the behavior (section 4) under
limited intervention budget. The MAC problem is combinatorial, involving selection
of a subset of the agents in the population. Indeed, we show that the MAC is NP-
Hard to solve, in general, graphs (Theorem 4.2). This motivates us to consider a
computationally tractable greedy selection protocol for solving MAC, where at each
selection epoch the agent that yields the highest number of anticoordinating edges at
the convergent action profile is added to the control set until the control budget is
reached (section 4). We show that the MAC problem is monotone and submodular
in expectation in bipartite networks (Theorems 5.6 and 5.5). Together, these results
imply that the worst case performance of the greedy selection protocol is bounded by
a fraction of the optimal solution (Corollary 5.7). Numerical experiments confirm that
the greedy selection protocol provides near-optimal results on average for bipartite
networks.

This work is most closely related to the following intervention mechanisms in
games that aim to improve efficiency: nudging [14, 24, 28], influence maximization
under limited control [16, 20], optimal targeting in supermodular games [9], and seed-
ing in advertising [1]. All of these approaches aim to determine the emerging action
profile resulting from adaptive learning dynamics under repeated game play by either
providing incentives or suggestions of ``good"" behavior to agents or by directly con-
trolling a set of agents, as we do in this paper. Similar themes have been investigated
in the control and optimization in networks literature [8], flow of opinion dynamics
in social networks [3, 4], and in the game theoretic control of multiagent networked
systems [17]. Traditionally, a lot of work in this area is focused on consensus seeking
or enhancing coordination among self interested agents with access to full or partial
information. Here, we aim to maximize anticoordination instead of maximizing social
welfare or reach consensus. That is, we ask if selfish agents can successfully use local
interaction to reach maximum polarization in strategies, and if not, can we identify a
set of agents whose actions when controlled would lead to the same global objective?
Other forms of intervention mechanisms involve financial incentives in the form of
taxations or rewards [7], and information design [25, 26]. These mechanisms do not
consider repeated game play, and instead focus on improving the efficiency of Nash
equilibria. Here our control selection policy is dependent on the adaptive learning
behavior of agents.

We obtain the performance guarantee for the greedy selection by showing the
monotonicity and submodularity of the MAC problem in well-behaved instances given
the learning dynamics. A well-behaved instance is one where there are no extremely
insensitive agents, i.e., agents that are stubborn and play their chosen strategies no
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SUBMODULARITY OF MAXIMIZING ANTICOORDINATION 2641

matter what their neighbors are playing. We capture this insensitivity to peer influ-
ence as having a very low payoff interaction constant. In such an instance, agents
playing opposite strategies are concentrated on either side of the bipartite network.
That is, if we control agents only on one side of the bipartite network to play the
undesirable action, only agents on this side take the undesirable action as a result of
the learning dynamics. This property makes anticoordination akin to two parallel dif-
fusion processes unfolding on both sides of the bipartite network. Each side reinforces
the decision making of the other side, each side further polarizing the other side.

Given the characteristics of the dynamics in the well-behaved scenario, our ap-
proach to showing the submodularity of MAC follow ideas similar to the ones utilized
in [16, 20]. In [16], Kempe, Kleinberg, and Tardos talk about an influence diffusion
process (such as viral marketing), where the process is initiated from a set of active
nodes and spreads further. They show that if the dynamics are the linear threshold
type, then the expected value of the total influence (the set of all active nodes) in the
social network on process convergence is submodular. In [20], Mossel and Roch tackle
the more general problem. They establish that any influence diffusion process, under
certain assumptions on the neighbor influence function (monotonicity and submodu-
larity), can be shown to be submodular.

While our dynamics are different, we are still able to utilize similar ideas to
show submodularity (Theorem 5.5). We begin by defining functions that measure one-
step influence which encourages agents to get decided at each step of the dynamics.
We establish that the one-step functions so defined are modular. Next, we describe
the stochastic process of the set of agents getting decided when the dynamics are
seeded by a set of agents who are controlled. We show that the distribution of agents
getting decided on convergence of dynamics remains intact if instead of controlling
the entire set from the get-go we break it into a set of smaller subsets (a partition)
and control each set one by one in stages. This property allows us to provide an
alternate equivalent description of the selection process based on a selection rule
(Definition 5.18 and Lemma 5.19). The proof of the submodularity result entails
designing such a coupling between the actual (greedy) selection method and another
equivalent selection method for which we can show the diminishing returns property
(submodularity).

The submodularity result establishes a similar result as in the case of conta-
gion dynamics [16, 20] or as in best-response dynamics in supermodular games [9].
While these results aim to trigger contagion of a particular action (product), i.e.,
coordination, we aim to trigger anti-coordination among connected agents. Despite
the fundamental difference, our submodularity result shows that a similar cascade of
desirable behavior can be established via greedy selection of controlled agents.1

2. Network anticoordination game. We consider a graph \scrG as the pair (V,E)
where the set of vertices V = \{ 1, . . . , n\} represent the agents, and the set of edges E
is a multiset of subsets of V of size at most two, that represents interactions between
individual agents. We use the functions V (\cdot ),E(\cdot ) to represent the vertices and edges
of a graph. Thus, V (\scrG ) = V and E(\scrG ) =E. We assume the edges are undirected. We
denote the neighbors of agent i with n(i) := \{ j : \{ i, j\} \in E(\scrG )\} . The degree of agent i
is denoted with | n(i)| .

1In [10, 11], we considered a similar MAC problem for the same anti-coordination network game.
In [10], we exploit the paradigm of approximate submodularity (bounded violation of submodularity)
to provide guarantees for greedy optimization of MAC in line networks, which is a specific bipartite
network. In [11], we numerically compare the greedy algorithm with other heuristic selection rules
without any performance guarantees.
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2642 SOHAM DAS AND CEYHUN EKSIN

Each agent takes an action ai \in [0,1] to maximize its utility function

ui(ai, an(i)) = ai

\left(  1 - ci
\sum 

j\in n(i)

aj

\right)  (2.1)

where an(i) := \{ aj\} j\in n(i) denotes the actions of agent i's neighbors, and 0< ci < 1 is
a payoff constant. The utility function above captures scenarios where agent i has a
preferred action (action 1) but its incentive to choose this action decreases as more
of its neighbors choose the preferred action. The decrease in incentive per neighbor
is proportional to the constant ci. The constant represents the sensitivity of agent
i's utility to its neighbor's actions. The network game is represented by the tuple
\Gamma = \{ V,A,\{ ui\} i\in V \} where A= [0,1]n is the set of actions available to all players.

Below we provide scenarios that can be captured by the network game \Gamma with
payoffs given by (2.1).

Example 2.1 (disease spread on networks [12]). Consider a bipartite graph \scrG B

where agents on one side are sick and the other side healthy. The edges in \scrG B repre-
sent the network of interactions. The disease spreads when agents on either end of
an interaction link do not follow healthcare protocols, such as wearing masks, vacci-
nating, social distancing etc. We model this using action level 1 for the agent (the
easier/preferred action). Action level 0 represents following epidemic mitigation pro-
tocols (the costlier action), and all the actions between 0 and 1 represent the relative
importance given to disease prevention measures. When we have an agent playing 0
on the end of an interaction link, we have deactivated a disease transmission pathway.
The utilities of agents in the epidemic game are the anticoordination type, i.e., its
incentive to social distance increases with more of its neighbors flouting protocols,
and hence can be captured using the utility function in (2.1). The payoff interaction
constants ci, i\in V represent the sensitivity of the agents to the neighbor influence.

Example 2.2 (political polarization). The network represents the social inter-
actions among players in opposing beliefs (agents on different sides of the bipartite
network) that want to differentiate their actions from those with opposing beliefs [18].
Action 1 represents a monetary choice or support for a cause that is individually de-
sirable in the absence of partisanship. A player's tendency to take the preferred action
(action 1) reduces as it has more neighbors that take action 1. That is, a player can
opt-out from individual benefits or societal impact to express partisan preferences.
The payoff constants ci capture the inclination of players to distinguish their actions
from those in the opposite camp.

Example 2.3 (hawk-dove network game). Two competing species (\scrS 0 and \scrS 1)
face-off in an ecological environment. At each interaction players decide to be hawkish
(ai = 1) or dovish (ai = 0). A hawk move gets the highest reward if its neighboring
competitors play dove. If both interacting players play dove, they miss the opportunity
to overcome their competitor. If both interacting players are hawkish, they challenge
each other and face costs. The constants c0 and c1 represent the costs species 0 and
1 incur, respectively, when they act hawkish against a hawkish competitor.

3. Synchronous best-response dynamics. At each stage t = 1,2, . . . , we
assume agents observe the past actions of their neighbors at - 1

n(i), and determine their

actions ati according to the following rule:
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SUBMODULARITY OF MAXIMIZING ANTICOORDINATION 2643

ati = 1 if \{ 1\} =BRi(\lceil at - 1
n(i)\rceil ) = argmax

ai\in [0,1]

ui(ai, \lceil at - 1
n(i)\rceil ),

ati = 0 if \{ 0\} =BRi(\lfloor at - 1
n(i)\rfloor ) = argmax

ai\in [0,1]

ui(ai, \lfloor at - 1
n(i)\rfloor ),

ati = \epsilon otherwise,

(3.1)

where BRi(an(i)) := argmaxai\in [0,1] ui(ai, an(i)) is the best response action profile, and
\epsilon \in (0,1) is an arbitrary action between 0 and 1. See that when an agent plays \epsilon 
(are undecided), it means that they can effectively play anything between 0 and 1.
The decision dynamics proceeds with agents trying to figure out if they have a clear
winning strategy, no matter what it's undecided neighbors may be playing. The best
response action for the utility function in (2.1) is given by

BRi(an(i)) = 1

\left(  1> ci
\sum 

j\in n(i)

aj

\right)  (3.2)

when 1 \not = ci
\sum 

j\in n(i) aj (the best response is a singleton). When 1 = ci
\sum 

j\in n(i) aj , then
BRi(an(i)) = [0,1]. Given (3.2), the dynamics can also be equivalently represented as

ati = 1 if 1> ci
\sum 

j\in n(i)

\lceil at - 1
j \rceil ,

ati = 0 if 1< ci
\sum 

j\in n(i)

\lfloor at - 1
j \rfloor ,

ati = \epsilon otherwise.

