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Proxiome assembly of the plant nuclear pore 
reveals an essential hub for gene expression 
regulation

Yu Tang1,2, Xiangyun Yang2, Aobo Huang    3, Kyungyong Seong1, Mao Ye2, 
Mengting Li3, Qiao Zhao    3, Ksenia Krasileva    1 & Yangnan Gu    1 

The nuclear pore complex (NPC) is vital for nucleocytoplasmic 
communication. Recent evidence emphasizes its extensive association with 
proteins of diverse functions, suggesting roles beyond cargo transport. Yet, 
our understanding of NPC’s composition and functionality at this extended 
level remains limited. Here, through proximity-labelling proteomics, we 
uncover both local and global NPC-associated proteome in Arabidopsis, 
comprising over 500 unique proteins, predominantly associated with NPC’s 
peripheral extension structures. Compositional analysis of these proteins 
revealed that the NPC concentrates chromatin remodellers, transcriptional 
regulators and mRNA processing machineries in the nucleoplasmic region 
while recruiting translation regulatory machinery on the cytoplasmic 
side, achieving a remarkable orchestration of the genetic information 
flow by coupling RNA transcription, maturation, transport and translation 
regulation. Further biochemical and structural modelling analyses reveal 
that extensive interactions with nucleoporins, along with phase separation 
mediated by substantial intrinsically disordered proteins, may drive the 
formation of the unexpectedly large nuclear pore proteome assembly.

The eukaryotic cell possesses a distinct subcellular compartment 
known as the nucleus, which is enclosed by a double-layered lipid 
membrane known as the nuclear envelope (NE)1. Spanning the NE 
are specialized molecular structures named nuclear pore complexes 
(NPCs), which play an essential role in mediating selective nucleocy-
toplasmic transport of macromolecules2. Assembled by sophisticated 
arrangement of ~500 to 1,000 nucleoporin proteins (Nups), the NPC 
architecture can be partitioned into the core scaffold and periph-
eral extensions3. The core scaffold is shaped by an 8-fold rotationally 
symmetrical Nup assembly, creating the NPC central channel—an 
essential conduit for the bidirectional transport of macromolecules4. 
The conduit is filled with intrinsically disordered Nups that contain 
phenylalanine–glycine (FG) repeats. These Nups are characterized 
by highly flexible FG-rich domains, which are separated by spacers of 
varying lengths5 and interact with each other to establish the central 

channel barrier, enabling highly selective passage of nuclear transport 
receptors (NTRs) that carry cargos6,7. On the other hand, the asym-
metric NPC peripheral extensions, including cytoplasmic filaments 
(CFs) and the nuclear basket (NB), form elongated, flexible filamentous 
structures that connect the NPC core with its immediate subcellu-
lar environment2,8. Specifically, at the NPC cytoplasmic surface, CFs 
emerge from the core scaffold and extend towards the cytoplasm9. 
Conversely, within the nucleus, the NB is composed of eight protein 
filaments originating from the NPC core scaffold or the NE and con-
verging into a distal ring within the nuclear interior10,11.

While the core scaffold of the NPC is highly conserved, the periph-
eral extensions of the NPC display notable structural plasticity and vari-
ations in composition among different eukaryotic species12. It is also 
noteworthy that these extensions have been reported to participate in 
regulating many biological processes independent of cargo transport. 
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Profile nuclear pore-associated proteome using 
proximity labelling
To gain a more complete understanding of the plant nuclear pore, 
particularly nuclear pore-associated proteins that extend beyond the 
well-characterized Nups, we aimed to identify proteins associated 
with the NPC extension structures. To achieve this goal, we selected 
two Arabidopsis nucleoporins, Nup50a from the NB and CG1 from 
the cytoplasmic filaments, as baits for proximity labelling (PL)-based 
proteomic profiling (Fig. 1a). Because both Nups contain FG repeats 
that potentially contribute to the selective cargo transport through 
the NPC, we fused the proximity-labelling enzyme to the distal end 
of their FG repeats to minimize potential labelling of cargo proteins 
(Extended Data Fig. 1a). We transformed the constructs into wild-type 
Arabidopsis and generated stable transgenic plants. Ten-day-old trans-
genic seedlings were used to perform proximity labelling, followed 
by total protein extraction, affinity purification of biotinylated pro-
tein and quantitative mass spectrometry as previously described28,29. 
Mock-treated transgenic plants (Mock) and biotin-treated wild-type 
non-transformants (NT) were included as control for the selection 
of specifically labelled protein candidates, and we used at least two 
biological replicates for each sample.

Spliceosomes are recruited to the NPC basket
Nup50 is a highly conserved FG-repeat nucleoporin that localizes to the 
NB in humans30. Consistently, in our previous PL proteomics profiling, 
we observed significant enrichment of Nup50a probed by other NB 
nucleoporins such as Nup82, GBPL3 and KAKU4, but it was not detected 
by non-NB nucleoporins (Extended Data Fig. 1b), supporting its specific 
localization at the NPC basket under native conditions in Arabidopsis. 
Using Nup50a as the bait for PL proteomics, we identified a total of 33 
significantly enriched proteins (fold-change > 2, P < 0.1, peptide spec-
trum matches (PSM) > 1) (Fig. 1b and Supplementary Table 1). Among 
these candidates, we found the four most abundant and ubiquitously 
expressed importin-α proteins (IMPAs). This result is consistent with 
a previous IP–MS experiment using Nup50a-GFP31 and offers addi-
tional evidence for the pertinent hypothesis that the disassembly of 
importin-α–cargo complexes and/or the assembly of importin-α–CAS 
is predominantly coordinated by the NPC basket32. Interestingly, in 
addition to IMPAs, we also found significant enrichment of spliceosome 
components (P = 9.6 × 10−05) and transcription regulators (P = 4. 9× 10−03) 
in the Nup50a proxiome (Fig. 1b right panel), suggesting that the NB 
may also engage in mRNA synthesis and processing.

To obtain a comprehensive understanding of proteins asso-
ciated with the NPC basket, we combined the Nup50a proxiome 
with our previously collected PL proteomic datasets utilizing three 
other NB nucleoporin baits, including Nup82 (Extended Data Fig. 1c) 
(PXD015919), GBPL3 (ref. 22) (PXD032906) and KAKU4 (ref. 33) 
(PXD026924). This integration allowed us to reconstruct a compre-
hensive NB proxiome, which included 423 significantly enriched 

Notable examples include the CF Nup, Nup358 and Nup214, which 
have been shown to interact with viral components and regulate the 
efficiency of viral replication and spread in human cells13–15. In addi-
tion, the FG-repeat motifs present in yeast CF Nups are involved in the 
positioning and remodelling of messenger ribonucleoprotein particles 
(mRNPs), thereby potentially influencing downstream translation pro-
cesses16. At the inner nuclear periphery, the NB serves as the entry point 
for mRNA export and also plays a critical role in chromatin organization 
and transcription regulation17. For instance, the NB scaffold protein 
Mlp in yeasts and its homologue TPR in humans have been shown to 
form an extended filamentous network that selectively excludes the 
underlying heterochromatin and tethers actively transcribed chro-
matin within it18,19. In a recent pioneering study conducted in yeast, it 
was shown that Nup60, which harbours an array of short linear motifs, 
acts as a flexible suspension cable to anchor the NB to the nuclear pore 
membrane. This configuration also enables the structural flexibility of 
the NB in response to bulky cargo and changes in gene expression20. 
Interestingly, plants do not encode Nup358 and Nup60 orthologues. 
Instead, they have evolved specific Nups uniquely tailored for their 
own NPC extensions. For instance, the plant-specific Nup82 collabo-
rates with Nup136 at the NB and functions in the activation of sali-
cylic acid-mediated pathogen resistance in Arabidopsis21. In addition, 
another plant-specific NB nucleoporin, GBPL3, was recently identified 
as a functional bridge between the NB and the nucleoskeleton, thereby 
facilitating stress-related transcription regulation at the nuclear pore22.

