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Global Convergence of Federated Learning
for Mixed Regression
Lili Su , Jiaming Xu , and Pengkun Yang

Abstract— This paper studies the problem of model training
under Federated Learning when clients exhibit cluster structures.
We contextualize this problem in mixed regression, where each
client has limited local data generated from one of k unknown
regression models. We design an algorithm that achieves global
convergence from any arbitrary initialization, and works even
when local data volume is highly unbalanced – there could exist
clients that contain O(1) data points only. Our algorithm is
intended for the scenario where the parameter server can recruit
one client per cluster referred to as “anchor clients”, and each
anchor client possesses Ω̃(k) data points. Our algorithm first
runs moment descent on this set of anchor clients to obtain coarse
model estimates. Subsequently, every client alternately estimates
its cluster labels and refines the model estimates based on FedAvg
or FedProx. A key innovation in our analysis is a uniform
estimate of the clustering errors, which we prove by bounding the
Vapnik–Chervonenkis dimension of general polynomial concept
classes based on the theory of algebraic geometry.

Index Terms— Federated Learning, mixed regression, cluster-
ing, global convergence, empirical process.

I. INTRODUCTION

FEDERATED learning (FL) [1] enables a massive number
of clients to collaboratively train models without dis-

closing raw data. Data heterogeneity includes non-IID local
distributions and unbalanced data volume. For example, smart-
phone users have different preferences in article categories
(e.g. politics, sports or entertainment) and have a wide range
of reading frequencies. In fact, distribution of the local dataset
sizes is often heavy-tailed [2], [3], [4].
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Based on the number of models trained, existing methods
to deal with data heterogeneity can be roughly classified into
three categories: a common model, fully personalized models,
and clustered personalized models; see Section II for detailed
discussion. Using a common model to serve highly hetero-
geneous clients has fundamental drawbacks; recent work [5]
rigorously quantified the heterogeneity level that the com-
mon model can tolerate with. Fully personalized models [6],
[7] often do not come with performance guarantees as the
underlying optimization problem is generally hard to solve.
In this work, we focus on clustered personalized models [8],
i.e., clients within the same cluster share the same underlying
model and clients across clusters have relatively different
underlying models. The main challenge is that the cluster
identities of the clients are unknown. We target at designing
algorithms that simultaneously learn the clusters and train
models for each cluster.

A handful of simultaneous clustering and training algo-
rithms have been proposed [9], [10], [11], [12], mostly of
which are heuristic and lack of convergence guarantees [9],
[10], [11]. Towards formal assurance, [12] studied this prob-
lem through the lens of statistical learning yet postulated
a number of strong assumptions such as the initial model
estimates are very close to the true ones, linear models, strong
convexity, balanced and high-volume of local data. Their
numerical results [12] suggested that sufficiently many random
initializations would lead to at least one good realization
satisfying the required closeness assumption. However, the
necessary number of random initializations scales exponen-
tially in both the input dimension and the number of clusters.
Besides, in practice, it is hard to recognize and winnow out
good initialization. In this work, following [12], we adopt a
statistical learning setup. In particular, we contextualize our
problem as the canonical mixed non-parametric regression
with a known feature map, where each client has a set of local
data generated from one of k unknown regression models.
We would like to extend our results to the general convex/non-
convex loss functions in future work. Departing from standard
mixed regression, in which each client keeps one data point
only [13], [14], in our problem, the sizes of local datasets can
vary significantly across clients. Our algorithm is intended for
the scenario where the parameter server can recruit one client
per cluster referred to as “anchor clients”, and each anchor
client possesses Ω̃(k) data points. The non-anchor clients may
contain as few as two data points and we further assume that
there are Ω̃(d) clients in total. A similar mixed regression
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setup with data heterogeneity has been considered in [15] in
a different context of meta-learning; the focus therein is on
exploring structural similarities among a large number of tasks
in centralized learning. On the technical side, their analysis
only works when the covariance matrices of all the clusters
are identical and each client has Ω(log k) data points. Please
refer to Remark 1 for more detailed technical comparisons.

Contributions: The main contributions of this work are
summarized as follows.
• We design a two-phase federated learning algorithm to

learn clustered personalized models in the context of
mixed regression problems. In Phase 1, the parameter
server runs a federated moment descent on the set of
anchor clients to obtain coarse model estimates based on
subspace estimation. In each global iteration of Phase 2,
every client alternately estimates its cluster label and
refines the model estimates based on FedAvg or FedProx.
The algorithm works even when local data volume is
highly unbalanced – there could exist clients that contain
O(1) data points only.

• We prove the global convergence of our algorithm from
any initialization. The proof is built upon two key ingre-
dients: 1) We develop a novel eigengap-free bound to
control the projection errors in subspace estimation; 2) To
deal with the sophisticated interdependence between the
two phases and across iterations, we develop a novel uni-
form estimate on the clustering errors, which we derive
by bounding the VC dimension of general polynomial
concept classes based on the theory of algebraic geom-
etry. Our analysis reveals that the final estimation error
is dominated by the uniform deviation of the clustering
errors, which is largely overlooked by the previous work.

Furthermore, we empirically evaluate our algorithm using
a synthetic mixed linear regression dataset and extend its
applicability beyond mixed regression to general statistical
learning, evidenced by testing on the MNIST dataset. Numer-
ically, our algorithm is comparable to the Oracle algorithm
and outperforms the other benchmarks. Yet, our theoretical
analysis is still limited to mixed regression. Extending our
theory to general statistical learning is an important future
work.

II. RELATED WORK

FedAvg [1] is a widely adopted FL algorithm due to its
simplicity and low communication cost. However, severe data
heterogeneity could lead to unstable training trajectories and
land in suboptimal models [16], [17], [18]. Based on the
number of models trained, existing methods to deal with data
heterogeneity can be roughly classified into three categories.

A. A Common Model

To limit the negative impacts of data heterogeneity on the
obtained common model, a variety of techniques based on
variance reduction [16], [18], [19] and normalization [20] have
been introduced. Their convergence results mostly are derived
under strong technical assumptions such as bounded gradient
and/or bounded Hessian dissimilarity which may not hold

when the underlying truth in the data generation is taken into
account [16], [18], [19]. In fact, none of them strictly outper-
form others in different instances of data heterogeneity [21].
Besides, the generalization errors of the common model with
respect to local data are mostly overlooked except for a recent
work [5], which shows that the common model can tolerate a
moderate level of model heterogeneity.

B. Fully Personalized Models

Fully personalized methods are more general than clus-
tered federated learning approaches in the sense that they
do not require the existence of cluster structures among the
trained models. Nevertheless, existing work imposed stringent
technical requirements to derive assured performance charac-
terization such as convergence rates and final errors/accuracy.

Federated Multi-Task Learning (MTL) was proposed in [6]
wherein different models are learned for each of the mas-
sive population of clients [6], [7]. Despite recent efforts,
the convergence behaviors of Federated MTL are far from
well-understood because the objective is not jointly convex in
the model parameters and the model relationships [6], [22],
[23]. Specifically, [6] focused on solving the subproblem of
updating the model parameters only. Even in the centralized
setting, convergence is only shown under rather restricted
assumptions such as equal dataset sizes for different tasks
(i.e. balanced local data) [23] and small number of common
features [22]. Moreover, the average excess error rather than
the error of individual tasks is shown to decay with the
dominating term O(1/

√
n), where n is the size of the bal-

anced local dataset [23]. Despite recent progress [24], [25]
in the centralized training, their results are mainly for linear
representation learning with equal data volume of different
tasks, which precludes the applicability of their results to the
real-world setting wherein the distributions of the local data
volume are often heavy-tailed and there might exist clients
whose local data volume ni is small. Parallel to Federated
MTL, model personalization is also studied under the Model-
Agnostic Meta-Learning (MAML) framework [26], [27] where
the global objective is modified to account for the cost of
fine-tuning a global model at individual clients. Empirically,
MAML-based methods are observed to fail to train models
with low generalization errors [28, Appendix 1]. Theoretically,
those approaches generally yield complicated non-convex
objectives, making even heuristic guarantees hard to ensure;
the convergence is shown to stationary points only [26], [27],
[28].

C. Clustered Personalized Models

Clustered Federated Learning (CFL) [8], [9], [10], [11],
[12], [29] can be viewed as a special case of Federated
MTL where tasks across clients form cluster structures.
In addition to the algorithms mentioned in Section I (i.e.,
the algorithms that simultaneously learn clusters and models
for each cluster), other attempts have been made to integrate
clustering with model training. [8] hierarchically clustered
the clients in a post-processing fashion. To recover the k
clusters, Ω(k) empirical risk minimization problems need to be
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solved sequentially – which is time-consuming. [29] proposed
a modular algorithm that contains one-shot clustering stage,
followed by k individual adversary-resilient model training.
Their algorithm scales poorly in the input dimension, and
requires local datasets to be balanced and sufficiently large
(i.e., n ≥ d2). Moreover, each client sequentially solves two
empirical risk minimization problems. To utilize information
across different clusters, [11] proposed soft clustering and
provided numerical evidence on MNIST and Fashion-MNIST
datasets. Soft clustering was later on formally analyzed in [7],
which required that the covariate distributions Pi(x) are the
same for all clusters, and that the local gradients are uniformly
bounded. These two assumptions are the key enablers for
knowledge transfer across clusters. Neither of them is assumed
in our work. The novelty of our work consists in providing
theoretical convergence bounds even when no good initial-
ization is available and in allowing highly unbalanced local
datasets such as O(1) data points at some clients. Some key
limitations of our work are: We contextualize the statistical
learning problems as mixed regressions with the known feature
map ϕ. When ϕ is the identity mapping, our setup reduces
to mixed linear regressions. We require that the parameter
server can successfully recruit a set of anchor clients that cover
all clusters, and that each client possesses Ω̃(k) data points.
In addition, we assume that there are Ω̃(d) clients in total.
We would like to extend the acquired insights of this work to
the more general non-convex setting in future work.

Notably, after the posting of our work, [30] independently
proposes an algorithm that also can converge from any initial-
ization. Nevertheless, their analysis requires strong convexity,
a high volume of local data (with Ω(poly(d)) data points at
each client), and re-sampling of fresh data at each iteration.
In contrast, our algorithm works as long as there exist anchor
clients with Ω̃(k) that cover all clusters. Oftentimes k ≪ d
holds in practice. Moreover, our analysis even accommodates
clients that contain O(1) data points only. Thus our require-
ment on the local data volume is much weaker.

III. PROBLEM FORMULATION

A FL system consists of a parameter server (PS) and
M clients. Each client i ∈ [M ] keeps a dataset Di =
{(xij , yij)}ni

j=1 that are generated from one of k unknown
regression models. Let N =

∑M
i=1 ni. The local datasets are

highly unbalanced with varying ni across clients. If ni =
Ω̃(k), we refer to client i as anchor client, which corresponds
to an active user in practice. Anchor clients play a crucial
role in our algorithm design. We consider the challenging yet
practical scenario wherein a non-anchor client may have O(1)
data points only.

We adopt a canonical mixture model setup: For each client
i ∈ [M ],

yi = ϕ(xi)θ∗zi
+ ζi, (1)

where zi ∈ [k] is the hidden local cluster label, θ∗1 , · · · , θ∗k
are the true models of the clusters, ϕ(xi) ∈ Rni×d is the
feature matrix with rows given by ϕ(xij), yi = (yij) ∈ Rni

is the response vector, and ζi = (ζij) ∈ Rni is the noise

vector. Examples of the feature maps ϕ are polynomials (which
can be highly nonlinear) and random features. When ϕ is the
identity function, Eq.(1) reduces to the mixed linear regression
model [14], [15].1 The cluster label of client i is randomly
generated from one of the k components from some unknown
p = (p1, . . . , pk) in probability simplex ∆k−1. That is,
P {zi = ℓ} = pℓ for ℓ ∈ [k]. In addition, ∥θ∗ℓ ∥2 ≤ R for each
component. The feature covariate ϕ(xij) is independent and
sub-Gaussian with αId ⪯ E[ϕ(xij)ϕ(xij)⊤] ⪯ βId for β ≥ 1.
We assume that the covariance matrix is identical within
the same cluster but may vary across different clusters, i.e.,
E[ϕ(xij)ϕ(xij)⊤] = Σℓ if zi = ℓ. The noise ζij is independent
and sub-Gaussian with E[ζij ] = 0 and E[ζ2

ij ] ≤ σ2.
Our formulation accommodates statistical heterogeneity in

feature covariates, local models, and observation noises [31].
For the identifiability of the true cluster models θ∗ℓ ’s, we
assume a minimum proportion and a pairwise separation of
clusters. Formally, let ∆ = minℓ̸=ℓ′ ∥θ∗ℓ − θ∗ℓ′∥2 and pmin =
minℓ∈[k] pℓ. For ease of presentation, we assume the param-
eters α, β = Θ(1), σ/∆ = O(1), and R/∆ = O(1), but our
main results show explicit dependencies on these parameters.
Note that even under these assumptions, we still allow R,
∆, σ to scale with model dimension d. Also, the assumption
R/∆ = O(1) basically requires the radius of θ∗ℓ ’s is on the
same scale as their pairwise separation. It rules out the extreme
setting where θ∗ℓ ’s themselves are extremely large while their
pairwise separations are tiny.

Notations: Let [n] ≜ {1, . . . , n}. For two sets A and
B, let A ⊖ B denote the symmetric difference (A−B) ∪
(B−A). We use standard asymptotic notation: for two positive
sequences {an} and {bn}, we write an = O(bn) (or an ≲ bn)
if an ≤ Cbn for some constant C and sufficiently large n;
an = Ω(bn) (or an ≳ bn) if bn = O(an); an = Θ(bn) (or
an ≍ bn) if an = O(bn) and an = Ω(bn); Poly-logarithmic
factors are hidden in Ω̃. Given a matrix A ∈ Rn×d, let A =∑r

i=1 σiuiv
⊤
i denote its singular value decomposition, where

r = min{n, d}, σ1 ≥ · · · ≥ σr ≥ 0 are the singular values,
and ui (vi) are the corresponding left (right) singular vectors.
We call U = [u1, u2, . . . , uk] as the top-k left singular
matrix of A. Let span(U) = span{u1, . . . , uk} denote the
k-dimensional subspace spanned by {u1, . . . , uk}.

IV. MAIN RESULTS

We propose a two-phase FL algorithm that enables clients
to learn the model parameters θ∗1 , . . . , θ∗k and their clusters
simultaneously:

(i) Coarse estimation via FedMD. Run the federated
moment descent algorithm to obtain coarse estimates of model
parameters θ∗i ’s.

(ii) Fine-tuning via iterative FedX+clustering. In each itera-
tion, each client first estimates its cluster label and then refines
its local model estimate via either FedAvg or FedProx (which
we refer to as FedX) [1], [16].