(3.3)

Remark 3.1. The best response dynamics emulate the decentralized iterated elim-
ination of dominated strategies [19] in the network game. Since \epsilon \in (0,1), we see
that

argmax
ai\in [0,1]

ui

\Bigl( 
ai, \lceil at - 1

n(i)\rceil 
\Bigr) 
= 1 implies that argmax

ai\in [0,1]

ui

\Bigl( 
ai, a

t - 1
n(i)

\Bigr) 
= 1(3.4)

that is, from (3.2), if 1> ci
\sum 

j\in n(i)\lceil aj\rceil , then 1> ci
\sum 

j\in n(i) aj holds for all aj \in [0,1]
j \in V . Thus, agents remove all dominated strategies and decide to play 1, when the
first condition in (3.1) holds. The ceil operator implies a ``worst-case"" scenario where
the agent assumes all of its ``undecided"" agents play 1. If action 1 is the best-response
even under this worst-case scenario, then it would take action 1 regardless of the
strategies of the other agents. Similarly, we see that

argmax
ai\in [0,1]

ui

\Bigl( 
ai, \lfloor at - 1

n(i)\rfloor 
\Bigr) 
= 0 implies that argmax

ai\in [0,1]

ui

\Bigl( 
ai, a

t - 1
n(i)

\Bigr) 
= 0(3.5)

that is, from (3.2), if 1< ci
\sum 

j\in n(i)\lfloor aj\rfloor , then 1< ci
\sum 

j\in n(i) aj holds for all aj \in [0,1]
j \in V . Thus, the best response 0 is now the dominant strategy, and the dynamics in
(3.1) cause agents to decide to play 0 whenever the second condition holds. The floor
operator implies a ``best-case"" scenario where the agent assumes all of its ``undecided""
agents play 0. If action 0 is the best-response even under this best-case scenario, then
it would take action 0 regardless of the strategies of the other agents. For all other
situations, agents do not have a dominant strategy, and thus they stay undecided
(play \epsilon \in (0,1)).

In [11], we provide a finite time convergence guarantee for the dynamics discussed.
Specifically, we show that the dynamics in (3.1) converges in at most | V | iterations,
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2644 SOHAM DAS AND CEYHUN EKSIN

eliminating all strictly dominated actions for the network game \Gamma starting the dy-
namics with all agents undecided. We note that a strictly dominated action cannot
be a rational action. These updates converge to a Nash equilibrium if the game is
dominance solvable, i.e., if the game is such that a single action profile is left as a
result of iterated elimination of dominated strategies. For instance, the anticoordi-
nation game \Gamma with utility function in (2.1) is dominance solvable given constants
ci <

1
| n(i)| for all i\in V . Indeed, all agents take action 1 after the first update in (3.1)

because ci
\sum 

j\in n(i)\lceil aj\rceil < 1 for all i \in V . For general payoff constants, the game \Gamma is
not dominance solvable, i.e., some agents can stay undecided (play \epsilon ) at the end of
| V | iterations.

4. Maximum anticoordination problem. Assume we are given the network
game \Gamma = \{ V (\scrG ),A,\{ ui\} i\in V (\scrG )\} where graph \scrG represents the interaction network
between agents. Let ci \in (0,1) be the payoff interaction constants for all i \in V .
Assume agents play according to the synchronous best response dynamics in (3.1).
We define an undirected edge \{ i, j\} \in E(\scrG ) between agents i, j \in V to be inactive
(an anticoordinating link) in action profile a \in A when at least one of the agents
take action 0, i.e., when ai = 0 or aj = 0. Our goal is to maximize the number of
inactive edges by controlling a subset of the players (with set cardinality r \in Z+) to
play action 0 during the learning dynamics in (3.1). We state this goal to maximize
anticoordination (MAC) as follows:

max
X\subseteq V (\scrG )

\scrF (X) :=
\sum 

\{ i,j\} \in E(\scrG )

1(a\infty i a\infty j = 0)

subject to | X| = r,

a0j = \epsilon for all j \in V,

(a0, a1, . . . , a\infty ) =\Phi (a0, c,X),

(4.1)

where \Phi (a0, c,X) represents the sequence of actions obtained when uncontrolled agents
(V (\scrG )\setminus X) follow the learning dynamics in (3.1), and the actions of controlled agents
are set to 0, i.e., ati = 0 for all t\geq 0 and i\in X.

Remark 4.1. The definition of MAC in (4.1) considers an edge \{ u, v\} inactive
if either of a\infty u or a\infty v is 0. That is, it intrinsically tolerates coordination on the
undesirable action in the sense that an edge \{ u, v\} \in E(\scrG ) is considered inactive and
counted as anticoordinating even if i and j both play action 0, i.e., a\infty u = a\infty v =
0. Our motivation stems from the epidemic setting (Example 2.1), where an agent
playing `costly' action level 0 neutralizes (inactivates) all incident disease transmission
pathways in the interaction graph; see section 4.1 for motivating examples. In the
setting of well-behaved instances that we analyze in this paper (see following section),
every deactivated edge \{ u, v\} additionally satisfies a\infty u \not = a\infty v . That is, for the MAC
instances we study in this paper a\infty satisfies a\infty u \not = a\infty v whenever \{ u, v\} \in E(\scrG ) and is
deactivated.

By removing the agents that are controlled from the game, we can guarantee that
the learning process converges in finite time as per the aforementioned convergence
result in [11]. The control budget for the planner is restricted, i.e., the planner can
only control a given r \in Z+ number of agents as indicated by the first constraint in
(4.1). Henceforth, we shall use the notation (\scrG , c) as the specification for an unique
instance of the MAC problem, where \scrG is the interaction network and c is the vector
of payoff interaction constants. Note that given the payoff interaction constants c,
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SUBMODULARITY OF MAXIMIZING ANTICOORDINATION 2645

the interaction graph \scrG and the stationary initial action profile a0i = \epsilon for all i \in V ,
every step of the local learning dynamics in (3.1) is fully determined. We can exclude
\Phi (\cdot ) from the specification since we assume (3.1) is fixed in the rest of this paper.
We also drop r from the specification, and additionally specify the control budget
whenever needed.

4.1. Motivation for maximizing anticoordination. Maximizing anticoordi-
nation is a valid objective for the system designer whenever there is gain achieved
by maximizing differentiation among agents. The exact system designer's objective
can change depending on the particular study. In the context of disease spread in a
population (Example 2.1), which motivates our problem definition, maximizing anti-
coordination in the underlying relationship network by inactivating disease transmis-
sion links is desirable as an effective means of curbing spread of the disease between
members of the society. The decentralized learning dynamics do not inactivate all
edges on convergence and thereby a central planner would need to control/enforce
certain agents to coordinate with policy guidelines (playing action level 0) so that the
maximum number of transmission pathways shall be dismissed.

Another motivating example follows. The hawk-dove game (Example 2.3) can
serve as a general framework for understanding conflicts, where agents playing against
each other incur high overall costs if both players choose to escalate (play ``hawk"",
the preferred strategy), but if at least one of them de-escalates (plays ``dove"", the less
preferred strategy) the conflict can be resolved. De-escalation comes with its own cost
for the agent choosing that strategy, and selfish agents may not be able to avoid conflict
by themselves following their individual model for rational behavior. The system
designer interested in conflict resolution may want to maximize anticoordination by
enforcing de-escalation on one or both agents.

4.2. MAC is NP-hard. Now, let us first characterize the hardness of MAC
formalized in (4.1).

Theorem 4.2. The MAC problem in (4.1) is NP-Hard for general graphs.

Proof. Consider the NP-Complete problem of whether a vertex cover C of a
general graph \scrG with cardinality | C| = k exists or not.2 Given a vertex cover problem
on graph \scrG and cardinality constant k, construct a MAC instance for \scrG where ci <
| n(i)|  - 1 where n(i) is the set of neighbors of node i \in V , and set r = k. Given the
payoff constants ci, all agents play 1 given the uncontrolled dynamics, i.e., at = 1 for
all t\geq 1. If there exists a solution X to MAC where the objective value g(X) = | E(\scrG )| ,
then C =X is a vertex cover with cardinality k. If there does not exist a solution to
MAC where the objective value g(X) = | E(\scrG )| , then we can conclude that there does
not exist a solution to the vertex cover problem for the graph \scrG with k vertices. Thus
if we can solve MAC efficiently, we can solve every vertex cover problem efficiently,
which is a contradiction.

Given that MAC is NP-Hard, we provide performance guarantees for tractable
greedy approaches to solving MAC defined over bipartite networks.

5. Submodularity for bipartite MAC instances. In a greedy approach, we
obtain a solution to a cardinality constrained maximization problem

2A vertex cover C of a graph \scrG is such that every edge has at least one endpoint incident (vertex)
in C; see [27] for a formal definition.
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2646 SOHAM DAS AND CEYHUN EKSIN

max
X\subseteq V,| X| \leq r

f(X)(5.1)

by selecting one element at a time, i.e.,

u= argmax
w\in V

f(Gj \cup \{ w\} ),(5.2)

Gj =Gj - 1 \cup \{ u\} , for 1\leq j \leq r,

where G0 = \emptyset . The greedy approach is a computationally tractable way to build a set
of maximum cardinality r for solving MAC in (4.1) when, in addition, we consider the
learning dynamics. If the MAC is submodular, then the greedy approach can obtain
a solution comparable to the optimal set X\ast . In the following, we provide preliminary
definitions of submodularity and monotonicity, and then characterize the optimality
loss when we implement a greedy selection (5.2).