Advanced analytical techniques in comparative genomics, prot-
eomics, cryo-electron microscopy and super-resolution microscopy 
have collectively elucidated the composition, organization and archi-
tecture of the NPC core scaffold with striking details in most taxa. 
However, the structure of NPC peripheral extensions remains largely 
uncharacterized23–27. Emerging evidence supports that the NPC is 
associated with a diverse array of proteins and protein complexes, 
thus encompassing a wide range of functions beyond cargo transport; 
nonetheless, our knowledge of the nuclear pore protein composition 
and function at this extended level are still restricted, especially in 
plants. Here, utilizing a modular-guided proximity-labelling prot-
eomics approach, we report the assembly of the extended nuclear 
pore-associated proteome in Arabidopsis. Comprising more than 500 
distinct proteins, this proteome is primarily linked to the peripheral 
extensions of the NPC and substantially expands the repertoire of 
NPC-associated proteins. A breakthrough from this research is a deeper 
molecular understanding of the NPC’s role as an integrated platform 
for managing the flow of genetic information. The NPC achieves this 
by locally concentrating various molecular machineries for chromatin 
remodelling, transcriptional regulation and mRNA processing at the 
nuclear basket while simultaneously recruiting proteins regulating 
mRNA stability and translation to cytoplasmic filaments. These find-
ings indicate that the NPC operates as a highly integrated platform to 
coordinate multiple steps of gene expression regulation.

Fig. 1 | Assembly of the nuclear basket proteome in Arabidopsis using PL 
proteomics. a, Schematic diagram depicting the NPC and Nups used as baits for 
PL proteomics in Arabidopsis. PL proteomic datasets obtained in this study are 
labelled in red, and those published previously are labelled in orange. ONM/INM, 
outer/inner nuclear membrane. b, Left: scatterplot displaying proteins identified 
in the Nup50a proxiome. Wild-type non-transformants treated with biotin (NT) 
and mock-treated Nup50a-BioID2 transgenic plants (Mock) were used as controls 
for ratiometric analysis. Three biological replicates were used for each sample. 
Significantly enriched protein candidates were selected on the basis of cut-off 
P < 0.1 (two-sided t-tests without adjustment), fold-change > 2 and PSM > 1.  
Right: GO analysis of significantly enriched candidates, including importin-α 
proteins, spliceosome proteins and transcription regulatory proteins,  
with a heat map showing normalized PSM values of each prey. Underlying 
data can be found in Supplementary Table 1. c, Left: GO analysis of proxiomes 
identified by four different NB Nups. The four NB bait proteins are highlighted 

with blue octagons, while the shared GO terms of their preys are marked by red 
squares. A Venn diagram in the middle reveals 63 overlapping protein candidates 
identified by at least two NB Nups. Right: PPI networks within the integrated NB 
proxiome. In the PPI network among the 63 preys, blue and grey edges represent 
proximal associations identified in this study and experimentally determined 
interactions from the STRING database (https://string-db.org/), respectively. 
d, Top: comparative analysis of the NB proxiome and spliceosome proxiome 
defined by MAC3b. Bottom: GO analyses of NB-specific proteins and overlaps 
between NB proteins and spliceosome RNPs. e, Schematic model illustrating the 
association of the NB with various perinuclear proteins and protein complexes 
identified by PL, including the nucleoskeleton, importin-alphas and molecular 
machineries involved in gene expression regulation and subsequent mRNA 
splicing. Statistical test used for GO analysis in b–d was one-sided Fisher’s exact 
test with multiple comparison adjustment.

http://www.nature.com/natureplants
http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD015919
http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD032906
http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD026924
https://string-db.org/
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proteins (Fig. 1c and Supplementary Table 2). We then performed 
Gene Ontology (GO) analysis on the four individual proxiomes 
(Fig. 1c left panel) as well as on the integrated NB proteome (Extended 
Data Fig. 1d), which revealed an interesting functional network. As 
expected, the nucleoskeleton and the NPC core scaffold were found 
to be significantly enriched, consistent with the fact that these two 
structures are located in close proximity to the NB. Notably, the four 
separate proxiomes as well as the integrated NB proxiome all showed 
significant enrichment in spliceosome (Fig. 1c), indicating its robust 
association with the NPC basket.

Using 63 proteins that were probed by at least two NB baits, 
we constructed a protein–protein interaction (PPI) network using 

the Search Tool for the Retrieval of Interacting Genes/Proteins 
(STRING), which relies on previously published PPI data. This 
network reveals a wealth of interactions within the spliceosomal 
proteins that were identified (Fig. 1c right panel), implying that 
the NB probed not individual components but rather the entire 
spliceosomal complex as a whole. To substantiate this point, we 
compared spliceosome components identified in the NB proxiome 
with ribonucleoprotein (RNP) complexes probed by MAC3b34, a core 
component of the Prp19 complex involved in splicing. The analysis 
revealed 171 overlaps between the two datasets, representing nearly 
half of MAC3b-identified RNPs (Fig. 1d). These 171 proteins encom-
passed all major RNA–protein subunits of the U1, U2, U4/U6 and 

  

Nup baits for proximity labelling

  Nup54

CG1

  Nup93a

Nup82

Nup50a

PNET1

GBPL3

  Nup188

KAKU4

a

Proximity labelling tag

ONM

INM

Cytoplasmic ring

Central channel

Core sca�old

Transmembrane ring

Nuclear basket

Nucleoskeleton

FG Nups

−10 −5 0 5 10

−5

0

5

10

log2(Nup50a vs NT)

lo
g 2 (

N
up

50
a 

vs
 M

oc
k)

IMPA1 

RH35

PRL1

EMB2765

ISY1

IMPA2 

SAP18

CYP18-2

IMPA3 

EMB2769
SKIP

IMPA4 

Nup50a

−10

P < 0.1; PSM > 1

log2(Nup50a/Mock) > 1

log2(Nup50a/NT) > 1

Nup50a

NT Mock

0 2 4 6 8

Value = log2(PSM+1)