FedMD and FedX+clustering are detailed in the pseu-
docode in Phase 1 and Phase 2, respectively.

1Detailed comparison to previous work [14], [15] can be found in Remark 1.
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A. Federated Moment Descent

With multiple clusters and sub-Gaussian features, simple
procedures such as power method will no longer provide a
reasonably good coarse estimation. The reasons are two-fold:
1) With sub-Gaussian features, it is difficult to construct a
matrix whose leading eigenspace approximately aligns with
the space spanned by the true model parameters (θ∗1 , . . . , θ∗k);
2) Even this is achievable, there still remains significant
ambiguity in determining the model parameters from their
spanned subspace.

The key idea of the first phase of our algorithm is to leverage
the existence of anchor clients. Specifically, the PS chooses
a set H of mH anchor clients uniformly at random. Each
selected anchor client i ∈ H maintains a sequence of estima-
tors {θi,t} that approaches θ∗zi

, achieving ∥θi,t − θ∗zi
∥2 ≤ ϵ∆

for some small constant ϵ > 0 when t is sufficiently large.
At high-level, we hope to have θi,t move along a well

calibrated direction ri,t that decreases the residual estimation
error ∥Σ1/2

zi (θ∗zi
− θi,t)∥22, i.e., the variance of the residual

⟨ϕ(xij), θ∗ − θi,t⟩. As such, we like to choose ri,t to be
positively correlated with Σzi

(θ∗zi
−θi,t). However, to estimate

Σzi
(θ∗zi
− θi,t) solely based on the local data of anchor client

i, it requires ni = Ω̃(d), which is unaffordable in typical FL
systems with high model dimension d and limited local data.
To resolve the curse of dimensionality, we decompose the
estimation task at each chosen anchor client into two subtasks:
we first estimate a k-dimensional subspace that Σzi

(θ∗zi
−θi,t)

lies in by “pooling” local datasets across sufficiently many
non-anchor clients; then we project the local data of anchor
client i onto the estimated subspace and reduce the estimation
problem from d-dimension to k-dimension.

The precise description of our Phase 1 procedure is given
as below. For ease of notation, let ε(x, y, θ) ≜ (y −
⟨ϕ(x), θ⟩)ϕ(x).

In Step 9, PS estimates the subspace that the residual
estimation errors {Σℓ(θ∗ℓ − θi,t)}kℓ=1 lie in, in collaboration
with clients in St. In particular, for each anchor client i ∈ H ,
define

Yi,t =
1
m

∑
i′∈St

ε(xi′1, yi′1, θi,t)ε(xi′2, yi′2, θi,t)⊤,

where (xj , yj) and (x̃j , ỹj) are two data points on client j.
We approximate the subspace spanned by {Σℓ(θ∗ℓ − θi,t)}kℓ=1

via that spanned by the top-k left singular vectors of Yi,t. To
compute the latter, we adopt the following multi-dimensional
generalization of the power method, known as orthogonal
iteration [32, Section 8.2.4]. In general, given a symmetric
matrix Y ∈ Rd×d, the orthogonal iteration generates a
sequence of matrices Qt ∈ Rd×k as follows: Q0 ∈ Rd×k

is initialized as a random orthogonal matrix Q⊤0 Q0 = I and
Y Qt = Qt+1Rt+1 with QR factorization. When t is large,
Qt approximates the top-k left singualr matrix of Y , provided
the existence of an eigen-gap λk > λk+1. When k = 1, this
is just the power iteration and we can further approximate
the leading eigenvalue of Y by the Raleigh quotient Q⊤t Y Qt.
When Y is asymmetric, by running the orthogonal iteration
on Y Y ⊤, we can compute the top-k left singular matrix of Y .

Phase 1 Federated Moment Descent (FedMD)
1 Input: mH , k, m, nH , T, T1, T2 ∈ N, α, β, ϵ,∆ ∈ R,

θ0 ∈ Rd with ∥θ0∥2 ≤ R

2 Output: θ̂1, . . . , θ̂k

3 PS chooses a set H of mH anchor clients;
4 for each anchor client i ∈ H do
5 θi,0 ← θ0;

6 for t = 0, 1, . . . , T − 1 do
7 PS selects a set St of m clients from

[M ] \
(
H ∪

(
∪t−1

τ=0Sτ

))
;

8 PS broadcasts {θi,t, i ∈ H} to all clients i′ in St;
/* where ∪−1

τ=0Sτ = ∅ */;
9 PS calls federated-orthogonal-iteration (St,

{ε(xi′1, yi′1, θi,t), ε(xi′2, yi′2, θi,t)}i′∈St
, k, T1)

to output Ûi,t for each anchor client i ∈ H;
/* described in Algorithm 3 */

10 PS sends Ûi,t to each anchor client i ∈ H;
11 Each anchor client i runs power iteration on

Ai,tA
⊤
i,t for T2 steps to compute the leading

eigenvector β̂i,t and σ̂2
i,t = β̂⊤i,tAi,tβ̂i,t with Ai,t

defined in (2);
12 At each anchor client i, if σ̂i,t > ϵα∆/

√
2 then

13 θi,t+1 ← θi,t + ri,tηi,t and reports θi,t+1 to the
PS, where ri,t = Ûi,tβ̂i,t and
ηi,t = ασ̂i,t/(2β2) ;

14 else
15 Stop updating θi,t and let θi,τ ← θi,t for all

t + 1 ≤ τ ≤ T for anchor client i;

16 PS computes the pairwise distance
∥∥∥θ̃i,T − θ̃i′,T

∥∥∥
2

for
every pair of anchor clients i, i′ ∈ H , assigns them in
the same cluster when the pairwise distance is
smaller than ∆/2, and outputs θ̂ℓ to be the center of
the estimated ℓ-th cluster for ℓ ∈ [k].

In our setting, the orthogonal iteration can be implemented in
a distributed manner in FL systems as shown in Algorithm 3
in the Appendix A-A.

In Step 11, each anchor client i estimates the residual error
Σzi

(θ∗zi
−θi,t) by projecting ε(xij , yij , θi,t) onto the previously

estimated subspace, that is, Û⊤i,tε(xij , yij , θi,t). This reduces
the estimation from d-dimension to k-dimension and hence
Ω̃(k) local data points suffice. Specifically, define

Ai,t =
1

nH

∑
j∈Di,t

(
Û⊤i,tε(xij , yij , θi,t)

)(
Û⊤i,tε(x̃ij , ỹij , θi,t)

)⊤
,

(2)

where Di,t consists of 2nH local data points (xij , yij) and
(x̃ij , ỹij) freshly drawn from Di at iteration t. Client i runs
the power iteration to output β̂i,t and σ̂2

i,t as approximations
of the leading left singular vector and singular value of Ai,t,

Then anchor client i updates θi,t+1 by moving along the
direction of the estimated residual error ri,t with an appropri-
ately chosen step size ηi,t.
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We show that θi,T is close to θ∗zi
for every anchor client

i ∈ H and the outputs θ̂ℓ’s are close to θ∗ℓ ’s up to a permutation
of cluster indices.

Theorem 1: Let ϵ ∈ (0, α/8) be a small but fixed constant.
Suppose that

m ≥ C
β8(R4 + σ4)d log3 N

α12∆4p2
minϵ4

, nH ≥ C
β8(R4 + σ4)k log3 N

α12∆4ϵ4

and

T ≥ 16β2

α2
log

2βR

αϵ∆
, T1≥Ck log

NdβR

αϵ∆
, T2≥C log

NdβR

αϵ∆
,

(3)

where C > 0 is a constant. With probability at least 1 −
10mHT/N10, for all initialization θ0 with ∥θ0∥2 ≤ R,

sup
i∈H

∥∥θi,T − θ∗zi

∥∥
2
≤ ϵ∆. (4)

Furthermore, suppose H ∩ {i : zi = ℓ} ≠ ∅ for all ℓ ∈ [k].
Then

d(θ̂, θ∗) ≜ min
π

max
ℓ∈[k]

∥∥∥θ̂π(ℓ) − θ∗ℓ

∥∥∥
2
≤ ϵ∆, (5)

where π is permutation over [k].
Note that in (5) we take a minimization over permutation

π, as the cluster indices are unidentifiable. Moreover, the
condition H ∩ {i : zi = ℓ} ≠ ∅ for all ℓ ∈ [k] means that
there exists at least one anchor client from each cluster. This
condition holds with probability at least 1 − δ, if we choose
mH ≥ log(k/δ)/pmin anchor clients uniformly at random,
following the standard coupon collector’s analysis.

Phase 1 uses fresh data at every iteration. In total we need
p−2
minΩ̃(d) clients with at least two data points and at least one

anchor client (with Ω̃(k) data points) from each cluster. This
requirement is relatively mild, as typical FL systems have a
large number of clients with O(1) data points and a few anchor
clients with moderate data volume.

We defer the detailed proof of Theorem 1 to Appendix A.
A key step in our proof is to show the residual estimation
errors {Σℓ(θ∗ℓ − θi,t)}kℓ=1 approximately lie in span(Ûi,t).
Unfortunately, the eigengap of Yi,t could be small, especially
when θi,t gets close to θ∗zi

; and hence the standard Davis-
Kahan theorem [33] cannot be applied. This issue is further
exacerbated by the fact that the convergence rate of the orthog-
onal iteration also crucially depends on the eigengaps [32]. For
these reasons, span(Ûi,t) may not be close to span{Σℓ(θ∗ℓ −
θi,t)}kℓ=1 at all. To resolve this issue, we develop a novel
gap-free bound to show that projection errors Û⊤i,tΣℓ(θ∗ℓ −θi,t)
are small for every ℓ ∈ [k] (cf. Lemma 5).

Remark 1 (Comparison to Previous Work [14], [15]):
Our algorithm is partly inspired by [14] which focuses on the
noiseless mixed linear regression, but deviates in a number
of crucial aspects. First, our algorithm crucially utilizes the
fact that each client chosen in St has at least two data points
and hence the space of the singular vectors of E [Yi,t] is
spanned by {Σℓ(θ∗ℓ − θi,t)}kℓ=1. In contrast, [14] relies on the
sophisticated method of moments which only works under the
Gaussian features and requires exponential in k2 many data
points. Second, our algorithm crucially exploits the existence

of anchor clients and greatly simplifies the moment descent
algorithm in [14].

Our algorithm also bears similarities with the meta-learning
algorithm in [15], which also uses clients collectively for
subspace estimation and anchor clients for estimating cluster
centers. However, there are several key differences. First,
[15] focuses on the centralized setting and relies on one-
shot estimation, under the additional assumption that the
covariance matrix of features across all clusters are iden-
tical. Instead, our moment descent algorithm is iterative,
is amenable to a distributed implementation in FL systems,
and allows for covariance matrices varying across clusters.
Second, in the fine-tuning phase, [15] uses the centralized least
squares to refine the clusters estimated with anchor clients,
under the additional assumption that Ω(log k) data points for
every client. In contrast, as we will show later, we use the
FedX+clustering to iteratively cluster clients and refine cluster
center estimation.

Remark 2 (Data Privacy Risk): Compared to the stan-
dard FedAvg algorithm wherein only aggregated local
updates/gradients are broadcasted by the parameter server,
the major step of our two-phase algorithm that may leak
additional privacy is Step 8 wherein the local model estimates
of the anchor clients are broadcasted to many other non-anchor
clients. However, this privacy leakage is minor and can be
further mitigated by a simple privacy-preserving mechanism
according to the following considerations.

First, in our algorithm, each chosen non-anchor client only
receives a collection of local model estimates (without ID for
anchor clients) from the parameter server, it does not know
which broadcasted model corresponds to which anchor client
and hence cannot directly identify each individual anchor
client’s local true model. Second, we only choose a very few
number of anchor clients (roughly on the order of the number
of clusters) and in practice these anchor clients are often
specially recruited by the PS; hence they can be made less
concerned about privacy leakage through some incentivizing
schemes. Last but not least, we can better preserve the privacy
of anchor clients by broadcasting perturbed versions of their
local models to each client. Specifically, fix any anchor client
i, each non-anchor client i′ receives θi′,i,t and θ̃i′,i,t that are
equal to θi,t subject to two independent noise perturbations.
Then for the subspace estimation in Step 9, we can replace one
θi,t by θi′,i,t and the other by θ̃i′,i,t, in the definition of Yi,t.
Crucially, Yi,t involves an average over m non-anchor clients;
hence these independent noise perturbations for different i′

will be averaged out. Since m is large, this implies that the
injected random noises can be made large without deteri-
orating too much the accuracy of the subspace estimation,
in a similar spirit as privatizing the model averaging step in
FedAvg. This gives a promising pathway to maintain anchor
clients’ privacy; we leave rigorously analyzing its privacy
guarantee as future work.

Remark 3 (Beyond Mixed Regression): While we present
the federated moment descent algorithm in the context of
mixed regression, the algorithm can be adapted to the general
statistical learning setup. Recall that for mixed regression,
the high-level idea of federated moment descent is to find
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a descent direction ri,t for each selected anchor client i to
decrease the local residual error ∥Σ1/2

zi (θ∗zi
− θi,t)∥2. For

general statistical learning setup, such a choice of local
loss may no longer be appropriate to measure the error of
the local model θi,t. To address this, we define Li(θ) =

1
|Di|

∑
j∈Di

L(θ; x, y) to be the local population loss, where
L(θ; x, y) is the loss with θ evaluated at a data point (x, y).
In this manner, a natural choice of descent direction to
decrease the local population loss is the negative gradient
−∇Li(θ). Thus, the federated moment descent algorithm can
be executed with ε replaced by

ε(x, y, θ) ≜ −∇θL(θ; x, y).

All other steps remain exactly the same as before. Fur-
thermore, as we will see, Phase II is already stated under
a general loss function L and can be executed verbatim.
In Section V-D, we have tested this adjusted algorithm in
the real data experiment on the MNIST handwritten digits
database. The results are promising: Our adjusted algorithm
is comparable to the Oracle algorithm and outperforms other
benchmarks. Yet, our current analysis is mostly focused on
mixed regression. Extending these theoretical guarantees to
the broader algorithm is not straightforward, so we are setting
this as a goal for future work.

B. FedX+clustering

At the end of Phase 1, only the selected anchor clients
in H obtained coarse estimates of their local true models
(characterized in (4)). In Phase 2, both anchor clients in H
and all the other clients (anchor or not) will participate and
update their local model estimates.

Phase 2 is stated in a generic form for any loss function
L(θ, λ;D), where θ = (θ1, . . . , θk) ∈ Rdk is the cluster
parameters, λ ∈∆k−1 represents the likelihood of the cluster
identity of a client, and D denotes the client’s dataset. This
generic structure covers the idea of soft clustering [11]. Note
that unlike Phase 1 where each anchor client i only maintains
an estimate θi,t of its own model, in Phase 2, each client
i maintains model estimates θi·,t = (θi1,t, . . . , θik,t) for all
clusters.

