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A B S T R A C T   

Experiments and corresponding crystal plasticity finite element (CPFE) simulations of spherical nanoindentation 
were performed to determine yield stress under indentation of fifteen Ta single crystals randomly distributed in 
the orientation space. Agreement between the measured and simulated indentation yield stresses and initial 
hardening slopes demonstrated accuracy of the model. Moreover, simple compression simulations were per
formed for the same crystals to study the differences in compressive versus indentation yielding. Ratios of the 
indentation to compressive yield stress were found to vary with crystal orientation in the range from 2.6 to 3.6. 
The simulations allowed us to reveal underlying deformation mechanisms accommodating the yielding in 
indentation and simple compression. It is found that more crystallographic glid mechanisms activate under 
indentation than simple compression owing to the more complex state of stress and strain in indentation than in 
compression. Owing to the activation of more glide systems in indentation than in simple compression, the 
indentation yield stress is less anisotropic than the simple compression yield stress. The modeling framework, 
simulation setups, results, and insights from the results are presented and discussed in this paper.   

1. Introduction 

Nanoindentation is an experimental technique used to test me
chanical behavior of materials at the microscale (Fischer-Cripps, 2000; 
Fischer-Cripps and Nicholson, 2004). A harder indenter of known ge
ometry is used to interrogate a softer specimen under load or displace
ment. The load and displacement of the indenter are measured as it is 
driven into and withdrawn from the specimen. Several procedures have 
been developed for inferring material properties from nanoindentation 
experiments (Beghini et al., 2006; Donohue et al., 2012; Pelletier, 2006; 
Taljat et al., 1998). Some procedures combine sophisticated finite 
element (FE) simulations to match raw indentation load–displacement 
data and corresponding predictions to extract uniaxial elastic–plastic 
material properties. Such procedures circumvent obtaining indentation 
stress–strain curves before extracting the uniaxial properties of interest. 
However, the properties are best extracted from indentation stress–
strain curves, which most clearly resolve the elastic–plastic transition. 
To this end, a procedure relying on spherical nanoindentation 

load–displacement data, including both the loading and unloading 
portions, was found the most successfully in producing meaningful 
indentation stress–strain curves (Kalidindi and Pathak, 2008; Pathak 
and Kalidindi, 2015). Compared to sharper indenters, spherical in
denters induce relatively smooth stress fields along with larger initial 
elastic segments transitioning into the initiation of plasticity and then to 
post-yield behavior allowing to infer the evolution of the mechanical 
response. Therefore, the obtained indentation stress–strain curves 
facilitate inferring indentation modulus, indentation yield strength, and 
initial hardening slope. While these properties are extracted prior to 
severe changes induced by the indentation over the specimen, they 
reflect an average response of the material in the indentation zone. As 
such, these properties cannot be equivalent to the simple/uniform ten
sion/compression stress–strain response. 

Body-centered-cubic (BCC) refractory metals are used in extreme 
thermal and mechanical conditions in applications such as missile 
bodies, anti-armor systems, space vehicle components like vanes and 
nozzles, aircraft structural components like engine parts, heat treating 
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and glass-melting furnaces, particle accelerators, electronic heat sinks, 
and even bone replacement implants (Fabricated, 2013; Buckman, 
2000; Hesla, 2011; Matsuno et al., 2001; Shields et al., 1999). Tantalum 
(Ta) is a metal that belongs to the refractory metals group exhibiting a 
range of desirable properties, such as high melting temperature, con
ductivity, fracture toughness, ductility, and strength. The deformation 
behavior of Ta, like other body-centered cubic (BCC) metals, is influ
enced by crystallographic texture and is sensitive to strain rate and 
temperature (Bhattacharyya et al., 2015; Bronkhorst et al., 2016; Chen 
and Gray, 1996; Christian, 1983; Hoge and Mukherjee, 1977; Knezevic 
et al., 2015). Understanding the localized behavior of the material is of 
special interest. 

