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ABSTRACT: 

Traffic prediction during hurricane evacuation is essential for optimizing the use of transportation 

infrastructures. It can reduce evacuation time by providing information on future congestion in advance. 

However, evacuation traffic prediction can be challenging as evacuation traffic patterns is significantly 

different than regular period traffic. A data-driven traffic prediction model is developed in this study by 

utilizing traffic detector and Facebook movement data during Hurricane Ian, a rapidly intensifying 

hurricane. We select 766 traffic detectors from Florida’s 4 major interstates to collect traffic features. 

Additionally, we use Facebook movement data collected during Hurricane Ian’s evacuation period. The 

deep-learning model is first trained on regular period (May-August 2022) data to understand regular 

traffic patterns and then Hurricane Ian’s evacuation period data is used as test data. The model achieves 

95% accuracy (RMSE = 356) during regular period, but it underperforms with 55% accuracy (RMSE = 
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1084) during the evacuation period. Then, a transfer learning approach is adopted where a pretrained 

model is used with additional evacuation related features to predict evacuation period traffic. After 

transfer learning, the model achieves 89% accuracy (RMSE = 514). Adding Facebook movement data 

further reduces model’s RMSE value to 393 and increases accuracy to 93%. The proposed model is 

capable to forecast traffic up to 6-hours in advance. Evacuation traffic management officials can use the 

developed traffic prediction model to anticipate future traffic congestion in advance and take proactive 

measures to reduce delays during evacuation.  

 

PRACTICAL APPLICATIONS:  

Hurricane evacuation causes significant traffic congestion in transportation networks. Increased traffic 

demand can affect evacuation process as it delays the movement of people to safer locations. To 

remedy this issue, an accurate traffic prediction model is beneficial for evacuation traffic management. 

The prediction model can give expected traffic volume on evacuation routes well in advance which will 

allow traffic management agencies to prepare for and activate strategies such as emergency shoulder 

utilization, adjustments to signal timing for optimal traffic flow etc. on those evacuation routes.  This 

work aims to construct a data-driven model for the purpose of predicting traffic flow with a lead time of 

up to 6 hours. The model can be used to make network-wide traffic forecasting in real time. Thus, 

practitioners can use this tool to effectively implement evacuation traffic management strategies by 

determining the timing, locations, and extent of those strategies based on predicted traffic volume. 

Another benefit of this model is that it can be trained with data from normal period and historical 

hurricane evacuations and then be implemented for future hurricanes.  
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INTRODUCTION: 

In recent years, coastal residents of the United States have experienced significant adverse effects from 

the occurrence of major hurricanes, including but not limited to Hurricanes Irma, Ida, Ian, Harvey, and 

Idalia. Hurricane events are getting alarmingly intense and frequent along US east coast, mostly due to 

global climate change  (Knutson et al., 2022).  Consequently, residents of the United States living near 

the coast are more likely to be hit by hurricanes, especially during rapidly intensifying hurricanes when 

people have less time to respond. Major hurricanes can be devastating and cause severe property 

damage and loss of lives (Cost of Natural Disasters, 2017). To mitigate such effects and save lives, 

emergency managers employ evacuation orders based on the time and location of the hurricane 

landfall. Although hurricane evacuation plays a vital role to save vulnerable population, evacuation 

traffic creates sudden demand surge causing traffic congestion and other issues such as increase in 

crashes and delays in reaching shelters. For example, about 6.5 million Floridians were ordered to leave 

their homes during Hurricane Irma (Viswanathan, 2021). This caused major congestions and major 

accidents on I-75 and I-95 (Rahman, Bhowmik, et al., 2021; Rahman, Hasan, et al., 2021). Several traffic 

management techniques are used to reduce heavy traffic, such as using the shoulder, allocating 

contraflow, giving clear instructions for evacuation routes, and so on. (Murray-Tuite & Wolshon, 2013). 

However, to efficiently manage evacuation, traffic managers need to understand the prevailing and 

future traffic condition of the network. A network-level traffic prediction model can assist emergency 

management for a proactive application of such strategies to efficiently manage evacuation traffic.  

However, prediction of evacuation traffic is more difficult due to uncertain demand variations 

from regular period traffic. Evacuation traffic pattern does not show any peaking (morning and evening 

peak) behavior like regular traffic. Moreover, during evacuation period the road network remains 

congested for a prolonged period of time resulting in stop and go traffic conditions. Additionally, a 

sudden change of hurricane path can cause changes in evacuation orders. As a result, it induces sudden 



demand surge on different evacuation routes. Traditionally, mathematical modeling and simulation 

methods have been used to forecast evacuation traffic (Barrett et al., 2000; Chen et al., 2020; Q. Li et al., 

2006). These approaches rely on user-equilibrium solutions based on mathematical assumptions to 

estimate network wide traffic, which might not hold true during an evacuation period. Moreover, lack of 

input from real-time traffic data makes these approaches less robust against sudden demand surge. To 

address this issue, data-driven methodologies can be used. Data-driven models can forecast future 

traffic by analyzing historical evacuation traffic patterns and traffic data. These models do not rely on 

any assumptions about the behavior of evacuees.   

Traditionally data-driven models of traffic prediction are formulated as simple time series 

problems. In such approaches, various models such as ARIMA, SARIMA, SARIMAX, K Nearest Neighbor 

(KNN), Support Vector Regression (SVR), Decision Tree, Artificial Neural Network (ANN) models have 

been widely used (Ahn et al., 2016; Brian Smith & Demetsky, 1997; Cai et al., 2016). However, 

spatiotemporal time-series prediction problems are more complicated since they require capturing both 

spatial and temporal correlation among traffic variables (Jiang & Luo, 2022). Such traffic prediction 

problems require models which can deal with higher dimensionality of traffic variables. Hence, 

traditional modeling approaches are not suitable for spatiotemporal traffic prediction. Recent 

developments in machine learning have pushed the boundary of traditional ANN models and enabled 

learning of high dimensional data through multilayered parameters known as deep learning. Deep 

learning techniques such as Convolutional Neural Networks (CNNs) and Graph Convolutional Neural 

Networks (GCNNs) can learn spatiotemporal variations in traffic patterns to forecast future traffic; 

providing more accurate predictions compared to traditional models (Ahn et al., 2016; Cai et al., 2016; 

Innamaa, 2005).  