In Phase 2, the local estimation at each client has a flavor
of alternating minimization: It first runs a minimization step
to estimate its cluster, and then runs a FedAvg or FedProx
update to refine model estimates. To allow the participation of
clients with O(1) data points only, at every iteration the clients
are allowed to reuse all local data, including those used in the
first phase. Similar alternating update is analyzed in [12] yet
under the strong assumption that the update in each round
is over fresh data with Gaussian distribution. Moreover, the
analysis therein is restricted to the setting where the model
refinement at each client is via running a single gradient step,
which is barely used in practice but much simpler to analyze
than FedAvg or FedProx update.

In our analysis, we consider the square loss

L(θ, λ;Di) =
1

2ni

k∑
ℓ=1

λℓ ∥yi − ϕ(xi)θℓ∥22 .

Phase 2 FedX+clustering

1 Input: θ = (θ1, . . . , θk) from the output of Phase 1,
η, T ′.

2 Output: θ̂ = (θ̂1, . . . , θ̂k)
3 PS sets θT ← θ.
4 for t = T + 1, . . . , T + T ′ do
5 PS broadcasts θt−1 to all clients;
6 Each client i estimates the likelihood of its local

cluster label by

λi,t ← arg min
λ∈∆k−1

L(θt−1, λ;Di); (6)

7 Each client i refines its local model based on either
FedAvg or FedProx with Li(θ) = L(θ, λi,t;Di),
and reports the updated local parameters
θi·,t = (θi1,t, . . . , θik,t).

8 *FedAvg-based: it runs s steps of local gradient
descent:

θi·,t ← Gs
i (θt−1), where Gi(θ) = θ − η∇Li(θ)

*FedProx-based: it solves the local proximal
optimization:

θi·,t ← arg min
θ

Li(θ) +
1
2η
∥θ − θt−1∥22

9 PS updates the global model as θt ←
∑M

i=1 wiθi·,t,
where wi = ni/N .

In this context, (6) yields a vertex of the probability simplex
λiℓ,t = 1{ℓ = zi,t}, where

zi,t = arg min
ℓ∈[k]
∥yi − ϕ(xi)θℓ,t−1∥2. (7)

The estimate zi,t provides a hard clustering label. Hence,
in each round, only one regression model will be updated per
client.

To capture the tradeoff between communication cost and
statistical accuracy using FedAvg or FedProx, we introduce
the following quantities from [5]:

γ ≜ η max
i∈[M ]

1
ni
∥ϕ(xi)∥22 , κ ≜

{
γs

1−(1−γ)s for FedAvg,

1 + γ for FedProx.

We choose a properly small learning rate η such that γ < 1.
Here, κ ≥ 1 quantifies the stability of local updates. Notably,
κ ≈ 1 using a relatively small η.

For the learnability of model parameters, we assume that
collectively there are sufficient data in each cluster. In par-
ticular, we assume Nℓ ≳ d, where Nℓ =

∑
i:zi=ℓ ni denotes

the number of data points in cluster ℓ. To further characterize
the quantity skewness (i.e., the imbalance of data partition
n = (n1, . . . , nM ) across clients), we adopt the χ2-divergence,
which is defined as χ2(P∥Q) =

∫ (dP−dQ)2

dQ for a distribution
P absolutely continuous with respect to a distribution Q. Let
χ2(n) be the chi-squared divergence between data partition pn

over the clients pn(i) = ni/N and the uniform distribution
over [M ]. Note that when data partition is balanced (i.e.,
ni = N/M for all i), it holds that χ2(n) = 0.
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We have the following theoretical guarantee of Phase 2,
where s is the number of local steps in FedAvg. Notably, s
is an algorithmic parameter for FedAvg only. To recover the
results for FedProx, we only need to set s = 1.

Theorem 2: Let c0, C0, c1, C1, c2, C2, c, C denote some
constants. Suppose that k ≥ 2, η ≤ c0/(βs), and
minℓ∈[k] Nℓ ≥ C0d. Let ρ = minℓ Nℓ/N . If ν log(e/ν) ≤
c1ρα/(κβ), then with probability 1−C1ke−d, for all t ≥ T +1
and all θT such that d(θT , θ∗) ≤ ϵ∆, where ϵ ≤ 1

3

√
α/β,

it holds that

d(θt, θ
∗) ≤ (1− c2sηαρ/κ) d(θt−1, θ

∗) + C2sη
√

βσν log
e

ν
,

(8)

where

ν ≜
1
N

M∑
i=1

nipe(ni) + C

√
dk log k

M
(χ2(n) + 1), (9)

and pe(ni) = 4ke
−cniα

2
(
1∧∆2

σ2

)2

. Furthermore, if t ≥ T + 1,
for each client i, with probability at least 1− pe(ni),∥∥∥θ̂i,t − θ∗zi

∥∥∥
2
≤ ϵ∆ exp (−c2sηαρ(t− T )/κ)

+
C2

√
βσκ

c2αρ
ν log

e

ν
,

where θ̂i,t is client i’s estimate of its own model parameter at
time t.

Notably, θ̂i,t is the zi,t-th entry of θi·,t. Theorem 2 shows
that the model estimation errors decay geometrically starting
from any realization that is within a small neighborhood of
θ∗. The parameter ν captures the additional clustering errors
injected at each iteration. It consists of two parts: the first
term of (9) bounds the clustering error in expectation which
diminishes exponentially in the local data size and the signal-
to-noise ratio ∆/σ; the second term bounds the uniform
deviation of the clustering error across all initialization and
iterations. Note that if the cluster structure were known exactly,
we would get a model estimation error of θ∗ℓ scaling as√

d/Nℓ. However, it turns out that this estimation error is
dominated by our uniform deviation bound of the clustering
error and hence is not explicitly shown in our bound (8).
In comparison, the previous work [12] assumes fresh samples
at each iteration by sample-splitting and good initialization
independent of everything else provided a priori; hence their
analysis fails to capture the influence of the uniform deviation
of the clustering error.

In passing, we briefly comment on the key assumption
ν log(e/ν) ≲ ρα/(κβ). As aforementioned, the clustering
error ν consists of two parts shown in (9): the first term
decays exponentially in the local dataset size and the signal-to-
noise ratio and hence is very small in most typical scenarios;
the second term is on the order of dk log k/M when the
quantity skewness (imbalance of data partition) is of a constant
order. Finally, ρ captures the imbalance of cluster sizes,
which is typically of a constant order, and we can choose
a small enough step size to ensure κ is close to 1. Thus
the key assumption ν log(e/ν) ≲ ρα/(κβ) roughly translates

to ν being a subconstant, which further means that M (the
number of clients) needs to be larger than d (the model
dimension) by polylog factors. This is often satisfied in the
typical FL applications which involve a very large collection of
clients.

1) Analysis of Global Iterations: Without loss of generality,
assume the optimal permutation in (5) is identity. In this case,
if zi,t = ℓ, then client i will refine θℓ,t−1. To prove Theorem 2,
we need to analyze the global iteration of θt. Following a
similar argument to [5] with a careful examination of cluster
labels, we obtain the following lemma. The proof is deferred
to Appendix B-A.

Lemma 1: Let ϕ(x) be the matrix that stacks all ϕ(xi)
vertically, and similarly for y. It holds that

θℓ,t = θℓ,t−1 − ηBΛℓ,t(ϕ(x)θℓ,t−1 − y), ℓ ∈ [k], (10)

where B = 1
N ϕ(x)⊤P , P is a block diagonal matrix with ith

block Pi of size ni × ni given by

Pi =

{∑s−1
τ=0(I − ηϕ(xi)ϕ(xi)⊤/ni)τ for FedAvg,

[I + ηϕ(xi)ϕ(xi)⊤/ni]−1 for FedProx,

and Λℓ,t is another block diagonal matrix with ith block being
λiℓ,tIni

.
Lemma 1 immediately yields the evolution of estimation

error. Let Λℓ be the matrix with ith block being 1{zi = ℓ}Ini

representing the true client identities. Plugging model (1), the
estimation error evolves as

θℓ,t−θ∗ℓ = (I − ηKℓ)(θℓ,t−1−θ∗ℓ )− ηBEℓ,t(ϕ(x)θℓ,t−1 − y)
+ ηBΛℓζ, ∀ℓ ∈ [k], (11)

where Kℓ = BΛℓϕ(x) and Eℓ,t = Λℓ,t − Λℓ. The estimation
error is decomposed into three terms: 1) the main contribution
to the decrease of estimation error; 2) the clustering error; and
3) the noisy perturbation. Let Iℓ = {i : zi = ℓ} be the clients
belonging to ℓth cluster, and Iℓ,t = {i : zi,t = ℓ} be the
clients with estimated label ℓ. The indices of nonzero blocks
of Eℓ,t are Iℓ ⊖ Iℓ,t indicating the clustering errors pertaining
to ℓth cluster.

For ease of presentation, we introduce a few additional
notations for the collective data over a subset of clients. Given
a subset I ⊆ [M ] of clients, let ϕ(xI) denote the matrix
that vertically stacks ϕ(xi) for i ∈ I , and we similarly
use notations yI and ζI ; let PI be the matrix with diagonal
blocks Pi for i ∈ I . Using those notations, we have Kℓ =
1
N ϕ(xIℓ

)⊤PIℓ
ϕ(xIℓ

), which differs from the usual covariance
matrix by an additional matrix PIℓ

. Therefore, the analysis of
the first and third terms on the right-hand side of (11) follows
from standard concentration inequalities for random matrices.
In the remaining of this subsection, we focus on the second
term, which is a major challenge in the analysis. The proof
details are all deferred to Appendix B-B.

Lemma 2: There exists a universal constant C such that,
with probability 1− Ce−d,

∥BEℓ,t(ϕ(x)θℓ,t−1 − y)∥2
≤ Cs(βd(θt−1, θ

∗) +
√

βσ)ν log
e

ν
, ∀ ℓ ∈ [k]. (12)
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Lemma 2 aims to upper bound the error of

BEℓ,t(ϕ(x)θℓ,t−1 − y)

=
1
N

ϕ(xSℓ,t
)⊤PSℓ,t

(ϕ(xSℓ,t
)θℓ,t−1 − ySℓ,t

), (13)

where Sℓ,t = Iℓ ⊖ Iℓ,t. The technical difficulty arises from
the involved dependency between the clustering error Sℓ,t and
the estimated parameter θℓ,t−1 as estimating label zi,t and
updating θℓ,t−1 use a common set of local data.

Proof Sketch of Lemma 2: It follows from the definition
of zi,t in (7) that

∥ϕ(xi)θℓ,t−1 − yi∥2 ≤ ∥ϕ(xi)θzi,t−1 − yi∥2, ∀i ∈ Sℓ,t.

Then,

∥ϕ(xSℓ,t
)θℓ,t−1 − ySℓ,t

∥22 =
∑

i∈Sℓ,t

∥ϕ(xi)θℓ,t−1 − yi∥22

≤
∑

i∈Sℓ,t

∥ϕ(xi)θzi,t−1 − yi∥22

≤
∑

i∈Sℓ,t

2
(
∥ϕ(xi)(θzi,t−1 − θ∗zi

)∥22 + ∥ζi∥22)
)

≤ 2
(
d(θt−1, θ

∗) · ∥ϕ(xSℓ,t
)∥2 + ∥ζSℓ,t

∥2
)2

. (14)

Hence, it suffices to upper bound ∥ϕ(xSℓ,t
)∥2 and ∥ζSℓ,t

∥2
given a small estimation error d(θt−1, θ

∗) from the last itera-
tion. To this end, we show a uniform upper bound of the total
clustering error

∑
i∈Sℓ,t

ni by analyzing a weighted empirical
process. Let

f I
ℓ,θ(xi, yi) ≜ max

ℓ′ ̸=ℓ
1{Pℓℓ′ [xi, yi](θ) ≥ 0} for i ∈ Iℓ,

f II
ℓ,θ(xi, yi) ≜

∏
ℓ′ ̸=ℓ

1{Pℓ′ℓ[xi, yi](θ) ≥ 0}, for i ̸∈ Iℓ.

Using the decision rule (7), the set Sℓ,t can be written as a
function Sℓ(θt−1) with

1{i ∈ Sℓ(θ)} =

{
f I

ℓ,θ(xi, yi), if i ∈ Iℓ,

f II
ℓ,θ(xi, yi), if i ̸∈ Iℓ,

(15)

where

Pℓℓ′ [xi, yi](θ) ≜ ∥yi − ϕ(xi)θℓ∥22 − ∥yi − ϕ(xi)θℓ′∥22.

Then we derive the following uniform deviation of the incor-
rectly clustered data points

sup
θ∈Rdk

∣∣∣∣∣
M∑
i=1

ni1{i ∈ Sℓ(θ)} −
M∑
i=1

niP {i ∈ Sℓ(θ)}

∣∣∣∣∣
≤ CN

√
dk log k

M
(χ2(n) + 1) .

This is proved via upper bounds on the Vapnik–Chervonenkis
(VC) dimensions of the binary function classes

F I
ℓ ≜ {f I

ℓ,θ : θ ∈ Rdk}, F II
ℓ ≜ {f II

ℓ,θ : θ ∈ Rdk}. (16)

Using classical results of VC dimensions, those functions are
equivalently intersections of hyperplanes in ambient dimension
O(d2), which yields an upper bound O(d2). However, the
hyperplanes are crucially rank-restricted as the total number of
parameters in θ is dk. We prove that the VC dimensions are at

most O(dk log k) using the algebraic geometry of polynomials
given by the celebrated Milnor-Thom theorem (see, e.g., [34,
Theorem 6.2.1]).2 Consequently, ∥ϕ(xSℓ,t

)∥2, ∥ζSℓ,t
∥2 and

thus (14) can be uniformly upper bounded using sub-Gaussian
concentration and the union bound, concluding the proof of
Lemma 2. □

C. Global Convergence

Combining Theorem 1 and Theorem 2, we immediately
deduce the global convergence from any initialization within
the ℓ2 ball of radius R.