Spliceosome

Importin-α

9.58 × 10−5

7.81 × 10−8

GO Nup50a
IMPA1 
IMPA2 
IMPA3 
IMPA4 
EMB2765
SKIP
PRL1
MAC8
CYP18−2
EMB2769
SAP18
RH35
MSI4
TPL
HSFB2B

Transcription
regulation
4.9 × 10−3

TPL
HSFB2BMSI4

Nup50a proxiome

d

Nup50c

MAC9
MAC8

Nup50aNup82

GBPL3

423 NB proxiome 

KAKU4

87

40 218

15

63

PRL1
Spliceosome

Nup133

Nup50a

Nup136
Nup107

NUA

NUP155

GBPL3
NPC

MSI1

MSI4

SMU1

OZS3
CUL4

CUL4 E3 ubiquitin
ligase complex

CRWN3CRWN4

CRWN1

Nucleus 
organization

U5-40

SKIP Prp43-2b
CBP80

EMB2769
CYP18-2

MAC7

AT3G26560

CRWN2

192252 171NB MAC3-associated RNPs

GO term
Overlaps

GO term
NB-specific

Water transport

BSL phosphatase

ESCRT I complex

CUL4−RING E3 ubiquitin ligase complex

Histone binding

Nucleosome assembly protein

Chaperone

Nuclear pore complex

RNA binding

Spliceosome

Count

10

20

30

20

40

60 −log
10 (P value)

Transcription
co-factor

Repressor

WD40 repeat

Helicase

Zinc−finger

RNA−binding

Spliceosome

b

c

Nuclear pore complex

Nuclear membrane

BSL phosphatase

Proteosome

Water transport

Chaperone

KAKU4

Nucleus organization
(Nucleoskeleton)

Nucleosome assembly

Histone binding

GBPL3

RNA-binding

Helicase

Transcription factor complex

ESCRT I complex

Transcription co-repressor

Nup50a

Importin-α

Spliceosome

Negative regulation
of transcription

Nup82

CUL4-RING E3
ubiquitin ligase

complex

e

mRNA

Chromatin

GBPL3

NucleoskeletonNup82

KAKU4

Nup50a
IMPAs

Transcription
regulators Spliceosome Helicases

−l
og

10
(P

 v
al

ue
)

2.5
7.5

15

GO

9.58 × 10–5

5.73 × 10–10

6.03 × 10–4

0.017

7.95 × 10–4

2.64 × 10–7

6.30 × 10–5

9.73 × 10–8

7.06 × 10–4

3.16 × 10–9

6.56 × 10–8

1.38 × 10–35

7.02 × 10–5

Protein–protein interactionsGO analysis

http://www.nature.com/natureplants


Nature Plants | Volume 10 | June 2024 | 1005–1017 1008

Article https://doi.org/10.1038/s41477-024-01698-9

U5 RNPs within the spliceosome. In addition, the NB proxiome also 
contains other spliceosome components and RNA-binding proteins 
that were not probed by MAC3b (Fig. 1d and Supplementary Table 3). 
These findings provide compelling evidence for the hypothesis that 
the NPC basket is associated with the spliceosome complex and its 
regulatory proteins (Fig. 1e).

It is worth noting that in addition to the spliceosome, the four 
NB baits display distinct protein associations (Fig. 1c). Specifically, 
the Nup50a proxiome exhibited a notable enrichment of importin-α 
proteins. Meanwhile, GBPL3 primarily identified transcription regula-
tors and RNA-binding proteins. Nup82 displayed specific interactions 
with nuclear membrane proteins and proteasome components. Lastly, 
KAKU4 is located in a region populated by histone binding proteins 
and nucleosome assembly proteins, suggesting potential anchoring 
points for NPC–chromatin interactions. Because the four NB baits do 
not exhibit clear tissue- or cell-type-specific expression (Extended Data 
Fig. 1e), the profiling results suggest potential compositional complex-
ity within the NB, which may serve as a multifaceted molecular platform 
capable of recruiting a diverse array of proteins. This recruitment, in 
turn, may support various nuclear processes at the NPC, including 
cargo transport, chromatin tethering, transcriptional regulation and 
protein degradation (Fig. 1e).

NPC cytoplasmic ring is enriched in translation 
regulators
To investigate potential proteins associated with the cytoplasmic facet 
of the NPC, we utilized a conserved cytoplasmic filament nucleoporin 
CG1 as bait for proximity labelling. Analysis of the CG1 proxiome iden-
tified 166 significantly enriched candidates (fold-change > 4, P < 0.01, 
PSM > 4), including four nucleoporins known to localize at the NPC 
cytoplasmic ring (RAE1, Nup88, Nup214 and Nup98a) and three central 
channel FG nucleoporins (Nup54, Nup58 and Nup62), ranked as top 
candidates (Fig. 2a and Supplementary Table 4). This result confirms 
that CG1 predominantly accumulates at the cytoplasmic side of the 
NPC in plant cells and suggests that this FG Nup may also be partially 
integrated into the Nup54/58/62 selective barrier network.

In addition to known NPC components, GO analysis of the CG1 
proxiome revealed significant enrichment in proteins involved in 
mRNA-related function (Fig. 2b), which account for more than half 
(86/166) of the total CG1 proxiome. We subsequently constructed a 
PPI network among the 86 candidates using the STRING database, 
which further classified them into eight functional groups with 
five primary molecular functions, including mRNA decay, mRNA 
transport, transcription regulation, mRNA processing and other 
mRNA binding (Fig. 2c). Notably, half of these functional groups 
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are essential components of the P-body, pumilio (PUM) family pro-
teins, CTC-interacting domain (CID) proteins and m6A-containing 
RNA-binding protein evolutionary conserved C-terminal regions 
(ECTs). These proteins are known to play crucial roles in regulating 
mRNA translation, degradation and/or storage in cytoplasmic foci35–39. 
This finding indicates that mRNA molecules are probably subjected to 
translation-related regulation near the NPC cytoplasmic filaments, 
such as sequestration within P-bodies to prevent their translation 
or degradation, immediately after they are transported out of the 
nucleus (Fig. 2d). This result is also in line with previous animal stud-
ies suggesting that P granules are tethered to nuclear pores in the 
adult germline and the hypothesis that newly transcribed mRNAs are 
exported through P granule-associated NPCs40.

We are surprised to find that some transcription regulators 
and spliceosome components are also present in the CG1 proxiome, 
although they are not significantly enriched in the GO analysis. Some 
of these overlapping candidates were identified by the NB nucleoporin 
GBPL3 (Extended Data Fig. 2). One possibility is that CG1 is a highly 
dynamic FG Nup and has multiple localizations within the NPC, includ-
ing minor distribution at the inner face of the nuclear periphery31,41. 
Alternatively, some of the mRNA binding proteins may be transported 
together with mature mRNA to the cytoplasmic side of the NPC or 
co-translated with CG1 during NPC assembly42. Nonetheless, it is evi-
dent that the GBPL3 and CG1 proxiomes exhibit distinct protein com-
positions. The GBPL3 proxiome predominantly encompasses proteins 
associated with transcription regulation and nascent mRNA process-
ing, while the CG1 proxiome is primarily centred on translation and RNA 
stability regulation (Extended Data Fig. 2 bottom). This underscores 
the difference in protein recruitment between the nucleoplasmic and 
cytoplasmic sides of the NPC.

