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Abstract

Predicting a patient’s length of stay (LOS) or the units they are likely
to visit during the course of the stay can be a vital source of in-
formation for healthcare administrators towards effective resource
planning. However, predicting these parameters can be challenging
due to the lack of sufficient information at admission time, and
its potential dependence on inherent practices within the hospital.
Prior efforts have focused predominantly on predicting LOS, stat-
ically at admission and in isolation. In this paper, we propose an
adaptive multi-task learning approach to predict a patient’s next
unit and the expected length (in days) of the remaining stay. Our
approach is capable of capturing any latent relationship that may
exist between these two variables. Experimental results on a large
real-world in-patient database show that our multi-task model out-
performs its single-task counterpart and other classical machine
learning models. Our study also demonstrates that: a) it is possible
to achieve high prediction scores (e.g., mean absolute error of 2.0
days for remaining LOS, and over 80% accuracy for next unit); and
b) such high prediction accuracy can be realized early on—in most
cases within the first two days of a patient’s stay.
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1 Introduction

Predicting how long a patient will stay in the hospital (i.e., time)
and where within the hospital a patient will spend that time (i.e.,
space) are two important decision variables that could help a hospi-
tal administrator make effective resource planning and allocation
decisions. In particular, these predictions can help in hospital bed
management and staffing decisions [6, 27], real-time discharge pri-
oritization [8], and estimation of the overall patient flow toward
better patient outcomes [31].

Prior works in prediction have largely focused on predicting
the Length of Stay (LOS). Earlier efforts used arithmetic models
such as mean or median value as proxy measure for LOS[18, 27, 31].
But since LOS can vary greatly depending on a patient’s condi-
tion, simpler approaches that rely on mean/median measures are
inadequate. Therefore alternative approaches using statistical meth-
ods (e.g., linear regression) have been used in several studies [19].
Recent advancement in machine learning and more specifically,
deep learning methods have provided a new class of prediction ap-
proaches. These approaches have the capability of providing better
prediction performance because of their inherent ability to cap-
ture non-linear and complex relationships within the data [24, 31].
However these approaches also need large amounts of data for train-
ing. Fortunately, with the pervasive adoption of Electronic Health
Records (EHRs) in healthcare systems, deep learning approaches
are being increasingly used for personalized clinical predictions
[30-32].

Despite increasing data availability, LOS prediction still remains
challenging for several reasons: First, for these predictions to be
valuable, they need to be both accurate enough and made available
early enough during a patient’s stay in a hospital. The desirable
thresholds for accuracy or for the timing of availability could vary
relative to the overall duration of a patient’s stay or the complex-
ity of treatments (and thereby its implications on resources). The
higher the prediction accuracy and the earlier such accurate pre-
diction is made available, the more valuable it is for the hospital
administrators. However, accurately predicting LOS during the
early phases of a patient’ admission is challenging due to potential
inadequate information available at that phase [13].

Secondly, a patient’s LOS (time) may not be just a function of
the patient’s health condition (diseased or pre-existing). There is
evidence to suggest that LOS may also be impacted by the space, i.e.,
the hospital’s environment in which the patient is treated during
the stay. For instance, in a preliminary study with a large hospital
in-patient database—the Duke Antimicrobial Stewardship Outreach
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(b) Unit transfers from Operating room/suite

Figure 1: Part (a) shows the variability in Length of Stay (LOS) for admissions in different units. Secondly, as a patient can visit
multiple units during the stay, part (b) shows the variability in unit-to-unit transfer rates. Transfer probabilities are shown
from Operating Room/Suite as the source unit and all other units as destination units. The thickness of an arc indicates the
probability of that transfer. All results were generated for patients admitted in the month of June 2021 in one of the hospitals
(unidentified) in the Duke Antimicrobial Stewardship Outreach Network (DASON) clinical database.

Network (DASON) clinical database [12]—we observed significant
LOS divergence among hospital units (Figure 1a).

Furthermore, a single patient may transfer in and out of units
and could therefore spend the duration at potentially multiple units
during the stay. And such transfer rates are not necessarily uniform.
For instance, as shown in the plot of Figure 1b, if a patient is cur-
rently in the Operating Room/Suite unit, then chances are higher
that the patient would be either discharged (exit) or transferred
to surgical ward, with transfers to other units also probable. This
makes the predictability of the next unit (and thereby its implication
on remaining days of LOS) more challenging to predict. But if the
patient is at a different ward like one of the maternity wards (not
shown in the plot), subsequent transfers become more predictable.