This study employs the Graph Convolutional Neural Network (GCNN) architecture to forecast 

network-wide traffic volume during evacuations. GCNN models acquire knowledge of the transportation 



network by conceptualizing it as a graph, in which road intersections are represented as nodes and 

roads that connect those intersections are regarded as edges.  These models are structured to learn 

traffic state such as intersection level traffic volume, link travel time or speed of an entire network via a 

graph convolution layer. The graph convolution layer utilizes a graph theoretic approach to extract 

spatial cross correlations among input features (Wu et al., 2021). Many studies have applied different 

graph representation techniques to achieve cutting edge traffic prediction accuracy (Wu et al., 2019). 

However, one of the limitations to train such large-scale models is that they need extensive data. Hence, 

most of the previous studies applied GCNN models for regular traffic conditions where they have 

enough data to train the model. On the contrary, in our approach we create the model to forecast traffic 

throughout the evacuation period of a rapidly intensifying hurricane. Since the evacuation period in such 

events lasts for only 1 to 3 days, available data is not sufficient to train such large-scale models. To 

overcome this issue, in this study we adopt a transfer learning approach similar to what was proposed in 

(Rahman & Hasan, 2023). 

We utilize a Dynamic Graph Convolution Neural Network (DGCNN) based deep learning 

architecture to forecast network-wide evacuation traffic for Hurricane Ian’s evacuation period. We call 

our model ‘dynamic’ because it utilizes variations of travel time at each time step to understand the 

congestion propagation at the whole network. On September 28, 2022, Hurricane Ian made landfall in 

Florida. It was a rapidly intensifying hurricane, and the evacuation orders were placed just two days 

(September 26-27, 2022) before the hurricane. So, we have data of only two days from the hurricane 

evacuation period to train the model. Due to data scarcity of evacuation period, we train our model with 

regular period data (May 15– August 15, 2022) and test the model performance for evacuation period 

traffic.  

For training the model, we use data from two sources. Like previous studies, we use traffic data 

from roadway detectors. The Florida Department of Transportation (FDOT) maintains Microwave radar 



Vehicle Detection System (MVDS) detectors on the interstate roads in Florida. These detectors provide 

traffic data such as speed, volume, occupancy at high spatiotemporal resolutions (Ghorbanzadeh et al., 

2021; Rahman, Roy, et al., 2021). Moreover, to improve the accuracy of the model and capture the 

variations in evacuation traffic demand, we also use social media data as an input to the model. We use 

mobility data from ‘Data for Good at Meta’ platform which provides movement between places during 

crisis events such as hurricanes (Data for Good at Meta, 2022). The data consists of aggregated real-time 

movements of Facebook users between different administrative levels at 8-hour intervals. We develop a 

data processing tool to integrate this mobility data with traffic detector data for the entire interstate 

network of Florida.  

We develop the prediction model focusing on the hypotheses that there is a strong correlation 

between the number of evacuees (from social media data) and change in surge of traffic demand (from 

traffic detector data) in major freeways during evacuation period. The main contributions of this study 

are as follows: 

i. It extends the deep learning-based traffic prediction model developed by Rahman & 

Hasan (2023) by incorporating Facebook movement data to better capture the 

spatiotemporal dynamics of evacuation demand even for a rapidly intensifying 

hurricane;  

ii. It identifies the challenges and develops methods to process discontinuous Facebook 

movement data to reveal real-time evacuation travel demand variations; and 

iii. It demonstrates the utility of Facebook movement data to improve the accuracy of 

spatiotemporal traffic prediction model; to the best of our knowledge Facebook 

movement data was never considered in traffic prediction models. 

 

 



LITERATURE REVIEW: 

Evacuation studies used statistical patterns to analyze individual evacuation behaviors (Dow & Cutter, 

1998; DRABEK, 1992). Later, different discrete choice models were used to determine contributing 

factors to people’s evacuation decisions (Lindell et al., 2018; Murray-Tuite & Wolshon, 2013; Wong et 

al., 2018). Researchers previously focused on analyzing factors that lead to evacuation decisions (Fry & 

Binner, 2016; Hasan et al., 2011, 2013), mobilization time (Sadri et al., 2013), departure time (Pel et al., 

2012), destination choice (Mesa-Arango et al., 2013; Wilmot, 2006), evacuation mode and destination 

type (Bian et al., 2019), evacuation plan adaptation (Bian et al., 2022)  etc. Insights from evacuation 

behavior studies can also benefit evacuation traffic modeling studies. For example, behavioral studies 

can provide information about potential evacuation routes, departure time or evacuation destinations. 

Previously, several studies used mathematical or simulation-based frameworks to model evacuation 

traffic demand. For example, Chen et al. (2020) developed a simulation-based framework to predict 

evacuation traffic due to wildfire. Other studies used different optimization techniques to increase 

evacuation efficiency (Shahabi & Wilson, 2018).  

There are several limitations of evacuation behavior studies. They mainly utilized survey data 

which are expensive and may not represent the overall population. Also, survey-based studies do not 

perform well in traffic prediction models due to low sample size.  Additionally, simulation-based studies 

use several assumptions on population behavior which may not capture well actual evacuation traffic 

demand.   

Social media data can be used to overcome limitations of traditional approaches for prediction 

of evacuation traffic. They provide geotagged posts which can provide population density during 

evacuations. We can also get information about traffic congestions which can be integrated to 

transportation network for better traffic prediction. Previous studies used social media data to detect 

natural disasters (Kryvasheyeu et al., 2015) and modeling human mobility (Roy et al., 2019). Another 



study extracted evacuation behavior from Twitter for traffic prediction at the level of a road segment 

(Roy et al., 2021). Although previous studies used Twitter to analyze evacuation behavior, Twitter data 

has several limitations such as it lacks representativeness and cannot provide any meaningful variable 

that can be readily used for any traffic prediction models (Carley et al., 2016). Additionally, researchers 

used various filtering algorithms to extract information from raw Twitter data, potentially introducing 

biases in model results (Wang & Ye, 2018). 