Theorem 3: Suppose the conditions of Theorem 1 and The-
orem 2 hold. Let θ̂ be the output of our two-phase algorithm
by running Phase 1 with T ≥ 24β2

α2 log 2βR
α∆ iterations start-

ing from any initialization θ0 with ∥θ0∥2 ≤ R, followed
by Phase 2 with T ′ ≥ C κ

sηαρ log ∆
ν iterations. Then with

probability 1−N−9 − Cke−d, it is true that

d(θ̂, θ∗) ≤ C

√
βσκ

αρ
ν log

e

ν
, (17)

Furthermore, for each client i, with probability 1 − pe(ni),
it holds that ∥θ̂i,T+T ′ − θ∗zi

∥2 ≤ C
√

βσκ
αρ ν log e

ν .
To the best of our knowledge, this is the first result that

proves the global convergence of clustered federated learning
from any initialization. Our bound (17) reveals that the final
estimation error is dominated by the clustering error captured
by ν, and scales linearly in κ which characterizes the sta-
bility of local updates under FedAvg or FedProx. Moreover,
Theorem 3 shows that Phase 1 converges very fast with
only Θ(1) iterations and hence is relatively inexpensive in
both computation and communication. Instead, the number of
iterations needed for Phase 2 grows logarithmically in ∆/ν
and linearly in κ/(sηαρ). Thus, by choosing s relatively large
while keeping κ close to 1, FedAvg enjoys a saving of the
total communication cost.

Remark 4 (On Memory and Communication Cost): We
briefly comment on the communication and memory cost at
the parameter server in Phase 1 and Phase 2 separately.

The dominating operation in Phase 1 is line 9 in the for-
loop. Throughout the T rounds in Phase 1, there are T ×mH

calls of the function federated-orthogonal-iteration. The
execution of each call will consume Θ(T1×(dk)×m) bits – the
exact multiplicative constant involved depends on the chosen
operating systems. Different from communication cost, the
memory across iterations can be reused. The memory cost
of the parameter server in Phase 1 is also dominated by the
execution of line 9. The memory cost is Θ(dkmH).

The memory cost of the parameter server in Phase 2 is
Θ(dk). The communication cost of the parameter server in
Phase 2 is Θ(dkT ′), where T ′ is the number of global rounds
in Phase 2.

V. EXPERIMENTAL RESULTS

In this section, we provide experimental results on synthetic
and real data corroborating our theoretical findings.

2Similar applications of the Milnor-Thom theorem have been known in the
literature (see e.g. [35, Theorem 2.2] and [36, Theorem 2]).
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For the synthetic data experiments, we consider the mixed
linear regression with k = 3 clusters. The true model parame-
ter for each cluster θ∗1 , θ∗2 , θ∗3 are independently sampled from
Gaussian distribution 2√

d
∗ N (0, Id) with d = 100. Then we

generate the local dataset Di = {xij , yij}ni
j=1 for each client

i according to the linear regression model (1), where each
xij

i.i.d.∼ N (0, Id) and ζij
i.i.d.∼ 0.2 ∗ N (0, 1).

We simulate our two-phase algorithm as follows. Phase 1
randomly selects ⌈3k log k⌉ anchors clients and runs 5 iter-
ations starting from a random initialization 2√

d
∗ N (0, Id),

followed by Phase 2 running 400 global iterations. We further
adopt the following simplifications for ease of implementation.
In particular, Phase 1 reuses the local data on all participating
clients, and all clients including anchor clients participate in
the subspace estimation subroutine in Algorithm 3. Finally,
we implement all orthogonal iterations by direct singular value
decomposition.

We compare the performance of our two-phase algorithm
with existing FL algorithms including (1) vanilla FedAvg,
(2) one-shot clustering, (3) IFCA, and (4) oracle iterative
clustering. We provide a brief description of each of these
algorithms below:
• Vanilla FedAvg [1]: It learns a common model, ignoring

the underlying cluster structure.
• One-shot clustering [29]: This method contains three

phases: First, each client estimates its underlying model
based on its local data. Then, the PS clusters the locally
estimated models via k-means. Finally, for each estimated
cluster of clients, the PS runs FedAvg to obtain the model
estimate for each cluster.

• IFCA [12]: This method is the same as Phase 2 of our
algorithm yet requires good initialization.

• Oracle iterative clustering: This method is an ideal
implementation of IFCA with the true model parameters
as initialization. Clearly, the oracle iterative clustering
algorithm is infeasible in practice, but we use it as a
benchmark.

For each of the methods, we choose FedAvg with the number
of local update steps s = 5. We randomly initialize our two-
phase algorithm, vanilla FedAvg, and IFCA.

In the following, we consider three federated learning
configurations with a total of N = 1000 data points but at
increasing levels of data heterogeneity. The configuration for
the real data experiments are described in Section V-D

A. Balanced Local Data and Balanced Cluster Partition

In this configuration, we consider balanced local data and
balanced cluster partition. Specifically, we let M = 200, ni =
50 for i ∈ [M ], and p1 = p2 = p3 = 1/3. That is, this
configuration contains 200 clients, each with 50 data points.
For each client, it belongs to one of the 3 clusters with equal
probability 1/3.

In the left panel of Fig. 1, we show the performance of
our two-phase algorithm, where the second phase is based
on FedAvg for different local steps s or FedProx. We see
that during the first 5 rounds (Phase 1), the errors quickly
(exponentially with a large rate) converge to a relatively small

Fig. 1. Balanced local data and balanced cluster partition.

value. Starting from iteration 6 (upon entering Phase 2), the
errors further decay exponentially fast (with a smaller rate
than Phase 1). These observations are consistent with our
theoretical predictions. We also notice that as the number of
local steps s increases, FedAvg converges faster, while the
final estimation errors stay almost the same. This is because
the data partition is perfectly balanced, so the local updates
of FedAvg are relatively stable with κ ≈ 1; hence according
to Theorem 2 and Theorem 3, the convergence rate increases
proportionally to s, while the final estimation does not change.

The right panel of Fig. 1 shows that our method significantly
outperforms vanilla FedAvg and IFCA, and quickly converges
to the same estimation error attainable by the oracle algorithm.
Note that FedAvg does not converge to small errors due
to lack of model personalization in the presence of model
heterogeneity. The performance of IFCA is highly dependent
on the quality of initialization. With a random initialization,
IFCA gets stuck on an error floor. The one-shot clustering
algorithm performs well in this setting. This is because the
local data partition and cluster partition are perfectly balanced,
so each client can well estimate its underlying model solely
based on its local data and the PS can correctly cluster all the
locally estimated models via k-means.

B. Unbalanced Local Data and Balanced Cluster Partition

In this configuration, we consider unbalanced local data but
balanced cluster partition. Specifically, we let M = 920, ni =
10 for i = 1, · · · , 900, and ni = 50 for i = 901, · · · , 920. That
is, this configuration contains 920 clients, with each of the first
900 clients keeps 10 data points, and each of the remaining
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Fig. 2. Unbalanced local data and balanced cluster partition.

20 clients keeps 50 data points. For each client, it belongs to
one of the 3 clusters with equal probability 1/3.

The left panel of Fig. 2 stays almost the same as that
of Fig. 1. The only noticeable difference is that in this setting
with unbalanced local data, as s increases, the convergence rate
of FedAvg only slightly improves, while the final estimation
error also gets slightly inflated. This is because, with unbal-
anced local data, the local updates of FedAvg for data-scarce
clients become unstable, leading to a larger value of κ.

The right panel of Fig. 2 shows that our method still sig-
nificantly outperforms vanilla FedAvg and IFCA, and quickly
converges to the same estimation error attainable by the oracle
algorithm. Although this time IFCA eventually also converges
to the oracle estimation error, it still gets stuck on an error
floor for a long time. The one-shot clustering algorithm no
longer performs as well as before. This is because here the
local data partition is unbalanced, so data-scarce clients cannot
well estimate their underlying models solely based on their
local data and the PS is likely to incorrectly cluster them.
Since in one-shot clustering, the clustering is done only once
and fixed throughout the remaining process, these clustering
errors cannot be corrected.

C. Unbalanced Local Data and Unbalanced Cluster Partition

In this configuration, we consider unbalanced local data
and unbalanced cluster partition. Specifically, we let M =
920, ni = 10 for i = 1, · · · , 900, and ni = 50 for i =
901, · · · , 920. That is, this configuration contains 920 clients,
with each of the first 900 clients keeps 10 data points, and
each of the remaining 20 clients keeps 50 data points. For

Fig. 3. Unbalanced local data and unbalanced cluster partition.

each client, it belongs to one of the 3 clusters with probability
p1 = 0.2, p2 = 0.3, p3 = 0.5.

The left panel of Fig. 3 stays almost the same as that
of Fig. 2, except that convergence rates get smaller. This is
consistent with our theoretical prediction in Theorem 2, which
shows that the convergence rate is proportional to ρ (roughly
the same as pmin).

The right panel of Fig. 3 shows that our method significantly
outperforms vanilla FedAvg, IFCA, and one-shot, and quickly
converges to the same estimation error attainable by the oracle
algorithm. Note that one-shot clustering performs poorly in
this case, because with unbalanced local data partition and
unbalanced cluster partition, the one-shot clustering suffers
from a large amount of errors in the initial clustering based
on locally estimated models.

D. Experiments on MNIST Real Dataset: Beyond Mixed
Linear Regression

In Sections V-A -V-C, we focus on mixed linear regression
on synthetic data. In this section, we consider the multi-class
classification problem on MNIST dataset. We implement our
algorithm adapted to general statistical learning, as described
in Remark 3.

Setup: We create configurations with k = 2 and k =
4 clusters following [12]. For the former, to generate two
clusters, the dataset of each client is either original or rotated
by 90 degrees; for the latter, to generate four clusters, the
dataset of each client is rotated by some degree in {0, 90, 180,
270}. The training dataset volume of MNIST is 60,000. The
test dataset is copied for each cluster with the corresponding
rotation transformation. The system contains k ∈ {2, 4}
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Fig. 4. Experiments with the MNIST dataset with two clusters (i.e., k = 2).

Fig. 5. Experiments with the MNIST dataset with four clusters (i.e., k = 4).

anchor clients – one for each cluster. Each anchor client holds
nH = 20 images. We consider a large client population.
There are 25,000 non-anchor clients, where each contributes
ni = 2 images. To cope with this large client population,
we downsample each image to a size of 14-by-14 pixels. For
the image classification task, we adopt the logistic regression
with input size 196 and output size 10.

For k = 2 and k = 4, we run Phase 1 on the anchor clients
for 5 and 10 rounds, respectively. In Phase 1, the parame-
ter server samples 1,000 clients for subspace estimation. In
Phase 2, the parameter server samples 100 clients in each
round. We use the FedAvg-based algorithm with s = 5 local
updates per round and learning rate η = 0.1. For each cluster,
we find the lowest misclassification error among the k trained
models, and then plot the average error among all clusters.
We use the same benchmark comparison as in Fig. 1, 2, and 3.
It is worth noting that the ground-truth model parameters do
not exist for real datasets, so our previous Oracle iterative
clustering algorithm cannot be directly applied. To resolve
this, we modify the Oracle iterative clustering so that each
client is provided with its true cluster label and only updates
the corresponding model parameters using the FedAvg update
rule.

We plot the trajectories of the evolution of the loss and the
misclassification rate over test datasets in Fig. 4 and Fig. 5,
where the loss is measured by the negative log-likelihood.
Consistent with Fig. 1, 2, and 3, our algorithm is comparable
to the Oracle algorithm and significantly outperforms other
benchmarks. Overall, our algorithm converges fast in both
Phases 1 and 2. In particular, FedAvg lacks model person-
alization; IFCA converges slowly due to the poor quality of
random initialization; the effectiveness of one-shot averaging
is compromised by the limited amount of data available at the
non-anchor clients. As can be seen from the test misclassifica-
tion errors in Fig. 4 and Fig. 5, during Phase 1 the errors first
quickly decay and then either fluctuate around 3.5 or saturate
at 4.3, respectively. Entering Phase 2, the test misclassification
errors decay further.

APPENDIX A
ANALYSIS OF PHASE 1

In this section, we present the analysis of our federated
moment descent algorithm as described in Phase 1.

A. Subspace Estimation via Federated Orthogonal Iteration

Recall that Phase 1 estimates the subspace that the residual
estimation errors {Σℓ(θ∗ℓ − θi,t)}kℓ=1 lie in via the federated-
orthogonal iteration. We show that E [Yi,t] is of rank at
most k and the eigenspace corresponding to the non-zero
eigenvalues is spanned by {Σℓ(θ∗ℓ − θi,t)}kℓ=1. Specifically,
we first prove that Yi,t is close to E [Yi,t] in the operator norm
and then further deduce that {Σℓ(θ∗ℓ −θi,t)}kℓ=1 approximately
lie in the subspace spanned by the top-k left singular vectors
of Yi,t.

Let Ui,t ∈ Rd×k denote the top-k left singular matrix of Yi,t.
To approximately compute Ui,t in the FL systems, we adopt
the following federated-orthogonal iteration algorithm. Sup-
pose that Y admits a decomposition over distributed clients,
that is, Y = 1∑

i∈S ni

∑
i∈S
∑

j∈[ni]
aijb

⊤
ij , where S is a set

of clients, and {(aij , bij)}ni
j=1 are computable based on the

local dataset Di. Algorithm 3 approximates the top-k left
singular matrix of Y . It can be easily verified that Algorithm 3
effectively runs the orthogonal iteration on Y Y ⊤.
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Algorithm 3 Federated Orthogonal Iteration

1 Input: A set S of clients i with {(aij , bij)}i∈S,j∈[ni],
k ∈ N, and even T ∈ N

2 Output: QT ∈ Rd×k

1: PS initializes Q0 ∈ Rd×k as a random orthogonal
matrix Q⊤0 Q0 = I.

2: for t = 0, 1, . . . , T − 1 do
3: PS broadcasts Qt to all clients in S.
4: if t is even then
5: Each client i ∈ S computes an update

Qi,t = 1
ni

∑ni

j=1 bija
⊤
ijQt and transmits it back to

the PS.
6: PS updates Qt+1 =

∑
i∈S wiQi,t, where

wi = ni/
∑

i∈S ni.
7: else
8: Each client i ∈ S computes an update

Qi,t = 1
ni

∑ni

j=1 aijb
⊤
ijQt and transmits it back to

the PS.
9: PS applies the QR decomposition to obtain Qt+1:∑

i∈S
wiQi,t = Qt+1Rt+1.

10: end if
11: end for

Recall that Phase 1 is called for each anchor client i ∈ H
and each global iteration t, and that Ûi,t is the output of
federated-orthogonal iteration in Step 9 of Phase 1, which
approximates Ui,t. Based on the above discussion, we can
show that the residual estimation errors {Σℓ(θ∗ℓ − θi,t)}kℓ=1

approximately lie in the subspace spanned by the k columns
of Ûi,t.

Proposition 1 (Subspace Estimation): Suppose
T1 ≥ Ck log Ndβ4R

α5ϵ2∆2 and we condition on θi,t such that
∥θi,t∥2 ≤ (1 + 2β/α) R. Then with probability at least
1− 5N−10,∥∥∥(Ûi,tÛ

⊤
i,t−I

)
Σℓ (θ∗ℓ − θi,t)

∥∥∥2

2

≤ max
{
C
(
δ2
i,t + σ2

)
ξ1/pℓ, α4ϵ2∆2/(512β2)

}
, ∀ℓ ∈ [k],

where δi,t = maxℓ∈[k] ∥θ∗ℓ − θi,t∥2, ξ1 =
√

d
m log N +

d
m log3 N , and C is a constant.