The above observations emphasize the need to not treat LOS
prediction in isolation. Instead it becomes important to predict both
LOS as well as the next likely unit in tandem during the course of
a patient’s stay. The limitation of all prior works in this research
space is that they view LOS prediction in isolation. Furthermore,
there exist no work in predicting the next unit for a patient to the
best of our knowledge. In fact, a majority of prior works study
patients within a specific facility or patients having a particular
disease condition[3, 6]—thereby limiting the scope of prediction.
While this potentially simplifies the model settings toward easier
prediction for specific scenarios, it also means facility- or disease-
specific models (where data are available) with little chance of
success when used in more generalized settings.

1.1 Contributions

The main contribution of this paper is a new multi-task learning
model to dynamically predict a patient’s unit for the next time step
(henceforth, we refer to this as the “next unit”) and the remaining

length of stay (henceforth we refer to this as “remaining LOS”).
Multi-task learning represent a class of deep learning approaches
that learn to predict multiple (two or more) variables (or tasks)
simultaneously. Studies have shown improved model performance
when multiple related tasks are learned together as well as less
sensitivity to data noise[28, 29], including in clinical settings [14,
17, 33]. To the best of our knowledge, our work represents the first
in predicting these two related outcomes together. Note that these
two output variables (next unit and remaining LOS) correspond to
two different types of prediction tasks—i.e., next unit is a label and
is therefore a classification task, whereas remaining LOS (in days)
is a regression task.

From a methodological standpoint, our model combines an artifi-
cial neural network (ANN) in addition to a recurrent neural network
(RNN). The ANN takes input from the discrete features of a patient
available at the time of prediction, whereas the RNN handles the
unit transfer sequence during the patient’s stay at the hospital. Our
model is generic in that it is a hospital-wide trained model that
can be used for predicting the two tasks for all types of patients
admitted in any unit of the hospital. This generality also means
that the prediction for units or patient classes with less amount
of data can benefit from other units or patient classes where more
data are available.

We evaluated our model on a large real-world in-patient data
set containing 255,389 admission records that span over six years
(January 2016 through December 2021), from the DASON data-
base [12]. Among all the past related works reported, this is one
of the largest in-patient data that has been used in training for
LOS. Experimental results show that our new multi-tasking model
outperforms its single task counterpart as well as classic machine
learning models such as Random Forest, XGBoost and K-nearest
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neighbor. Our model achieves high prediction scores (e.g., mean
absolute error around 2.1 in days and accuracy of 80% or above) on
predicting a patient’s LOS and next unit respectively; and b) with
sufficient data this high prediction accuracy can be realized early
on—in most cases within the first two days of a patient’s stay.

Our model is publicly available for broader community use at
https://github.com/madhobi/multitask_unit_and_days. The model
is intended to be used in real-time (i.e., on a daily basis) by a hospital
administrator, for any current patient admitted at the hospital. With
each passing day, the latest information on the unit sequence seen
so far as well as all patient attributes (demographics, disease codes,
medications) are input to the model, and the output is the prediction
of the two variables (next unit and remaining LOS). This approach
makes the model adaptive in nature.

The rest of the paper is organized as follows. Section 2 provides
a brief overview of the relevant prior works. Section 3 presents the
model design and approach. Section 4 presents the detailed experi-
mental evaluation and results of our approach. Finally, Section 5
concludes the paper with a discussion of future research directions.

2 Related Work

There has been an extensive body of works to predict Length of
Stay (LOS), as reviewed in [31]. These include both statistical and
machine learning approaches. However, a majority of these works
are for patients with a specific disease condition or admitted into a
specific hospital unit [6].

On predicting LOS as a classification task, ensemble methods
have shown significant promise [6, 19, 31]. Some of these efforts
predict LOS as either as a short stay (< 7 days) or a long stay (>=7
days) [4, 10]. Several past efforts also focus on specific diseases or
conditions. For instance, the work by Alsinglawi et al. is for patients
with lung cancer [4]; whereas Chrusciel et al. use the unstructured
written clinical notes from the Emergency Department admissions
[10]. Both studies note best results with Random Forests (RF).

Several studies also exist that predict LOS as a continuous vari-
able. Baek et al. [7] use an exploratory data analysis approach
that internally uses linear regression to find statistically signifi-
cant variables that are associated with LOS. Ricciardi et al. [26]
explored multiple machine learning models (RF, multiple linear
regression, radial bias framework, Support Vector Machine (SVM))
for a data set of patients with femur fracture. Bacchi et al. [5] use
natural language processing with neural networks (artificial and
Convolutional neural nets) on clinical notes in general medical
unit and acute medical unit. Their approach combines free text and
structured data to improve LOS prediction results. Kadri et al. [16]
developed a Generative Adversarial Network (GAN) based model
for patients in pediatric Emergency Department.