Alternatively, population data provided by Facebook’s ‘Data for Good at Meta’ platform can be 

used to analyze population distribution during evacuation. This data provides several useful metrics such 

as ‘z-score’ that can be used to identify hot spots of population distribution during crisis events (Jia et 

al., 2020). Facebook also provides movement data which illustrates anonymous people movement 

between administrative regions during crisis events. The movement data collects movements for those 

users who turn on their device’s GPS location at 8-hour intervals. This data provides highly granular 

information of evacuation dynamics which Twitter data cannot provide. Also, movement data provides 

important insights which can be beneficial for modeling evacuation demand. This data has not been 

previously used to predict evacuation traffic. 

Recent developments of high computational power have enabled researchers to use different 

deep learning models such as Long Short-Term Memory (LSTM) model, Convolutional Neural Network 

(CNN), Graph Convolutional Neural Network (GCNN), or a hybrid approach of integrating those models 

such as CNN-LSTM or GCNN-LSTM models etc. to predict traffic state with higher accuracy (Cui et al., 

2020; Y. Li et al., 2018; Zhao et al., 2020). Jiang & Luo (2022) concluded that Graph Neural Network 

(GNN) based models are becoming popular in traffic prediction studies. Majority of these GNN models 

were developed to predict traffic in regular conditions. They cannot be used for evacuation traffic 

prediction because there is a significant difference between regular traffic and evacuation traffic 

(Rahman, Hasan, et al., 2021). Recently, Rahman & Hasan (2023) proposed a DGCN-LSTM model to 



predict evacuation traffic during Hurricane Irma considering traffic detector data. However, they didn’t 

use any social media data as an input feature that would represent evacuation demand. 

In summary, existing deep learning-based traffic prediction models considered only traffic 

detector data to predict regular period traffic states. Few studies considered network-level evacuation 

traffic dynamics by using traffic detector data. In this study, we propose a methodology that combines 

both detector data and Facebook movement data to predict evacuation traffic for a rapidly intensifying 

hurricane. The methodology can be applied to all emergency events where evacuation period lasts for a 

short period of time.  

 

DATA DESCRIPTION 

Traffic Detector Data 

In this study, we collected hourly traffic detector data from Regional Integrated Transportation 

Information System (RITIS) which provides real-time information on traffic speed, volume, occupancy at 

a high resolution (RITIS, 2022). We selected four major interstates of Florida: I-95 (northbound), I-75 

(northbound), I-4 (eastbound) and Florida’s turnpike (northbound) based on analyzing the major 

evacuation routes from previous hurricanes in Florida (Rahman, Roy, et al., 2021). We collected regular 

period traffic detector data from May 15 – August 15, 2022, and evacuation period traffic detector data 

of Hurricane Ian from September 26 – September 27, 2022. We processed the raw data to discard 

detectors with missing data, zero values etc. The details of data processing are discussed in the 

Methodology section. After data processing was done, we selected 766 detectors to construct the graph 

network. Fig. 1 shows the location of detectors after data processing.  

 

 

 



Facebook Movement Data   

We also extracted Facebook movement data from “Data for Good at Meta” platform that provides the 

number of people moving between administrative regions at 8-hour intervals during Hurricane Ian’s 

evacuation period. The data includes Facebook users’ mobility information for two separate 8-hour 

periods 3 am-11 am and 11 am-7 pm during Hurricane Ian’s evacuation period. Facebook did not 

provide any movement data for 7 pm-3 am in each day. The dataset also included baseline movement 

data between tiles, the baseline period data was collected 45 days before the movement map was first 

generated (Data for Good at Meta, 2022). The extracted data include users’ movements between small 

geospatial tiles of Bing tile level 14, where each tile is a square having length of 2.4 kilometers on each 

side. The approximate area of a tile is around 5.76 square kilometers (Maas et al., 2019). We assumed 

that most people who evacuated using freeways must travel longer distance than what was provided in 

tile-level movement data. So, we aggregated tile-level movements to county subdivision level 

movements. Details about the movement data processing are described in the Methodology section. 

Hurricane Ian made landfall on the west coast of Florida with 12 counties on the western coast 

issued mandatory evacuation orders on September 27, 2022 (Ian Evacuation, 2022). Fig. 2 shows 

evacuation zones under mandatory evacuation orders along with respective zone level during Hurricane 

Ian. Zone level A denotes a high-risk zone while zone level E indicates a low-risk zone. Majority of these 

evacuation zones were in the west coast as Hurricane Ian was predicted to hit Florida from the west 

coast. 

We compared percent increase of movement patterns in the evacuation period compared to 

the baseline period. The baseline period is 45 days before the movement data is first generated. 

Charlotte, Pinellas, Pasco, Hillsborough, Levy, Manatee, and Sarasota counties issued mandatory 

evacuation orders on September 26 (Anand et al., 2024).  All of these counties are situated in the west 

and southwest coast of Florida. We observe a significant increase of users’ movements on September 



26. Majority of these movements generated from Central Florida, west and southwest coasts of Florida. 

Fig. 3 shows the movement patterns starting at 3 am and ending at 11 am of September 26 (2 days 

before landfall time). The percentage of movement increased in west coast of Florida as residents were 

informed about the hurricane and evacuation orders were being issued. Some people also evacuated 

between western regions, so the number of movements that were destined to west coast also increased 

on September 26. This is expected as people tend to move towards more inland location so that storm 

surge or flood risk can be mitigated. We also compared the number of movements originated in 

different counties situated in the west and southwest coast of Florida and the number of movements 

ended in counties of central Florida region as shown in Fig. 4. By utilizing Facebook movement data, we 

can infer certain evacuation movement patterns. On September 26, people moved from west and 

southwest coast which include cities such as Tampa, St. Petersburg to Central Florida region. From the 

Facebook movement data, we observe increased movements in Central Florida, southeast, and west 

coast regions compared to the baseline movements.  

Fig. 5 shows movement patterns during September 27 (3 am-11 am). Evacuation orders were 

already placed for 12 counties by this time period. We also compared the number of movements 

originated from counties situated in west and southwest coast and the number of movements ended in 

counties in Central Florida region as shown in Fig. 6. We observe that the number of movements 

decreased in the west coast compared to previous day’s movements. It indicates that population in west 

coast also decreased on September 27 as people started evacuating from the region. We also found that 

higher numbers of movements ended in Central Florida region compared to the baseline period. 

