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The requirement of high power outputs and high efficiencies of combustion engines such as

rocket engines, diesel engines, and gas turbines has resulted in the incremented of the system

pressure close to the thermodynamically critical point. This increase in pressure often leads to

the ŕuids becoming either transcritical or supercritical in state. This has led to increased interest

in both the multi-component phase change phenomena as well as their chemical reactions.

In this work, an artiőcial neural network (ANN) aided VLE model is coupled with a fully

compressible computational ŕuid dynamics (CFD) solver to simulate the transcritical processes

occurring in high-pressure liquid-fueled propulsion systems. The ANN is trained on Python

using the TensorFlow library, optimized for inference (i.e., prediction) using ONNX Run-time

(a cross-platform inference and training machine-learning accelerator), and coupled with a

C++ based fully compressible CFD solver. This plug-and-play model/methodology can be

used to convert any fully compressible and conservative CFD solver to simulate transcritical

processes using only open-source packages, without the need of in-house VLE-based CFD

development. The solver is then used to study high-pressure shock-droplet interaction in both

two- and four-component systems where qualitative and quantitative agreement is shown with

results based on both direct evaluation and the state-of-the-art in situ adaptive tabulation (ISAT)

method. The ANN model is faster than the direct evaluation method and the ISAT model by 4

times for the four-component shock-droplet interaction. The ANN model also shows implicit

load balancing as long as the MPI decomposition is performed uniformly amongst the number

of cores chosen, as the inference time for ANN predict does not change with the change in

thermodynamic state, unlike traditional VLE solvers. Regarding the parallel scalability of this

model, good strong scaling characteristics with number of processors is also observed.

I. Introduction
With ever increasing demand for high performance combustors, increasing the chamber pressure is one often sought

after option. This leads to the working conditions to overlap with the supercritical regime of the reactants. Due to

the high-pressure environment in engine combustors, the injected multi-component liquid propellants and fuel-air

mixtures often go through thermodynamically transcritical processes during the spray breakup, evaporation, mixing,

and combustion processes. Efficient spray breakup and evaporation of liquid fuels are the primary targets of engine

combustor design and control to ensure sufficiently small łeffectivež evaporation time. The existing liquid fuel injectors

and multi-component liquid fuels developed for low pressures are not optimal at high pressures, and hence require

re-design and optimization.

To understand the transcritical/supercritical mixing and combustion process, high-ődelity simulation tools are

needed. Since transcritical/supercritical regions are far from the ideal gas region, real-ŕuid effect needs to be considered

to capture correct behavior. In addition, transcritical/supercritical ŕuid behavior can be peculiar because of the

large variation of thermophysical properties such as density and speciőc heat near the critical point. As a result, the

Computational Fluid Dynamics (CFD) modeling of transcritical/supercritical ŕows is very challenging. Since small

changes in temperature and pressure can have large effects on the structure of a ŕuid near the critical point, local

properties are very important. Furthermore, a supercritical ŕuid lacks surface tension, which means the modeling

transcritical ŕow needs to capture the surface tension change when the ŕuid goes across phase boundary. This makes

simulation of transcritical ŕows more challenging than supercritical ŕows.
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The studies of transcritical/supercritical injection, mixing, and combustion have attracted much interest in the past

30 years. However, most of them were mainly concentrated on the single-component system, whose critical point is

a constant value. As long as the ŕuid exceeds its critical point, it goes into the supercritical state, and the classical

łdense-ŕuidž approach is used with the assumption of a single phase [1]. Since the real mixture critical pressure could

be signiőcantly higher than the critical pressure of each component [2], the accurate mixture critical point needs to be

obtained.

The requirement for a thermophysical framework to capture the above motivated physical phenomena is achieved

by using the vapor-liquid equilibrium (VLE) theory. The VLE theory enforces mechanical, thermal, and chemical

equilibrium between the two phases and hence estimates the phase fraction, phase densities, and phase compositions.