Approaches that explored the use of multi-task learning for
predicting healthcare related outcomes are relatively recent. Rasmy
et al. [25] present a deep learning model to predict three outcomes
including in-hospital mortality, need for mechanical ventilation
and prolonged hospital stay (more than a week). A deep attention
based model was proposed by Harerimana et al. [13] to predict LOS
and in-hospital mortality at admission time. But in this work, it is
noted that predictions made in early phase of admission can result
in distorted prediction due to lack of necessary information. A Long
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Short-Term Memory (LSTM) based multi-task learning model was
proposed by Ali et al. [3] using physical activity sensory data. This
work uses sensor information as time series data and predicts two
outcomes—LOS continuous outcome, and patients readmission as
binary outcome. But their sample set consists of only 47 patients
which is not enough to draw a conclusion for broader group of
patients.

Common limitations of the existing works are lack of general-
izability and constrained sample set. Since most of these models
are specific to particular patient groups or hospital ward settings,
the models are not necessarily transferable. Furthermore, none of
the previous works are for predicting a patient’s unit transfer se-
quence. As noted in Figure 1a, the unit information where a patient
is staying is likely to also influence the length of stay. The model
proposed in this paper (described in Section 3), overcomes these
challenges. We propose a multi-task learning model that internally
uses a recurrent neural network to predict a patient’s next unit label
(for day i + 1) as well as the patient’s remaining LOS (measured in
days) at the hospital.

3 Methodology

In this section, we discuss about the problem modeling and our so-
lution approach. We start with our analysis and observations while
creating the inputs and outputs from EHR data, and subsequently
present our model design.

3.1 Data Preparation

Our EHR data source for this work is the DASON database [12],
which comprises of a large collection of patient admission records
for several years, across the Southeastern US regional hospital
network. While tracking inpatient records, we encountered two
types of data. There are some patient-specific attributes that remain
static throughout a patient’s stay (e.g., age, gender, service requested
at admission time). Meanwhile, some attributes are temporal, i.e.,
changing over the time of a given patient’s stay that encompasses
daily data on the patient’s treatment including the units they visit,
medications taken, procedures underwent, etc.

On preparation of the input features, we experimented with a
number of approaches. We experimented by creating input data
sets where every variable is a discrete feature. Classic machine
learning models and also artificial neural network models need
the data to be in this format and this gave us a baseline prediction
measure. To bring the time aspect, we later shifted our approach to
sequence modeling. We experimented with a number variants on
building sequence features to capture the effect of temporality in
our prediction tasks. We first generated sequences by putting all
the information of a patient in a sequence. Basically, we took the
patient’s unit transfer history, the list of medications along with
their route categories (i.e. oral or intravenous or rectal etc.), the
disease codes and other static attributes of the patient and append
them all-together. But this resulted in very long sequences and
processing long sequences using RNN can often lead to declined
performance [23] as we also noticed in our evaluation. Furthermore,
we observed that the unit transfer sequence helped in gaining
improved performance on both of the prediction tasks. On the
other hand, for the medications history, only keeping the records of
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current day medications suffices to generate similar performance
as keeping the whole sequence of medications from the initial
day. This led us to prepare a multi-modal input sets where one set
contains the discrete features for each day and another set contains
the sequence of units visited.

Since a patient can change multiple units in a day, this made our
time step to be of variable length. It starts from 0 when a patient gets
admitted, and in default settings, it is increased each day of patients
stay (a “patient day” starts from 12.00am and ends at 11.59pm of
that same day). Time step also increases if a patient moves from
one unit to another within a day.

On the event of a time step increase, all the information of the
patient gets updated and the model generates revised predictions
based on the current information. The model continues to dynami-
cally adjust the predictions until the patient gets discharged.
Problem formulation: Specifically, our problem has the following
input-output requirements.

The input has the following features:

o Discrete features: These are the discrete patient information
on each time step that includes the demographics (age and
gender), comorbidity index, admission service name, disease
diagnostic code, diagnosis related group (DRG) weight, daily
medications and the medication routes.

o Sequence feature: This include the sequence of units (each
identified by a unit label) visited by a patient on each day of
their stay.

Section 3.2 describes the input data in more detail and Section 3.3
describes feature engineering.