Crystal plasticity models have been developed and utilized to phys
ically describe the behavior of metals better than continuum plasticity 
theories by accounting for microstructure and crystallography of grain- 
scale deformation mechanisms (Al-Harbi et al., 2010; Asaro and Nee
dleman, 1985; Knezevic et al., 2009; Knezevic et al., 2013a; Knezevic 
and Kalidindi, 2007; Knezevic et al., 2008b; Kocks and Mecking, 2003; 
Kocks et al., 1998; Shaffer et al., 2010). Such theories facilitate a deeper 
understanding of the plasticity of polycrystalline metals and improve 

accuracy of the plasticity simulations compared to the more commonly 
used phenomenological plasticity models (Ardeljan et al., 2015b; Fast 
et al., 2008; Feng et al., 2020; Knezevic et al., 2014c; Knezevic et al., 
2008a; Mathur et al., 1989; Wu et al., 2007; Zecevic et al., 2017; Zecevic 
et al., 2021; Zecevic and Knezevic, 2017). The present paper is con
cerned with evaluating a crystal plasticity finite element (CPFE) model 
in capturing yielding of Ta dependent on crystal orientation. Therefore, 
the deformation response upon indentation and simple compression 
(SC) can be better understood and predicted with knowledge of crys
tallography of the deformation mechanisms. 

This work combines experiments and corresponding crystal plas
ticity finite element (CPFE) simulations of spherical nanoindentation in 
order to determine yield stress under indentation of fifteen Ta single 
crystals randomly distributed in the orientation space. To this end, a 
finite element model is developed for the simulation of elastic–plastic 
spherical indentation involving a rigid indenter and a flat deformable 
specimen of Ta single crystal. Moreover, SC simulations were performed 
for the same crystals to study the differences in compressive versus 
indentation yielding. The model parameters were calibrated using a flow 
curve obtained in simple tension (ST). Initial microstructure and texture 

Fig. 1. Schematic of the crystal plasticity modeling framework used to simulate nanoindentation and compression of Ta crystals.  

Fig. 2. A setup for the simulations of nanoindentation. The mesh consists of 31,552 C3D8 (continuum 3D 8 nodal) elements. While the bottom face of the mesh is 
fixed in all directions, the indenter is lowered vertically using the displacement control to facilitate loading–unloading increments of 2 nm. 
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were characterized using electron backscattered diffraction (EBSD). The 
simulation results are used to specifically address and discuss several 
phenomena. Given that the stress/strain fields induced by the indenta
tion are different from those in SC being much more inhomogeneous in 
the indentation test, we seek to determine the ratios in the properties 
extracted from indentation stress–strain curves and SC stress–strain 
curves. Moreover, the underlying deformation mechanisms accommo
dating the yielding in indentation and SC are determined and the ac
tivities discussed. The levels of anisotropy originating from the 
activation of different glide systems in indentation and in SC are also 
revealed and discussed. The modeling framework, simulation setups, 
results, and these insights from the results are presented and discussed in 
this paper. 

2. Modeling framework and simulation setups 

This section summarizes the finite deformation CPFE model relevant 
to the study and simulation setups. Salient kinematics are described in 
appendix A for completeness, while the hardening law used within the 
CPFE model and the FE mesh and boundary conditions for simulating 
spherical indentation are described below. The CFPE model was origi
nally developed in (Kalidindi et al., 1992) and advanced for advanced 
hardening laws in (Ardeljan et al., 2016a; Feather et al., 2019; Feather 

Fig. 3. (a) An inverse pole figure (IPF) map showing the initial grain structure in the annealed Ta plate. (b) Pole figures showing texture of the annealed Ta plate.  

Fig. 4. Drawing of the uniaxial tension specimen in millimeters. The thickness 
of the specimen was 6.35 mm. Photograph of the specimen. 
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et al., 2021; Zecevic et al., 2019). In the description that follows and in 
the appendix, tensor quantities are denoted using bold letters; tensor 
components and scalars are italicized and not bold; s, and α are used to 
denote slip systems and slip modes, respectively; • is used for a dot 
product, while ⊗ is used for a tensor product. Nsl is the total number of 
slip systems. 