The real-ŕuid effects can be coupled with the VLE model by usage of a real-ŕuid equation of state (EOS). Zhang

et al. [3] showed details regarding the VLE framework implementation. The computational costs associated with

VLE calculations can occupy up to 90% of the overall computational costs as noted by Zhang and Yang [4]. Each

VLE estimation has two loops, an inner loop to converge the phase separation and an outer loop to converge the

chemical equilibrium check. Within the outer loop, a real-ŕuid properties estimation loop is also presented, which

further adds to the computational costs. Real-ŕuid parameters are subjected to mixing rules and require nested loops to

account for multi-component effects. Finally, both the loops are converged using a Newton iteration whose convergence

characteristics are heavily dependent on the initial guess provided. VLE calculations as expected happen to be not

only computationally expensive, but also often non-robust. These calculations often do not converge and result in

interruptions to the CFD simulation (i.e., the CFD code crashes). The loss of robustness is associated with the

multi-component VLE calculations as an optimal guess is very difficult to őnd. This can lead to further issues and now

one would need to attempt multiple initial guesses until a converged solution can be obtained and hence further adding

to the computational costs.

The computational costs associated with running VLE ŕash calculations for 3D simulations can quickly grow

infeasible and requires techniques to mitigate this risk. Fathi et al. [5] developed a reduced-order VLE calculator based

on reducing the multi-component interaction matrix. The results showed the reduction of overall computational costs

associated with the VLE calculations for multi-component systems, but does not guarantee robustness. Zhang and

Yang [4] introduced the usage of in situ adaptive tabulation (ISAT) for VLE calculations to reduce the computational

costs. A 400 times speed up is achieved by the ISAT implementation showing its excellent performance, but ISAT also

depends on the direct calculation of VLE solutions, which still suffers from robustness issues.

One solution to avoid online VLE calculation to avoid the robustness issues is to use pre-generated VLE look-up

tables which can then be used in the CFD simulation. Though this method ideally is feasible, the generated table for

multi-component system suffers from the curse of dimensionality: the table size can quickly exceed 1 TB (for only 4

components) and cannot be hosted on the random-access memory (RAM) of the state-of-the-art high-performance

computing (HPC) systems. This motivates the usage of other data science and machine learning methods, such as

artiőcial neural networks (ANNs), which can perform non-linear regression while only costing MBs in RAM requirement.

ANNs have been predominantly used on ŕuid ŕow for multiple applications, such as turbulence LES modeling, ignition

kernel clustering and capturing, image analysis for post processing, etc. ANNs have shown great potential for non-linear

regression, especially when deep neural networks are employed. However, the biggest advantage with ANNs is the

ability to őll in gaps in the data where the data generation algorithm failed (i.e., where VLE solution does not converge

easily) such that the robustness issues of VLE can be resolved.

Usage of a well-trained ANN to perform the VLE calculations will result in increased robustness during CFD run

time along with minimized computational costs. Yue et al. [6] used ANNs to őt experimental VLE data for diesel

spray conditions and showed the methods’ applicability. In this study, we generate the data using a custom-written

VLE code and then train the ANN. The trained ANN is then coupled with a fully compressible CFD solver and a

shock-droplet interaction case is used to test the performance of this the ANN-VLE approach. The results generated

using the ANN-based VLE CFD code is compared against both direct estimation as ISAT-based estimation to show the

accuracy and computational efficiency/speed of the ANN-based approach.

The remaining of this paper is organized as follows: Section II discusses the numerical models used here, including

the VLE model, the ANN model, and also the methodology followed to couple the ANN with the CFD code. The results

and discussions are shown in Sec. III, and the paper is concluded in Sec. IV.
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II. Numerical Methods

A. Models of thermodynamic and transport properties

Here, we use vapor-liquid equilibrium (VLE) solvers to capture the phase change and determine the critical point

of multi-component mixture in high-pressure transcritical multiphase ŕow as described above. VLE describes the

phase equilibrium between liquid and vapor phases and solving the set of VLE equations gives the phase fraction

and compositions in the two phases. If the gas (vapor) phase mole fraction is equal to 0 or 1, then the system is in

a purely liquid or gaseous phase, respectively. If the system falls into the two-phase region, gas phase mole fraction

will be between 0 and 1, and an equilibrium between vapor and liquid will be observed. If at certain conditions,

thermodynamic properties become identical between liquid and gas, it indicates the occurrence of transcritical transition

from a subcritical state to a supercritical state (which could be either a liquid-like or gas-like state).