We postpone the detailed proof to Appendix A-D. One key
challenge in the analysis is that the eigengap of E [Yi,t] could
be small, especially when θi,t is close to θ∗zi

; and hence the
standard Davis-Kahan theorem cannot be applied. This issue is
further exacerbated by the fact that the convergence rate of the
orthogonal iteration also crucially depends on the eigengaps.
To resolve this issue, one key innovation of our analysis is to
develop a gap-free bound to show that the projection errors
Û⊤i,tΣℓ(θ∗ℓ − θi,t) are small for every ℓ ∈ [k] (cf. Lemma 5).

B. Moment Descent on Anchor Clients

Recall that in Step 11 of Phase 1, each anchor client
i ∈ H runs the power iteration to output β̂i,t and σ̂2

i,t as

approximations of the leading left singular vector and singular
value of Ai,t, respectively.

Then anchor client i updates a new estimate θi,t+1 by
moving along the direction of the estimated residual error
ri,t with an appropriately and adaptively chosen step size ηi,t.
The following result shows that σ̂2

i,t closely approximates the
squared residual error ∥Σzi

(θ∗zi
− θi,t)∥22.

Proposition 2: Let C denote a large constant. Fix an anchor
client i, let T2 ≥ C log Ndβ4R

α5ϵ2∆2 , and condition on θi,t such
that ∥θi,t∥2 ≤ (1 + 2β/α) R. Then with probability at least
1− 10N−10,∣∣∣β̂⊤i,tÛ⊤i,tΣzi

(
θ∗zi
− θi,t

)∣∣∣2
≥
∥∥Σzi

(
θ∗zi
− θi,t

)∥∥2

2

−max
{
C
(
δ2
t + σ2

)
(ξ1/pzi

+ ξ2) , α4ϵ2∆2/(256β2)
}

.

(18)

and∣∣∣∥∥Σzi
(θ∗zi
− θi,t)

∥∥2

2
− σ̂2

i,t

∣∣∣
≤ max

{
C
(
δ2
t + σ2

)
(ξ1/pzi

+ ξ2) , α4ϵ2∆2/(128β2)
}

.

(19)

We postpone the proof to Appendix A-E. This proposition is
the key to show that the descent direction ri,t is approximately
parallel to the residual error Σzi

(θ∗zi
−θi,t), so that the residual

error decreases geometrically until it reaches a plateau. See the
proof of Claim 1 for details.

C. Proof of Theorem 1

Now, we are ready to prove our main theorem on the
performance guarantee of Phase 1. Fix any anchor client i
and omit the subscript i for simplicity. We further assume it
belongs to cluster ℓ, i.e., zi = ℓ. Let Et denote the following
event:

Et = {∥θt∥2 ≤ (1 + 2β/α)R} ∩ {(18) and (19) hold}. (20)

Let E = ∩T
t=1Et. We first prove the following claim.

Claim 1: Suppose Et holds and

m ≥ c
β8(R4 + σ4)d log3 N

α12∆4p2
minϵ4

, nH ≥ c
β8(R4 + σ4)k log3 N

α12∆4ϵ4

(21)

for some sufficiently large constant c. Then∣∣∣∥Σℓ(θ∗ℓ − θt)∥22 − σ̂2
t

∣∣∣ ≤ α2ϵ2∆2/128. (22)

Moreover,
• If σ̂t ≤ αϵ∆/

√
2, then

∥Σℓ(θ∗ℓ − θt)∥2 ≤ αϵ∆. (23)

• If σ̂t > αϵ∆/
√

2, then

∥Σℓ (θ∗ℓ − θt+1)∥2 ≤
(

1− α2

8β2

)
∥Σℓ (θ∗ℓ − θt)∥22 .

(24)
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Proof of Claim 1: Since event Et holds and ∥θ∗ℓ ∥2 ≤ R,
it follows that δt ≤ 2(1 + β/α)R and hence∣∣∣∥Σℓ(θ∗ℓ − θt)∥22 − σ̂2

t

∣∣∣
≤ max

{
C
(
δ2
t + σ2

)
(ξ1/pℓ + ξ2) , α4ϵ2∆2/(128β2)

}
≤ α2ϵ2∆2/128,

where the last inequality follows from (21). This proves (22).
Next, we divide the analysis into the following two cases.

Case 1: σ̂t ≤ αϵ∆/
√

2. In this case, (23) directly follows
from (22), as

∥Σℓ(θ∗ℓ − θt)∥22 ≤ σ̂2
t + α2ϵ2∆2/128 ≤ α2ϵ2∆2.

Case 2: σ̂t > αϵ∆/
√

2. In this case,

∥Σℓ(θ∗ℓ − θt)∥22 ≥ σ̂2
t − α2ϵ2∆2/128 > α2ϵ2∆2/4

≥ 256Cβ2

α2
(δ2

t + σ2)(ξ1/pℓ + ξ2),

where the first inequality follows from (18), the second
inequality follows because σ̂t > αϵ∆/

√
2, and the last

inequality holds due to (21). We further deduce from (18)
that∣∣∣β̂⊤t Û⊤t Σℓ (θ∗ℓ − θt)

∣∣∣2 ≥ (1− α2

64β2

)
∥Σℓ (θ∗ℓ − θt)∥22 (25)

and from (22) that(
1− α2

32β2

)
∥Σℓ (θ∗ℓ − θt)∥22 ≤ σ̂2

t

≤
(

1 +
α2

32β2

)
∥Σℓ (θ∗ℓ − θt)∥22 .

(26)

Now we show θt+1 gets closer to θ∗ℓ . Note that θt+1 =
θt + ηtrt. It follows that

(θ∗ℓ − θt+1)
⊤Σ2

ℓ (θ∗ℓ − θt+1)

= (θ∗ℓ − θt)
⊤Σ2

ℓ (θ∗ℓ − θt)−2ηt (θ∗ℓ−θt)
⊤Σ2

ℓrt+η2
t r⊤t Σ2

ℓrt.

We decompose

Σℓ (θ∗ℓ − θt) = atrt + btr
⊥
t ,

for some unit vector r⊥t that is perpendicular to rt. Recalling
rt = Ûtβ̂t, we have ∥rt∥2 = 1 and it follows from (25) that

at = ⟨rt, Σℓ (θ∗ℓ − θt)⟩2 ≥
(

1− α2

64β2

)
∥Σℓ (θ∗ℓ − θt)∥22 .

Since a2
t + b2

t = ∥Σℓ(θ∗ℓ − θt)∥22, we have |bt| ≤
α
8β ∥Σℓ(θ∗ℓ − θt)∥2. Hence,

(θ∗ℓ − θt)
⊤Σ2

ℓrt =
(
atrt + btr

⊥
t

)⊤
Σℓrt

≥ atα− |bt|β

≥

√
1− α2

64β2
α ∥Σℓ(θ∗ℓ − θt)∥2 −

α

8
∥Σℓ(θ∗ℓ − θt)∥2

≥ α

2
∥Σℓ(θ∗ℓ − θt)∥2 ,

where λmin(Σℓ) ≥ α and β ≥ ∥Σℓ∥2. It follows that

(θ∗ℓ − θt+1)
⊤Σ2

ℓ (θ∗ℓ − θt+1)

≤ (θ∗ℓ − θt)
⊤Σ2

ℓ (θ∗ℓ − θt)−ηtα ∥Σℓ (θ∗ℓ−θt)∥2+η2
t ∥Σℓ∥22 .

Recall the choice of step size ηt = ασ̂t/(2β2). We get that

(θ∗ℓ − θt+1)
⊤Σ2

ℓ (θ∗ℓ − θt+1)

≤ (θ∗ℓ−θt)
⊤Σ2

ℓ (θ∗ℓ − θt)−
α2

2β2
∥Σℓ (θ∗ℓ − θt)∥2 σ̂t +

α2σ̂2
t

4β2

≤
(

1− α2

8β2

)
∥Σℓ (θ∗i − θt)∥22 ,

where the last inequality holds due to (26). Therefore,

∥Σℓ (θ∗ℓ − θt+1)∥22 ≤
(

1− α2

8β2

)
∥Σℓ (θ∗ℓ − θt)∥22 ,

This proves (24). □
Second, we prove ∥θT − θ∗ℓ ∥2 ≤ ϵ∆ assuming event E

holds. Define

t∗ = min{inf{t ≥ 0 : σ̂t ≤ αϵ∆/
√

2}, T}.

By the stopping criterion of our algorithm, it suffices to prove
∥θt∗ − θ∗ℓ ∥2 ≤ ϵ∆. We divide the analysis into the following
two cases depending on the value of t∗.
• t∗ < T . In this case, by definition, σ̂t∗ ≤ αϵ∆/

√
2.

By applying (23) in Claim 1, we obtain

∥Σℓ(θ∗ℓ − θt∗)∥2 ≤ αϵ∆.

• t∗ = T. In this case, σ̂t > αϵ∆/
√

2 for all t = 1, . . . , T−
1. By applying (24) in Claim 1, we obtain

∥Σℓ (θ∗ℓ − θt∗)∥2 ≤
(

1− α2

8β2

)T/2

∥Σℓ(θ∗ℓ − θ0)∥2

≤ 2 exp
(
−Tα2/(16β2)

)
βR ≤ αϵ∆,

where the last inequality holds by choosing T =
16β2

α2 log 2βR
ϵα∆ .

In both cases, we obtain that

∥θ∗ℓ − θt∗∥2 ≤
1
α
∥Σℓ(θ∗ℓ − θt∗)∥2 ≤

αϵ∆
α

= ϵ∆.

Third, we prove that P {Et+1 | ∩t
τ=1Eτ} ≥ 1 − 10N−10.

We divide the analysis into the following two cases assuming
∩t

τ=1Eτ holds.
• σ̂τ ≤ αϵ∆/

√
2 for some τ ∈ [t]. In this case, by the

stopping criterion of our algorithm, θt+1 = θτ . Thus,
∥θt+1∥2 = ∥θτ∥2 ≤ (1 + 2β/α)R.

• σ̂τ > αϵ∆/
√

2 for all τ ∈ [t]. In this case, by apply-
ing (24) in Claim 1, we obtain that

α ∥θ∗ℓ − θt+1∥2 ≤ ∥Σℓ(θ∗ℓ − θt+1)∥2
≤ ∥Σℓ(θ∗ℓ − θ0)∥2 ≤ 2βR.

In both cases, we have ∥θt+1∥2 ≤ (1 + 2β/α)R. Thus,
applying Proposition 2 yields P {Et+1 | ∩t

τ=1Eτ} ≥ 1 −
10N−10. It follows that

P
{
∩T

t=1Et
}

= P {E1} × · · · × P {ET | E1, . . . , ET−1}

≥
(
1− 10N−10

)T ≥ 1− 10TN−10.

Then we apply a union bound over all anchor client i ∈ H
and conclude that with probability at least 1− 10TmHN−10,
∥θi,T − θ∗zi

∥2 ≤ ϵ∆ for all i ∈ H . This proves (4).
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Finally, we prove (5). Recall that H ∩ {i : zi = ℓ} ̸= ∅ for
all ℓ ∈ [k]. Moreover, as long as ϵ < 1/4, we have for two
anchor clients i, i′ ∈ H

∥θi,T − θi′,T ∥2 ≤
∥∥θi,T − θ∗zi

∥∥
2

+
∥∥∥θi′,T − θ∗zi′

∥∥∥
2

≤ 2ϵ∆, if zi = zi′ ,

∥θi,T − θi′,T ∥2 ≥ ∆−
∥∥θi,T − θ∗zi

∥∥
2
−
∥∥∥θi′,T − θ∗zi′

∥∥∥
2

≥ (1− 2ϵ)∆, if zi ̸= zi′ .

Thus, by assigning anchor clients i, i′ ∈ H in the same cluster
when ∥θi,T − θi′,T ∥2 ≤ ∆/2 we can recover the k clusters
of the clients users. In particular, let ẑi denote the estimated
cluster label of anchor client i ∈ H. Then there exists a
permutation π : [k]→ [k] such that π(ẑi) = zi for all i ∈ H.
Let θ̂ℓ denote the center of the recovered cluster ℓ, that is

θ̂ℓ =
∑
i∈H

θi,T1{ẑi = ℓ}/
∑
i∈H

1{ẑi = ℓ}.

Then we have ∥θ̂π(ℓ) − θ∗ℓ ∥2 ≤ ϵ∆ for all ℓ ∈ [k]. This finishes
the proof of (5).

D. Proof of Proposition 1

In the following analysis, we fix an anchor client i ∈ H
and omit the subscript i for ease of presentation. Crucially,
since St and Dt are freshly drawn, all the global data and
local data used in iteration t+1 are independent of θt. Hence,
we condition on θt and St in the following analysis. Note that

E [Yt] =
1
m

∑
i′∈St

Ezi′

[
Σzi′

(
θ∗zi′
− θt

)(
θ∗zi′
− θt

)⊤
Σzi′

]

=
k∑

ℓ=1

pℓΣℓ (θ∗ℓ − θt) (θ∗ℓ − θt)
⊤Σℓ,

where pℓ is the probability that a client belongs to the ℓ-th
cluster.

Let Ût ∈ Rd×k denote the left singular matrix of Yt.
We aim to show that the collection of Σℓ(θ∗ℓ − θt) for ℓ ∈ [k]
approximately lie in the space spanned by the k columns of
Ût. As such, we first show that Yt is close to E [Yt] in the
operator norm.

Lemma 3: With probability at least 1− 3N−10,

∥Yt − E [Yt]∥2 ≤ C
(
δ2
t + σ2

)
ξ1,

where δt = maxℓ∈[k] ∥θ∗ℓ − θt∥2 and ξ1 =
√

d
m log N +

d
m log3 N , and C > 0 is some constant.

Proof: Let εi = (yi1 − ⟨ϕ(xi1), θt⟩)ϕ(xi1) and ε̃i =
(yi2 − ⟨ϕ(xi2), θt⟩)ϕ(xi2). Note that

Yt − E [Yt] =
1
m

m∑
i=1

εiε̃
⊤
i − E

[
εiε̃

⊤
i

]
.

Let ai = εi/
√

δ2
t + σ2 and bi = ε̃i/

√
δ2
t + σ2. We will

apply a truncated version of the Matrix Bernstein’s inequality
given in Lemma 13. As such, we first check the conditions
in Lemma 13 are all satisfied. Note that

E
[
∥εi∥22

]
= E

[∥∥(⟨ϕ(xi1), θ∗zi
− θt⟩+ ζi

)
ϕ(xi1)

∥∥2

2

]

= E
[∥∥⟨ϕ(xi1), θ∗zi

− θt⟩ϕ(xi1)
∥∥2

2

]
+ E

[
∥ζi1ϕ(xi1)∥22

]
.