Definition 5.1 (submodularity). A set function f(\cdot ) : 2V \rightarrow R is submodular if
for any subsets X \subseteq Y \subseteq V , where V is the ground set, and any u\in V \setminus Y we have

f(X \cup \{ u\} ) - f(X)\geq f(Y \cup \{ u\} ) - f(Y ),(5.3)

where V is finite. Alternatively, for any two sets S,T \subseteq V , f(\cdot ) is submodular if

f(S) + f(T )\geq f(S \cup T ) + f(S \cap T ).(5.4)

Equations (5.3) and (5.4) are equivalent representations of the property, and we
shall use both representations in our analyses going forward. The representation in
(5.3) is often referred as the diminishing returns description, and it provides a useful
intuition. Say X \subset V is a control that generates a benefit f(X). Then, while already
controlling X, the marginal benefit of adding u \in Y \setminus X to the control set does not
increase whenever f(\cdot ) is submodular.

Our results in this section focus on the bipartite topology for the interaction
graph in the network game \Gamma . A graph \scrG B is bipartite if V (\scrG B) can be partitioned
into two (possibly empty) sets S0, S1 such that every edge of \scrG B has one end in S0

and the other in S1. We call such a partition \{ S0, S1\} as the bipartition of \scrG B . We
say that a MAC instance (\scrG , c) is bipartite (equivalently, bipartite MAC) if \scrG is a
bipartite graph. The bipartiteness of the MAC instance arises as a natural modelling
assumption in the disease spread on networks example (2.1), where each partition of
the vertex set can represent the agents who are sick and healthy, respectively. Since
we are only concerned with valid disease transmission links, any interactions between
two sick or two healthy agents can be ignored.

5.1. Main result. First, we proceed with a definition that limits agent in-
sensitivity to peer influence in the network game, based on the payoff interaction
constants c.

Definition 5.2 (stubbornness). For a MAC instance (\scrG , c), we define an agent
i\in V (\scrG ) as stubborn if ci < | n(i)|  - 1.

Lemma 5.3. A stubborn agent will always play 1, i.e., ati = 1 for all t > 1.

Proof. If ci <
1

| n(i)| , then 1 > ci| n(i)| > ci
\sum 

j\in n(i)\lceil atj\rceil for any time step t in the

learning dynamics (3.1) (BRi(an(i)) = 1). Thus, starting from \epsilon , agent i decides to
play 1 in the next time step, and stays decided on playing 1 no matter what.

In this paper, we concern ourselves with MAC instances which do not have any
stubborn agents. See the following definition.
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SUBMODULARITY OF MAXIMIZING ANTICOORDINATION 2647

Definition 5.4 (well-behaved MAC). A MAC-instance (\scrG , c) is well-behaved if
there are no stubborn agents.

Under some minor constraints on the payoff interaction parameters and the min-
imum degree of the graph, we can guarantee that there are no stubborn agents.
Specifically, the constraints ci \geq | n(i)|  - 1 and | n(i)| \geq 2 for all i \in V (\scrG ) are sufficient
to ensure that there are no stubborn agents in graph \scrG . For an agent i with only one
neighbor, ci < | n(i)|  - 1 is trivially satisfied for any ci \in (0,1). Thus, for this study,
we require the underlying graph to additionally have a minimum degree of 2. The
line network that we study in the previous paper [10] in the context of MAC does
not satisfy this restriction, since the end nodes of the line graph will always have one
neighbor, and therefore always be stubborn.

Now, we state the main result in this paper, which directly produces a performance
guarantee for the greedy optimization of MAC (4.1).

Theorem 5.5. Given a random, well-behaved instance of bipartite MAC (\scrG B , c)
where ci \sim uniform ( 1

| n(i)| ,1) for all i\in V (\scrG B) is drawn uniformly at random, Ec\scrF (\cdot )
is submodular when we restrict the control input to \scrF (\cdot ) defined in (4.1) to one side
of the bipartite graph \scrG B and Ec is the expectation with respect to the random payoff
interaction constants \{ ci\} i\in V (\scrG B).

That is, bipartite MAC is submodular in expectation for well-behaved instances
when we assume a uniform distribution on the payoff interaction constants. To lever-
age the result, we need to condition the control set for MAC (4.1) to belong to one
side of the bipartition of the underlying interaction graph \scrG B . We also show that
MAC is monotone increasing for any well-behaved instance.

Theorem 5.6. The bipartite MAC objective \scrF (\cdot ) (4.1) is monotone increasing
for well-behaved instances (\scrG B , c), with bipartition \{ S0, S1\} when the control input to
\scrF (\cdot ) is restricted to one-side of the graph. Given selections of control sets X \subseteq Y \subseteq S0,
we have \scrF (X)\leq \scrF (Y ).

The theorems stated above lead to the proceeding result.

Corollary 5.7 (greedy performance guarantee). Let (\scrG B , c) be a random well-
behaved bipartite MAC instance with the bipartition \{ S0, S1\} , and ci \sim uniform ( 1

| n(i)| ,

1) for all i\in V (\scrG B) is drawn uniformly at random. Then the solution obtained by the
greedy algorithm satisfies Ec\scrF (Gr)\geq (1 - e - 1)Ec\scrF (X\ast ) where r is the control budget
and Gr \subseteq S0 is the control set obtained after r steps of the algorithm.

The result follows from Theorems 5.5 and 5.6, and the standard 1  - 1/e perfor-
mance guarantee for submodular function maximization. See [22] for details. For the
proof of Theorem 5.5, we track the set of people who get decided as a result of the
initial control via the dynamics in (3.1). The proof utilizes the fact that the one-step
influence on an undecided agent is modular (see section 5.3). We then design an
alternate equivalent description of the dynamics in (3.1) following which the distri-
bution of the random set of decided agents on convergence of the learning dynamics
stays unperturbed. Thereby, we design a coupling argument (see sections 5.4 and 5.5)
which allows us to have the properties we desire for the coupled stochastic process,
from which we recover the results we need for our dynamics via expectation over the
random payoff interaction parameters. Throughout, we leverage our understanding
of how the dynamics in (3.1) unfold on a bipartite graph if we additionally assume
well-behavedness.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

12
/2

5/
24

 to
 7

8.
17

7.
16

4.
44

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



2648 SOHAM DAS AND CEYHUN EKSIN

Remark 5.8. The restriction for control to be confined to one side of the bipartite
graph can be motivated from the epidemic setting (Example 2.1), where the two sides
of the bipartite graph refer to sick and healthy agents, respectively, and enforcing
strict health protocols for healthy agents is not practical. From a technical standpoint,
however, controlling agents on opposite sides of the bipartite graph can potentially
cause conflicting decision cascades (see the discussion in the next section), where the
potential positive benefits of control cancel out.

5.2. Well-behaved dynamics of MAC. Let us look at some consequences
of the well-behavedness assumption for bipartite MAC instances. First, we define a
scenario where every agent remains undecided according to the learning dynamics
(3.1).

Lemma 5.9. The action profile ai = \epsilon for all i \in V (\scrG ) is a fixed point for the
dynamics in (3.1) for well-behaved MAC instances.

Proof. Let (\scrG , c) be a well-behaved MAC instance (not necessarily bipartite).
Then, we converge in one step when there is no control with dynamics in (3.1). Agents
start undecided (play \epsilon initially). For all i \in V (\scrG ), 1 \leq ci

\sum 
j\in n(i)\lceil aj\rceil = ci| n(i)| is

satisfied, whereas ci
\sum 

j\in n(i)\lfloor aj\rfloor = 0 as everyone plays \epsilon in the zeroth step. Thus
agents stay undecided.

This implies that without any external intervention, in a well-behaved instance of
MAC, elimination of dominated strategies corresponds to agents staying undecided.
Now, consider a well-behaved bipartite instance of MAC (\scrG B , c) with the bipartition
\{ S0, S1\} . At t= 0, all agents are undecided in the absence of control and the dynamics
have converged (Lemma 5.9). Let X \subset S0 be the set of agents we control initially at
time t= 1 to play action level 0. We call this set X the initiating set. The notation Xt

and \=Xt represents the set of agents playing action level 0 and 1 at time t, respectively.
We have X1 =X and \=X1 = \emptyset in this setting. The following lemma specifies conditions
on the evolution of Xt and \=Xt using the dynamics (3.1).

Lemma 5.10 (concentration lemma). Let (\scrG B , c) be a well-behaved bipartite MAC
instance with the bipartition \{ S0, S1\} , and let X \subseteq S0 be the initiating set. Then
Xt \subseteq Xt+1 \subseteq S0 and \=Xt \subseteq \=Xt+1 \subseteq S1 is satisfied for all t.

Proof. Initially, X1 = X \subseteq S0 and \=X1 = \emptyset . For all v \in S1,
\sum 

j\in n(v)\lceil a1j\rceil \leq \sum 
j\in n(v)\lceil a0j\rceil . Thus, following dynamics, additional agents in S1 are encouraged to

play 1 at t = 2. But, for all v \in S0,
\sum 

j\in n(v)\lceil a1j\rceil = | n(v)| ,
\sum 

j\in n(v)\lfloor a1j\rfloor = 0 as a1j = \epsilon 
for all j \in S1. This ensures that, following dynamics in (3.1), X1 = X2 \subseteq S0, and
\=X2 \cap S0 = \emptyset as there are no stubborn agents. Thus \=X1 \subseteq \=X2 \subseteq S1, and the property
holds at t= 2.