The ŕuid solver that is implemented is coupled with isobaric and isenthalpic (PHn) ŕash solver [7]. PHn ŕash and

almost all other VLE solvers, are developed based on TPn ŕash. Speciőcally, PHn ŕash solves the VLE equation set at

given enthalpy (H) rather than temperature (T). TPn ŕash is the most basic VLE solver, which solves the set of VLE

equations at given temperature (T), pressure (P), and mole fraction of each component (n) in the system.

Isothermal and isobaric (TPn) ŕash: VLE is governed by fugacity equality Eq. (1) and Rachford-Rice equation

[8] Eq. (2), which is an additional constraint to the equilibrium solver as used in Saha and Carroll [9] and obtained from

the conservation of each component.

𝑓𝑖,𝑙
/

𝑓𝑖,𝑔 = 1, (1)

𝑁
∑︁

𝑖=1

{

𝑧𝑖 (1 − 𝐾𝑖)
/

[

1 + (𝐾𝑖 − 1) 𝜓𝑔

]

}

= 0, (2)

𝐾𝑖 = 𝑦𝑖/𝑥𝑖 , (3)

𝑁
∑︁

𝑖=1

𝑥𝑖 =

𝑁
∑︁

𝑖=1

𝑦𝑖 = 1, (4)

where 𝑓𝑖, 𝑝 is the fugacity of component 𝑖 in phase 𝑝 (𝑝 = 𝑙: liquid; 𝑝 = 𝑔: gas), 𝑥𝑖 is the mole fraction of component 𝑖

in liquid phase, 𝑦𝑖 is the mole fraction of component 𝑖 in gas phase, 𝑧𝑖 is the mole fraction of component 𝑖 in the feed

(i.e., the entire mixture, including both gas phase and liquid phase), 𝜓𝑔 is the gas mole fraction, 𝐾𝑖 is the equilibrium

constant of component 𝑖.

The real-ŕuid properties are described using the Peng-Robinson equation of state (PR-EOS) [10] as:

𝑃 =
𝑅𝑇

𝑉 − 𝑏 − 𝑎

𝑉 (𝑉 + 𝑏) + 𝑏 (𝑉 − 𝑏) , (5)

where 𝑃, 𝑅, 𝑇 and 𝑉 are pressure, gas constant, temperature, and speciőc volume, respectively. For a single-component

ŕuid, the PR-EOS parameters are given by

𝑎 =0.45724
𝑅2𝑇2

𝑐

𝑝𝑐
𝑎̂, 𝑏 =0.07780

𝑅𝑇𝑐

𝑝𝑐
, (6)

𝑎̂ =

(

1 + 𝜅
(

1 − (𝑇𝑟 )1/2
))2

, 𝜅 =0.37464 + 1.54226𝜔 − 0.26992𝜔2, (7)

where subscript ł𝑐ž means the critical value, subscript ł𝑟ž means the reduced value (e.g., 𝑇𝑟 = 𝑇/𝑇𝑐), 𝜔 is the acentric

factor.

The liquid phase and the gas phase are described by two multi-component PR-EOS, respectively. The speciőc

volume of each phase, 𝑉𝑝 , is solved from PR-EOS. The compressibility factor of each phase (𝑍 = 𝑃𝑉/𝑅𝑇) can also be

obtained from the speciőc volumes.

The fugacity formula of PR-EOS is shown below [11]:

𝑓𝑖 =𝑃𝜒𝑖 exp

[

𝐵𝑖

𝐵𝑚𝑖𝑥

(𝑍 − 1) − 𝑙𝑛(𝑍 − 𝐵𝑚𝑖𝑥) −
𝐴𝑚𝑖𝑥

2
√

2𝐵𝑚𝑖𝑥

(

2
∑

𝑗 𝑥 𝑗𝐴 𝑗

𝐴𝑚𝑖𝑥

− 𝐵𝑖

𝐵𝑚𝑖𝑥

)

𝑙𝑛

(

𝑍 + (1 +
√

2)𝐵𝑚𝑖𝑥

𝑍 + (1 −
√

2)𝐵𝑚𝑖𝑥

)]

, (8)
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where 𝜒𝑖 is the mole fraction of component 𝑖 (for liquid, 𝜒𝑖 = 𝑥𝑖; for gas phase, 𝜒𝑖 = 𝑦𝑖),

𝐴𝑖 =
𝑎𝑖 𝑝

𝑅2𝑇2
, (9)