Using the above input features, our prediction problem is de-
fined as follows. For each patient, we accumulate the information
available till time step i and predict two variables for the next time
step (i +1):

o (Next unit) the most likely next unit label that could also
include the current unit at i, which is a classification task;
and

o (Remaining LOS) the remaining length of stay, which is a
regression task.

3.2 Data Statistics

Our data set contains de-identified electronic health records from
one academic medical center in the Southeastern United States. We
extracted the admission records between January 2016 to December
2021 from Duke Antimicrobial Stewardship Outreach Network
(DASON) database and Duke Health System [12, 22]. There are 34
hospital units and 255, 389 admission records that span six years
(January 2016 through December 2021). We partitioned the dataset
into pre-COVID (2016-2019) and post-COVID (2020-2021) phases
to account for the impact of the pandemic. Table 1 shows some
basic statistics of our data set. We also analyzed the distribution of
LOS values based on units (shown in Figure 1a) or patient types.
Figure 2 shows the distribution of LOS values based on whether it is
an adult or pediatric patient. The plots show a higher variability by
the unit, whereas the distribution pattern is similar across adult and
pediatric patients with the LOS values occupying to wider range
(longer tail) with adults.

Madhobi et al.

Table 1: Input statistics for the DASON data set. (For more
details, please see Supplementary Table 1.)

Attributes Adult Pediatric
(ages 19-90) | (ages 0-18)

No. admissions 209,694 45,695

Gender Female 113,152 22,228

Male 96,542 23,467
Min 1 1
. Max 20 20
LOS (in days) Mean P B
Median 5 3
No. units visited Min ! !
per admission Max 7 6
Mean 2 2
Median 2 2

Distribution of Length of Stay

Pedaic —JI———— ¢ ¢ 4 ¢ ¢ 4 ¢ 40 ¢ o0

Patient Category
50000 Pediatric
s Adult
40000
£ 30000
Q
Q
20000
10000 II

25 50 75 10.0 125 15.0 17.5 20.0
Length of Stay

Figure 2: Distributions of Length of Stay for adult and pedi-
atric patients

3.3 Feature Engineering

We tried to keep data filtering at minimum for generalizability.
In this study, we consider only “in-patient” admission records, i.e.
patients who stayed in the hospital for at least one day. We set the
cutoff LOS value to 20 days as there are less than 5% records of
patients who stayed longer than that.

Most of the features in our data are categorical values e.g., pa-
tient demographics (gender and race), medicine id, medicine route,
admission service, unit labels and dignostic codes. The numeri-
cal features include patients age, Elixhauser comorbidity score,
DRG weight [1] and number of diagnoses. We binned patient’s
age into categories. The age range for pediatric patients is 0 to
18, which was binned as: [0, 1) for newborn, [1, 12] for children,
and (12, 18] for teens. The adult patient ages ranged from 18 to 90,
which were binned into seven categories identified by age intervals:
(18, 301,(30, 40],(40, 50],(50, 60],(60, 701],(70, 80],and (80, 90]. The
diagnostic codes are in the form of tenth international classification
of diseases (ICD-10). There are 27,738 distinct diagnostic codes in
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the dataset. One-hot-encoding for this variable is not feasible as it
results in extremely sparse data. We labeled the codes into 24 super
categories following the standard ICD-10 derivation [2].

Single-task vs. Multi-task Model

Patient Data

1
Patient Data Patient Data

Feature Feature i Feature
Extraction Extraction Extraction
¢ Neural 'L Neural Neural
Network Network Network
Layers Layers Layers

v v P

5 !

[ Task2 ] [ Task1 ][ Task2 |
Next Unit Remaining Next Unit ~ Remaining
Prediction Days Prediction Days

Prediction Prediction

(a) Conceptual comparison of single-task vs. multi-task models

Model Architecture

Discrete features Sequence feature (until time step i)

Xo X4 Xs.1 up Uy u; Input layer

Normalization \4
yer [ T T T [T T 171

Embedding layer

L2 2 v
DTG} R e

GRU output

Fully connected l
layers

Concatenated layer

Dropout layer

connected layer

| Task specific fully

T ]

Qutput next unit label

Output layer

Output remaining LOS

(b) Proposed model architecture

Figure 3: A high-level conceptual comparison of two single-
task models vs one multi-task model is illustrated in 3a. The
overall architecture of our proposed model is shown in 3b.
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3.4 Our Multi-task Model for Predicting the
Next Unit and Remaining LOS

We used gated recurrent neural network (GRU) based deep learning
model that has been proven to be effective in recent research litera-
ture for learning from temporal relationship [11]. Our input layer
consists of two parts: (i) the discrete features, and (ii) the sequence
feature with the unit labels.