NPC is an integrated platform for gene expression 
regulation
In addition to the nuclear basket and cytoplasmic filaments, we also 
performed PL-based proteomic profiling using the central channel 
barrier nucleoporin Nup54 and the core scaffold nucleoporin Nup188 
(Extended Data Figs. 3a,b, and Supplementary Tables 5 and 6). Pro-
teins probed by Nup54 and Nup188 further expand the proxiome of 
the NPC core scaffold that was previously defined by PL proteomics 
using Nup93a and PNET1 as bait (Extended Data Fig. 3c). For example, 
we identified three 14-3-3 proteins (GRF2/3/4) belonging to a family 
of conserved phospho-binding proteins that regulate several vital 
cellular processes by interacting with various binding partners43,44. In 
addition, Nup188 probed several other interesting factors, including 
chaperones and proteasome components, such as BIP1, CPN21 and 
UBP13 (Extended Data Fig. 3c). These proteins were also probed by NB 
proxiome, providing further evidence of their association with the NPC.

To obtain a comprehensive NPC-associated proteome, we inte-
grated the Nup50a, CG1, Nup54 and Nup188 data with five previously 
obtained PL proteomics datasets (Nup93a, Nup82, GBPL3, PNET1 and 
KAKU4 from PXD015919, PXD026924 and PXD032906). The combined 
NPC-associated proteome contains 32 out of the 39 nucleoporins iden-
tified in Arabidopsis, with a majority of them being repeatedly probed 
by different Nup baits (Fig. 3a), indicating a thorough and extensive 

coverage. However, we missed four nucleoporins from the NPC outer 
ring complex (ORC), probably because we did not include ORC nucleop-
orins as bait in our profiling. This absence reinforces the stringent label-
ling radius of the PL enzyme, effectively confining the probed protein 
population to the immediate vicinity of the NPC. Notably, we also did 
not identify three membrane-associated nucleoporins: ALADIN, CPR5 
and NDC1. We speculate that these nucleoporins may be expressed at 
a level beyond our detection limit or in a tissue- or cell-type-specific 
manner. Alternatively, these proteins may be embedded within the 
NPC in a way that precludes efficient labelling.

Compared with the well-characterized NPC composition, the 
NPC-associated proteome was significantly expanded and comprised 582 
unique proteins (Fig. 3b and Supplementary Table 7). On the basis of their 
published or predicted molecular functions, we categorized 410 of these 
proteins into functional complexes or subgroups. The analysis revealed 
a predominant association of chromatin remodellers and transcription 
regulators with the nuclear basket, including proteins involved in chroma-
tin remodelling, DNA binding, histone binding and modification, nucleo-
some assembly, Mediator and SAGA complexes, transcription factors and 
other transcription regulators, providing compelling evidence for the 
active involvement of the plant NPC in the regulation of gene expression. 
Moreover, regulators of mRNA processing are primarily enriched at the 
nuclear basket region, with 11 relevant functional subgroups identified. 
These subgroups function in various steps of RNA processing, including 
pre-mRNA biogenesis, mRNA splicing and disassembly of spliceosome 
after splicing is completed (Fig. 3b and Supplementary Table 8). These 
results suggest that the plant NPC basket is a platform that integrates 
transcription regulation with active pre-mRNA splicing, which presum-
ably facilitates rapid transcriptional responses.

In contrast to the NPC basket, we found that regulators of mRNA 
translation are enriched on the cytoplasmic side of the NPC, which can 
be clustered into 5 functional subgroups. These subgroups include 
eukaryotic elongation factors for translation elongation, GYF pro-
teins involved in mRNA metabolism, and P-body, ECT and PUM fam-
ily proteins that participate in translation repression and/or mRNA 
destabilization (Fig. 3b). This finding indicates that the mRNA buffering 
may occur at the cytoplasmic side of the NPC, potentially preventing 
excessive translation or degradation of mRNA immediately after they 
are exported to the cytoplasmic side of the NPC.

NPC-associated proteins interact broadly with 
nucleoporins
Previously, we demonstrated a robust transcriptional correlation 
among Arabidopsis nucleoporin genes12. Here we expanded the inves-
tigation to include the newly discovered NPC-associated components, 
particularly those involved in transcription regulation, pre-mRNA splic-
ing and translation regulation. Remarkably, upon examining the expres-
sion of these genes using available RNA-seq data, we found that over 
two-thirds of the NPC-associated genes exhibit strong co-expression 
with nucleoporin genes (Fig. 3c and Supplementary Table 9). In con-
trast, when we randomly selected genes from the Arabidopsis genome, 
we did not observe a comparable co-expression pattern. The coordi-
nated gene expression supports functional connections between the 
identified NPC-associated proteins with the NPC core.

Fig. 3 | Assembly of the NPC-associated proteome in Arabidopsis. a, Heat 
map of normalized average PSM values for 32 nucleoporins (horizontal label) 
obtained through PL proteomics using 9 nucleoporins as baits (vertical label). 
Red and blue dots represent P < 0.01 and <0.05 (two-sided t-tests without 
adjustment), respectively, compared to controls. Nucleoporins are horizontally 
arranged on the basis of their location in different NPC modules. b, Integrated 
networks of proteins identified by 9 nucleoporin baits (hexagons outlined 
in red) using PL proteomics. Nucleoporins (represented as hexagons) and 
the proteins they probed (represented as circles) were placed in proximity to 
the NPC structure, corresponding to their potential locations as determined 

by the bait Nups that probed them. These proteins were grouped into three 
main categories: transcription regulation, mRNA splicing and processing, and 
translation regulation. Subcategories were manually clustered and colour 
coded on the basis of their established or predicted protein functions. c, Heat 
map illustrating the co-expression patterns of nucleoporin genes with other 
NPC-associated components identified in this study, particularly the three major 
functional categories shown in b. Co-expression among nucleoporins serves as 
the positive control, while random genes selected from the Arabidopsis genomes 
are used as the negative control. Greater edge weight corresponds to stronger 
co-expression.

http://www.nature.com/natureplants
http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD015919
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To validate the physical interactions between the newly iden-
tified NPC-associated proteins and nucleoporins, we conducted 
co-immunoprecipitation (co-IP) assays and confirmed in vivo 

associations between selected candidates and the NPC (Fig. 4a). How-
ever, co-IP validation was limited to a relatively small scale. In pur-
suit of a more comprehensive understanding of the molecular 
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mechanisms underlying protein assembly around the NPC, we har-
nessed AlphaFold-Multimer for structural modelling and PPI predic-
tion. Due to computational limitations, the combined amino acid (aa) 
length of the two predicted interacting partners was limited to 2,500 aa. 
Therefore, heterodimer complexes were predicted only for 109 
NPC-associated proteins and nucleoporins whose combinations comply 
with this limitation. With the 109 proteins, we modelled 5,474 heterodi-
mer complexes, which comprise more than 90% of all possible pairwise 
interactions (Extended Data Fig. 4a and Supplementary Table 10).