𝐵𝑖 =
𝑏𝑖 𝑝

𝑅𝑇
, (10)

𝐴𝑚𝑖𝑥 =

∑︁

𝑖

∑︁

𝑗

𝑥𝑖𝑥 𝑗 (1 − 𝑏𝑖 𝑗 )
√︁

𝐴𝑖𝐴 𝑗 , (11)

𝐵𝑚𝑖𝑥 =

∑︁

𝑖

𝑥𝑖𝐵𝑖 (12)

The equation set Eqs. (1-12) is solved using the Newton iteration method. The ŕow chart of the TPn ŕash is shown

in Fig. 1. The initial guess is obtained using the Wilson equation [12]:

𝐾𝑖 = 𝑒
5.373(1+𝜔𝑖 ) (1−1/𝑇𝑟,𝑖 )/𝑃𝑟 ,𝑖 , (13)

where 𝜔𝑖 is the acentric factor of component 𝑖; 𝑇𝑟 ,𝑖 and 𝑃𝑟 ,𝑖 are the reduced temperature and reduced pressure of

component 𝑖, respectively.

Fig. 1 Flow chart of the TPn ŕash solver.

PV ŕash and UV ŕash: The PV ŕash and UV ŕash solvers are developed based on the TP ŕash. Both of them use

iteration methods. Speciőcally, initial guesses (T for PV ŕash; T and P for UV ŕash) are obtained from the previous

time step, and a TP ŕash problem is solved in each iteration. After several iterations, when the error is smaller than

tolerance, the solver returns a solution.

In PV ŕash, since pressure (P) is already given as an input, only temperature (T) needs to be guessed and updated

during the iteration. A secant method is used to avoid the expensive derivative computation in the Newton-Raphson

method. In UV ŕash, two variables (both T and P) need to be guessed and updated simultaneously during the iteration,

and hence the secant method cannot be applied. The Newton-Raphson method is used to solve the UV ŕash problems.

The required Jacobian matrix is obtained using the analytical framework of Tudisco and Menon [13].

Transport properties: The dense ŕuid formula (i.e., Chung’s method) [14] is used to evaluate the dynamic viscosity

and thermal conductivity at high-pressure transcritical conditions. This method gives accurate estimations of viscosity

and thermal conductivity of polar, non-polar and associating pure ŕuids and mixtures. Its dynamic viscosity and thermal

conductivity have a similar formula:

𝜆 = 𝜆0𝜆
∗ + 𝜆𝑝 , (14)

where 𝜆 represents dynamic viscosity or thermal conductivity. 𝜆0 is the gas property at low pressures. 𝜆∗ and 𝜆𝑝 are

high-pressure corrections. At high pressures, 𝜆𝑝 is the major contributing term comparing to 𝜆0𝜆
∗. On the other hand,

at low pressures, 𝜆∗ is approaching unity, and the 𝜆𝑝 term is negligible such that Eq. 14 reduces to 𝜆0. Hence, the

transition between subcritical and supercritical is smoothly described by the model.

For mass diffusivity, we used mixture-averaged mass diffusion model. The mass diffusion coefficient of specie 𝑖, 𝐷𝑖 ,

which was deőned by Kee et al. [15]:

𝐷𝑖 =
1 − 𝑌𝑖

∑𝑁
𝑗≠𝑖 𝑋 𝑗/𝐷 𝑗 ,𝑖

, (15)
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where 𝑌𝑖 and 𝑋𝑖 are the mass and mole fractions of the 𝑖-th species, respectively; 𝐷𝑖, 𝑗 is the binary diffusion coefficient,

which is evaluated by Fuller’s model [16] with Takahashi’s correction for high pressures [17].

B. Artiőcial Neural Network (ANN) Formulation

ANNs are computing systems, inspired by the biological neural networks of the brain that are very good at handling

complex problems. ANN consists of an input layer, one or more hidden layers, and an output layer. The neurons in two

adjacent layers connect with different weights and biases by transmitting signals. All signals received by a neuron are

added together and an activation function is applied to determine the activation value. ANN’s learn complex input-output

relationships in a process called training, in which the weights and biases are adjusted to accurately represent the relation

between a large number of example inputs and outputs. In general, an ANN can be trained to be more accurate with

more training data available.