Based on our analysis from Facebook movement data, we found that majority of people 

evacuated from the western region to the Central Florida region. In regular traffic condition, Interstate I-

4 Eastbound serves majority of traffic traveling from west coast to Central Florida region. To correlate 

the movement data with traffic volume data, we plot cumulative traffic volume for an eastbound 



detector of Interstate I-4; the detector is placed close to Central Florida (Fig. 7). We used cumulative 

hourly traffic flow instead of hourly traffic flow to compare whether I-4 Eastbound dealt with higher 

amount of traffic flow during the evacuation period. We chose 8-hour timeframe to match with the 8-

hour timeframe of Facebook movement data as shown in Fig. 4 and Fig. 6. We calculated mean traffic 

flow based on hour and day of the week from regular period traffic data (May 15 – August 15, 2022). 

Then we extracted cumulative baseline period flow of the selected detector. We found that during 

September 26, 2022, cumulative flow was around 25,000 vehicles and it reached around 50,000 vehicles 

on September 27, 2022. Facebook movement data shows increased movements in Central Florida 

during evacuation period, and traffic detector data also illustrates higher crisis period flow over baseline 

period flow. Additionally, many people evacuated from west coast to Central Florida through Interstate 

I-4 Eastbound, which explains increase in cumulative flow compared to baseline period cumulative flow. 

The human movement patterns from Facebook followed similar trends of the actual traffic movement 

during Hurricane Ian. 

 

METHODOLOGY 

Detector Data Processing 

Raw traffic detector data is prone to errors due to detector malfunctioning, bad weather, duplicate or 

missing entries, wrong storing, etc. During hurricane evacuation period, majority of vehicle face ‘stop 

and go’ traffic congestion in major freeways, which detectors may fail to capture (Rahman & Hasan, 

2023). To address these issues, we performed extensive data cleaning to prepare final training data for 

the deep-learning model. First, we removed detectors having missing values higher than 20% of the 

observations and zero values higher than 40% of the observations. Second, we discarded those 

detectors having traffic flow per hour per lane (vphpl) higher than 2500 (Rahman & Hasan, 2023). 



Finally, we applied multivariate iterative imputation to fill up missing values (Pedregosa et al., 2011). Fig. 

8 provides the data-processing steps of traffic detector data. 

 

Facebook Movement Data Processing 

We followed several steps to process the Facebook users’ movement data. Although the movement 

data were provided at a small geospatial tile level, we assumed that people evacuated further than a tile 

distance. So, we aggregated the movement volume in each tile’s corresponding county subdivision level. 

There were two types of movement: evacuation within a county subdivision (origin and destination of 

the movement falls within the same county subdivision) and evacuation between county subdivisions 

(origin and destination are different county subdivisions). We discarded movements occurring within 

the same subdivision considering that these movements might not use highways. Then, we assigned 

closest traffic detectors from RITIS for each movement’s origin and destination county subdivisions. We 

assigned the closest detector based on the minimum distance between the centroid of a county 

subdivision and selected 766 detectors from RITIS. Then we checked whether the origin and destination 

traffic detectors of a movement match; if so, we assumed that this movement was less likely to use any 

highways to evacuate; this was mainly reflecting the movement inside a county subdivision. For each 

detector, we aggregated the number of inflow and outflow values of Facebook users.  

The processed movement data contains aggregate inflow and outflow in 8-hour intervals. We 

disaggregated them to 1-hour movement by applying an hourly factor calculated from the traffic flow 

data. We disaggregated the movement data to match with traffic detector data which was processed at 

1-hour intervals. Eq. 1 shows the formula for estimating the hourly factor. 

 

ℎ𝑜𝑢𝑟𝑙𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 ℎ𝑜𝑢𝑟 𝑧 =  
𝐹𝑧

∑ 𝐹𝑧
8
𝑧=1

                            (1) 

 



Where 𝐹𝑧 indicates total traffic flow of all 766 detectors in 1-hour interval and 𝑧 denotes the 

hour ranging from start to end of the 8-hour interval. We used data from the whole network in the 

denominator of Eq. 1 to avoid adding any localized bias to the movement data. If we use smaller 

subsection of the network and calculate total traffic flows of the subnetwork in calculating the hourly 

factor, the Facebook movement data will be highly correlated to the traffic detector data. As a result, 

the hourly human mobility patterns will follow closely to traffic detector data, and it will create localized 

bias to the movement data. To avoid this issue, we used whole network’s traffic detector data. Then, we 

multiplied the 8-hour Facebook movement data with the hourly factor to disaggregate it to hourly 

movement data as shown in (Eq. 2). Fig. 9 shows the workflow used to process the Facebook movement 

data.  

 

ℎ𝑜𝑢𝑟𝑙𝑦 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑑𝑎𝑡𝑎 =  𝐹𝑎𝑐𝑒𝑏𝑜𝑜𝑘 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑑𝑎𝑡𝑎 ×   ℎ𝑜𝑢𝑟𝑙𝑦 𝑓𝑎𝑐𝑡𝑜𝑟                    (2) 

 

Problem Formulation 

In this study, we predict network-level evacuation traffic flow given that traffic volume and evacuation 

demand data are available at a higher spatiotemporal resolution. To solve this problem, we adopted 

similar approach of Dynamic Graph Convolution Neural Network and Long Short Term Memory (DGCN-

LSTM) model developed in (Rahman & Hasan, 2023). We used two stacked layers in our deep learning 

model. In the first layer, we used dynamic graph convolution (DGCN) operation to capture the spatial 

cross correlation among traffic state related features. In the dynamic graph convolution approach, 

weights of the graph were assigned based on changes in travel time between two detectors at each 

timestep. In the second layer, we used a LSTM unit to capture the temporal dependency among the 

input features.  



Let, 𝑋𝑡 be the input features coming from both traffic detector and Facebook movement data. 