To filter for reliable interaction models, we used the intrin-
sic model accuracy estimate values iptm > 0.75 and pTM > 0.3 (for 
AlphaFold-Multimer) and the interface score > 0.5 (for AF2Complex) 
as cut-offs, resulting in 81 high-confidence PPI models (Fig. 4b, acces-
sible through Zenodo at https://doi.org/10.5281/zenodo.10023066 
(ref. 45)). Despite inherent limitations in the in silico PPI prediction, 
we obtained a remarkable validation rate. Specifically, about half of 
the high-confidence Nup–Nup interactions predicted (17 out of 37) 
were supported by electron microscopy-based structural analyses of 
the human NPC (Fig. 4c top panel). This result not only reinforces the 
reliability of the predicted PPIs but also suggests that these nucleop-
orin interactions are conserved between human and plant systems. 
We also found potential new interactions between plant-specific 
nucleoporins within or between different NPC modules, including 
PNET1–PNET6 interaction within the membrane ring, RAE1–GBPL3 
interaction between the ORC and the NB, and MAD2–CRWN4 interac-
tion between the NB and the nucleoskeleton (Fig. 4c and Extended 
Data Fig. 4b). In addition, three of the physical associations confirmed 
by the co-IP experiments (At2G27140–RAE1, HSFB2B–Nup43 and 
KH8–Nup43) are among the 81 high-confidence models. Collectively, 
these high-confidence predicted PPI models allow us to delineate 
an extensive PPI network beyond Nup–Nup interactions within the 
NPC-associated proteome (Fig. 4d), underscoring potential molecular 
mechanisms for the NPC to recruit diverse protein complexes through 
direct protein–protein interactions (Fig. 4c bottom panel).

Phase separation contributes to the assembly of 
the NPC proxiome
The central channel of the NPC establishes a phase-separated environ-
ment that facilitates the transport of proteins and RNA46. Notably, our 
recent findings demonstrate that GBPL3 promotes potential phase 
separation at the NPC basket22, suggesting that the NPC’s function 
may rely on phase-separated environments at multiple levels. Support-
ing this notion, we found that more than 70% (28/39) of known Arabi-
dopsis nucleoporins contain intrinsically disordered regions (IDRs) 
predicted by D2P2 (Fig. 5a). Furthermore, within the NPC-associated 
proteome, there is a notable overrepresentation of IDR-containing 
proteins (IDPs)—374 out of 582 proteins (64.3%), in contrast to the 
genome-wide average of 29.5%. This observation hints at the possible 
existence of a phase-separated environment surrounding the NPC. 
Notably, RNA-binding proteins (RBPs), a prominent group of proteins 
involved in phase separation, constitute over 40% of the NPC-associated 
proteome (233/582) (Fig. 5b and Supplementary Table 11), which is also 
consistent with a major role of the NPC in mRNA metabolism.

To investigate whether phase separation plays a role in the inter-
actions between Nups and NPC-associated IDPs, we selected two 
nucleoporins from the NPC cytoplasmic ring (CG1 and RAE1), two 
nucleoporins from the nuclear basket (Nup82 and GBPL3) and two 
IDR-containing RBP candidates (Extended Data Fig. 5a), including 
DEAD-box RNA helicase 40 (RH40, a CG1 prey) and RNA-BINDING 
GLYCINE-RICH PROTEIN D5 (RGBD5, a GBPL3 prey) and transiently 
expressed them in Nicotiana benthamiana. We found that when indi-
vidually expressed, Nup82 and GBPL3 but not CG1 and RAE1 were able 
to form spontaneous nuclear condensates, as previously reported22. 
Also, RH40 but not RBGD5 frequently forms nuclear condensates that 
are primarily associated with the nuclear periphery (Fig. 5c). Fluores-
cence recovery after photobleaching (FRAP) analysis further revealed 
that the RH40 condensates were able to recover within a few seconds 
after photobleaching (Fig. 5d), suggesting active exchange of materi-
als with their environment. In addition, we found that deletion of the 
N-terminal IDR domain of RH40 could substantially compromise the 
formation of condensates and that deleting both N- and C-terminal IDR 
domains in RH40 completely abolished condensate formation (Fig. 5e). 
These properties are consistent with biomolecular condensates whose 
formation is driven by liquid–liquid phase separation.

When co-expressed with RH40, CG1 and RAE1 co-localize with 
RH40 in nuclear condensates (Fig. 5f). However, nuclear condensates 
formed by Nup82 and GBPL3 do not co-localize with RH40. In contrast, 
RBGD5 forms nuclear condensates with GBPL3 but not with other 
nucleoporins. These data suggest that NPC-associated IDPs possess 
the ability to interact with nucleoporins through phase transition. 
Furthermore, this process seems to be intricately controlled, with the 
CG1 prey RH40 condensing exclusively with cytoplasmic nucleoporins, 
and the GBPL3 prey RBGD5 doing so only with the NB-localized GBPL3. 
We hypothesize that the composition of proteins and/or nucleic acids 
on each side of the NPC may significantly influence the selective phase 
transitions within NPC sub-environments.

Discussion
Although the NPC is known as one of the largest macromolecular assem-
blies within the cell, our proteomic profiling has further expanded the 
scope of nuclear pore-associated proteins and illuminated previously 
uncharted intricacies in both categories and functionalities of the 
NPC. Detailed analysis of the NPC-associated proteome suggests that 
the NPC serves as an integrated platform, orchestrating a multitude 
of pivotal events in gene expression, ranging from transcription and 
mRNA processing to mRNA export and translation regulation. This find-
ing is in strong alignment with the gene gating mechanism previously 
proposed in animals and yeast research and provides a robust founda-
tion of molecular evidence substantiating the efficient coordination of 
mRNA synthesis, maturation and transportation centred around the 
NPC. It is imperative to note, however, that our profiling use entire seed-
lings, and consequently, the current assembly of the NPC-associated 
proteome does not consider tissue- or cell-type-specific distinctions, 
thus not reflecting potential variations in the nuclear pore proteome.

Beyond its role in mRNA metabolism, the extended NPC proteome 
also offers intriguing insights into other potential functions of the NPC. 

Fig. 4 | Extensive protein–protein interactions within the NPC-associated 
proteome. a, Co-IP of selected nucleoporins and newly identified NPC-
associated proteins. Nups-GFP were transiently co-expressed with their 
associated preys fused to 3xHA-TurboID in N. benthamiana. The MATH domain-
containing protein At5g26280 and BRASSINOSTEROID INSENSITIVE1 (BRI1) 
were used as negative controls. Protein extract was immunoprecipitated with 
GFP-trap beads before immunoblotting with anti-GFP and anti-HA antibodies. 
Co-IP experiments were repeated at least twice with similar results. b, Scatter 
plot visualizing the ipTM scores for predicted pairwise PPIs among the 109 
selected nucleoporins and NPC-associated proteins using AlphaFold-Multimer 
and AF2Complex. These interactions were colour coded and separated into 11 

groups on the basis of the functional category of one of the protein partners. 
High-confidence interactions are represented by triangles and square symbols 
above the dashed line. c, Top: heat maps illustrating high-confidence predicted 
interactions among Arabidopsis nucleoporins. Interactions between Nups that 
are supported by structural biology data from human Nups are marked with 
green checkmarks. Bottom: heat maps showing additional high-confidence 
PPIs between nucleoporins and NPC-associated proteins. d, The predicted 
PPI network within the NPC-associated proteome. Known nucleoporins are 
represented by rectangular nodes and newly identified NPC-associated proteins 
are represented by elliptical nodes.
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For instance, the identification of multiple ESCRT I complex compo-
nents, including ELC (VPS23a) and its homologue ELC-like (VPS23b), 
as shared targets of CG1 and GBPL3 (Extended Data Fig. 2a) implies 
a close relationship between the NPC and ESCRT. In yeast and mam-
malian cells, it is well-documented that the ESCRT III complex plays a 
pivotal role in the orchestration and reshaping of the nuclear envelope 
throughout the cell cycle47,48. While the precise mechanisms govern-
ing NE remodelling and closure at the conclusion of mitosis in plants 