Fig. 2 Pipeline of the ANN-VLE Methodology.

(a) Direct estimation of VLE solutions. (b) ANN-based estimation of VLE solutions.

Fig. 3 VLE-based CFD algorithm ŕow chart.

The ANN training pipeline is shown in Fig. 2. The data generation is performed using an in-house VLE code

developed on python. This code takes internal energy (U), speciőc molar volume (V) and global mole fractions of each

component (n) and returns temperature (T), pressure (P), phase fraction (𝜙) and speed of sound (c). The solver can also

output other details, such as phase composition and phase densities if needed. For a non-reacting fully compressible

CFD solver, the required őelds are T, P, 𝜙 and c. The input space is swept through to generate sufficient training data

points which are then used to train the neural network using the open-source TensorFlow [18] platform. Currently, input

space selection is performed by running a coarse mesh based direct estimation VLE simulation.

The difference in the CFD algorithm for direct estimation of VLE solutions and ANN-based estimation of VLE

ŕash can be seen in Fig. 3. The ANN-based estimation greatly simpliőes the calculations and hence reducing the

computational overhead of the VLE calculations by moving them offline. This method also moves any possible

failure points in the VLE algorithm offline to guarantee the robutness of the VLE-based CFD simulation. Finally, the

ANN-based VLE method is designed as a plug-and-play system, and hence can directly convert any fully compressible
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CFD code into a real-ŕuid EOS and VLE-based fully compressible CFD code with minimal coding effort (just need to

code up an interface).

Fig. 4 ANN Conőguration (hidden layer nodes are only for representation).

The preferred ANN structure is shown in Fig. 4. The training and development of ANN aided VLE models are

performed on Python using TensorFlow [18]. TensorFlow is an end-to-end open-source machine learning (ML) platform

which provides an easy-to-use application programming interface (API) to train custom models. Trained models can be

saved in a TensorFlow saved model format, which can then be used to run inference (i.e., make predictions) using the

learned weights and biases. The model is deőned using 4 hidden layers with 32 nodes in each layer and all the layers use

the ‘sigmoid’ activation function. The selection of the number of layers, nodes per layer, and activation functions is

determined through a systematic process involving sensitivity tests on the ANN model for these hyperparameters. The

data set used for training is divided into training, cross-validation (1-5%), and test (1-5%) sets. The data is normalized

using the mean and standard deviation of the entire data set before training, as shown in Eq. (16):

𝑋𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚 =
𝑋 − 𝑋
𝜎𝑋

(16)

Here, 𝑋 represents the variable, 𝑋 represents the mean value and 𝜎𝑋 represents the standard deviation. All the inputs

and outputs of the ANN, as shown in Fig. 4, are normalized, as shown in Eq. (16).

This normalization ensures individual inputs do not dominate the training process, as the orders of magnitudes of

the inputs can be signiőcantly different. For example, the internal energy can be in the orders of 103 − 105 but mole

fractions are always bounded by 0 and 1. The outputs are also normalized in a similar way and the mean and standard

deviation values are used to reconstruct the actual values for post-prediction

Since OpenFOAM is a C++ based code and the ANN models are trained using python for the ease of usage of

machine learning tools, an application programming interface (API) is required to use the python trained models in the

C++ code. First option available was to directly use the TensorFlow C api in OpenFOAM, but the usage of a TensorFlow

SavedModel resulted in very slow inference speeds and was not suitable for CFD simulation. The second option was

to use the python api in OpenFOAM by linking the python interpreter with C++. This has performance issues: the

interpreter would have to be called every single time the model is run resulting in very poor run-time performance.

The preferred direction was to use machine learning production methods by employing Microsoft’s ONNX [19]. After

training, the TensorFlow model is converted to an ONNX model [19] to make use of the highly optimized ONNX

run-time functionality [20]. The ONNX run-time provides almost a 200 times speed-up over running inference directly

using TensorFlow. The ONNX saved model is coupled with OpenFOAM to perform the VLE estimation at the end of

each time step.
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C. CFD Flow Solver Formulation

The equation of mass, momentum (neglecting body force), and energy conservation, together with component

transport can be written as:
𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌𝑢) = 0; (17)

𝜕𝜌𝑢

𝜕𝑡
+ ∇ · (𝜌𝑢 ⊗ 𝑢) = −∇𝑝 + ∇ · 𝜏; (18)