We considered the transportation network as a graph and each traffic detector as a node. The graph is 

represented as 𝒢𝑡(𝑣, 𝑒, 𝐴𝑡) where 𝑣 is the set of all nodes (detectors), 𝑒 denotes the set of edges 

between detectors (road segment between two detectors) and 𝐴𝑡 denotes the weighted adjacency 

matrix. In our prediction problem, we learn a function ℱ that takes 𝑙 instances of input sequences 

([𝑋𝑡−𝑙 , 𝑋𝑡−𝑙+1, … . , 𝑋𝑡]) and predicts future traffic flow (𝐹𝑡+1, … . . , 𝐹𝑡+𝑝) for 𝑝 instances. We can define 

the problem via Eq. 3.  

 

ℱ([𝑋𝑡−𝑙, 𝑋𝑡−𝑙+1, … . , 𝑋𝑡]; [𝒢𝑡−𝑙(𝑣, 𝑒, 𝐴𝑡−𝑙)]) = [𝐹𝑡+1, … . . , 𝐹𝑡+𝑝]                    (3) 

 

 We used weighted adjacency matrix instead of regular adjacency matrix to make the graph 

dynamic. The weighted adjacency matrix contains information of change in travel time between 

detector pairs for each time step. The travel time depends on the speeds of two consecutive detectors 

at each timestep. Since the weighted adjacency matrix is dynamic and function of travel time, the 

prediction model can learn the network-level congestion propagation with respect to changes in travel 

time. The equation of weighted adjacency matrix 𝐴𝑡 is defined by Eq. 4. 

 

𝐴𝑡(𝑖, 𝑗) =  {
𝑡𝑡𝑡(𝑖, 𝑗), 𝑖𝑓 𝑖 ≠ 𝑗

0         𝑖𝑓 𝑖 = 𝑗
                   (4) 

 

Equation of travel time, 𝑡𝑡𝑡(𝑖, 𝑗) depends on distance (𝑑𝑖,𝑗) and speed of two consecutive 

detectors (𝑠𝑡
𝑖 , 𝑠𝑡

𝑗) at each time step as shown in Eq. 5.  

 

𝑡𝑡𝑡(𝑖, 𝑗)  =  
𝑑𝑖,𝑗

𝑠𝑡
𝑖 + 𝑠𝑡

𝑗

2

                            (5) 



The proposed framework of the DGCN-LSTM model is illustrated in Fig. 10. The model takes 𝑙 = 6 

hours of sequential data as input and predicts traffic volume for next 𝑝 = 6 hours.  

 

Transfer Learning Approach 

To train the proposed DGCN-LSTM model, a substantial amount of input data is required. During regular 

period traffic prediction task, RITIS can provide high amount of traffic flow data. As a result, the 

proposed model can predict regular period traffic efficiently. But the goal of this study is to predict 

traffic flow during evacuation period. As the evacuation process lasts for a short period of time (2 to 5 

days) during a rapidly intensifying hurricane, the DGCN-LSTM model cannot be trained with sufficient 

data. To overcome this issue, we adopted a transfer learning approach (Zhuang et al., 2021). 

We first trained the DGCN-LSTM model with regular period data. Then we applied transfer 

learning approach to predict for evacuation period. However, there is a significant difference between 

regular and evacuation period traffic. The traffic demand can increase significantly due to evacuation 

process. Additionally, evacuation period doesn’t show any regularity in traffic patterns. To overcome 

this issue, we extracted only necessary information such as transportation network connectivity and 

how traffic flow propagates along the network through all detectors by using transfer learning.  

The transfer learning approach is divided into 4 parts. The first part is the pretrained DGCN-

LSTM model with regular data. We used this model to predict evacuation period traffic. Then, the 

second part consists of a LSTM model where we trained the LSTM model with evacuation traffic state 

features along with evacuation demand related features such as distance between a detector and 

nearest evacuation zone, time left before hurricane landfall, and cumulative population placed under 

mandatory evacuation orders. The third part is called control layer which is a neural network block with 

sigmoid activation function. The control layer controls necessary information coming from the output of 

the DGCN-LSTM model via sigmoid activation function. The fourth layer is called output layer which adds 



output of second and third layer together to provide final output of evacuation period traffic. Details 

about the transfer learning approach are described in (Rahman & Hasan, 2023). Fig. 11 illustrates the 

transfer learning approach to predict evacuation period traffic. Orange boxes indicate four parts of the 

transfer learning model, blue boxes indicate input features, and the green box indicates final output of 

evacuation traffic flow. 

 

Methodology to Handle Discontinuous Facebook Movement Data 

Facebook provided daily movement data for 16 hours instead of 24 hours due to technical issues. 

Although we had traffic detector data for 24 hours, we didn’t use detector data from 7 pm to 3 am of 

next day. We selected RITIS detector dataset for following time periods: September 26 (3 am – 7 pm) 

and September 27 (3 am – 7 pm) to match them with available Facebook movement data. As a result, 

our sample size for each day reduced to 16 hours. To handle such discontinuity in the dataset, we 

adopted an indexing approach where we gave an index number for each sequential 6-hour observations 

in our dataset. Each index represents a 6-hour time series observation. For example, an index represents 

traffic state observations for 5 am, 6 am, 7 am, 8 am, 9 am, and 10 am as input features of the DGCN-

LSTM model. The next index contains time series observations of 6 hours from 6 am to 11 am.  For each 

index, we maintained the temporal sequence (6-hour time series), which means that the model takes 

inputs of 6 hours of time series data to forecast the next 6 hours of traffic flows. We did not change the 

order of the time series (6 hour) in each index when feeding input data to the model. Then, we run the 

prediction model for 10 times. In each iteration, different set of index numbers were randomly selected 

for training, validation, and testing dataset observations. As a result, in each iteration, we have different 

data for training, validation, and testing purposes. Because of the random selection, the index numbers 

did not have to be consecutive. As a result, the missing 8-hour timeframe of each day did not affect the 

model’s learning process of how traffic flow propagates in the whole network. By adopting this 



randomly selected index numbers, the model becomes more robust against the discontinuity in 

Facebook movement data. 