remain unclear, it is worth noting that the plant elc mutant exhibits a 
phenotype characterized by the presence of multiple nuclei in various 
cell types49, which resembles mutants in the ESCRT III complex of yeast 
and mammals47,48. In addition, we found that the plant-specific ESCRT I 
component, FREE1, alongside other critical ESCRT I constituents, was 
also specifically probed by GBPL3 and CG1. This observation sparks 
an intriguing idea that plant cells might have developed a distinct and 
exclusive mechanism for nuclear envelope remodelling and sealing. 
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Another example is that heat shock chaperone proteins, including 
members of HSP40, HSP70 and T-complex family, were probed by both 
FG Nups and core scaffold Nups. Supporting this observation, recent 
research has unveiled that chaperones form localized foci in the vicinity 
of the NPC and serve as pivotal factors in preventing the aggregation of 
FG nucleoporins. This, in turn, facilitates NPC biogenesis in humans50,51.

On the basis of a combined biochemical and structural modelling 
PPI prediction analysis, we propose that direct protein interactions 
with nucleoporins assume a critical role in the intricate assembly of the 
nuclear pore-associated proteome. In parallel, we postulate that the 
phase separation process, mediated by IDR-containing proteins, may 
also contribute substantially to both the formation and maintenance of 
the proteome at the nuclear pore. This hypothesis is underscored by the 
observation that more than two-thirds of the identified NPC-associated 
proteins are predicted to be intrinsically disordered proteins, including 
many RBPs. Besides RBPs, it is well known that proteins containing FG 
repeats are significant contributors to phase separation within the NPC, 
particularly in the central channel. The phenylalanine aromatic ring 
within FG repeats plays a crucial role in the formation of highly elastic 
hydrogels and phase separation through multivalent hydrophobic 
interactions6,46. To our surprise, we found a considerable number of 
previously uncharacterized FG repeats-containing proteins in the 
NPC-associated proteome (108 in total) (Extended Data Fig. 5b and 
Supplementary Table 12). These proteins were defined by containing 
a minimum of three FG repeats within 50 amino acids or at least four 
FG repeats within 200 amino acids on the basis of previous investiga-
tions on animal FG repeats proteins52,53. This evidence suggests that FG 
repeats-containing proteins are highly concentrated surrounding the 
NPC, potentially forming an extended layer of selective cargo transport 
barrier outside of the NPC central channel. Indeed, a recent report on 
3D tracking of cargo transport through the NPC revealed large cargo 
clouds near both the cytoplasmic and nucleoplasmic openings, sug-
gesting extensive interactions of cargo/NTRs with proteins/structures 
far beyond the central channel of the nuclear pore54. Moreover, studies 
in C. elegans have shown that some FG repeats-containing RNA-binding 
proteins could form functional perinuclear P granules, and deletion of 
the FGs from these RNA-binding proteins resulted in the detachment 
of P granules from the nuclear membrane into the cytoplasm55,56. This 
observation is also consistent with our identification of P-body com-
ponents at the cytoplasmic side of the plant NPC.

In forthcoming research, it is imperative to substantiate 
the recruitment of the identified NPC-associated proteins to the 
nuclear pore in vivo and verify the essential protein–protein interac-
tions that underlie the assembly. Moreover, as in silico approaches 
develop and surpass computational limitations, more PPIs within 
the nuclear pore-associated proteome can be modelled and refined. 
Last but not least, acquiring comprehensive insights into the tissue/
cell-type-specific and condition-dependent nuclear pore proteome 
is critical for a deeper understanding of the compositional dynamics 
and functional significance of the protein assembly at the nuclear pore.

Methods
Materials, plasmid construction and plant transformation
All Arabidopsis plants utilized in this study are Col-0 ecotype. Wild-type 
(WT) and transgenic Arabidopsis seeds were stratified at 4 °C in the 
dark for 2 days before being grown at 22 °C under a 16 h:8 h light:dark 
cycle. All constructs were generated using In-Fusion cloning (Clon-
Express II One Step Cloning kit, Vazyme), unless otherwise speci-
fied. For BioID2 fusion, the full-length cDNA of Nup50a and gDNA 
of Nup188 were cloned into a modified pEarlyGate100 vector with 
a BioID2-HA tag29. Similarly, for miniTurbo fusion, the full-length 
cDNA of Nup54 and gDNA of CG1 were cloned into a modified pEG100 
vector with a 3xHA-miniTurbo tag. For fluorescence protein-tagged 
constructs, the full-length gDNA of EXA1, VPS37-1 and VPS37B, and 
the full-length cDNA of HXK2, RH40, RGBD5 and truncated RH40 

(1–1,005 bp, 1,006–2,265 bp, 1,006–3,264 bp) were cloned into a modi-
fied pEG100 vector with a GFP tag. To generate constructs for co-IP 
and co-expression assays, both Gateway system and In-Fusion cloning 
were applied. The full-length cDNA of Nup85, Nup82 and Nup155, and 
the full-length gDNA of Nup136 were inserted into pBSDONR p1-p4, 
and GFP or mCherry fragment was cloned into pBSDONR p4r-p2 using 
BP reaction. The pBSDONR p1-p4 and pBSDONR p4r-p2 vectors were 
then combined and cloned into the destination vector pEG100 using 
LR reaction. The full-length cDNA of RAE1, CG1, Nup43, Nup50b and 
Seh1 were cloned into a modified pEG100 vector with a GFP or mCherry 
tag. The full-length cDNA of At2g27140, GRF3, KH8, HSFB2B and SAP18 
were cloned into a modified pEG100 vector with a 3xHA-TurboID tag. 
All primers used for cloning are listed in Supplementary Table 13. 
The Agrobacterium-mediated floral-dip transformation method was 
employed to generate transgenic plants.