𝜕𝜌𝐸

𝜕𝑡
+ ∇ · (𝜌𝐸𝑢) = −∇ · (𝑢𝑝) + ∇ · (𝑢 · 𝜏) + ∇ · 𝑞; (19)

𝜕𝜌𝑌𝑠

𝜕𝑡
+ ∇ · (𝜌𝑌𝑠𝑢) = −∇ · 𝑗𝑠 , 𝑠 = 1, ..., 𝑛𝑠; (20)

where 𝜌 is the mixture density, 𝑝 is the pressure, 𝒖 is the velocity, 𝜏 is the viscous stress tensor, 𝒒 is the heat ŕux,

𝐸 = 𝑒 + 1
2
𝑢 · 𝑢 is the total energy. In Eq. (20), 𝑌𝑠 and 𝑗𝑠 are the mass fraction and diffusion mass ŕux respectively, while

𝑛𝑠 is the total number of species.

Fig. 5 Two-component shock-droplet interaction domain (1024x256 grid points).

III. Results

A. 2D Shock Droplet Interaction - Two Components

The simplest shock-droplet interaction case is a two-component system. In this case, a droplet primarily of C6H14 at

20 bar and 370 K is placed in an environment primarily of N2 which is also at 20 bar but 1000 K. In order to trigger the

propagation of a shock wave, a high-pressure region is initialized at 80 bar on the left side of the domain. The interfacial

mass fraction of N2 is initialized using tanh(𝑥/𝜔), where 𝜔 = 1 × 10−6. Similarly, the 𝑡𝑎𝑛ℎ(𝑥/𝜔) is also used to deőne

all the őeld values at the interface. The details regarding the domain are shown in Fig. 5. As indicated in the domain

description, a small quantity of C6H14 (mole fraction of C6H14 = 0.1) is introduced into the background ŕuid to enhance

the multi-component effects.

Within the droplet, signiőcant quantities of both C6H14 and N2 are intentionally present, selected to create dynamic

transcritical mixing states. This deliberate choice is made to challenge the convergence of the Vapor-Liquid Equilibrium

(VLE) calculations, as it is generally more straightforward to achieve convergence when one component dominates (with

a mass fraction exceeding 0.9). The 2D computational domain is discretized using a grid consisting of 1024 points in the

x-direction and 256 points in the y-direction. On all four boundary faces, zero-gradient boundary conditions are applied

for all őelds. To ensure numerical stability, a maximum Courant-Friedrichs-Lewy (CFL) number of 0.1 is enforced

during the time integration. The simulation is conducted over a total ŕow time of 2 microseconds, allowing sufficient

time for the shock to completely traverse the droplet. A comprehensive evaluation of the results is undertaken, involving

both qualitative and quantitative comparisons between direct evaluation, the in situ adaptive tabulation (ISAT)-aided
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(a) Temperature - Direct evaluation of VLE.

(b) Temperature - ISAT aided VLE model.

(c) Temperature - ANN aided VLE model.

Fig. 6 Temperature comparison after a ŕow time of 2 𝜇𝑠.

VLE model and the ANN aided VLE model. For additional insights into the ISAT methodology, readers are referred to

the works of Zhang et al. [4, 21].

In Figure 6, a comparison of temperature contours for the shock-droplet interaction case at a ŕow time of 2

microseconds is presented. Notably, there is a remarkable agreement between the three methods in terms of temperature

distribution. Additionally, the ANN-aided VLE model effectively captures all the reŕected shocks, demonstrating its

capability in accurately simulating the complex dynamics of the ŕow.

Figure 7 provides a comparison of the őeld 𝛼 = 𝜙(1 − 𝜙), where 𝜙 denotes the vapor fraction (based on the mole

fraction of total gas phase moles to total moles). This őeld is employed to represent the two-phase region, as 𝛼 ≠ 0

only when 𝜙 ≠ 0 and 𝜙 ≠ 1. Furthermore, it serves to delineate the boundaries of the droplet. Notably, within the

droplet, 𝛼 is non-zero due to the presence of N2, and the ANN-aided VLE model accurately captures this effect. This

capability underscores the model’s accuracy in simulating the intricate details of the ŕow őeld. Figure 7 also presents

a comparison of the mass fraction of C6H14 between the two methods. Remarkably, the shapes of the droplets are

closely aligned, indicating a high degree of agreement in the evaluation of density and pressure between the ANN-aided

VLE, direct evaluation and ISAT-aided VLE models. However, a slight disparity in the wake region of the droplet

is noticeable, and this can be attributed to the presence of pressure oscillations resulting from the usage of the fully

conservative (FC) scheme in all the three methods.