 

INPUT FEATURES 

We used features shown in Table 1 as input to the prediction model. We used several non-evacuation 

related features to train the prediction model for regular period. We divided 16-hour time period into 4 

different periods: Early Morning (3 am-7 am), Morning (7 am-11 am), Mid-day (11 am-3 pm), Evening (3 

pm-7 pm). Additionally, we used previous day’s mean and standard deviation of traffic flow, previous 

period’s mean and standard deviation of traffic flow, weekday/weekend, and mean traffic speed. For 

evacuation period traffic prediction, we used evacuation demand related features such as the time left 

before landfall, distance from the nearest evacuation zones for each detector, and cumulative 

population under mandatory evacuation orders in the transfer-learned DGCN-LSTM model. We collected 

declaration time of evacuation orders from different County Emergency Managements’ official Twitter 

posts and counted total number of people living in respective County’s evacuation zones to generate 

‘population under mandatory evacuation order’ variable. We also used human movement inflow and 

outflow values for each detector from the Facebook movement data. 

 

RESULTS 

Regular Period Traffic Prediction 

We implemented the prediction model by using Python’s Pytorch environment (Pytorch, 2016). For 

regular period traffic prediction, we discarded evacuation demand related features. We used 90% data 

for training, 5% for validation, and 5% data to test model performance.  To train the model, we used ADAM 

optimizer and assigned mean squared error as loss functions. To compare different models’ performance, 

we considered several loss criteria such as Root Mean Square Error (RMSE), Mean Absolute Error (MAE), 



Mean Absolute Percentage Error (MAPE), and 𝑹𝟐 value. Equations for loss criteria are provided in (Eq. 6 

– 8). Here, 𝐹𝑎𝑐𝑡𝑢𝑎𝑙,𝑖 denotes the actual traffic flow at timestep 𝑖, and 𝐹𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖 is the predicted traffic 

flow at timestep 𝑖. 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝐹𝑎𝑐𝑡𝑢𝑎𝑙,𝑖 − 𝐹𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖)

2𝑁
𝑖=1                      (6) 

 

𝑀𝐴𝐸 =
1

𝑁
 ∑ |𝐹𝑎𝑐𝑡𝑢𝑎𝑙,𝑖 − 𝐹𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖|𝑁

𝑖=1                     (7) 

 

𝑀𝐴𝑃𝐸 =
1

𝑁
 ∑ |

𝐹𝑎𝑐𝑡𝑢𝑎𝑙,𝑖−𝐹𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖

𝐹𝑎𝑐𝑡𝑢𝑎𝑙,𝑖
|𝑁

𝑖=1                     (8) 

  

 For regular period traffic prediction, we compared the performance of proposed DGCN-LSTM 

model against several baseline models such as LSTM, CNN-LSTM, and GCN-LSTM. We first trained all 

models without adding the Facebook movement data. All models achieved similar 𝑅2 values (95%). 

DGCN-LSTM model achieved lowest RMSE values of 356.47 and MAPE of 8.74 compared to other 

baseline models. Then, we extracted baseline movement by considering day of the week and hour to 

generate inflow and outflow values for all detectors in the regular period. After adding Facebook 

baseline movement data, the RMSE values further decreased for all models. DGCN-LSTM model 

outperformed other baseline models with the lowest RMSE values of 319.91 and MAPE of 7.46. Table 2 

presents average model performances after running 10 times and impact of Facebook movement data 

on prediction performance. DGCN-LSTM outperformed other baseline models during regular period, and 

addition of Facebook movement data increased all models’ performances. 

 

 



Evacuation Period Traffic Prediction 

In case for evacuation period traffic prediction, we first used only non-evacuation related features to 

predict evacuation traffic. Like regular period traffic prediction, we compared the effect of adding 

Facebook movement data on all models’ performances. We used 80% data for training, 10% for 

validation and 10% data to test model performance. We used ADAM optimizer and mean squared error 

as loss function. Table 3 shows average model performances after running 10 times during evacuation 

period. As shown in Table 3, all models performed poorly. However, the result is intuitive since regular 

period traffic patterns differ significantly from evacuation period traffic.  RMSE values for all models 

were more than 1000 even after adding the Facebook movement data. However, the DGCN-LSTM model 

still performed better than other models in this scenario with RMSE value of 1084.36 and 𝑅2 value of 

0.55. Moreover, after adding the Facebook data, overall performance of all models slightly improved. 

The RMSE value of the LSTM model decreased to 1325.69 from 1328.72; the 𝑅2 value of LSTM also 

increased from 32% to 33%. The RMSE value of CNN-LSTM model decreased from 1180.63 to 1134.51, 

and 𝑅2 value also increased from 46% to 50%. Similar to previous cases, DGCN-LSTM model trained with 

Facebook movement data outperformed other models with RMSE value of 1053.24 and 𝑅2 value of 

0.57.  

Next, to improve the DGCN-LSTM model’s predictability during evacuation period, we applied a 

transfer learning approach proposed by (Rahman & Hasan, 2023). We used a pretrained DGCN-LSTM 

model by using evacuation period traffic state as input. The pretrained model contained information on 

how the detectors were connected in the transportation network and the traffic flows between 

different detectors. Additionally, we trained another neural network with evacuation demand related 

features to capture temporal dependency of evacuation traffic. In this modeling architecture, a control 

layer is used, to control relevant information (such as network connectively, flow propagation pattern 

etc.,) transfer from regular period traffic to evacuation period traffic. By adopting the transfer learning 



technique, the RMSE values of DGCN-LSTM model decreased to 514.20 when Facebook data were not 

used, and the 𝑅2 value increased from 0.55 to 0.89 as given in Table 3. After adding Facebook 

movement data to the transfer-learned DGCN-LSTM model, the RMSE value further reduced to 393.28 

and the 𝑅2 value increased from 0.57 to 0.93. The transfer-learned DGCN-LSTM model trained with 

Facebook data outperformed other baseline models. Table 3 illustrates the benefits of using transfer 

learning approach along with Facebook movement data to predict evacuation period traffic during a 

rapidly intensifying hurricane with higher accuracy. 