Proximity labelling and proteomics analysis
The BioID2- and miniTurbo-based proximity labelling and affinity puri-
fication of biotinylated proteins have been previously described28,29. 
In brief, for each bait construct, more than 40 T1 transgenic lines were 
identified via resistance selection. These lines were screened for moder-
ate levels of bait protein expression and inducible biotinylation upon 
free biotin treatment using immunoblot blot with anti-HA antibody 
and streptavidin-HRP, respectively. It is noteworthy that none of the 
nucleoporin bait lines exhibited discernible distinct phenotypes com-
pared with wild type at 1 week age, the seedling stage that we sampled. 
A single representative line was chosen to conduct proximity-labelling 
proteomics. Ten-day-old transgenic seedlings at the T2 generation were 
treated with 50 μM biotin for 6 h (for miniTurbo transgenic plants) and 
24 h (for BioID2 transgenic plants) at room temperature. For controls, 
we deliberately avoided using free biotin ligases or biotin ligases fused 
with free YFP. We found that these proteins usually express at high 
levels, leading to the induction of biotinylation in a considerably wide 
spectrum of proteins upon biotin treatment. This, in turn, results in 
highly elevated false-negative rates. Consequently, our preferred con-
trols for ratio matrix analysis consisted of WT non-transgenic plants 
subjected to biotin treatment (NT, primarily to eliminate natively 
biotinylated proteins) and the bait transgenic plants without biotin 
treatment (Mock, primarily to eliminate non-specific biotinylation by 
the biotin ligase). Two or three biological replicates, with 0.4 g of seed-
lings each, were sampled. The materials were then frozen and ground 
into a fine powder using liquid nitrogen. Total protein extraction was 
performed using 2 ml of protein extraction buffer (50 mM Tris (pH 
7.5), 150 mM NaCl, 0.5% Triton X-100, 0.5% Nonidet P-40, 0.5% sodium 
deoxycholate, plant protease inhibitor cocktail, 1 mM PMSF and 40 mM 
MG132). A HiTrapTM desalting column (GE Healthcare) equipped with 
an FPLC system was utilized to remove free biotin. The eluted pro-
tein fraction was incubated with 50 µl streptavidin-coated magnetic 
beads (Dynabeads MyOne Streptavidin C1, Invitrogen) for 12–16 h at 
4 °C. The beads were then washed five times with protein extraction 
buffer and subsequently boiled with protein loading buffer containing 
50 mM biotin and 1% SDS for 30 min. The total biotinylated protein 
was separated on SDS–PAGE gels and digested with trypsin in 50 mM 
ammonium bicarbonate overnight at 37 °C. The resulting peptides were 
collected using an aqueous solution of 1% formic acid in 50% acetoni-
trile and lyophilised using a Speedvac before LC–MS/MS analysis. MS/
MS spectra were searched against the TAIR10 database using Proteome 
Discoverer (v.1.4). To select specifically enriched protein candidates, 
ratiometric analysis was conducted using the peptide peak areas (label 
free quantification, LFQ values) from the experimental and control 
samples and the DEP package (v.1.24.0) in R (v.4.3.2). The candidates 
were further filtered on the basis of the normalized peptide spectrum 
match (PSM) value. On the basis of nucleoporins, known interactors of 
each bait protein and other data quality parameters, the cut-off values 
for LFQ and PSM data were specified in each case. Volcano plots and 
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heat maps were generated in R (v.4.3.2). MS data using Nup50a, Nup54, 
CG1 and Nup188 as baits in this study were deposited in the PRIDE data-
base (PXD039253), and data for PNET1, Nup82, Nup93a, KAKU4 and 
GBPL3 were previously published and can be found in PRIDE databases 
PXD015919, PXD026924 and PXD032906 refs. 22,29,33.

Immunofluorescence
Immunofluorescence imaging was performed as previously described 
with minor modifications57. Briefly, the seedlings were fixed in fixation 
buffer (4% paraformaldehyde, 1x PBS, 2% Triton X-100) for 4 h at room 
temperature. After fixation, the samples were washed three times with 
1x PBS buffer and incubated with digestion buffer (1% driselase (Sigma, 
D8037), 0.5% cellulase (Sigma, C1794), 1% pectolyase (Sigma, P3026) in 
1x PBS, 1x BSA buffer) at 37 °C for 1 h. The samples were subsequently 
rinsed three times with 1x PBS buffer and permeabilized in 1x PBS with 2% 
Triton X-100 buffer at room temperature for 2 h. The resulting samples 
were incubated on adhesive slides with HA tag Alexa Fluor 647 conju-
gated mouse antibody (ThermoFisher, 26183-A647) (1:500 dilution in 
1x PBS, 1x BSA buffer) at 4 °C overnight. The slides were washed with 1x 
PBS buffer with 0.2% Triton X-100 at room temperature, three times for 
5 min each. The slides were mounted with 20 µl of antifade mounting 
medium with DAPI (Beyotime, P0131) for 20 min at room temperature 
before imaging analysis on a Nikon N-SIM S confocal microscope.

Bioinformatics analysis
To generate the co-expression network of NPC-associated candidates 
with nucleoporin genes, averaged logic scores based on both microar-
ray and RNA-seq data were retrieved from ATTED-II v.11.0 (https://atted.
jp/) and visualized using a clustering heat map in R. GO enrichment 
analysis was performed using DAVID Bioinformatics Resources (https://
david.ncifcrf.gov/). Protein–protein interactions with experimental 
supports were retrieved from the STRING database (https://string-db.
org/) and visualized using Cytoscape (v.3.9.1). Normalized gene expres-
sion levels of Nup82, Nup50a, KAKU4 and GBPL3 across 79 organs 
and developmental stages were obtained from the high-throughput 
transcriptome database TraVA (Transcriptome Variation Analysis, 
http://travadb.org/). The prediction of IDRs in NPC-associated proteins 
was performed using the Database of Disordered Protein Predictions 
(D2P2) (https://d2p2.pro/) and the VSL2 predictor from PONDR (http://
www.pondr.com/). The RNA-binding proteome in Arabidopsis was 
retrieved from a previous publication58. The prediction of transmem-
brane domains in proteins within the Arabidopsis genome (https://
www.arabidopsis.org/) was conducted using TMHMM-2.0 (https://
services.healthtech.dtu.dk/services/TMHMM-2.0/).

Prediction of protein complex structure and PPI network
Protein complexes were modelled using AlphaFold-Multimer and 
AF2complex (v.1.4.0), which rely on AlphaFold (v.2.3.1)59,60. Homologous 
sequences were collected from standard full databases (--db_preset=full_
dbs), and all experimental protein structures, which were downloaded 
from the Protein Data Bank on 31 March 2023, were allowed as struc-
tural templates61. All heterodimer complexes with a size ≤2,500 amino 
acids were predicted with five multimer models (v.3) without relaxation 
(--models_to_relax=none)62. The prediction was considered reliable if 
the interface score from AF2complex was greater than 0.5 or the ipTM 
score from AlphaFold-Multimer was greater than 0.75. An additional pTM 
threshold of >0.3 was required to remove highly disordered proteins. The 
interface and iptm scores were used to construct an undirected graph 
using igraph (v.1.4.2) in R (v.4.1.3) to represent a putative protein–protein 
interaction network among the candidate NPC proteins.

Co-IP and fluorescence imaging analysis
Co-IP and fluorescence imaging analysis were performed using 
Agrobacterium-mediated transient protein expression in N. bentha-
miana as previously described29. For Co-IP, 0.2 g of leaves were 

collected and ground into fine powder in liquid nitrogen. Total pro-
tein was extracted with 1 ml of protein extraction buffer (50 mM Tris  
(pH 7.5), 150 mM NaCl, 0.5% Triton X-100, 0.5% Nonidet P-40, 0.5% 
sodium deoxycholate, protease inhibitor cocktail and 40 μm MG132). 
After a brief centrifugation to pellet debris, 10 µl of GFP-trap beads 
(ChromoTek, gtak) was added to the total protein extract, which was 
then incubated at 4 °C for 10 h with gentle shaking. The beads were then 
washed five times with protein extraction buffer, separated by SDS–
PAGE and subjected to immunoblot analysis using anti-GFP (Clontech, 
632381, dilution 1:5,000) and anti-HA (3F10, Roche, 11867431001, dilu-
tion 1:5,000). Fluorescence imaging and FRAP analysis were performed 
as previously described63. Briefly, FRAP data of co-expressed conden-
sates in N. benthamiana leaf epidermal cells were obtained on a Nikon 
N-SIM S confocal microscope using the ×63 objective. Condensates 
were bleached using a laser intensity of 100% at 485 nm and 562 nm 
with 100 iterations. After photobleaching, images were continuously 
captured for 10 min at 5 s intervals using NIS-Elements software. Mean 
fluorescence intensities of the bleached region were normalized, analy-
sis was carried out using ImageJ and the recovery curve was generated 
using GraphPad Prism 10.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Datasets that support the results in this study are available in the 
supplementary tables and source data. All the mass spectrometry 
proteomics data have been deposited to the ProteomeXchange Con-
sortium via the PRIDE partner repository (Identifier: PXD039253). The 
high-confidence predicted heterodimer complexes are available via 
Zenodo at https://doi.org/10.5281/zenodo.10023066 (ref. 45). Other 
available databases used in this study are listed in the above ‘Bioinfor-
matics analysis’. Source data are provided with this paper.