For each time step i, we denote the set of s discrete features

associated with each patient record as a vector xt: [xg, %0, ... Xs—1].
As for the temporal feature, the unit labels until that time step is
cumulatively appended and we denote this as ut: [ug, ug, u, ... ui].
For the purpose of training, this implies that any admission record
that has ¢ time steps in total, will contribute ¢ instances of input as
{x%,u'}. We use n to denote the total number of admission records
in the training data, and the corresponding discrete and sequence
feature set as X, and Uy respectively.
Model design and architecture: Given the training set of {X,,, U, }
for n admissions, the goal is to train a neural network so that it
learns how to predict the two desired output variables, namely
the next unit and remaining LOS for a patient. One approach is
to view this as two separate prediction tasks, which we refer to
as the single task setting. However, as observed earlier, the unit
prediction problem is also expected to be related to LOS prediction.
Therefore, in our approach, we treat this as a multi-task learning
problem. Figure 3a illustrates the conceptual difference between
these two approaches.

In Figure 3b, we show the detailed view of our multi-task learning
model.

The discrete features (x) are passed to a normalization layer and
then they are fed to a fully connected layer.

The temporal features (ul), on the other hand, get accumulated at
each time step and go through an embedding layer. The embedding
layer is a deep learning alternative to label encoding and have been
used in many clinical studies involving health records[9, 20, 21].
The outputs from the embedding layer are fed to a sequence of GRU
layers, which in turn passes its output to another fully connected
layer. Another alternative architecture for sequence modeling is
Long Short-Term Memory (LSTM) which is computationally more
expensive than GRU. It has been shown in study that the perfor-
mance of GRU vs LSTM depends on particular dataset and use cases
[11, 15]. However, we experimented with both of them and decided
to use GRU because of the better prediction performance and less
training time in our dataset. The outputs from the dense layers are
concatenated and further passed to task specific dense layers. In
our experiments (Section 4), we evaluated and compared both the
single-task and multi-task models. We will see that the results show
improved performance when these two tasks are learned together
under the multi-task learning framework.

3.5 Software Availability

The source code of our model implementation is publicly available
as open source at the GitHub site: https://github.com/madhobi/
multitask_unit_and_days for the broader research community to
evaluate and use our implementations. Note that we cannot make
the data sets from the DASON public due to privacy restrictions.
To ensure code use, we have provided toy example training inputs.
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4 Results and Discussions

In this section, we present the experimental results of our pro-
posed RNN-based multi-task model (“RNN-mtl”) and compare it
against its single-task component (“RNN-stl”) and other classical
machine learning/deep learning models. More specifically, we com-
pare against Random Forest (RF), K-nearest neighbor (KNN) and
XGBoost.

We also compare the results of the multitask model with its equiv-
alent single task models having the same configurations for hidden
layers and drop out set up. First, we will discuss the experimental
setup and then we will move our discussion to the evaluation of
the prediction tasks i.e. predicting days remaining (regression) and
predicting next unit (classification).

We have six years of hospital data containing 255,389 inpatient
admission records in total. The timeline of the records is from Janu-
ary 2016 to December 2021. In light of the COVID-19 pandemic and
the distinct patterns of unit visits observed for adult and pediatric
patients, we partitioned our dataset into four subsets: {PreCOVID,
PostCOVID} * {Adult, Pediatric}. Each of the following four data
sets were split into training (70%) and testing (30%) sets during the
model development:

e Dataset-1 (Pre-COVID, Adult): Contains the hospital records
between January 2016 to December 2019 for adult patients
(with age > 18 years) .

o Dataset-2 (Post-COVID, Adult): Contains the hospital records
between January 2020 and December 2021 for adult patients
(with age > 18 years).

o Dataset-3 (Pre-COVID, Pediatric): Contains the hospital records
between January 2016 to December 2019 for pediatric pa-
tients (with age < 18 years).

o Dataset-4 (Post-COVID, Pediatric): Contains the hospital records
between January 2020 and December 2021 for pediatric pa-
tients (with age < 18 years).

Test platform: In all our testing, we used a compute node which
has an Intel(R) Xeon(R) Platinum 8175M CPU, running at 2.50GHz
(8 cores, 16 threads), and with 64GB RAM. The software environ-
ment consisted of Ubuntu 20.04 operating system, Python 3.10,
TensorFlow 2.11.0, and other libraries such as NumPy, Keras, and
Pandas. Our total training time on this platform took approximately
5 hours.