 

DISCUSSIONS 

In the study, we present a deep learning model to predict traffic during hurricane evacuation. We 

integrate both traffic detector data and Facebook movement data to the proposed DGCN-LSTM 

architecture. Both regular period and evacuation period traffic predictions achieve higher accuracy 

when Facebook movement data are used. After applying the transfer learning approach, the proposed 

model predicts evacuation period traffic up to 6 hours in advance with 93% accuracy. Fig. 12 shows the 

correlation between actual traffic and predicted traffic of transfer learned DGCN-LSTM model when 

Facebook movement data is not utilized. The model achieves 89% accuracy and RMSE value of 514.20. 

When Facebook movement data are used, the transfer-learned DGCN-LSTM model learns the 

evacuation period traffic patterns very well as actual and predicted traffic almost matched with each 

other. Fig. 13 shows the correlation between actual and predicted traffic flow when Facebook 

movement data are utilized.    

We also plot the detector wise variations of actual and predicted traffic flows without Facebook 

movement data (see Fig. 14); the symmetric mean absolute percentage error (SMAPE) values for 

different prediction horizons remain less than 13%. When Facebook movement data are used (see Fig. 

15), the SMAPE values for different prediction horizons decrease to less than 6%. It indicates that the 



model can better capture the spatiotemporal patterns of evacuation demand when Facebook 

movement data are used along with traffic detector data. The equation of SMAPE is provided in (Eq. 9). 

 

𝑆𝑀𝐴𝑃𝐸 =
1

𝑁
 ∑

|𝐹𝑎𝑐𝑡𝑢𝑎𝑙,𝑖 − 𝐹𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖|

(|𝐹𝑎𝑐𝑡𝑢𝑎𝑙,𝑖 |+ |𝐹𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖 |)/2
𝑁
𝑖=1                     (9) 

 

The transfer-learned DGCN-LSTM model can also be used to visualize the network-wide 

congestion propagation. Fig. 16 shows the actual traffic flow from RITIS from September 26, 4 am – 9 

am. There was heavy traffic flow in I-75, I-4, and I-95 interstates. During this time, several counties 

ordered evacuation orders which caused higher traffic flow in I-75 and I-4 interstates. The prediction 

model captures the network-wide traffic flow very well for different prediction horizons as shown in Fig. 

17. The visualization capabilities of the DGCN-LSTM model will help evacuation traffic managers to take 

proactive decisions in real time by providing early information of how future traffic congestion may look 

like in the transportation network. 

The proposed model provides useful information regarding traffic flow patterns during 

hurricane evacuations, and it aids for developing an effective evacuation planning and decision-making 

system. The prediction capabilities of the developed model enable emergency managers to forecast 

congestion hotspots and traffic patterns, allowing for more prompt decisions and activation of 

strategies. With this foresight, authorities can take proactive steps to reduce traffic congestion, optimize 

evacuation preparations, and ensure inhabitants' safety and well-being in hurricane-prone areas.  

Because the model can forecast traffic conditions ahead of time, evacuation traffic managers 

are better equipped to anticipate surges in traffic demand and modify evacuation plans as 

circumstances change such as change of hurricane path/intensity or issuance of new evacuation orders. 

Traffic managers can plan for activating traffic management strategies such as emergency shoulder use 



or contra flow based on anticipated traffic condition. They can also decide the timing and duration of 

such traffic management strategies.    

For emergency managers, network-level traffic flow prediction can allow improving evacuation 

procedures. They can improve evacuation procedure by strategically allocating resources to areas that 

are most in need. For instance, emergency managers can identify potential congestion points in 

advance. They can reroute all vehicles used by emergency response teams to avoid these congestion-

prone areas and reach critical locations without delay. This can be done by accurately forecasting traffic 

flow patterns in the road network.  Furthermore, the proposed framework can mitigate several risks 

associated with an evacuation plan that can hinder timely evacuation process. For example, people may 

not access evacuation routes due to heavy traffic on the network. Traffic planners can identify capacity 

issues of current evacuation routes and propose more effective evacuation routes for future 

evacuations.  

The proposed framework has the potential to significantly increase the resilience and 

effectiveness of evacuation traffic management in hurricane-prone regions. It improves the predictive 

capacities to forecast evacuation traffic flow, allowing for proactive decision-making based on real-time 

information.  

 

CONCLUSIONS 

In this study, we use a deep learning-based traffic prediction model named DGCN-LSTM to predict traffic 

during a rapidly intensifying hurricane. The proposed model utilizes traffic detector data and Facebook 

movement data to predict traffic up to 6 hours in advance. The movement data provides spatio-

temporal movement distributions at a high spatial resolution. Evacuation movements increased in 

Central Florida during Hurricane Ian’s evacuation period. Movement data also shows that people 

evacuated from Florida’s west coast to the Central Florida region through Interstate I-4 (Eastbound). The 



movement data contains information regarding increased human movement through the transportation 

network, and it is representative of actual traffic flow in the network. The performance of the traffic 

prediction model significantly improves by incorporating the information from Facebook movement 

data. It increases the performance of the transfer-learned DGCN-LSTM model from R2 = 0.89 without 

using Facebook data to R2 = 0.93 when Facebook data is used.  

The study also deals with the challenge of data unavailability and illustrates how to develop a 

traffic prediction model by incorporating discontinuous Facebook movement data via randomly selected 

index numbers. Traffic management agencies can use the data-driven model trained with Facebook 

movement data to predict traffic congestions in advance, take proactive measures to reduce traffic 

delays and improve the efficiency of evacuation process. As the model incorporates real-time detector 

and social media data, agencies can also implement it to identify vulnerable zones with high congestion 

probabilities earlier when hurricane unfolds in real time. 