Code availability
All scripts used in this study are available in GitHub at https://github.
com/s-kyungyong/NPC_structure_prediction.
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Extended Data Fig. 1 | Nuclear basket proxiome reveals robust association 
of NPC with the spliceosome. a, Schematic diagrams illustrating the DNA 
constructs carried by transgenic Arabidopsis plants utilized for proximity 
labeling (PL) proteomics. The positions of FG repeats are marked with red stars 
on Nup50a and CG1. b, Bubble plot presenting the reanalysis of PL proteomic 
data obtained using different Nups as bait. The left side displays LFQ intensity 
values of Nup50a protein, while the right side features a heatmap showing 
normalized peptide spectrum match (PSM) values of Nup50a. Controls for 
Nup82 and Nup93a are biotin-treated NEAP1-BioID2 sample (Ctrl 1) and mock-
treated YFP-BioID2 sample (Ctrl 2). For GBPL3, non-transformant plants (NT) 
served as control (Ctrl 1). Controls for KAKU4, Nup188, and PNET1 were NT plants 
(Ctrl 1) and mock-treated YFP-BioID2 samples (Ctrl 2). For CG1 and Nup54, NT 
plants (Ctrl 1) and mock-treated transgenic plants (Ctrl 2) were used as controls. 
c, Scatter plot showing candidates identified in the Nup82 proxiome. Known 
nucleoporins and nucleoskeleton proteins are labeled. Controls for ratiometric 

analysis included NEAP1-BioID2 and mock samples. Three biological replicates 
were utilized for each sample. Significantly enriched protein candidates, 
denoted by red dots, were selected using cutoffs p-value < 0.01, fold-change > 4,  
and PSM > 1. On the right, GO enrichment analysis and heatmaps displaying 
averaged PSM values of known nucleoporins and other candidates in the Nup82 
proxiome are presented. d, GO enrichment analysis of the integrated nuclear 
basket proxiome consisting of 423 proteins. Representative GO terms are 
displayed. e, Gene expression patterns of Nup82, Nup50a, KAKU4, and GBPL3 
in different tissues and developmental stages of Arabidopsis. Transcriptomic 
data were retrieved from the TraVA database (Transcriptome Variation Analysis, 
http://travadb.org/). For protein candidates identified by proximity labeling, 
statistical tests were two-sided t-tests without adjustment (b and c). Statistical 
tests used for GO analysis in (c and d) were one-sided Fisher’s Exact tests with 
multiple comparison adjustments.
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positioned in the middle and labeled with a red square. Statistical tests used 
for GO analysis were one-sided Fisher’s Exact tests with multiple comparison 
adjustments.
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Extended Data Fig. 3 | Assembly of the NPC core scaffold proxiome. a, Scatter 
plots displaying candidates identified in the Nup54 and Nup188 proxiomes. 
Mock-treated and non-transformant (NT) samples were used as controls for 
ratiometric analysis. Two biological replicates were used for the Nup54 proxiome, 
while three replicates were used for the Nup188 proxiome. Significantly enriched 
protein candidates were selected based on the following cutoffs: p-value < 0.1, 
fold-change > 2, and PSM > 5 for Nup54 proxiome; and p-value < 0.2, fold-change > 
2, and PSM > 0.3 for Nup188 proxiome. Enriched candidates are represented by red 
dots and labeled in green text. Heatmaps illustrate the normalized average  
PSM values of the known nucleoporins. Statistical analyses were two-sided  

t-tests without adjustment. Underlying data can be found in Supplementary  
Table 5 and 6. b, Representative confocal images of the protein localization 
of Nup54-3xHA-miniTurbo and Nup188-BioID2-HA in transgenic plants by 
immunostaining using HA antibody. DAPI was used to stain the nucleus. The 
localization patterns have been repeated in three independent experiments with 
similar results. Bars = 10 μm. c, Assembly of the NPC core scaffold proxiome. 
Venn diagram representing the assembled NPC core scaffold proxiome probed 
by nucleoporins located at or near the NPC core. Known NPC and NE proteins are 
highlighted in red.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Predicted protein-protein interactions within the 
extended NPC proteome. a, Pairwise interaction matrix of the 109 selected 
proteins within the NPC-associated proteome. The predicted interactions were 
generated using Alphafold-Multimer, and the interface scores derived from 
AF2Complex were plotted. The subgroup of proteins with strong interactions, 
located in the upper right corner of the matrix, is highlighted with dashed lines 
and green text label. b, Structure models depicting the predicted interactions 

between the following protein pairs: Nup93a and NDC1, Nup93b and NDC1, 
PNET1 and PNET6, GBPL3 and RAE1, and CRWN4 and MAD2. c, Nuclear membrane 
localization of selected candidates in NPC-associated proteome. GFP fusion 
constructs were transiently coexpressed with free mCherry in N. benthamiana. 
The localization patterns have been repeated in three independent experiments 
with similar results. Bars = 10 μm.
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Extended Data Fig. 5 | Nucleoporins and NPC-associated proteins are 
enriched in intrinsically disordered regions and FG-repeats. a, Intrinsically 
disordered domains in selected Nups and NPC-associated proteins predicted by 
PONDR. b, Summary of NPC-associated FG repeats-containing proteins. Based on 
known Arabidopsis FG nucleoporins and previous investigations on FG repeats-
containing proteins in animals, we used four criteria to determine FG repeats-
containing proteins in Arabidopsis. Firstly, a functionally relevant FG repeat 
domain should contain a minimum of three FG repeats within 50 amino acids or 
at least four FG repeats within 200 amino acids. Secondly, Tyrosine-Glycine (YG) 
repeats are considered to function similar to FG repeats. Thirdly, we excluded 

candidates that possessed FG dipeptides within predicted transmembrane 
domains. Lastly, FG repeats were required to localize within predicted IDRs 
of a protein. By applying these criteria, we identified a total of 108 FG repeats-
containing proteins in the NPC-associated proteome. D2P2 database and 
RNA-binding protein repertoire were used to determine whether they are also 
intrinsically disordered proteins (IDPs) and RNA-binding proteins (RBPs). RBPs 
were further divided into RBPs with high and low confidence, which were colored 
with light orange and dark orange, respectively. The bottom heatmap displays 
their average coexpression values with all known nucleoporins.
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