In Figure 8, a comparison of őeld values along the domain centerline is presented. This includes temperature,

vapor fraction (based on moles of each phase), and the mass fraction of C6H14 after a ŕow time of 2𝜇𝑠. Notably, an

excellent agreement is observed between both methods for all these őelds, reaffirming the consistency and accuracy of

the ANN-aided VLE model in capturing essential ŕow characteristics.

Table 1 Comparison of total run time for two-component shock-droplet interaction (256 CPU cores).

Direct evaluation ISAT aided model ANN aided model

410 s 351 s 301 s

The overall run-time comparison between the two models for the two-component shock-droplet interaction, when

utilizing 256 CPU cores, is presented in Table 1. Notably, the ANN-aided VLE model outperforms both direct VLE

evaluation and the ISAT-aided VLE model in terms of computational speed. Speciőcally, it achieves a 1.36x speed-up
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(a) 𝜙(1 − 𝜙) - Direct evaluation VLE. (b) 𝑌C6H14
- Direct evaluation of VLE.

(c) 𝜙(1 − 𝜙) - ISAT aided VLE model. (d) 𝑌C6H14
- ISAT aided VLE model.

(e) 𝜙(1 − 𝜙) - ANN aided VLE model. (f) 𝑌C6H14
- ANN aided VLE model.

Fig. 7 𝜙(1 − 𝜙) and 𝑌C6H14
comparison after a ŕow time of 2 𝜇𝑠.

(a) Temperature (b) Vapor fraction (c) 𝑌C6H14

Fig. 8 Centerline comparison after a ŕow time of 2 𝜇𝑠.

compared to direct VLE estimation and a 1.17x speed-up compared to the ISAT-aided VLE model when considering the

overall CPU time.

B. 2D Shock Droplet Interaction - Four Components

In the previous section, the model’s capabilities were demonstrated and validated against the ISAT-aided VLE

model [21] in the context of a two-component shock-droplet interaction case. In this section, we delve into the intricacies

of a four-component system, exemplifying the advantages of this approach in efficiently and robustly handling complex

multi-component systems especially as it is well-acknowledged that the computational cost of VLE calculations tends to

escalate exponentially as the number of components increases, as evidenced by Fathi et al. [5].

Speciőcally, in this section, we consider a multi-component fuel droplet comprising C6H14 and C12H26 in a 2:1 ratio

(mole fraction) at a temperature of 370 K, suspended in an air environment at 800 K and 20 bar. The shock is initiated

within the air domain, generated by a high-pressure region of 40 bar on the left. The conőguration of the computational

domain is depicted in Fig. 9.

9

D
o
w

n
lo

ad
ed

 b
y
 S

u
o
 Y

an
g
 o

n
 J

an
u
ar

y
 4

, 
2
0
2
4
 | 

h
tt

p
:/

/a
rc

.a
ia

a.
o
rg

 | 
D

O
I:

 1
0
.2

5
1
4
/6

.2
0
2
4
-1

6
3
8
 



Fig. 9 Four-component shock-droplet interaction domain (512x128 grid points).

(a) Temperature - ANN aided VLE model. (b) 𝑌C6H14
- ANN aided VLE model.

(c) Temperature - ISAT aided VLE model. (d) 𝑌C6H14
- ISAT aided VLE model.

Fig. 10 Temperature and 𝑌C6H14
comparison after a ŕow time of 2 𝜇𝑠 for the four-component shock-droplet

interaction (ANN vs. ISAT).