4.1 Evaluation Metrics

The task of predicting days remaining is a regression task. For this
task, we set the evaluation metrics as Mean Absolute Error (MAE),
Mean Squared Error (MSE) and Root Mean Squared Error (RMSE).
On the other hand, the task of predicting next unit is a classification
task and for this task we recorded the exact accuracy score and
top-k accuracy score setting k to 2-i.e., computing the number
of times the correct unit label appears in the top two predictions
of our output. We also recorded the precision, recall and F1-score
to evaluate each model’s performance. Since unit prediction is a
multi-class classification problem and also, the target class has an
uneven distribution of observations, we calculated the weighted
average values for these metrics. To calculate the weighted average
precision, we multiply the precision of each label and multiply them
with their sample size and divide it by the total number of samples
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in the dataset. Similarly, we calculate the weighted average values
for recall and F1-score. The formulas for calculating these values
are presented in equations 1-6.

T
Precision = p W
Tp+Fp
Tpi
WeightedAveragePrecision = # @
Zi:1 lyil
T
Recall = p -
Tp+Fn
Tp:
Z(l: il Tpi+Fr
WeightedAverageRecall = # @
2iy 1yl
2 % Precision * Recall
Fl-score = - -
Precision + Recall
2% | lyil F1-score
WeightedAverageF1-score = L ©

lyil

In all our results, our main approach is the RNN (Multi-task)
model. We compared it against classic machine learning models
including RF, XGBoost, and KNN as well as the single-task version
of the RNN model.

4.2 Results for Predicting Remaining LOS

Tables 2 and 3 show the results of prediction accuracy for predicting
the remaining days of LOS, for adult and pediatric patients respec-
tively. Figure 4 can give a glance at the results which is drawn from
the post-COVID adult data set. The key observations are as follows.

o The error profiles of the models varied between adult and pe-
diatric patients. In general, error values generated by models
are slightly lower on the pediatric patients data, suggesting
better predictability for pediatric patients.

e For the adult patients, our proposed multi-task learning
model consistently outperforms all other models, over both
Pre-COVID and Post-COVID data sets. Among the other
models, XGBoost and our RNN-based Single-task models
perform comparably while their errors were still larger than
our default RNN Multi-task model.

e For the pediatric patients, the models performed better than
the adult data sets and the MAE value generated is around
1.8 — 1.9 days for almost all models. Although XGBoost per-
formed slightly better than our model in the Pre-COVID data
set, for Post-COVID data, RNN Multi-task model performed
the best.

e We also observe that the RNN Multi-task results are consis-
tently better than their respective RNN Single-task results,
suggesting the value of a shared model for the two prediction
tasks.

e Overall, our RNN Multi-task model yielded a Mean Absolute
Error of around 2 days on all inputs. This implies regardless
of the unit or the type of patient, we were able to predict the
remaining LOS within approximately +2 days of the actual.
Later we breakdown this error by the number of days since
admission for a more detailed analysis.
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Figure 4: Performance comparison of different models on
prediction of remaining LOS. The mean absolute has been
generated from post-COVID test data set of adult patients.
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Figure 5: Performance comparison of different models on
prediction of next unit label. The evaluation metrics are
drawn from post-COVID test data set of adult patients.

4.3 Results for Predicting Next Unit

Next, we predict the unit label for a patient for the next day. Since
unit is a label out of a total 34 valid unit labels (and hence a classifi-
cation task), we computed the accuracy score for an exact match, as
well as the accuracy score for the top-2 predictions—i.e., whether
the correct unit label appears in the top two predictions of our
output. Tables 4 and 3 summarize the results of our prediction accu-
racies for predicting the next unit, for adult and pediatric patients
respectively. Barplots in Figure 5 shows the comparison of different
models performance on post-COVID adult data set, with additional
ROC curves in Supplementary Figure S1. The key observations are
as follows.

o First we observe that our RNN Multi-task model provide the
best accuracy values across almost all metrics, for both adult
and pediatric patients. The second most accurate model was
XGBoost.

o Similar to the LOS prediction task, here too we see that the
RNN Multi-task results are consistently better than their

BCB ’24, November 22-25, 2024, Shenzhen, China

Boxplot and scatter plot of absolute error values by day since admission
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Figure 6: Absolute error values on predicting remaining days
of LOS. The X-axis shows the number of days since admission,
and Y-axis shows the range of the Mean Absolute Error values.
The plot is shown for Post-COVID adult dataset.