By the sub-Gaussianity of ϕ(xi1), we have

E
[
∥ζiϕ(xi1)∥22

]
≤ σ2E

[
∥ϕ(xi1)∥22

]
= C1σ

2d

and further by Cauchy-Schwarz inequality,

E
[∥∥⟨ϕ(xi1), θ∗zi

− θt⟩ϕ(xi1)
∥∥2

2

]
≤
√

E
[
⟨ϕ(xi1), θ∗zi

− θt⟩4
]√

E
[
∥ϕ(xi1)∥42

]
≤ C1δ

2
t d,

where C1 is a constant only depending on the sub-Gaussian
norm of ϕ(xi1). Combining the last three displayed equations
gives that E

[
∥ai∥22

]
≤ C1d. The same upper bound also holds

for E
[
∥bi∥22

]
.

Moreover,
∥∥E [aia

⊤
i

]∥∥
2

= supu∈Sd−1 E
[
⟨ai, u⟩2

]
. Note

that for any u ∈ Sd−1,

E
[
⟨ai, u⟩2

]
=

1
δ2
t + σ2

E
[
r2
i ⟨ϕ(xi1), u⟩2

]
≤ 1

δ2
t + σ2

√
E [r4

i ]
√
⟨ϕ(xi1), u⟩4 ≤ C2,

where ri = yi1 − ⟨ϕ(xi1), θt⟩ and C2 is some constant
only depending on the sub-Gaussian norm of ϕ(xi1) and
ζi1. Combining the last two displayed equations gives that∥∥E [aia

⊤
i

]∥∥
2
≤ C2. The same upper bound also holds for∥∥E [bib

⊤
i

]∥∥
2
. Finally, by the sub-Gaussian property of ϕ(xi1)

and ϵ-net argument, we have

P {∥ϕ(xi1)∥2 ≥ s1} ≤ exp
(
2d−cs2

1

)
and

P

{
|ri|√

δ2
t + σ2

≥ s2

}
≤ exp

(
−cs2

2

)
,

where c > 0 is some constant only depending on the
sub-Gaussian norm of ϕ(xi1) and ζi1.

Choosing s1 =
√

Csd1/4 and s2 =
√

s/(C1/2d1/4) for a
constant C = 4/c, we get that for all s ≥

√
d,

P {∥ai∥2 ≥ s} ≤ P {∥ϕ(xi1)∥2 ≥ s1}+P

{
|ri|√

δ2
t + σ2

≥ s2

}

≤ exp
(
2d− 4 s

√
d
)

+ exp
(
− c2s

4
√

d

)
≤ 2 exp

(
− c2s

4
√

d

)
.

The same bound holds for P {∥bi∥2 ≥ s}. Applying the
truncated version of the Matrix Bernstein’s inequality given
in Lemma 13 yields the desired result. □

The following result shows the geometric convergence of
orthogonal iteration. Let Y = UΛU⊤ denote the eigenvalue
decomposition of Y with |λ1| ≥ |λ2| ≥ · · · |λd| and the
corresponding eigenvectors ui’s. Define U1 = [u1, . . . , uk]
and U2 = [uk+1, . . . , ud]. Let Qt ∈ Rd×k denote the output
of the orthogonal iteration with Q0 initialized as a random
orthogonal iteration Q⊤0 Q0 = I and Y Qt = Qt+1Rt+1.
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Lemma 4 [32, Theorem 8.2.2]: Assume |λk| > |λk+1| and
cos(γ) = σmin(U⊤1 Q0) for γ ∈ [0, π/2]. Then∥∥QtQ

⊤
t − U1U

⊤
1

∥∥
2
≤ tan(γ)

∣∣∣∣λk+1

λk

∣∣∣∣t , ∀t.

Finally, we need a gap-free bound that controls the projec-
tion errors.

Lemma 5 (Gap-Free Bound on Projection Errors):
Suppose M ∈ Rd×d satisfies that∥∥∥∥∥M −

k∑
i=1

xix
⊤
i

∥∥∥∥∥
2

≤ ϵ,

where xi ∈ Rd for 1 ≤ i ≤ k. Let Qt ∈ Rd×k be the
output of the orthogonal iteration running over MM⊤ with
Q0 initialized as a random orthogonal matrix Q⊤0 Q0 = I.
Assume that ∥xi∥2 ≤ H for all 1 ≤ i ≤ k. There exists
a universal constant C > 0 such that for any ϵ > 0 and
t ≥ Ck log dNH

ϵ , we have with probability at least 1−2N−10

(over the randomness of Q0),∥∥QtQ
⊤
t xi − xi

∥∥
2
≤ 3
√

ϵ, ∀1 ≤ i ≤ k.

Proof: Let σ1 ≥ σ2 ≥ . . . ≥ σd ≥ 0 denote the singular
values of M . Then by assumption on M and Weyl’s inequality,
σk+1 ≤ ϵ. We divide the analysis into two cases depending
on the value of σ1. Let δ > 0 be some parameter to be tuned
later.

Case 1: σ1 ≤ (1 + δ)k
ϵ. In this case, by Weyl’s inequality,

∥xi∥22 ≤

∥∥∥∥∥
k∑

i=1

xix
⊤
i

∥∥∥∥∥
2

≤ ∥M∥2 +

∥∥∥∥∥M −
k∑

i=1

xix
⊤
i

∥∥∥∥∥
2

≤ ϵ
(
1 + (1 + δ)k

)
.

Thus, ∥∥QtQ
⊤
t xi − xi

∥∥
2
≤ ∥xi∥2 ≤

√
ϵ
(
1 + (1 + δ)k

)
Case 2: σ1 > (1 + δ)k

ϵ. Then by the pigeonhole principle
there must exist 1 ≤ p ≤ k such that σp/σp+1 > 1+δ. Choose

q = max {p : σp/σp+1 > 1 + δ} .

It follows that σq+1 ≤ (1 + δ)k−qϵ ≤ (1 + δ)kϵ. Let Uq =
[u1, . . . , uq], where ui’s are the left singular vectors of M
corresponding to σi. Given the subspace span{u1, . . . , uq},
denote the unique orthogonal decomposition of xi by xi =
ΠW (xi)+ e, where ΠW (xi) = UqU

⊤
q xi and e⊤uj = 0 for all

j ∈ [q]. Let u = e/∥e∥2 ∈ Sd−1. Then,

∥∥UqU
⊤
q xi − xi

∥∥2

2
= u⊤xix

⊤
i u ≤ u⊤

(
k∑

i=1

xix
⊤
i

)
u

= u⊤

(
k∑

i=1

xix
⊤
i −M

)
u + u⊤Mu.

Note that

u⊤

(
k∑

i=1

xix
⊤
i −M

)
u ≤

∥∥∥∥∥
k∑

i=1

xix
⊤
i −M

∥∥∥∥∥
2

≤ ϵ.

Moreover,

u⊤Mu =
∑

j

σju
⊤ujv

⊤
j u

=
∑

j≥q+1

σju
⊤ujv

⊤
j u

≤ σq+1

∑
j≥q+1

∣∣u⊤uj

∣∣ ∣∣v⊤j u
∣∣

≤ σq+1

√ ∑
j≥q+1

|u⊤uj |2
∑

j≥q+1

∣∣v⊤j u
∣∣2

≤ σq+1 ≤ (1 + δ)kϵ.

Combining the last three displayed equations gives that∥∥UqU
⊤
q xi − xi

∥∥2

2
≤ ϵ

(
1 + (1 + δ)k

)
.

Let Q̂t be the submatrix of Qt formed by the first q columns.
Since σq > σq+1, the space spanned by Q̂t is the same space
spanned by Qt if the orthogonal iteration were run with k
replaced by q. Thus, applying Lemma 4 with k replaced by q
gives that ∥∥∥Q̂tQ̂

⊤
t − UqU

⊤
q

∥∥∥
2
≤ tan(γ)(1 + δ)−t,

where cos(γ) = σmin(U⊤q Q̂0) and Q̂0 is the submatrix of
Q0 formed by its first q columns. Applying Lemma 14, we get
tan(γ) ≤ cN10d log N with probability at least 1 − 2N−10

for some constant c > 0. Therefore, when t ≥ (C/δ) log NdH
ϵ

for some sufficiently large constant C > 0, we have∥∥∥Q̂tQ̂
⊤
t − UqU

⊤
q

∥∥∥
2
≤ ϵ/H.

Therefore, by triangle’s inequality,∥∥QtQ
⊤
t xi − xi

∥∥
2
≤
∥∥∥Q̂tQ̂

⊤
t xi − xi

∥∥∥
2

≤
∥∥UqU

⊤
q xi − xi

∥∥
2

+
∥∥∥(Q̂tQ̂

⊤
t − UqU

⊤
q

)
xi

∥∥∥
2

≤
√

ϵ
(
1 + (1 + δ)k

)
+ ϵ.

Finally, choosing δ = 1/k and noting that (1+δ)k ≤ e, we get
the desired conclusions. □

Applying Lemma 3 and Lemma 5 and invoking the assump-
tion that T1 ≥ Ck log Ndβ4R

α5ϵ2∆2 , we obtain that conditional
on θt with ∥θt∥2 ≤ (1 + 2β/α) R, with probability at least
1− 5N−10,∥∥∥(ÛtÛ

⊤
t −I

)√
pℓΣℓ (θ∗ℓ − θt)

∥∥∥2

2

≤ max
{
C
(
δ2
t + σ2

)
ξ1, pℓα

4ϵ2∆2/(512β2)
}

, ∀ℓ ∈ [k].

This finishes the proof of Proposition 1.

E. Proof of Proposition 2

Similar to the proof of Proposition 1, for ease of exposition,
we fix an anchor client i and omit the subscript i for simplicity.
We further assume client i belongs to cluster ℓ, i.e., zi =
ℓ. Note that crucially, the global data points on clients St
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are independent of the local data points on Dt. Thus, in the
following analysis, we further condition on Ût. Then

E [At] = Û⊤t Σℓ (θ∗ℓ − θt) (θ∗ℓ − θt)
⊤ΣℓÛt.

Lemma 6: With probability at least 1− 3N−10,

∥At − E [At]∥2 ≤ C
(
∥θ∗ℓ − θt∥22 + σ2

)
ξ2,

where ξ2 =
√

k
nH

log N + k
nH

log3 N and C > 0 is a constant.
Proof: Note that

At − E [At] =
1

nH

∑
j∈Dt

Û⊤t
(
εj ε̃

⊤
j − E

[
εj ε̃

⊤
j

])
Ût,

where εj = (yj − ⟨ϕ(xj), θt⟩)ϕ(xj) and ε̃j = (ỹj −
⟨ϕ(x̃j), θt⟩)ϕ(x̃j). Let aj = Û⊤t εj/

√
∥θ∗ℓ − θt∥22 + σ2 and

bj = Û⊤t ε̃j/
√
∥θ∗ℓ − θt∥22 + σ2. The rest of the proof follows

analogously as that of Lemma 3. □
Applying Lemma 6 and Lemma 5, when T2 ≥

C log Ndβ3R
α4ϵ2∆2 , we have with probability at least 1− 5N−10,∣∣∣β̂⊤t Û⊤t Σℓ (θ∗ℓ − θt)

∣∣∣2 ≥ ∥∥∥Û⊤t Σℓ (θ∗ℓ − θt)
∥∥∥2

2

−max
{

C
(
∥θ∗ℓ − θt∥22+σ2

)
ξ2, α

4ϵ2∆2/(512β2)
}

.

Applying Proposition 1, when T1 ≥ Ck log Ndβ4R
α5ϵ2∆2 , we have

with probability at least 1− 5N−10,∥∥∥Û⊤t Σℓ (θ∗ℓ − θt)
∥∥∥2

2
≥ ∥Σℓ (θ∗ℓ − θt)∥22

−max
{
C
(
δ2
t + σ2

)
ξ1/pℓ, α

4ϵ2∆2/(512β2)
}

.

Let Et denote the event such that the above two displayed
equations hold simultaneously. Then P {Et} ≥ 1 − 10N−10.
In the following, we assume event Et holds.

Combining the last two displayed equations yields that∣∣∣β̂⊤t Û⊤t Σℓ (θ∗ℓ − θt)
∣∣∣2 ≥ ∥Σℓ (θ∗ℓ − θt)∥22

−max
{
2C
(
δ2
t +σ2

)
(ξ1/pℓ + ξ2) , α4ϵ2∆2/(256β2)

}
.

(27)

This proves (18). Moreover, since

σ̂2
t ≜ β̂⊤t Atβ̂t = β̂⊤t E [At] β̂t + β̂⊤t (At − E [At]) β̂t,

it follows that∣∣∣∣σ̂2
t −

∣∣∣β̂⊤t Û⊤t Σℓ (θ∗ℓ − θt)
∣∣∣2∣∣∣∣ ≤ C

(
δ2
t + σ2

)
ξ2.

Combining the last two displayed equations yields that∣∣∣σ̂2
t − ∥Σℓ (θ∗ℓ − θt)∥22

∣∣∣
≤ max

{
3C
(
δ2
t + σ2

)
(ξ1/pℓ + ξ2) , α4ϵ2∆2/(128β2)

}
This proves (19).

APPENDIX B
ANALYSIS OF PHASE 2

Throughout the proof in this section, we assume without
loss of generality that the optimal permutation in (5) is identity.

A. Derivation of Global Iteration

Proof of Lemma 1: We first prove the result for FedAvg.
By definition, we have

∇ℓLi(θ) =
λiℓ,t

ni
ϕ(xi)⊤(ϕ(xi)θℓ − yi),

where λiℓ,t = 1{ℓ = zi,t} and ∇ℓ denotes the gradient with
respect to θℓ. Then the one-step local gradient descent at client
i is

[Gi(θ)]ℓ =

{
θℓ, ℓ ̸= zi,t,

gi(θℓ) ≜ θℓ−ηiϕ(xi)⊤(ϕ(xi)θℓ − yi), ℓ = zi,t,

where ηi = η/ni. Iterating s steps yields that [5]

gs
i (θℓ) = (I − ηiϕ(xi)⊤ϕ(xi))sθℓ

+
s−1∑
τ=0

(I − ηiϕ(xi)⊤ϕ(xi))τηiϕ(xi)⊤yi

(a)
= θℓ −

s−1∑
τ=0

(I − ηiϕ(xi)⊤ϕ(xi))τηiϕ(xi)⊤(ϕ(xi)θℓ − yi)

(b)
= θℓ − ηiϕ(xi)⊤Pi(ϕ(xi)θℓ − yi),

where (a) used I − (I − X)s =
∑s

τ=0(I − X)τX , and (b)
used (I −X⊤X)τX⊤ = X⊤(I −XX⊤)τ and the definition
of Pi. Then,

θiℓ,t = [Gs
i (θt−1)]ℓ = λiℓ,tg

s
i (θℓ,t−1) + (1− λiℓ,t)θℓ,t−1

= θℓ,t−1 − ηiλiℓ,tϕ(xi)⊤Pi(ϕ(xi)θℓ,t−1 − yi).