Let the property hold at an arbitrary time step t - 1, i.e., Xt - 1 \subseteq Xt \subseteq S0 and
\=Xt - 1 \subseteq \=Xt \subseteq S1. If at is a fixed point of the dynamics, Xt+1 = Xt, \=Xt+1 = \=Xt,
and we are done. Assume that at is not a fixed point. Let Xt+1 \subset Xt. Then,
Xt \subset S0. Moreover, there exists v \in Xt \setminus Xt+1 such that 1 <

\sum 
j\in n(v)\lfloor a

t - 1
j \rfloor but

1 \geq 
\sum 

j\in n(v)\lfloor atj\rfloor , or
\sum 

j\in n(v)\lfloor atj\rfloor <
\sum 

j\in n(v)\lfloor a
t - 1
j \rfloor . Now, n(v) \subseteq S1 since v \in S0.

Also Xt \cap S1 = \emptyset from our assumption, that is agents in S1 only play \epsilon ,1 at time
t, t  - 1. This implies that \=Xt \subset \=Xt - 1, which is a contradiction. Thus Xt \subseteq Xt+1.
Similarly, when \=Xt+1 \subset \=Xt, there exists v \in \=Xt \setminus Xt+1 such that 1 >

\sum 
j\in n(v)\lceil a

t - 1
j \rceil 

but 1 \leq 
\sum 

j\in n(v)\lceil atj\rceil , or
\sum 

j\in n(v)\lceil a
t - 1
j \rceil <

\sum 
j\in n(v)\lceil atj\rceil , which implies Xt - 1 \supset Xt,

which is a contradiction as Xt - 1 \subseteq Xt and \=Xt \cap S0 = \emptyset . Thus \=Xt \subseteq \=Xt+1.
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SUBMODULARITY OF MAXIMIZING ANTICOORDINATION 2649

Now we need to show thatXt+1 \subseteq S0. Assume, for contradiction, that there exists
v \in Xt+1\cap S1. Therefore, since Xt \subseteq S0, v \not \in Xt. Now, v satisfies 1\geq 

\sum 
j\in n(v)\lfloor a

t - 1
j \rfloor (\because 

v \not \in Xt) but 1 <
\sum 

j\in n(v)\lfloor atj\rfloor (\because v \in Xt+1). This implies that
\sum 

j\in n(v)\lfloor a
t - 1
j \rfloor <\sum 

j\in n(v)\lfloor atj\rfloor . But, v \in S1, which means n(v) \in S0. Since \=Xt - 1 \subseteq \=Xt \subseteq S1, all

agents in S0 are playing \epsilon or 0 at times t  - 1, t. This means that
\sum 

j\in n(v)\lfloor a
t - 1
j \rfloor =\sum 

j\in n(v)\lfloor atj\rfloor = 0 which is a contradiction. Therefore, Xt+1 \cap S1 = \emptyset , or Xt+1 \subseteq S0.

Following similar arguments, we are also able to show that \=Xt+1 \subseteq S1. Now, using
the principle of mathematical induction, our result holds for all t.

Corollary 5.11. When X \subseteq S0 is the initiating set for a well-behaved bipartite
MAC instance, we have

Xt \subseteq Xt+1 \subseteq \cdot \cdot \cdot \subseteq X\infty \subseteq S0,(5.5)
\=Xt \subseteq \=Xt+1 \subseteq \cdot \cdot \cdot \subseteq \=X\infty \subseteq S1,

where S0 \cap S1 = \emptyset .
This implies that for well-behaved instances of bipartite MAC, agents playing 0

and 1 are concentrated on either side of the bipartite graph, with decided agent v \in S0

playing 0 since the initiating set X \subseteq S0.

Corollary 5.12. Undecided agents can only change their strategies in alternate
time steps.

The second corollary follows from the first. When all agents playing 0 and 1
are aligned on different sides of the bipartition \{ S0, S1\} , we need undecided agents
on S0 to wait for undecided agents on S1 to change their strategies, before they can
update their strategies again. This unique nature of the anticoordination effect in
well-behaved instances of MAC arises as a response to the asymmetric control that
we exert, i.e., enforce X \subset S0 to play 0 at t= 1. In the context of the epidemic game,
controlling one type of agent can mean that we can only choose to isolate individuals
who are sick. The agents playing zero on one side of the bipartite graph (set S0)
reinforce the decisions of agents playing 1 on the other side of the bipartite network
(set S1), and vice versa, till there is convergence. We call this a decision cascade.
Having payoff interaction constants in the range ci \in ( 1

| n(i)| ,1) for all i\in V (\scrG B) allows

for the removal of extremely insensitive agents (ci < 1
| n(i)| ) who choose to play 1

no matter what their neighbors are doing. In the absence of these agents, the only
decision cascade is triggered by the asymmetric control we exert at t= 1. This is the
foundation of the well-behaved scenario, where agents playing 0 and 1 are concentrated
on either side of the bipartite network.

For an illustration, see Figure 1 where the dynamics unfold on a well-behaved
instance for MAC and the control set is confined to one side of the network. See that
agents playing strategy levels 0 and 1 are concentrated on either side of the network.
Initially, at t= 1 all agents are undecided, which is a convergent action profile by itself
in the absence of control. We introduce control in the next time step which triggers
the dynamics and leads to agents updating their strategies to reach a new equilibrium
profile for the dynamics.

5.2.1. Monotonicity of well-behaved MAC instances. We provide the proof
of Theorem 5.6.

Proof. Given X \subseteq Y , we claim that any Xt \subseteq Yt, where Xt refers to the set of
agents in S0 that choose strategy 0 at time t. Initially, the property is true (t = 0),
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Fig. 1. We have a 4 \times 4 bipartite well-behaved instance for MAC, with payoff interaction
constants for agents given as c1 = 0.41, c2 = 0.55, c3 = 0.57, c4 = 0.86, c5 = 0.92, c6 = 0.60,
c7 = 0.34, c8 = 0.39. See that all ci, i \in V satisfy ci > 1/| n(i)| . Sets S0 and S1 are marked in
red and blue boxes. At time t = 1, all agents are undecided. This is a fixed point of (3.1). We
initiate dynamics by applying control to agents in set S0 (shown in red) at t= 2. The dynamics in
(3.1) converge at t= 3. No agent following the dynamics would change their strategy beyond t= 3.
(Figure in color online.)

i.e., X0 =X \subseteq Y = Y0. All agents in S1 are undecided, whereas agent i \in S0 plays 0
if i \in Y or i \in X. Assume now that the property is true for some t, and let \=Xt and
\=Yt represent the corresponding sets of agents playing 1 in S1, respectively. Following
the dynamics, agents in set S1 update at t+1 according to the actions of agents in S0

at time t. Since Xt \subseteq Yt, then \=Xt+1 \subseteq \=Yt+1 as any agent i \in S1 which plays 1 under
the influence of zero-set Xt will have to choose 1 under the influence of zero-set Yt.
This again implies that Xt+2 \subseteq Yt+2. Since Xt+1 =Xt and Yt+1 = Yt (as the sets S0

and S1 update alternately, Corollary 5.12) the property holds for all t. Eventually,
we have X\infty \subseteq Y\infty on convergence. Since all agents playing strategy 0 are in set S0

and agents in S1 are either 1 or undecided, the only edges deactivated are the ones
incident to agents in set X\infty and Y\infty . Thus \scrF (X)\leq \scrF (Y ).

Corollary 5.13. The set of zeros Xt and Yt for the processes initiated with zero
sets X \subseteq Y \subseteq S0 satisfy Xt \subseteq Yt \subseteq S0.

Corollary 5.14. The set of decided agents Xt\cup \=Xt and Yt\cup \=Yt for the processes
initiated with zero sets X and Y , respectively, X \subseteq Y \subseteq S0, satisfy Xt\cup \=Xt \subseteq Yt\cup \=Yt \subseteq 
V (\scrG B).

5.3. Modularity of one-step influence. We begin by defining the one-step
influence function for an undecided agent (playing \epsilon ) following the local learning
dynamics. Given the set of decided agents at a time step, the one-step influence
quantifies the net neighbor influence on an undecided agent that persuades it to get
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SUBMODULARITY OF MAXIMIZING ANTICOORDINATION 2651

decided in the next time step. In the following, let (\scrG B , c) be a well-behaved bipartite
MAC instance with bipartition \{ S0, S1\} , and let Tk be the set of decided agents (agents
playing 0 or 1) in V (\scrG B) at time step k following dynamics (3.1) initiated by zero-set
T \subseteq S0.

Definition 5.15. The one step influence experienced by an undecided agent v \in 
S0 \setminus Tk at the next time step k + 1 of the dynamics is f0

v : 2V (\scrG )\setminus \{ v\} \rightarrow R which is
given by f0

v (Tk)=
\sum 

j\in n(v)\lfloor aj(k)\rfloor . Similarly, the one-step influence experienced by an
undecided agent v \in S1 \setminus Tk at the next time step k + 1 of the dynamics in (3.1) is
f1
v : 2V (\scrG )\setminus \{ v\} \rightarrow R given by f1

v (Tk) =
\sum 

j\in n(v)\lceil aj(k)\rceil .
Following the concentration lemma, Lemma 5.10, we know that agents playing

0 and 1 will be concentrated on sides S0 and S1 of the graph, respectively. Thus,
for an undecided agent in S0, which cannot decide to play 1, the decision rule that
decides whether it will select to play 0 is if 1 < cv

\sum 
j\in n(v)\lfloor aj(k)\rfloor is satisfied. Thus,

following our definition, if the net influence cvf
0
v (Tk) on agent v \in S0 \setminus Tk, which

is the one-step influence scaled by the individual agent's payoff interaction constant,
exceeds threshold 1, then agent v switches to playing 0, i.e., av(k + 1) = 0 following
the rules in dynamics (3.1). Similarly, following our Definition 5.15, for undecided
agent v \in S1 \setminus Tk at time k, following the update rules in (3.1), if the net influence
cvf

1
v (Tk) is less than the threshold 1, the agent gets decided and switches to playing

1. For well-behaved bipartite instances of MAC, it is easy to see that the influence
functions have the closed-form representation given by

f0
v (Tk) = | n(v)\cap Tk| ,
f1
v (Tk) = | n(v) \setminus Tk| (5.6)

for v \in S0\setminus Tk and v \in S1\setminus Tk respectively. Notice that in the bipartite graph \scrG B , agent
v \in S0 implies n(v)\subseteq S1, and agents in S1 cannot choose to play 0 from Lemma 5.10.
Thus

\sum 
j\in n(v)\lfloor aj\rfloor is equal to the number of agents in the neighborhood of v playing

1 (as \lfloor \epsilon \rfloor = 0 for \epsilon \in (0,1)), which is given by cardinality of set n(v) \cap Tk. Similarly,\sum 
j\in n(v)\lceil aj\rceil is equal to the number of undecided agents in the neighborhood of v \in S1

(the set n(v) \setminus Tk), since n(v)\subseteq S0 and decided agents in S0 play 0.
We now state two important results.