 There are several limitations of this study. Due to data scarcity, we only use 16 hours of daily 

movement data. So, the approach needs further investigation with additional data from multiple 

hurricanes to develop a more generalized model and improve the robustness of the model against 

sudden demand surge. We also use cumulative population under mandatory evacuation orders as input 

features. The model performance should be evaluated if actual population under mandatory evacuation 

orders can be obtained to have more realistic evacuation related features. Additionally, Florida 

Department of Transportation (FDOT) implemented emergency shoulder use or ESU (Florida 

Department of Transportation, 2022) on the eastbound direction of I-4 (from Mile Marker 3 to Mile 

Marker 63) starting at 5:20 PM on 9/27/2022 and ending at 1:14 AM on 9/28/2022 (O. Faruk, personal 

communication, June 2, 2024). This time period overlaps with a small portion of our training data (1 

hour 40 minutes out of 32 hours). Traffic detectors are not designed to record vehicles running on road-

side shoulders, these vehicles are not included in our dataset. Other interstates and westbound 



direction of I-4 did not have flows on shoulders. It is a data-related issue, and the developed framework 

can also predict vehicles running on shoulders if proper data can be obtained from traffic detectors. 
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FIGURE CAPTION LIST:  

• Fig. 1. Selected detector distribution from RITIS 

• Fig. 2. Mandatory evacuation zones during Hurricane Ian 

• Fig. 3. (Left) Origins of movements; (right) destinations of movements during September 26 

(3am-11am)   

• Fig. 4. (Left) Origins of movements from western region of Florida; (right) destinations of 

movements towards central Florida region during September 26 (3 am-11 am)   

• Fig. 5. (Left) Origins of movements; (right) destinations of movements during September 27 

(3am-11am) 

• Fig. 6. (Left) Origins of movements from western region of Florida; (right) destinations of 

movements towards central Florida region during September 27 (3 am-11 am)   

• Fig. 7. Eastbound cumulative traffic flow on an I-4 detector 

• Fig. 8. Processing of traffic detector data 

• Fig. 9. Processing of Facebook movement data  

• Fig. 10. Framework of the DGCN-LSTM model 

• Fig. 11. Transfer learning approach for evacuation period traffic prediction  

• Fig. 12. Correlation between actual traffic and predicted traffic for 6-hour time horizon (when 

Facebook movement data is not used) 

• Fig. 13. Correlation between actual traffic and predicted traffic for 6-hour time horizon (when 

Facebook movement data is used) 

• Fig. 14. Detector wise actual flow vs. predicted flow with SMAPE values (without Facebook 

movement data) 

• Fig. 15. Detector wise actual flow vs. predicted flow with SMAPE values (with Facebook 

movement data) 



• Fig. 16. Congestion propagation visualization of actual traffic flow (vertical color bar denotes 

traffic flow) 

• Fig. 17. Congestion propagation visualization of predicted traffic flow (vertical color bar denotes 

traffic flow) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



TABLES: 

Table 1. Input features 

Non-evacuation related features Evacuation demand related 

features 

Facebook movement 

features 

Detector Id Time left before landfall Human inflow to a 

traffic detector 

Time periods (early morning, 

morning, mid-day, evening) 

Cumulative population under 

mandatory evacuation orders 

Human outflow from a 

traffic detector 

Weekday or Weekend Distance from nearest evacuation 

zones 

- 

Traffic flow at current time t - - 

Previous day mean traffic flow - - 

Previous period mean traffic flow - - 

Previous day standard deviation of 

traffic flow 

- - 

Previous period standard deviation 

of traffic flow 

- - 

Mean speed over an hour - - 

 

 

 

 

 

 

 

 

 

 

 



Table 2. Model performances for regular period traffic prediction 

 
Without Facebook Data With Facebook Data 

Model RMSE MAE MAPE R2 RMSE MAE MAPE R2 

LSTM 374.76 227.58 9.53 0.95 343.29 196.24 8.45 0.96 

GCN-

LSTM 

374.73 220.16 9.28 0.95 343.24 195.68 8.08 0.96 

CNN-

LSTM 

368.37 217.03 8.84 0.95 339.02 194.79 8.06 0.96 

DGCN-

LSTM 

356.47 215.63 8.74 0.95 319.91 186.19 7.46 0.96 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3. Model performances for evacuation period traffic prediction (minimum flow 50.0 and 

maximum flow 9977.45) 

 
Without Facebook Data With Facebook Data 

Model RMSE MAE MAPE R2 RMSE MAE MAPE R2 

LSTM 1328.72 962.72 93.08 0.32 1325.69 949.17 92.43 0.33 

GCN-

LSTM 

1183.41 802.02 92.50 0.45 1155.02 758.32 91.75 0.48 

CNN-

LSTM 

1180.63 798.67 92.15 0.46 1134.51 756.05 88.98 0.50 

DGCN-

LSTM 

1084.36 746.18 82.94 0.55 1053.24 748.48 73.51 0.57 

DGCN-

LSTM 

(transfer 

learned) 

514.20 328.98 23.84 0.89 393.98 276.32 13.49 0.93 

 

 

 

 

 

 

 



 

Fig. 1. Selected detector distribution from RITIS 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. 2. Mandatory evacuation zones during Hurricane Ian 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

Fig. 3. (Left) Origins of movements; (right) destinations of movements during September 26 (3 am-11 

am)   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Fig. 4. (Left) Origins of movements from western region of Florida; (right) destinations of movements 

towards central Florida region during September 26 (3 am-11 am)   

 

 

 

 

 

 

 

 

 



  

Fig. 5. (Left) Origins of movements; (right) destinations of movements during September 27 (3 am-11 

am) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Fig. 6. (Left) Origins of movements from western region of Florida; (right) destinations of movements 

towards central Florida region during September 27 (3 am-11 am)   

 

 

 

 

 

 



  

Fig. 7. Eastbound cumulative traffic flow on an I-4 detector 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. 8. Processing of traffic detector data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. 9. Processing of Facebook movement data  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. 10. Framework of the DGCN-LSTM model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. 11. Transfer learning approach for evacuation period traffic prediction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. 12. Correlation between actual traffic and predicted traffic for 6-hour time horizon (when Facebook 

movement data is not used) 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. 13. Correlation between actual traffic and predicted traffic for 6-hour time horizon (when Facebook 

movement data is used) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. 14. Detector wise actual flow vs. predicted flow with SMAPE values (without Facebook movement 

data) 

 

 

 

 

 

 

 



 

Fig. 15. Detector wise actual flow vs. predicted flow with SMAPE values (with Facebook movement data) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

   

   

Fig. 16. Congestion propagation visualization of actual traffic flow (vertical color bar denotes traffic flow) 



 
 

   

   

Fig. 17. Congestion propagation visualization of predicted traffic flow (vertical color bar denotes traffic 0 

flow) 1 
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