Operating Room/Suite: Accuracy Metrics and Number of Next Units From Day-1 to Day-10 (Year 2021)
=l i count | 20.0

[

Day Since Admssion

°
5
1 H
s B

I

Accuracy
8
s

0.4

Number of Next Unit

o S
° P

@

£

Figure 7: Accuracy on predicting next units from operating
room/suite as a function of days since admission. These re-
sults shown are for Post-COVID adult dataset.

respective RNN Single-task results—again suggesting the
value of a shared model for the two prediction tasks.

o Next, we observe that the prediction accuracy improves sig-
nificantly (from around 73% to 91% for RNN Multi-task)
when we look at the top-k (k = 2) predictions in units. A
similar behavior is observed not only for our default RNN
Multi-task model but also for all other models compared.
However, only the RNN Multi-task model exceeds 90% accu-
racy. These results suggest the value of considering not just
the top predicted unit label but also the second most proba-
ble unit predicted by the model. Intuitively, this is because
there may be related units (e.g., labor and delivery ward, or
postpartum ward) and even if the model mispredicts for its
top prediction with a related unit, it may capture the correct
unit in its second prediction.

Overall the above results on both next unit and remaining LOS
predictions demonstrate that the proposed RNN Multi-task learning
model is able to outperform other models for a majority of the input
cases.
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Table 2: Prediction accuracy, as measured by the different error metrics (lower the better), for predicting the remaining days of
LOS (regression task) in Adult Patients. Table shows different approaches in each model column. RNN (Multi-task) is our main
approach. Bold face entries are the best values reported under each metric.

Machine Learning Models Deep Learning Models
Error Metrics Random Forest | XGBoost | KNN || RNN (Single-task) | RNN (Multi-task)
Mean Absolute Error (MAE) 2.48 2.23 2.39 2.22 2.01
Dataset-1 (Pre-COVID, Adult) Root Mean Squarred Error (RMSE) 3.38 3.06 3.31 3.02 2.86
Mean Squared Error (MSE) 11.41 9.35 | 10.97 9.13 8.22
Mean Absolute Error (MAE) 2.5 2.44 2.62 2.36 2.10
Dataset-2 (Post-COVID, Adult) || Root Mean Squarred Error (RMSE) 3.39 3.3 3.3 3.12 3.05
Mean Squared Error (MSE) 11.49 10.87 | 10.87 9.76 9.3

Table 3: Prediction accuracy, as measured by the different error metrics (lower the better), for predicting the remaining days of
LOS (regression task) in Pediatric Patients. Table shows different approaches in each model column. RNN (Multi-task) is our
main approach. Bold face entries are the best values reported under each metric.

Machine Learning Models Deep Learning Models
Error Metrics Random Forest | XGBoost | KNN || RNN (Single-task) | RNN (Multi-task)
Mean Absolute Error (MAE) 1.86 1.82 1.93 1.95 1.92
Dataset-3 (Pre-COVID, Pediatric) Root Mean Squarred Error (RMSE) 2.82 2.76 2.95 2.99 2.95
Mean Squared Error (MSE) 7.98 7.61 | 8.72 9.13 8.76
Mean Absolute Error (MAE) 2.0 1.98 2.08 1.92 1.8
Dataset-4 (Post-COVID, Pediatric) || Root Mean Squarred Error (RMSE) 3.04 3.01 3.16 3.0 2.98
Mean Squared Error (MSE) 9.23 9.07 | 10.02 8.95 8.88

Table 4: Prediction accuracy, as measured by the different accuracy metrics (higher the better), for predicting the next unit
(classification task) in Adult Patients. Table shows different approaches in each model column. RNN (Multi-task) is our main
approach. Bold face entries are the best values reported under each metric.

Accuracy Metrics Machine Learning Models Deep Learning Models
Random Forest | XGBoost | KNN || RNN (Single-task) | RNN (Multi-task)
Accuracy 54% 67% 60% 73% 74%
TopKAccuracy(k=2) 64% 80% | 70% 90% 91%
Dataset-1 (Pre-COVID, Adult) Weighted Avg Precision 74% 78% | 68% 62% 73%
Weighted Avg Recall 54% 68% | 60% 64% 75%
Weighted Avg F1-score 60% 70% | 63% 60% 71%
Accuracy 50% 67% 57% 73% 73%
TopKAccuracy(k=2) 61% 78% | 68% 89% 91%
Dataset-2 (Post-COVID, Adult) || Weighted Avg Precision 75% 77% | 67% 61% 72%
Weighted Avg Recall 51% 67% | 58% 64% 74%
Weighted Avg F1-score 58% 69% | 61% 59% 70%
4.4 Further Analysis and Discussions We also studied the dependence of the predictive power for

both variables (remaining LOS, and next unit) on the units that the
patients were at the time of the prediction. Our analysis in a nutshell
showed significant variability of the errors and prediction accuracy
over the different units—clearly suggesting that predictive ability
depends on which unit a patient is in, at the time of prediction.
Some units are more predictable than others. As an example, the
model’s performance on maternity ward patients (Postpartum and
LDRP), is high—with > 95% for the next unit and < 1 day error
for remaining LOS. The largest error values (3.5 days) were seen
for the Behavioral Health Ward. In general, the MAE values for
days remaining were higher for ICU patients compared to non-ICU
patients.