Lemma 5.16. The set functions f0
v and f1

v are modular, i.e., the relation in (5.3)
holds with equality. The set functions f0

v and f1
v are monotone increasing and mono-

tone decreasing, respectively.

We provide the proofs in the appendix. In the next part of this paper, we show how
modularity of the one-step influence function leads to submodularity of the function
\scrF (\cdot ) described in (4.1).

5.4. The coupling argument. We develop the mathematical machinery needed
for the coupling argument. We are given a random, well-behaved instance of bipartite
MAC (\scrG B , c) with the bipartition \{ S0, S1\} . Following Lemma 5.9, all agents are unde-
cided initially. When we initiate a decision cascade by controlling certain agents (let's
say S \subset S0), the randomness of the payoff interaction constants imparts stochasticity
to the set of agents that get decided (choose 0 or 1) over time. Here S is referred to as
the initiating set for the decision cascade. Also recall that all controlled agents play 0
at all times. Since the dynamics converge in n time steps, it is enough to consider the
time interval 0 \leq k \leq n - 1. If we now run the dynamics in (3.1) given an initiating
set S \subset S0, we represent the distribution of the stochastic process T= (Tk)

n - 1
k=0 where

Tk \subseteq V (\scrG B) represents the set of decided agents at time k, T0 = S with \scrQ (S).
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In the following, we prove equivalence of the process when we consider R(1), . . . ,
R(K) a partition of S, i.e.,

\bigcup K
i=1R

(i) = S, and sequentially apply control to the sets
R(j), starting from R(1) by letting the process run with control set till convergence
for each j = 2, . . . ,K before adding R(j) to the control set. Let V = (Vk)

Kn - 1
k=0

represent this process where Vk \subset V (\scrG B) represents the set of decided agents at time
k. Then, for 1 \leq j \leq K, we set (Vk)

jn - 1
k=(j - 1)n \sim \scrQ (V(j - 1)n - 1 \cup R(j)), where V - 1 = \emptyset 

and \scrQ (R(1), . . . ,R(K)) denotes the distribution of V. Our first step is to show that
processes T and V lead to the same end result on convergence.

Lemma 5.17. VKn - 1 has the same distribution as Tn - 1 for any partition of the
initiating set

\bigcup K
i=1R

(i) = S \subset S0.

Proof. We have T = (Tk)
n - 1
k=0 \sim \scrQ (S) and V = (Vk)

Kn - 1
k=0 \sim \scrQ (R(1), \cdot \cdot \cdot ,R(K)).

Let V\prime = (V \prime 
k)

Kn - 1
k=0 \sim \scrQ (S,\emptyset , . . . ,\emptyset ). Let V\prime \prime = (V \prime \prime 

k )Kn - 1
k=0 \sim \scrQ (\emptyset , . . . ,\emptyset , S). Since the

process is monotonic (see Theorem 5.6 and Corollary 5.14), by induction on the K
stages we have

V \prime \prime 
Kn - 1 \subseteq VKn - 1 \subseteq V \prime 

Kn - 1.(5.7)

However, we have V \prime \prime 
Kn - 1 = V \prime 

Kn - 1 = Tn - 1. Thus we have Tn - 1 = VKn - 1.

According to the above result, it does not matter whether we control all the
agents in our control set right from the start, or we apply control progressively in
stages by working through partitions, as eventually either process will lead to the
same distribution of the decided agents on convergence.

Next, we consider S \cup T \subset S0 as the initiating set. As per the above result, we
can consider a partition of the set S, R(1), . . . ,R(K), and apply control progressively
for all stages until all of S is controlled, i.e., starting from R(1), let the dynamics run
with control sets

\bigcup j - 1
i=1 R

(i) before adding R(j) to the control set, and do this till we

reach S =
\bigcup K

i=1R
(i) as the control set. Next, we can add nodes from T to obtain the

same process as initially controlling S \cup T again by the above result. In the following
definition, we consider an alternative selection rule instead of adding T to the control
set.

Definition 5.18. Given a random well-behaved instance of bipartite MAC (\scrG B , c),
with bipartition \{ S0, S1\} and ci \sim uniform( 1

| n(i)| ,1) for all i\in V (\scrG B), let R
(1), . . . ,R(K)

be a partition of S \subseteq S0, and let T \subseteq S0 \setminus S. We consider the initiating set S \cup T \subseteq S0

and controlled agents play 0. We define the process that tracks the set of decided
agents over time as T - = (T - 

k )
(K+1)n - 1
k=0 \sim \scrQ  - (R

(1), . . . ,R(K);T ) where,
1. Let (T - 

k )Kn - 1
k=0 \sim \scrQ (R(1), . . . ,R(K)).

2. Set T - 
Kn=T - 

Kn - 1 \cup T .
3. At time (Kn+1)\leq k\leq (K +1)n - 1 initialize T - 

k = T - 
k - 1 and add to T - 

k the
set of nodes in v \in V (\scrG B) \setminus T - 

k - 1 such that

| n(v)|  - 1 + f0
v (T

 - 
Kn - 1)

 - 1  - f0
v (T

 - 
k - 1)

 - 1 > cv for v \in S0,

1 + f1
v (T

 - 
Kn - 1)

 - 1  - f1
v (T

 - 
k - 1)

 - 1 < cv for v \in S1(5.8)

until we run out of nodes to add.
We refer to the left-hand side of rule 3. as the selection quotient.

We show next that the selection rule we propose is distribution preserving, which
means that following the rule we would reach the same distribution of the random
set of agents getting decided on convergence as when we add T to the pre-existing
control set and run the dynamics.
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SUBMODULARITY OF MAXIMIZING ANTICOORDINATION 2653

Lemma 5.19. The stochastic process T - \sim \scrQ  - (R
(1), . . . ,R(K);T ) as defined in 5.18

has the same distribution as the process T= (Tk)
(K+1)n - 1
k=0 \sim \scrQ (R(1), . . . ,R(K), T ).

Proof. We are given the payoff interaction constant cv \sim uniform (| n(v)|  - 1,1) for
each v \in V (\scrG B). We use the same payoff interaction constants for both processes.
Both T - and T progress exactly the same way till time k = Kn. That is for all
0\leq k \leq Kn we have Tk = T - 

k . We know from the concentration lemma, Lemma 5.10
that agents playing 0 and 1 will be positioned on sides S0 and S1 of the bipartition,
whenever the initiating set is on side S0. Since both processes T and T - run the
same way for the first K stages, we get TKn - 1 = T - 

Kn - 1. Moreover, in either case we
initialize TKn = T - 

Kn = TKn - 1 \cup T .
Case 1. For an agent v \in S0, v \not \in TKn, but v \in Tk for some time Kn+ 1 \leq k \leq 

(K + 1)n - 1, we need

f0
v (Tk - 1)

 - 1 \leq cv < f0
v (TKn - 1)

 - 1.(5.9)

This is from application of the rules in the dynamics (3.1) while recognizing that an
agent v \in S0 is only eligible to get decided by choosing to play 0. Equation (5.9) says
that the net influence cvf

0
v (TKn - 1) did not exceed threshold 1, while the net influence

cvf
0
v (Tk - 1) exceeds threshold 1 for some k \geq Kn+ 1. Conditioning only on v \not \in TKn,

we have cv \sim uniform (| n(v)|  - 1, f0
v (TKn - 1)

 - 1). Define the shadow learner as

\~c0v := | n(v)|  - 1 + f0
v (TKn - 1)

 - 1  - cv.(5.10)

Then, \~c0v is also distributed uniformly in (| n(v)|  - 1, f0
v (TKn - 1)

 - 1). Now, since v \in Tk,
then cvf

0
v (Tk - 1)> 1 must be satisfied. In constructing the set Tk, if we select agents

v \not \in Tk - 1 such that \~c0vf
0
v (Tk - 1)> 1, then the distribution of the set of decided agents

Tk will not be altered as both cv and \~c0v are identically distributed and, therefore,
can serve as proxies for each other. This means that if we pick agent v using the
shadow learner \~c0v rather than its original payoff interaction constant cv, we preserve
the distribution of Tk. Plugging in the value of \~c0v in \~c0vf

0
v (Tk - 1)> 1, we get

| n(v)|  - 1 + f0
v (TKn - 1)

 - 1  - f0
v (Tk - 1)

 - 1 > cv,(5.11)

the equivalent of (5.8) for process T for agents on side S0, which is guaranteed to not
alter the distribution of Tk if we would just follow the dynamics (3.1).