The temperature contour comparison between the two methods is shown in Fig. 10. As seen in the previous case,

the ANN aided VLE model captures the peak temperatures as well as reŕected shock waves accurately (when compared

to the ISAT model) even for the multi-component (more than 2 components) scenarios. The pressure oscillations

occurring in a two-phase system with real-ŕuid equation of states (EOS) while solving the conservative formulation

of the governing equations are shown clearly in Zhang et al. [21], and usually are mitigated using quasi-conservative

methods, such as double ŕux schemes developed by Abgrall and Karni [22] and Ma et al. [23]. The current study retains

the conservative formulation, and hence pressure oscillations are present in the CFD results of both the ISAT aided VLE

model and the ANN aided VLE model. Therefore, considering the pressure oscillation uncertainty, the temperature

contours comparison showcases a good agreement between the two models.

The mass fraction comparison of C6H14 is shown in Fig. 10. The contours depict a very good agreement between

the two models, with accurate capturing of both component mass fraction őeld as well as droplet shape. The shape of

the droplet is different from that seen in Fig. 7 (two-component system) as the initialization pressure (40 bar) of the

shock is lower than the two-component case (80 bar) and the density of the droplet is higher due to addition of C12H26.

However, the trained ANN aided VLE model can still accurately predict the result.

Domain centerline comparison for the temperature as well as all the component mass fractions (C6H14, C12H26, N2,

O2) are shown in Fig. 11. Temperature shows a very accurate match and all the component also show excellent accuracy

when compared to the ISAT aided VLE model.

The major advantage produced by this ANN aided VLE model is the computational speed-up achieved when

attempting to calculate VLE solutions for multi-component systems (more than two components). As shown by Fathi et

al. [5], the computational costs exponentially increase with the increase in the number of components, and the chances

of divergence also increase. The overall computational speed-up achieved by using the ANN aided VLE model in

comparison to direct evaluation and ISAT aided VLE model is shown in Table 2. The speed-up factor achieved here
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(a) Temperature (b) Component Mass Fraction

Fig. 11 Centerline comparison after a ŕow time of 2 𝜇𝑠 for the four-component system (ANN vs. ISAT).

(overall CPU time) is about 1.6x times speed up compared to direct evaluation and 1.4x compared to ISAT, even when

using fewer points (512x128) compared to the two-component case (1024x256), showcasing the advantages of the ANN

aided VLE model when more than two components are used in the system.

Table 2 Total run time comparison for the four-component shock-droplet interaction case.

Direct evaluation ISAT aided VLE model ANN aided VLE model

156 s 136 s 96 s

IV. Conclusions
In this study, an artiőcial neural network (ANN) aided Vapor-Liquid Equilibrium (VLE) model was introduced

to address both the robustness and computational speed challenges associated with VLE calculations, especially in

fully compressible conservative systems. VLE calculations are known to be computationally expensive, and they face

robustness issues, particularly when energy-based ŕash solvers are required to converge with temperature-based ŕash

solvers.

The ANN approach leverages the capacity of neural networks to perform nonlinear regression, enabling the prediction

of outputs for given inputs through multiple neural nodes and layers. This approach provides an efficient way to

store and estimate data, reducing the reliance on traditional multidimensional tables while using fewer points to learn

the relationship between inputs and outputs. The ANN model was trained using TensorFlow in Python, employing

normalized data to train a fully connected multi-layer perception model with four layers and 32 nodes per layer. The

trained ANN model was then saved and converted to the ONNX format, which was subsequently coupled with a fully

compressible central upwind-based solver developed in C++ using OpenFOAM.

Two cases were investigated to showcase the capabilities of the ANN-aided VLE model compared to both direct

evaluation and the state-of-the-art In Situ Adaptive Tabulation (ISAT) aided VLE model. First, the two-component

shock-droplet interaction case (N2 and C6H14) demonstrated good qualitative and quantitative agreement between the

three methods, with the ANN-aided model exhibiting a 1.36x speed-up against the direct evaluation method and a

1.17x speed-up against ISAT. A more challenging four-component case (C6H14, C12H26, N2, O2) validated the model’s

performance in scenarios with an increased number of components. Here, the ANN model showed good agreement

with the ISAT model and a 1.4x speed-up in total runtime. This observation shows the potential speed up achievable

while utilizing multiple components (more than 2) while employing the ANN model.

In conclusion, the ANN-aided VLE model shows promise in addressing the robustness and computational efficiency
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challenges faced by VLE-based compressible ŕow solvers. It offers a computational speed-up compared to the

state-of-the-art ISAT-aided VLE model and demonstrates good performance in scenarios with varying degrees of mixing

between components while retaining parallel scaling.
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