We obtain the global iteration:

θℓ,t =
M∑
i=1

ni

N
θiℓ,t

= θℓ,t−1 −
η

N

M∑
i=1

λiℓ,tϕ(xi)⊤Pi(ϕ(xi)θℓ,t−1 − yi),

which is (10) using matrix notations.
The proof for FedProx is similar. The first-order condition

for the local proximal optimization is

ηiλiℓ,tϕ(xi)⊤(ϕ(xi)θiℓ,t − yi)+(θiℓ,t−θℓ,t−1) = 0, ℓ ∈ [k].

Therefore, if ℓ ̸= zi,t, then θiℓ,t = θℓ,t−1; if ℓ = zi,t, then

θiℓ,t = (I + ηiϕ(xi)⊤ϕ(xi))−1(θℓ,t−1 + ηiϕ(xi)⊤yi)
(a)
= θℓ,t−1

− ηi(I + ηiϕ(xi)⊤ϕ(xi))−1ϕ(xi)⊤(ϕ(xi)θℓ,t−1 − yi)
(b)
= θℓ,t−1 − ηiϕ(xi)⊤Pi(ϕ(xi)θℓ,t−1 − yi),

where (a) used I − (I + X)−1 = (I + X)−1X , and (b) used
(I + X⊤X)−1X⊤ = X⊤(I + XX⊤)−1 and the definition of
Pi. The remaining steps are the same as those in FedAvg. □
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B. Convergence Analysis of Phase 2

We analyze the three terms on the right-hand side of (11)
separately. The first term of (11) is the main term due to
the decreasing of estimation error, and the last term is the
stochastic variation due to the observation noise ζ. We have
the following lemmas on the eigenvalues of Kℓ and the
concentration of the observation noise.

Lemma 7: Suppose that minℓ∈[k] Nℓ ≥ C0d for a suffi-
ciently large constant C0. There exists constants c and C such
that, with probability 1− 2ke−d,

cα
sNℓ

κN
≤ λmin(Kℓ) ≤ λmax(Kℓ) ≤ Cβ

sNℓ

N
, ∀ℓ ∈ [k].

Proof: Since ϕ(xIℓ
) of size Nℓ × d consists of inde-

pendent and sub-Gaussian rows, by a covering argument [37,
Theorem 4.6.1], with probability 1− 2e−d,

αNℓ − C(
√

dNℓ ∨ d) ≤ σ2
min(ϕ(xIℓ

)) ≤ σ2
max(ϕ(xIℓ

))

≤ βNℓ + C(
√

dNℓ ∨ d),

where σmax and σmin denote the largest and smallest singular
values, respectively, and C is an absolute constant. By defi-
nition, Kℓ = 1

N ϕ(xIℓ
)⊤PIℓ

ϕ(xIℓ
), where PIℓ

is a symmetric
matrix. It is shown in [5, Lemma 3] that

s/κ ≤ λmin(PIℓ
) ≤ λmax(PIℓ

) ≤ s.

The conclusion follows from the condition Nℓ ≥ C0d and a
union bound over ℓ ∈ [k]. □

Lemma 8: Given the input features ϕ(x), there exists a
constant C such that with probability at least 1− k exp(−d),

∥BΛℓζ∥22 ≤ C
σ2sd

N
∥Kℓ∥2, ∀ ℓ ∈ [k].

Proof: Note that

∥BΛℓζ∥22 = ζ⊤ΛℓB
⊤BΛℓζ = ⟨ΛℓB

⊤BΛℓ, ζζ⊤⟩.

Since E
[
ζζ⊤

]
⪯ σ2I , it follows that

E
[
∥BΛℓζ∥22

]
= E

[
⟨ΛℓB

⊤BΛℓ, ζζ⊤⟩
]

≤ σ2Tr
(
ΛℓB

⊤BΛℓ

)
= σ2Tr

(
BΛ2

ℓB
⊤) .

Recall that

BΛ2
ℓB

⊤ =
1

N2
ϕ(xIℓ

)⊤P 2
Iℓ

ϕ(xIℓ
)

(a)

⪯ s

N2
ϕ(xIℓ

)⊤PIℓ
ϕ(xIℓ

) =
s

N
Kℓ, (28)

where (a) holds because ∥PIℓ
∥2 ≤ s. Therefore,

E
[
∥BΛℓζ∥22

]
= E

[
⟨ΛℓB

⊤BΛℓ, ζζ⊤⟩
]
≤ σ2sd

N
∥Kℓ∥2 .

Next, using Hanson-Wright’s inequality [38], we get

P
{
⟨ΛℓB

⊤BΛℓ, ζζ⊤⟩ − E
[
⟨ΛℓB

⊤BΛℓ, ζζ⊤⟩
]
≥ δ
}

≤ exp
(
−c1 min

{
δ

σ2∥ΛℓB⊤BΛℓ∥2
,

δ2

σ4∥ΛℓB⊤BΛℓ∥2F

})
,

where c1 > 0 is a universal constant. Note that

∥ΛℓB
⊤BΛℓ∥2 = ∥BΛ2

ℓB
⊤∥2 ≤

s

N
∥Kℓ∥2,

∥ΛℓB
⊤BΛℓ∥F = ∥BΛ2

ℓB
⊤∥F ≤ s∥Kℓ∥F ≤

s
√

d

N
∥Kℓ∥2 .

Therefore, by choosing δ = C σ2sd
N ∥Kℓ∥2 for a sufficiently

large constant C, we get that with probability at least 1 −
exp(−d),

⟨ΛℓB
⊤BΛℓ, ζζ⊤⟩ ≤ E

[
⟨ΛℓB

⊤BΛℓ, ζζ⊤⟩
]
+ δ

≤ (C + 1) σ2 sd

N
∥Kℓ∥2.

The conclusion follows from a union bound over all ℓ ∈ [k].
□

Combining Lemmas 2, 7, and 8, next we prove Theorem 2.
Proof of Theorem 2: We prove the result by conditioning

on the high probability events in Lemmas 2, 7, and 8 that
happen with probability at least 1 − Cke−d. In view of
Lemma 7 and the assumption that βsη ≤ c0, we obtain that

∥I − ηKℓ∥2 ≤ 1−cαηsρ/κ.

Combining Lemmas 7 and 8 yields

∥BΛℓζ∥2 ≤ Csσ

√
βd

N
.

Plugging the above upper bounds and Lemma 2 into (11),
we get

∥θℓ,t − θ∗ℓ ∥2 ≤
(
1− ηs

(
c
αρ

κ
−Cβν log

e

ν

))
d(θt−1, θ

∗)

+ Cηsσ
√

β

(√
d

N
+ ν log

e

ν

)
, ∀ℓ ∈ [k].

Since ν log e
ν ≤

cρα
2Cκβ and ν ≳

√
d/N , we conclude (8).

Let θ̂i,t = θzi,t,t be client i’s estimate of its own model
parameter. If client i is clustered correctly such that zi,t =
zi, where the success probability P{zi,t = zi} is shown in
Lemma 10 (which can be found in Appendix 2), it follows
from (8) that, for t ≥ T + 1,

∥θ̂i,t − θ∗zi
∥2 ≤ d(θt, θ

∗)

≤ (1− c2sηρα/κ)t−T
d(θT , θ∗) +

C2

c2

σκ
√

β

ρα
ν log

e

ν
.

The proof is completed. □
1) Proof of Lemma 2: This subsection is devoted to the

proof of Lemma 2 using the following road map:

d(θt, θ
∗) ↓ =⇒

∑
i:i∈Sℓ,t

ni ↓ =⇒ ∥ϕ(xSℓ,t
)∥2, ∥ζSℓ,t

∥2

↓ =⇒ ∥BEℓ,t(ϕ(x)θℓ,t−1 − y)∥2 ↓ .

Specifically, a small estimation error d(θt, θ
∗) implies an upper

bound on the total number of incorrectly clustered data points∑
i∈Sℓ,t

ni; then we upper bound ∥ϕ(xSt
ℓ
)∥2 and ∥ζSt

ℓ
∥2 using

sub-Gaussian concentration and the union bound; finally we
conclude the result from (14).

We first upper bound
∑

i∈Sℓ,t
ni. Using (7), the set Sℓ,t =

Iℓ ⊖ Iℓ,t is equivalently the union of

Iℓ − Iℓ,t ={
i ∈ Iℓ : ∥yi−ϕ(xi)θℓ,t−1∥2 ≥ min

ℓ′ ̸=ℓ
∥yi − ϕ(xi)θℓ′,t−1∥2

}
,
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Iℓ,t − Iℓ ={
i ̸∈ Iℓ : ∥yi−ϕ(xi)θℓ,t−1∥2 ≤ min

ℓ′ ̸=ℓ
∥yi − ϕ(xi)θℓ′,t−1∥2

}
.

Therefore, Sℓ,t = Sℓ(θt−1), where Sℓ is defined in (15). The
next lemma upper bounds the VC dimensions of the binary
function classes specified in (16).

Lemma 9: For k ≥ 2, the VC dimensions of F I
ℓ and F II

ℓ

are at most Cdk log k for a constant C > 0.
Proof: We focus on the proof for F I

ℓ for a fixed ℓ ∈ [k],
and the proof for F II

ℓ is similar. We count the number of faces
in the arrangement of geometric objects, which is also known
as the number of sign patterns. Specifically, here we define
the sign patterns of binary functions g1(θ), . . . , gm(θ) as the
set {

(g1(θ), . . . , gm(θ)) : θ ∈ Rdk
}

.

Suppose F I
ℓ shatters m points denoted by

(x1, y1), . . . , (xm, ym). Define binary functions

qi,ℓ′(θ) ≜ 1{Pℓℓ′ [xi, yi](θ) ≥ 0}, gi(θ) ≜ max
ℓ′ ̸=ℓ

qi,ℓ′(θ).

It is necessary that the number of sign patterns of
g1(θ), . . . , gm(θ) is 2m. Note that every Pℓ′,ℓ[xi, yi] is a (dk)-
variate quadratic function. By the Milnor-Thom theorem (see,
e.g., [34, Theorem 6.2.1]), if m(k− 1) ≥ dk ≥ 2, the number
of sign patterns of m(k − 1) binary functions q1,ℓ′ , . . . , qm,ℓ′

for ℓ′ ̸= ℓ is at most ( 100m(k−1)
dk )dk. Since each gi is the

maximum of qi,ℓ′ over ℓ′ ̸= ℓ, the number of sign patterns of
g1, . . . , gm is upper bounded by ( 100m(k−1)

dk )dk. Consequently,
we obtain 2m ≤ ( 100m(k−1)

dk )dk, and hence m ≤ Cdk log k.
If instead, m(k−1) < dk, then the conclusion m ≤ Cdk log k
trivially holds. □

Next, we show the uniform deviation of the incorrectly
clustered data points. Due to the quantity skew, we consider
a weighted empirical process Gℓ(θ) =

∑M
i=1 ni1{i ∈ Sℓ(θ)}.

Since the local data (xi, yi) on different clients are indepen-
dent, for a fixed θ, the events {i ∈ Sℓ(θ)} as functions of
(xi, yi) are mutually independent. Using the binary function
classes in (16), we have

E
[
sup

θ
|Gℓ(θ)− E[Gℓ(θ)]|

]
≤ E

[
sup
f∈F I

ℓ

∣∣∣∣∣∑
i∈Iℓ

ni(f(xi, yi)− E[f(xi, yi)])

∣∣∣∣∣
]

+ E

 sup
f∈F II

ℓ

∣∣∣∣∣∣
∑
i ̸∈Iℓ

ni(f(xi, yi)− E[f(xi, yi)])

∣∣∣∣∣∣


≤ C

√
dk log k

∑
i∈Iℓ

n2
i + C

√
dk log k

∑
i̸∈Iℓ

n2
i

≤ 2C

√√√√dk log k

M∑
i=1

n2
i , (29)

where the second inequality follows from the uniform devi-
ation of weighted empirical processes in Lemma 12 and the
upper bound of VC dimensions in Lemma 9. Finally, we use

the McDiarmid’s inequality to establish a high-probability tail
bound. Note that we can write

sup
θ
|Gℓ(θ)− E[Gℓ(θ)]| ≜ h(Z1, . . . , ZM )

as a function h of Zi = (xi, yi) with bounded differences: for
any i, zi, z

′
i,

|h(z1, . . . , zi, . . . , zM )− h(z1, . . . , z
′
i, . . . , zM )| ≤ ni.

By McDiarmid’s inequality, we have

P {h(Z1, . . . , ZM )− E [h(Z1, . . . , ZM )] ≥ t}

≤ exp

(
− 2t2∑M

i=1 n2
i

)
. (30)

Therefore, combining (29) and (30), and by a union bound,
with probability at least 1− k−2dk,

sup
θ
|Gℓ(θ)− E[Gℓ(θ)]|

≤ (2C + 1)

√√√√dk log k

M∑
i=1

n2
i

= (2C + 1)N

√
dk log k

M
(χ2(n) + 1), ∀ℓ ∈ [k]. (31)

Lemma 10: Suppose ϵ ≤
√

α/β

3 ∆. Then,

sup
θ:d(θ,θ∗)≤ϵ

P[i ∈ Sℓ(θ)] ≤ 4k exp

(
−cniα

2

(
1 ∧ ∆2

σ2

)2
)

,

for all ℓ ∈ [k], where c is an absolute constant.
Proof: For i ∈ Iℓ, it follows from (15) and the union

bound that

P {i ∈ Sℓ(θ)}

≤
∑
ℓ′ ̸=ℓ

P {∥yi − ϕ(xi)θℓ∥2 ≥ ∥yi − ϕ(xi)θℓ′∥2}

=
∑
ℓ′ ̸=ℓ

P {∥ϕ(xi)(θ∗ℓ − θℓ)+ζi∥2≥∥ϕ(xi)(θ∗ℓ − θℓ′)+ζi∥2} .