Case 2. Again, for an agent u\in S1, u \not \in TKn, cuf
1
u(TKn - 1)\geq 1 must hold, following

updates (3.1). Conditioning on u \not \in TKn we must have cu \sim uniform (f1
u(TKn - 1)

 - 1,1).
Define shadow learner \~c1u as follows:

\~c1u := 1 + f1
u(TKn - 1)

 - 1  - cu.(5.12)

Then \~c1u is also uniformly distributed in (f 1
u(TKn - 1)

 - 1,1). If u \in Tk (agent u gets
decided to play 1), for some k in Kn+1\leq k\leq (K+1)n - 1, then following dynamics
(3.1) cuf

1
u(Tk - 1)< 1 must hold. Selecting agent u to be added to set Tk by alterna-

tively checking for the condition \~c1uf
1
u(Tk - 1) < 1 cannot alter the distribution of the

set Tk as cu and \~c1u are identically distributed. Now, plugging in the value of \~c1u in
\~c1uf

1
u(Tk - 1)< 1 gives us

1 + f1
u(TKn - 1)

 - 1  - f1
u(Tk - 1)

 - 1 < cu.(5.13)

the equivalent of the selection rule for process T, for agents on side S1. This completes
the proof.

Next, we provide two technical results related to monotone submodularity and
coupling which we use in the proof of Theorem 5.5.
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2654 SOHAM DAS AND CEYHUN EKSIN

Lemma 5.20. Let h : 2V \rightarrow R+ be monotone and submodular. Then if I \subseteq I \prime \subseteq V
and J \subseteq J \prime \subseteq V are given, we have

h(I \cup J \prime ) - h(I)\geq h(I \prime \cup J) - h(I \prime ).(5.14)

Proof.

h(I \cup J \prime ) - h(I)\geq h(I \cup J) - h(I) = h(I \cup (J \setminus I)) - h(I)

\geq h(I \cup (J \setminus I)\cup (I \prime \setminus (I \cup J))) - h(I \cup (I \prime \setminus (I \cup J)))

= h(I \prime \cup J) - h(I \prime ).(5.15)

Here the first inequality is due to monotonicity, and the second inequality is due to
submodularity of h.

Lemma 5.21. Let (\scrG B , c) be a random, well-behaved instance of bipartite MAC,
with the bipartition \{ S0, S1\} , ci \sim uniform(| n(i)|  - 1,1). Consider initiating sets A,B \subseteq 
S0, Z =A\cap B, and D=A\cup B. Let At \subseteq V (\scrG B) represent the decided agents at time
t when initiation set in (3.1) is A. We let the dynamics in (3.1) unfold, and then
couple the following processes:

A= (At)
\infty 
t=0 \sim \scrQ (A), B= (Bt)

\infty 
t=0 \sim \scrQ (B),

Z= (Zt)
\infty 
t=0 \sim \scrQ (Z), D= (Dt)

\infty 
t=0 \sim \scrQ (D)

in such a way that Z\infty \subseteq A\infty \cap B\infty and D\infty \subseteq A\infty \cup B\infty . If such a coupling exists for
any selections of A,B, then we obtain submodularity (5.4) of Ec\scrF (\cdot ) defined in (4.1).

The proof is in the appendix. We now have all the elements in place for us to
prove Theorem 5.5.

5.5. Proof of Theorem 5.5.
Proof. Our endeavor is to construct the exact coupling outlined in Lemma 5.21

which leads to submodularity in expectation of \scrF defined in (4.1). Take initiation
sets A,B \subseteq S0. Let Z = A \cap B and D = A \cup B. Let At \subseteq S0 represent the zero-set
at time t when we initiate the dynamics in (3.1) with the control set A. We let the
dynamics in (3.1) unfold on a bipartite MAC instance (\scrG B , c) with these four control
sets, i.e., A,B,Z, and D, respectively, as initiations, which lead to the following four
stochastic processes recording the set of agents playing action level 0 over time:

A= (At)
\infty 
t=0 \sim \scrQ (A), B= (Bt)

\infty 
t=0 \sim \scrQ (B),

Z= (Zt)
\infty 
t=0 \sim \scrQ (Z), D= (Dt)

\infty 
t=0 \sim \scrQ (D).(5.16)

The four processes above can be equivalently represented as

A= (Ak)
3n - 1
k=0 \sim \scrQ (A\cap B,A \setminus B,\emptyset ),

B= (Bk)
3n - 1
k=0 \sim \scrQ  - (A\cap B,\emptyset ;B \setminus A),

Z= (Zk)
3n - 1
k=0 \sim \scrQ (A\cap B,\emptyset ,\emptyset ),

D= (Dk)
3n - 1
k=0 \sim \scrQ  - (A\cap B,A \setminus B;B \setminus A),

(5.17)

using Lemmas 5.17 and 5.19 and the finite time convergence guarantee for the dynam-
ics. We will now show that our proposed coupling in (5.17) will have Zk \subseteq Ak \cap Bk

and Dk \subseteq Ak\cup Bk for all 0\leq k\leq 3n - 1. We use the same payoff interaction constants
for all the four processes. By construction, for all 0 \leq k \leq 2n  - 1, Bk = Zk \subseteq Ak,
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SUBMODULARITY OF MAXIMIZING ANTICOORDINATION 2655

and Zk = Ak \cap Bk. Similarly, for all 0 \leq k \leq 2n - 1, we have Dk = Ak which implies
Dk \subseteq Ak \cup Bk. Thus for all update times 0\leq k\leq 2n - 1 our result holds. We need to
additionally show that the inequalities hold for all times 2n \leq k \leq 3n - 1. Consider
the following statements.

Statement 1:

Dk \setminus D2n - 1 \subseteq Bk \setminus B2n - 1.(5.18)

Statement 2a:

f0
v (B2n - 1)

 - 1  - f0
v (Bk)

 - 1 \geq f0
v (D2n - 1)

 - 1  - f0
v (Dk)

 - 1, when v \in S0.(5.19)

Statement 2b:

f1
v (B2n - 1)

 - 1  - f1
v (Bk)

 - 1 \leq f1
v (D2n - 1)

 - 1  - f1
v (Dk)

 - 1, when v \in S1.(5.20)

First, we shall the use the principle of mathematical induction to show that these
three statements are valid for all time 2n\leq k\leq 3n - 1.

Consider k = 2n. For the first statement, we have D2n = D2n - 1 \cup (B \setminus A),
B2n =B2n - 1 \cup (B \setminus A). That means we have

D2n \setminus D2n - 1 = (D2n - 1 \cup (B \setminus A)) \setminus D2n - 1

= \{ (B \setminus A) \setminus D2n - 1\} \cup \{ (D2n - 1) \setminus D2n - 1\} = (B \setminus A) \setminus D2n - 1.

Now using B2n - 1 \subseteq D2n - 1, we have

D2n \setminus D2n - 1 \subseteq (B \setminus A) \setminus B2n - 1

= \{ (B \setminus A) \setminus B2n - 1\} \cup \{ B2n - 1 \setminus B2n - 1\} 
= (B2n - 1 \cup (B \setminus A)) \setminus B2n - 1 =B2n \setminus B2n - 1.(5.21)

Next, we prove Statement 2a for k = 2n. Consider v \in S0. Now in (5.14), plug in
I = B2n - 1, I

\prime =D2n - 1, J = J \prime = B \setminus A. Noting that f0
v is monotone increasing and

modular (by Lemma 5.16), we have

f0
v (B2n) - f0

v (B2n - 1)\geq f0
v (D2n) - f0

v (D2n - 1).(5.22)

Also, as a consequence of the monotonicity of f0
v (see Lemma 5.16, f0

v is monotone
increasing) we have

f0
v (B2n)f

0
v (B2n - 1)\leq f0

v (D2n)f
0
v (D2n - 1).(5.23)

Dividing the left (right) hand side of (5.22) with the left- (right-) hand side of (5.23),
we get (5.20) for k= 2n.

Now we prove Statement 2b for k = 2n in a similar way. Consider v \in S1. We
know from Lemma 5.16 that f1

v is modular and monotone decreasing. In (5.14), plug
in I =B2n - 1, I

\prime =D2n - 1, J = J \prime =B \setminus A like before. Then we get

f1
v (B2n) - f1

v (B2n - 1)\leq f1
v (D2n) - f1

v (D2n - 1).(5.24)

Moreover, using Lemma 5.16, we have

f1
v (B2n)f

1
v (B2n - 1)\geq f1

v (D2n)f
1
v (D2n - 1).(5.25)
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2656 SOHAM DAS AND CEYHUN EKSIN

Dividing the left- (right-) hand side of (5.22) with the left- (right-) hand side of (5.23),
we get (5.20) for k= 2n.