In what follows we provide a more in-depth look into the predic-
tions by the different units and also as a function of time (i.e., days
since admission).

First, we examine the prediction of remaining LOS as a function
of the number of days since admission. Prediction of remaining
LOS is harder during the initial day, and we expect the prediction
to get better as the days progress. Figure 6 shows the results of our
analysis. More specifically, the mean values for the absolute error
fluctuates between roughly +2 days initially until about 10 days
and then reduces to +1 subsequently. However, the range of error
values are spread over a wider range in the early days of admission
and narrow down as the number of days increases—eventually
diminishing to a negligible range.
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Table 5: Prediction accuracy, as measured by the different accuracy metrics (higher the better), for predicting the next unit
(classification task) in Pediatric Patients. Table shows different approaches in each model column. RNN (Multi-task) is our
main approach. Bold face entries are the best values reported under each metric.

Accuracy Metrics Machine Learning Models Deep Learning Models
Random Forest | XGBoost | KNN || RNN (Single-task) | RNN (Multi-task)
Accuracy 60% 68% 62% 64% 73%
TopKAccuracy(k=2) 71% 79% | 72% 84% 93%
Dataset-3 (Pre-COVID, Pediatric) Weighted Avg Precision 74% 77% | 70% 62% 73%
Weighted Avg Recall 60% 68% | 62% 64% 73%
Weighted Avg F1-score 65% 71% | 65% 60% 72%
Accuracy 57% 67% 59% 63% 73%
TopKAccuracy(k=2) 68% 77% | 69% 83% 91%
Dataset-4 (Post-COVID, Pediatric) || Weighted Avg Precision 74% 76% | 68% 61% 72%
Weighted Avg Recall 58% 67% | 59% 64% 74%
Weighted Avg F1-score 63% 70% | 63% 59% 70%

The accuracy for next unit prediction is above 80% for all units Acknowledgment

apart from the Emergency Department (ED). Emergency Depart-
ment is distinguishable for various reasons including high volume
of patients with diverse conditions. The model’s lower prediction
score is acceptable for ED as the patients usually stay there tem-
porarily and then move to a condition specific facility. Figure S2
in the Supplementary section shows the detailed spread of error
values for remaining LOS (left panel), and the prediction accuracy
for the top prediction of the next unit (right panel)—for adult and
pediatric units.

To provide a more in-depth analysis of the classification task,
we look into the prediction accuracies based on patient’s current
unit. As a case scenario, we are discussing our observations made
on Operating room/suite as this is the unit from where patients get
transferred to almost all other units in the hospital. We plotted the
accuracy of predicting next unit from the operatin room (OT) in
Figure 7. The plot also shows the number of distinct possible next
units in the test data set on each day. If a patient visits OT in the
first two days of hospital stay, there are around 20 different units in
the data set where the patient could get transferred to afterwards.
We see an increase in prediction accuracy from around 70% on the
first day to above 80% on the second day. If a patient visits OT later
on the admission, the model accumulates more information about
the patient and can predicts better as we can see from Figure 7, the
prediction accuracy going above 90% as the day since admission
increases. We observed similar trends in general ward patients. In
summary, the model can achieve 80% accuracy or higher as early
as 2 days of patients stay, which is a promising result and can be of
significant benefit for hospital planning and resource allocation.

5 Conclusions and Future Works

This paper presents a new multi-task learning model to predict
patients next unit label along with the remaining length of stay
in the hospital. Prediction of these two correlated information can
help in devising a comprehensive picture of the hospital resource
usage and in turn lead to a better and efficient clinical management
system. Future research avenues involve integrating diagnostic
codes with medication data and extending the output to generate
sequence of most likely units visit coupled with duration of stay.

This work was in part supported by the U.S. Centers for Disease
Control and Prevention (CDC) under grant number U01CK000673
and by the U.S. National Institutes of Health (NIH) under grant
number R35GM147013, and U.S. National Science Foundation (NSF)
CBET 2226680.
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