(32)

For any u ∈ Rd, the ni-dimensional random vector ϕ(xi)u+ζi

has independent and (∥u∥22 + σ2)-sub-Gaussian coordinates.
Applying Bernstein inequality yields that

P
{∣∣∣∣ 1

ni
∥ϕ(xi)u + ζi∥22−

(
E[ζ2

i1]+∥u∥
2
Σi

)∣∣∣∣≥(∥u∥22+σ2)t
}

≤ 2 exp
(
−cni(t ∧ t2)

)
, (33)

where Σi = E[ϕ(xi1)ϕ(xi1)⊤]. Let u1 ≜ θ∗ℓ − θℓ and u2 ≜
θ∗ℓ − θℓ′ . By assumptions that ∥θℓ′ − θ∗ℓ′∥2 ≤ ϵ for all ℓ′ ∈ [k]
and ∥θ∗ℓ − θ∗ℓ′∥2 ≥ ∆ for ℓ′ ̸= ℓ, we have ∥u1∥2 ≤ ϵ, ∥u2∥2 ≥
∆− ϵ. Applying the condition ϵ ≤ 1

3
√

β/α
∆ ≤ 1

3∆, we get

∥u2∥2Σi
− ∥u1∥2Σi

≥ α(∆− ϵ)2 − βϵ2 ≥ α∆2/3. (34)

Therefore, let m = E[ζ2
i1] + (1 − p) ∥u1∥2Σi

+ p ∥u2∥2Σi
with

p = ∥u1∥22+σ2

∥u1∥22+∥u2∥22+2σ2 , and we obtain from (33) that

P {∥ϕ(xi)(θ∗ℓ − θℓ) + ζi∥2 ≥ ∥ϕ(xi)(θ∗ℓ − θℓ′) + ζi∥2}
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≤ P
{

1
ni
∥ϕ(xi)u1 + ζi∥22 ≥ m

}
+ P

{
1
ni
∥ϕ(xi)u2 + ζi∥22 ≤ m

}
≤ 4 exp

(
−cni(t ∧ t2)

)
,

where t =
∥u2∥2Σi

−∥u1∥2Σi

∥u1∥22+∥u2∥22+2σ2 ≥ c0α(1∧∆2

σ2 ) for a constant c0 >

0 using the lower bound of seperation in (34). We conclude
the proof for i ∈ Iℓ from (32). Similarly, for i ∈ Iℓ′ with
ℓ′ ̸= ℓ, we have

P {i ∈ Sℓ(θ)}
≤ P {∥ϕ(xi)(θ∗ℓ′ − θℓ′) + ζi∥2 ≥ ∥ϕ(xi)(θ∗ℓ′ − θℓ) + ζi∥2} .

The conclusion follows from a similar argument. □
Let NI ≜

∑
i∈I ni denote the total number of data in a

subset of clients I ⊆ [M ]. It follows from (31) and Lemma 10
that, with probability 1− k−dk,

NSℓ,t
=
∑

i∈Sℓ,t

ni ≤ νN, (35)

where ν is defined in (9). Conditioning on total number of
incorrectly clustered data points NI , the next lemma upper
bounds ∥ϕ(xI)∥2 and ∥ζI∥2.

Lemma 11: With probability 1− 4e−d, there exists a con-
stant C > 0 such that

sup
NI≤νN

1
N
∥ϕ(xI)∥22 ≤ βCν log

e

ν
, (36)

sup
NI≤νN

1
N
∥ζI∥22 ≤ Cσ2ν log

e

ν
. (37)

Proof: Since ϕ(xij) are independent and sub-Gaussian
random vectors in Rd, for a fixed I ⊆ [M ], with probability
at least 1− 2e−t,

∥ϕ(xI)∥22 ≤ βNI + C ′
(√

(d + t)NI + (d + t)
)

,

for some absolute constant C ′ > 0. There are at most
(

N
νN

)
≤

exp(Nν log(e/ν)) many different I with NI ≤ N ′. Hence,
applying the union bound yields that, with probability at least
1− 2e−d,

sup
NI≤νN

∥ϕ(xI)∥22 ≲ βNν log
e

ν
,

where we used ν ≳ d
N . Since ζij are independent and

sub-Gaussian with E[ζ2
ij ] ≤ σ2, the inequality in (37) follows

from a similar argument. □
Conditioning on the high probability events of (35), (36)

and (37), we obtain

∥ϕ(xSℓ,t
)∥2 ≤ C

√
βNν log

e

ν
, ∥ζSℓ,t

∥2 ≤ Cσ

√
Nν log

e

ν
.

Since ∥PSℓ,t
∥2 ≤ s, we conclude from (13) and (14) that

∥BEℓ,t(ϕ(x)θℓ,t−1 − y)∥2

≤ 1
N
∥ϕ(xSℓ,t

)∥2∥PSℓ,t
∥2∥ϕ(xSℓ,t

)θℓ,t−1 − ySℓ,t
∥2

≤ s

N

(
d(θt−1, θ

∗)∥ϕ(xSℓ,t
)∥22 + ∥ϕ(xSℓ,t

)∥2∥ζSℓ,t
∥2
)

≤ C2s(βd(θt−1, θ
∗) + σ

√
β)ν log

e

ν
.

2) Auxiliary Lemma:
Lemma 12: Consider a weighted empirical process

Gn(f) =
∑n

i=1 λif(Xi) for binary functions f ∈ F , where
Xi’s are independent and the VC dimension of F is at most
d. Then

E

[
sup
f∈F
|Gn(f)− EGn(f)|

]
≲

√√√√d

n∑
i=1

λ2
i .

Proof: Since Xi’s are independent, by symmetrization,

E

[
sup
f∈F
|Gn(f)− EGn(f)|

]
≤ 2E

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

ϵiλif(Xi)

∣∣∣∣∣
]

,

where ϵi are i.i.d. Rademacher random variables. Next, by con-
ditioning on Xi’s, we aim to apply Dudley’s integral. Since
ϵi are independent and 1-sub-Gaussian, for any f, g ∈ F , the
increment

∑
i ϵiλif(Xi)−

∑
i ϵiλig(Xi) is also sub-Gaussian

with a variance parameter
n∑

i=1

λ2
i (f − g)(Xi)2 =

(
n∑

i=1

λ2
i

)
∥f − g∥2L2(µn) ,

where µn denotes the weighted empirical measure
1∑
i λ2

i

∑
i λ2

i δXi
. Apply Dudley’s integral (see, e.g., [37,

Theorem 8.1.3]) conditioning on Xi’s, we get that

E

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

ϵiλif(Xi)

∣∣∣∣∣
]

≲

√√√√ n∑
i=1

λ2
i × E

[∫ 1

0

√
logN (F , L2(µn), ϵ)dϵ

]
,

where N (F , L2(µn), ϵ) denotes the ϵ-covering number of F
under L2(µn). Finally, we can bound the covering number by
the VC dimension of F as (see, e.g., [37, Theorem 8.3.18])

logN (F , L2(µn), ϵ) ≲ d log
2
ϵ
.

The conclusion follows. □

APPENDIX C
TRUNCATED MATRIX BERNSTEIN INEQUALITY

Lemma 13: Let {ai : i ∈ [N ]} and {bi : i ∈ [N ]} denote
two independent sequences of independent random vectors
in Rd. Suppose that E

[
∥ai∥22

]
≤ C1d, E

[
∥bi∥22

]
≤ C1d,∥∥E [aia

⊤
i

]∥∥
2
≤ C1,

∥∥E [bib
⊤
i

]∥∥
2
≤ C1, and

P {∥ai∥2 ≥ t} , P {∥bi∥2 ≥ t} ≤ exp
(
−C2t/

√
d
)

, ∀t ≥
√

d

for some universal constants C1, C2 > 0. Let

Y =
N∑

i=1

(
aib

⊤
i − E

[
aib

⊤
i

])
.

Then there exists a constant C > 0 (only depending on C1, C2)
such that with probability at least 1− 3δ,

∥Y ∥2 ≤ C

(√
Nd log

1
δ

+ d log3(N/δ)

)
.
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Proof: Given τ to be specified later, define event Ei =
{
∥∥aib

⊤
i

∥∥
2
≤ τ}. It follows that

Y =
N∑

i=1

(
aib

⊤
i 1{Ei} − E

[
aib

⊤
i 1{Ei}

])
+

N∑
i=1

aib
⊤
i 1{Ec

i } −
N∑

i=1

E
[
aib

⊤
i 1{Ec

i }
]

and hence

∥Y ∥2 ≤

∥∥∥∥∥
N∑

i=1

(
aib

⊤
i 1{Ei} − E

[
aib

⊤
i 1{Ei}

])∥∥∥∥∥
2

+

∥∥∥∥∥
N∑

i=1

aib
⊤
i 1{Ec

i }

∥∥∥∥∥
2

+

∥∥∥∥∥
N∑

i=1

E
[
aib

⊤
i 1{Ec

i }
]∥∥∥∥∥

2

. (38)

In the sequel, we bound each term in the RHS separately.
To bound the first term, we will use the matrix Bernstein

inequality. Let Yi = aib
⊤
i 1{Ei} − E

[
aib

⊤
i 1{Ei}

]
. Then

E [Yi] = 0 and

∥Yi∥2 ≤
∥∥aib

⊤
i 1{Ei}

∥∥
2

+
∥∥E [aib

⊤
i 1{Ei}

]∥∥
2
≤ 2τ.

Moreover,
N∑

i=1

E
[
YiY

⊤
i

]
=

N∑
i=1

E
[(

aib
⊤
i 1{Ei} − E

[
aib

⊤
i 1{Ei}

])
×
(
aib

⊤
i 1{Ei} − E

[
aib

⊤
i 1{Ei}

])⊤]
=

N∑
i=1

(
E
[
aia

⊤
i ∥bi∥22 1{Ei}

]
−E

[
aib

⊤
i 1{Ei}

]
E
[
aib

⊤
i 1{Ei}

]⊤)
.

Therefore,
N∑

i=1

E
[
YiY

⊤
i

]
⪯

N∑
i=1

E
[
aia

⊤
i ∥bi∥22 1{Ei}

]
⪯

N∑
i=1

E
[
aia

⊤
i ∥bi∥22

]
=

N∑
i=1

E
[
∥bi∥22

]
E
[
aia

⊤
i

]
⪯ C2

1NdI.

Moreover, YiY
⊤
i ⪰ 0. Hence,

∥∥∥∑N
i=1 E

[
YiY

⊤
i

]∥∥∥
2
≤ C2

1 Nd.

Similarly, we can show that
∥∥∥∑N

i=1 E
[
Y ⊤

i Yi

]∥∥∥
2
≤ C2

1 Nd.

Applying the matrix Bernstein inequality [39], we get that with
probability at least 1− δ,∥∥∥∥∥

N∑
i=1

Yi

∥∥∥∥∥
2

≤ C3

(√
Nd log

1
δ

+ τ log
1
δ

)
, (39)

where C3 > 0 is a constant only depending on C1. Next,
we bound the second term in (38). Note that on the event
∩N

i=1Ei,
∥∥∥∑N

i=1 aib
⊤
i 1{Ec

i }
∥∥∥

2
= 0. Note that

P {Ec
i } = P

{∥∥aib
⊤
i

∥∥
2

> τ
}

≤ P
{
∥ai∥2 ≥

√
τ
}

+ P
{
∥bi∥2 ≥

√
τ
}

≤ 2 e−C2

√
τ/d.

Hence by choosing τ = C−2
2 d log2 N

δ for some sufficiently
large constant C, we get that P {Ec

i } ≤ 2δ/N . Thus by union
bound,

P
{
∩N

i=1Ei
}
≥ 1−

N∑
i=1

P {Ec
i } ≥ 1− 2δ. (40)

Finally, we bond the third term in (38). Note that∥∥∥∥∥
N∑

i=1

E
[
aib

⊤
i 1{Ec

i }
]∥∥∥∥∥

2

≤
N∑

i=1

∥∥E [aib
⊤
i 1{Ec

i }
]∥∥

2

≤
N∑

i=1

E
[∥∥aib

⊤
i 1{Ec

i }
∥∥

2

]
.

Moreover,

E
[∥∥aib

⊤
i 1{Ec

i }
∥∥

2

]
=
∫ ∞

0

P
{∥∥aib

⊤
i 1{Ec

i }
∥∥

2
≥ t
}

dt

=
∫ τ

0

P
{∥∥aib

⊤
i

∥∥
2
≥ τ

}
dt +

∫ ∞

τ

P
{∥∥aib

⊤
i

∥∥
2
≥ t
}

dt

≤ τ
δ

N
+
∫ ∞

τ

P
{∥∥aib

⊤
i

∥∥
2
≥ t
}

dt

By assumption, for t ≥ τ = C−2
2 d log2 N

δ ,

P
{∥∥aib

⊤
i

∥∥
2
≥ t
}
≤ P

{
∥ai∥2 ≥

√
t
}

+ P
{
∥bi∥2 ≥

√
t
}

≤ 2 e−C2

√
t/d.

It follows that∫ ∞

τ

P
{∥∥aib

⊤
i

∥∥
2
≥ t
}

dt ≤ 2
∫ ∞

τ

e−C2

√
t/ddt

= 4d
(√

τ/d + 1/C2

)
e−C2

√
τ/d,

where the equality holds by the identity that
∫∞

τ
e−α

√
tdt =

2
α2 (
√

τα + 1)e−α
√

τ . Therefore,

E
[∥∥aib

⊤
i 1{Ec

i }
∥∥

2

]
≤ τ

δ

N
+ 4d

(√
τ/d + 1/C2

)
e−C2

√
τ/d

≤ 6 dδ

NC2
2

log2(N/δ). (41)

Plugging (39), (40), and (41) into (38) yields the desired
conclusion. □

APPENDIX D
BOUND ON THE LARGEST PRINCIPAL ANGLE BETWEEN

RANDOM SUBSPACES

Let U ∈ Rd×ℓ denote an orthogonal matrix and Q ∈
Rd×ℓ denote a random orthogonal matrix chosen uniformly
at random, where ℓ ≤ d.

Lemma 14: With probability at least 1− 2ϵ,

σmin(U⊤Q) ≥ c
ϵ√

ℓ(
√

d + log(1/ϵ))

for a constant c > 0.
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Proof: Since Q ∈ Rd×ℓ is a random orthogonal matrix,
to prove the claim, without loss of generality, we can assume
U = [e1, e2, . . . , eℓ], where ei’s are the standard basis vectors
in Rd. Let A ∈ Rd×ℓ denote a random Gaussian matrix with
i.i.d. N (0, 1) entries and write A =

[
X
Y

]
, where X ∈ Rℓ×ℓ

and Y ∈ R(d−ℓ)×ℓ. Then U⊤Q has the same distribution
as X(A⊤A)−1/2. It follows that σmin(U⊤Q) has the same
distribution as σmin(X(A⊤A)−1/2). Note that

σmin

(
X(A⊤A)−1/2

)
≥ σmin(X)σmin

(
(A⊤A)−1/2

)
=

σmin(X)
σmax(A)

.

In view of [40, Corollary 5.35], σmax(A) ≤ C
√

d+C log(1/ϵ)
with probability at least 1 − ϵ. Moreover, in view of [41,
Theorem 1.2], σmin(X) ≥ cϵ/

√
ℓ with probability at least

1− ϵ. The desired conclusion readily follows. □
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