Assume now that the statements (5.18), (5.19), and (5.20) hold true at time k.
We can write the following inequalities by adding | n(v)|  - 1 and 1, respectively, to both
sides of Statements 2a and 2b at time k (for v \in S0 and v \in S1, respectively),

| n(v)|  - 1 + f0
v (B2n - 1)

 - 1  - f0
v (Bk)

 - 1 \geq | n(v)|  - 1 + f0
v (D2n - 1)

 - 1  - f0
v (Dk)

 - 1(5.26)

1 + f1
v (B2n - 1)

 - 1  - f1
v (Bk)

 - 1 \leq 1 + f1
v (D2n - 1)

 - 1  - f1
v (Dk)

 - 1.(5.27)

For v \in S0, inequality (5.26) says that the selection quotient for the process B is larger
than that for process D. Recall that the selection quotient was the left-hand side of
rule 3. in definition 5.18. See that for both processes B and D we select elements using
selection rule 3. in definition 5.18 in the last stage (for 2n\leq k\leq 3n - 1). Since process
B features a larger selection quotient for agents in S0, any v \in S0\setminus Dk that is prescribed
to be added to setDk+1, i.e., | n(v)|  - 1+f0

v (D2n - 1)
 - 1 - f0

v (Dk)
 - 1 > cv is also prescribed

to be added to set Bk+1, i.e., | n(v)|  - 1 + f0
v (B2n - 1)

 - 1  - f0
v (Bk)

 - 1 > cv, unless it is
already in set Bk. For v \in S1, inequality (5.27) says that the selection quotient for
the process B is smaller than that for process D. As a result, any v \in S1 \setminus Dk that
is prescribed to be added to set Dk+1, i.e., 1 + f1

v (D2n - 1)
 - 1  - f1

v (Dk)
 - 1 < cv is also

prescribed to be added to set Bk+1, i.e., 1 + f1
v (B2n - 1)

 - 1  - f1
v (Bk)

 - 1 < cv.
Since Dk \setminus D2n - 1 \subseteq Bk \setminus B2n - 1 by assumption, this further implies that

Dk+1 \setminus D2n - 1 \subseteq Bk+1 \setminus B2n - 1.(5.28)

This is exactly Statement 1 holding at time k+ 1. We now plug in I =B2n - 1 \subseteq I \prime =
D2n - 1 and J =Dk+1 \setminus D2n - 1 \subseteq J \prime =Bk+1 \setminus B2n - 1 in (5.14) to get that

f0
v (Bk+1) - f0

v (B2n - 1)\geq f0
v (Dk+1) - f0

v (D2n - 1)(5.29)

using that f0
v is modular and monotone increasing (Lemma 5.16). Also, since

f0
v (Bk+1)fv(B2n - 1)\leq fv(Dk+1)fv(D2n - 1)(5.30)

by monotonicity of f0
v , we get

f0
v (B2n - 1)

 - 1  - f0
v (Bk+1)

 - 1 \geq f0
v (D2n - 1)

 - 1  - f0
v (Dk+1)

 - 1(5.31)

by dividing the left- (right-) hand side of inequation (5.29) with the inequation (5.30).
Adding n(v) - 1 on both sides, we recover Statement 2a at time k + 1. Similarly,
plugging in I = B2n - 1 \subseteq I \prime = D2n - 1 and J = Dk+1 \setminus D2n - 1 \subseteq J \prime = Bk+1 \setminus B2n - 1 in
(5.14), and using the fact that f1

v is modular and monotone decreasing, we get

f1
v (Bk+1) - f1

v (B2n - 1)\leq f1
v (Dk+1) - f1

v (D2n - 1).(5.32)

Moreover,

f1
v (Bk+1)f

1
v (B2n - 1)\geq f1

v (Dk+1)f
1
v (D2n - 1)(5.33)

since f1
v is monotone decreasing. Combining inequalities (5.32) and (5.33), we get

f1
v (B2n - 1)

 - 1  - f1
v (Bk+1)

 - 1 \leq f1
v (D2n - 1)

 - 1  - f1
v (Dk+1).(5.34)

Adding 1 to either side reveals Statement 2b holding true at time k+ 1.
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SUBMODULARITY OF MAXIMIZING ANTICOORDINATION 2657

Thus Statements 1, 2a, and 2b are true for all update times, and all intermediate
time steps between two update time steps. Now, for 2n \leq k \leq 3n  - 1, we have
Ak =D2n - 1. Also Dk \setminus D2n - 1 \subseteq Bk \setminus B2n - 1 \subseteq Bk which implies that

(Dk \setminus D2n - 1)\cup D2n - 1 \subseteq Ak \cup Bk,

Dk \subseteq Ak \cup Bk.(5.35)

Also, Zk \subseteq Ak \cap Bk holds from the construction for this time range. As the dynamics
converge by k = 3n - 1 by the finite time convergence guarantee established in [11],
we have Z\infty \subseteq A\infty \cap B\infty and D\infty \subseteq A\infty \cup B\infty . We have successfully constructed the
coupling we need. Now, the main result in 5.5 follows from Lemma 5.21.

6. Submodularity violation: An example. We shall now construct an ex-
ample that shows that MAC is not submodular for every realization of the payoff
interaction constants within a selected range.

Example 6.1. Consider a complete bipartite graph \scrG =KN,N with the bipartition
\{ V0, V1\} such that E(\scrG ) is the set of all unordered pairs \{ u, v\} such that u \in V0 and
v \in V1. Let | V0| = | V1| = N \geq 4. We refer to this MAC instance as (KN,N , c). See
Figure 2 for a visual on the counterexample. Additionally, let the payoff interaction
constants satisfy cv \in ( 1

N , 1
N - 1 ) for all v \in V0 and cv \in ( 1

N - 1 ,
1

N - 2 ) for v \in V1. Observe
that any MAC instance (KN,N , c) so constructed, with the c's in the above range is
well-behaved by construction, i.e., cv > 1/| n(i)| for all vertices v \in V (\scrG ).

Next, we show that the MAC objective \scrF as defined in (4.1) is not submodular
whenever payoff constants satisfy cv \in ( 1

N , 1
N - 1 ) for all v \in V0 and cv \in ( 1

N - 1 ,
1

N - 2 )
for v \in V1. Since the instance satisfies the assumptions of well-behavedness, \epsilon is
a fixed point of the dynamics, without any external control. Consider the empty
control set X = \emptyset . When X is controlled, \epsilon continues to be the fixed point. Thus
\scrF (X) = 0. Let u \in V0 \setminus X. When X \cup \{ u\} is controlled, for all agents v \in V1,
cv(\lceil an(v)\rceil ) = cv(N  - 1)> 1 since cv >

1
N - 1 and cv(\lfloor an(v)\rfloor ) = cv(0) = 0< 1 is satisfied.

Thus all such agents v \in V1 stay undecided following dynamics. Thus, for all v \in V0,
in the next time step, nothing changes in terms of neighbor influence, and v \in V0 \setminus \{ u\} 
stays undecided. Thus, \scrF (X \cup \{ u\} ) =N .

Let y \in V0, y \not = u. Define Y = \{ y\} . Then X \subset Y by construction. When set
Y is the control set, we get \scrF (Y ) = N as this scenario is the same as the previous
scenario (control of X \cup \{ u\} ). Now, when the control set is Y \cup \{ u\} , for all v \in V1,
cv(\lceil an(v)\rceil ) = cv(N  - 2)< 1 as cv <

1
N - 2 , thus all agents in V1 play 1. In the following

time step, for all agents v \in V0 \setminus (Y \cup \{ u\} ), cv(\lfloor an(v)\rfloor ) = cv(N) > 1 as cv > 1
N , and

thus such agents choose 0. Thus, we get \scrF (Y \cup \{ u\} ) =N2.

y u

V0

V1

Fig. 2. We have a N \times N complete bipartite network, with the bipartition \{ V0, V1\} , with se-
lection for agent u shown in blue. Sets V0 and V1 are marked in red and blue boxes, respectively.
(Figure in color online.)
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2658 SOHAM DAS AND CEYHUN EKSIN

Then the magnitude of violation of submodularity in this scenario is given by
(\scrF (Y \cup \{ u\} )  - \scrF (Y ))  - (\scrF (X \cup \{ u\} )  - \scrF (X)) = (N2  - N)  - (N  - 0) = N2 which
is equal to the number of edges | E(\scrG )| . Thus \scrF is not submodular for any ci value
satisfying the given ranges.

When we constrain the payoff interaction constants to be within the above range,
we see that for any instance, submodularity of MAC does not hold. Now, if we
assume a uniform distribution on the payoff constants, that is cv \sim uniform( 1

N , 1
N - 1 )

for all v \in V0, cv \sim uniform( 1
N - 1 ,

1
N - 2 ) for all v \in V1, then for the sets X \subset Y \subset V0,

u \in V0 \setminus Y that we constructed above, the inequality Ec(\scrF (X \cup \{ u\} )  - \scrF (X)) \geq 
Ec(\scrF (Y \cup \{ u\} )  - \scrF (Y )) does not hold. In fact, the magnitude of violation of the
inequality is exactly N2 = | E(KN,N )| . Thus submodularity in expectation does not
arise with stronger conditions on the payoff constants, even if the instance is well-
behaved. However, as we have established, when we allow the payoff interaction
constants to belong to the entire spectrum, submodularity of MAC is established in
expectation. The next section of this paper conveys the same intuition, where the
graphs \scrG of limited size are generated using the Erdos-Renyi probabilistic model, with
payoff interaction constants uniformly distributed over the entire range.

7. Simulation. MAC is concerned with the deactivation of as many edges as
possible on convergence of learning dynamics, perturbed by controlling a select few
agents. We define the Inactivation Ratio as the ratio of the number of edges inacti-
vated on convergence to the number of active edges in the network before the dynamics
progress. Inactivation Ratio, therefore, is a measure of how successful MAC is on the
particular graph instance, given the control.

For our simulations we consider random Erdos-Renyi bipartite graph instances
of the form KN

2 ,N2
with edge formation probability equal to 0.3 and 0.8. Every

realization of a network for given network sizes (N \in \{ 4,8,12, ..,40\} ) has a random
topology with random payoff interaction constants for the agents. We sample the
payoff interaction constants c for every agent from a uniform distribution between the
limits (0,1) (thus the instances are not necessarily well-behaved). The control budget
is fixed at \lceil N

10\rceil , where N is the number of nodes in the graph. Given the budget, we
select the control profile using a greedy cascade based algorithm (5.2). We compare
its anticoordination performance with a control set generated using brute force search.
In the brute force approach, we go over all the possible control sets for the budget
specified and find the one that maximizes the number of edges deactivated. For every
network instance, we calculate the Inactivation Ratio for both the control sets found
using the greedy algorithm (5.2) and brute force search. For a given network size, we
sample 40 instances of random bipartite graphs and evaluate the performance of the
greedy algorithm.

We plot the average Inactivation Ratio against the size of network in Figure 3.
The Inactivation Ratio, on average, for the greedy algorithm is close to the optimal
inactivation at the current control budget for every network size. The maximum
inactivation ratio gap for our simulations stands at 0.106 for networks with low edge
formation probability and 0.095 for the networks with high edge formation probability,
further highlighting the good performance of (5.2) in selecting control agents to induce
anticoordination. In Figure 4, we show how long it takes to build the greedy control
set using (5.2) for different control budgets and network sizes. All our simulations
have been performed on Apple M1 CPU (Arm based, 8-core) with 16 GB of RAM.

Remark 7.1 (computational complexity). The greedy algorithm has a time com-
plexity of O(n3). This is because at each step we potentially scan O(n) agents for
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SUBMODULARITY OF MAXIMIZING ANTICOORDINATION 2659

Fig. 3. Average Inactivation Ratio versus Graph Cardinality (N ) for Erdos-Renyi bipartite
graphs with connection probability equal to 0.3 and 0.8, respectively. Control budget set at \lceil N

10
\rceil for

every network realization.

Fig. 4. Average time needed to construct greedy set for different network sizes and Erdos-
Renyi edge formation probabilities 0.3,0.5,0.8 referred to as sparse, not sparse and locally large.
respectively. Control budget fixed at \lceil N

10
\rceil where N is the network size.
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2660 SOHAM DAS AND CEYHUN EKSIN

finding the one which causes the highest cascade. For each such scan, we run learning
dynamics which takes at most O(n) time steps to converge [11] and each step of the
learning dynamics involves O(n) updates.

8. Conclusion. We defined the combinatorial problem of selecting agents to
control to maximize anticoordination among rational agents in a network game. An-
ticoordination is measured as the number of edges deactivated from the network on
convergence of decentralized learning dynamics. We first show that MAC is NP-Hard
to solve, in general, graphs. Our paper establishes that whenever MAC instances
are bipartite, the objective in (4.1) is submodular in expectation. We discuss the
stochastic nature of the dynamics, given random payoff interaction constants. We
establish that the decision process has a unique property that instead of applying
control in a consolidated fashion, we can apply it in a distributed manner which opens
up possibilities for alternate equivalent descriptions of the dynamics (Lemmas 5.17
and 5.19). We then derive a selection rule which when substituted for the dynamics
in the ultimate stage of control does not alter the distribution of decided agents on
convergence. Using all these results in conjunction allows us to derive the coupling
argument which guarantees that the four processes we couple have the properties
we desire in Lemma 5.21. This leads directly to the proof of submodularity (Theo-
rem 5.5). We also show that MAC is monotone increasing in the set of control agents.
Using these results together, we provide the approximation guarantee for greedy node
selection for MAC (Corollary 5.7). Our computational results confirm that greedy
selection strategies are effective in producing near-optimal control sets for MAC in
bipartite network scenarios.

9. Appendix.

9.1. Proof of Lemma 5.21.
Proof. Let e(A)t and A0

t be the set of edges deactivated and the set of decided
agents playing 0, respectively, at time t when we initiate the dynamics in (3.1) with
control set A. Let \delta (S) be the set of edges of \scrG B which are incident to S, for some
S \subseteq V (\scrG B). From Lemma 5.10, for a well-behaved instance at any time t, we have
decided agents in S0 playing 0 and decided agents in S1 playing 1 whenever initiating
sets are on side S0, that is A0

t \subseteq S0 whenever A \subseteq S0. All edges deactivated at
time t are incident with the zero-set at time t, by definition of MAC (4.1). Thus
e(A)t = \delta (A0

t ).
Assume now the coupling in Lemma 5.21 exists. As a consequence of the afore-

mentioned coupling, we have Z\infty \subseteq A\infty \cap B\infty , the relationship between the set of
decided agents obtained via the initiating sets Z = (A\cap B), A, and B. Now since all
decided agents playing 1 are on side S1 via the concentration lemma, Lemma 5.10,
we get the following relationship between the set of agents playing 0:

Z0
\infty =Z\infty \setminus S1 \subseteq (A\infty \cap B\infty ) \setminus S1

= (A\infty \setminus S1)\cap (B\infty \setminus S1) =A0
\infty \cap B0

\infty ,(9.1)

Similarly, we get

D0
\infty \subseteq A0

\infty \cup B0
\infty (9.2)

from the coupling assumption D\infty \subseteq A\infty \cup B\infty and by subtracting set S1 from both
sides. We now make the following claims.
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SUBMODULARITY OF MAXIMIZING ANTICOORDINATION 2661

Claim 1. We claim that Z0
\infty \subseteq A0

\infty \cap B0
\infty (9.1) implies \delta (Z0

\infty )\subseteq \delta (A0
\infty )\cap \delta (B0

\infty ).
(Proof of Claim 1). Because of Lemma 5.10, since all initiating sets are on side

S0, the set of edges deactivated are exactly the set of edges incident to the zero-
set on convergence of dynamics. Thus \delta (Z0

\infty ) \subseteq \delta (A0
\infty \cap B0

\infty ). Now we argue that
\delta (A0

\infty \cap B0
\infty ) \subseteq \delta (A0

\infty ) \cap \delta (B0
\infty ). To see why, assume for contradiction that there

exists edge \~e \in \delta (A0
\infty \cap B0

\infty ), \~e \not \in \delta (A0
\infty ) \cap \delta (B0

\infty ). But \~e is incident to some node
u\in A0

\infty \cap B0
\infty , which implies that u\in A0

\infty and u\in B0
\infty . Thus \~e is incident to both A0

\infty 
and B0

\infty , or \~e\in \delta (A0
\infty ) and \~e\in \delta (B0

\infty ), which is a contradiction.
Claim 2. The inequality D0

\infty \subseteq A0
\infty \cup B0

\infty (9.2) implies \delta (D0
\infty )\subseteq \delta (A0

\infty )\cup \delta (B0
\infty ).

(Proof of Claim 2). As in the previous claim, \delta (D0
\infty ) \subseteq \delta (A0

\infty \cup B0
\infty ) holds. We

argue now that \delta (A0
\infty \cup B0

\infty )\subseteq \delta (A0
\infty )\cup \delta (B0

\infty ). For contradiction, assume that indeed
there exists \~e \in \delta (A0

\infty \cup B0
\infty ), \~e \not \in \delta (A0

\infty ) \cup e(B0
\infty ). But \~e is incident to some node

u\in A0
\infty \cup B0

\infty , which means either u\in A0
\infty or u\in B0

\infty (or both), which directly implies
that either \~e\in \delta (A0

\infty ) or \~e\in \delta (B0
\infty ), or both, which is a contradiction.

From Claim 1 we get that e(Z)\infty \subseteq e(A)\infty \cap e(B)\infty (since e(Z)\infty = \delta (Z0
\infty ), and

so on). Moreover, from Claim 2, we get that e(D)\infty \subseteq e(A)\infty \cup e(B)\infty . Recall we can
represent the objective in MAC (4.1) as \scrF (X) = | e(X)\infty | . We can now write

\scrF (A) +\scrF (B) = | e(A)\infty | + | e(B)\infty | = | e(A)\infty \cap e(B)\infty | + | e(A)\infty \cup e(B)\infty | 
\geq | e(Z)\infty | + | e(D)\infty | 
=\scrF (Z) +\scrF (D) =\scrF (A\cap B) +\scrF (A\cup B).(9.3)

The second equality is due to the fact that the cardinality function is modular, i.e.,
both submodular and supermodular, which means that for any two sets I1, I2 subset
of a ground set I0 we have | I1| + | I2| = | I1 \cup I2| + | I1 \cap I2| . The inequality is a result
of monotonicity of the cardinality function. Taking expectation on either side, we get
the desired result.

9.2. Proof of Lemma 5.16.
Proof. Following definitions of f0

v and f1
v we define the marginal gains \Delta uf

0
v (S) =

f0
v (S \cup \{ u\} ) - f0

v (S) and \Delta uf
1
v (S) = f1

v (S \cup \{ u\} ) - f1
v (S) for some set S which is a

valid input to f0
v and f1

v and some vertex u \not \in S. Now we expand \Delta uf
0
v (S) as follows:

\Delta uf
0
v (S) = | n(v)\cap (S \cup \{ u\} )|  - | n(v)\cap S| 

= | (n(v)\cap S)\cup (n(v)\cap \{ u\} )|  - | n(v)\cap S| .(9.4)

Since u \not \in S, n(v)\cap S is disjoint from n(v)\cap \{ u\} , which implies

\Delta uf
0
v (S) = | n(v)\cap S| + | n(v)\cap \{ u\} |  - | n(v)\cap S| 

= | n(v)\cap \{ u\} | .(9.5)

Thus \Delta uf
0
v (S) is independent of input S. Thus for any S \subseteq T , \Delta uf

0
v (S) =\Delta uf

0
v (T ).

Thus f0
v is modular.

Again,

\Delta uf
1
v (S) = | n(v) \setminus (S \cup \{ u\} )|  - | n(v) \setminus S| 

= | (n(v) \setminus S) \setminus \{ u\} |  - | n(v) \setminus S| .(9.6)

Since u \not \in S, we can break the first term on the right-hand side as

\Delta uf
1
v (S) = | n(v) \setminus S|  - | n(v)\cap \{ u\} |  - | n(v) \setminus S| 

= - | n(v)\cap \{ u\} | .(9.7)
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2662 SOHAM DAS AND CEYHUN EKSIN

Thus \Delta uf
1
v (S) is independent of input S, which means that f1

v is modular. Finally,
from the closed form representation (5.6) of f0

v and f1
v it is trivial to see that the

two functions are monotone increasing and decreasing, respectively, since n(v) is a
constant.
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