A dislocation density-based (DD) hardening law for obtaining τs
c is 

implemented within the CPFE. This formulation of the hardening law 
was used to compute the evolution of slip resistances as a function of 
strain and strain rate in many other works (Ardeljan et al., 2017; 
Beyerlein and Tomé, 2008; Knezevic and Beyerlein, 2018; Knezevic 
et al., 2012; Knezevic et al., 2014b). To estimate the resistance required 
to trigger slip, we consider the contributions of the following terms: a 
friction stress τs

0, a forest dislocation interaction stress τs
for and a dislo

cation substructure interaction stress τα
sub (Ardeljan and Knezevic, 2018; 

Knezevic et al., 2013c): 

τs
c = τα

0 + τs
for + τα

sub (1)  

Furthermore, the individual behavior of τs
for and τα

sub is determined by the 
evolution of the dislocation densities that consist of forest ρα

for and sub
structure ρα

sub dislocations. For this purpose, a Taylor-like law is used to 
represent these relationships for each dislocation type. These are 
expressed as (Ardeljan et al., 2016b): 

τs
for = χbαμα

̅̅̅̅̅̅̅
ρs

for

√
(2)  

τα
sub = 0.086μαbα ̅̅̅̅̅̅̅̅ρsub

√ log

(
1

bα ̅̅̅̅̅̅̅̅ρsub
√

)

(3)  

Here χ is a dislocation interaction parameter, while 0.086 is a mathe
matical parameter that insures that Eq. (3) compensates the Taylor law 
at low dislocation densities (Capolungo et al., 2009). The initial material 
state corresponds to an annealed state. The value of stored forest density 
ρα

for changes according to competition between the rate of storage/gen
eration and the rate of dynamic recovery/removal (Ardeljan et al., 
2015a): 

∂ρs
for

∂γs =
∂ρs

gen,for

∂γs −
∂ρs

rem,for

∂γs = kα
1

̅̅̅̅̅̅̅
ρs

for

√
− kα

2(ε̇, T)ρs
for, Δρs

for =
∂ρs

for

∂γs |Δγs| (4)  

In Eq. (4) kα
1 is a coefficient for the rate of dislocation storage because of 

statistical trapping of gliding dislocations and kα
2 is the coefficient for the 

rate of dynamic recovery by thermally activated mechanisms. The sec
ond coefficient can be determined by this relationship (Zecevic and 
Knezevic, 2015): 

kα
2(ε̇, T)

kα
1

=
χbα

gα

⎛

⎝1 −
kT

Dαb3 ln

⎛

⎝ ε̇
ε̇0

⎞

⎠

⎞

⎠ (5)  

where k, ε̇0, gα and Dα are respectively Boltzmann’s constant, a reference 
strain rate (taken here to be 107 s− 1), an effective activation enthalpy 
and a drag stress. Lastly, the increment in substructure development can 
be related to the rate of dynamic recovery of all active dislocations as 
(Zecevic et al., 2020): 

Δρsub =
∑

s
qbα∂ρs

rem,for

∂γα |Δγs| (6)  

where q is a rate parameter that determines the fraction of an s-type 
dislocations that do not annihilate but become substructure dislocations. 

The modeling framework explained above to simulate spherical 
nanoindentation tests is schematically presented in Fig. 1. 

The computational mesh and setup employed in this study is depic

Fig. 5. Comparison of measured and simulated true stress – true strain response 
in simple tension of annealed Ta along the RD under quasi-static strain rate 
conditions at room temperature. The simulation was used to establish the model 
parameters. The experimental engineering stress – engineering strain curve is 
also plotted to observe the post-necking behavior of the material. 

Table 1 
Dislocation density-based hardening law parameters adjusted for Ta.  

τ0[MPa] k1
[
m− 1] g D[MPa] q ρs

0
[
m− 2]

b̂[Å] χ 

202 0.9E + 08  0.005 305 4 1.0E + 12  3.3058  0.9  

Fig. 6. Schematics of spherical nanoindentation (left) and indentation load–displacement curve along with the initial and final contact geometries (right).  
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ted in Fig. 2. The numerical model consists of two three-dimensional 
parts: (1) an elastic–plastic deformable sample and (2) a rigid hemi
spherical indenter with a radius of 150 nm, consistent with the experi
mental dimensions. The deformable part was meshed using three- 
dimensional linear continuum elements with eight nodes (C3D8 in 
Abaqus notation). The sample’s dimensions measure 1mm × 1mm ×

1mm as selected to confine the stress–strain fields within the indentation 
zone. The deformable model incorporates a total of 31,552 elements, 
with 20,480 elements situated within the indentation zone. Conse
quently, the indentation zone is divided into three regions, as depicted in 
Fig. 2, enabling a progressively higher mesh density closer to the 

indenter-sample contact surface. This partitioning strategy permitted 
the application of finer meshing in regions expected to exhibit higher 
stress and strain gradients within the sample. The aspect ratio of all el
ements was approximately 1. The Coreform Cubit software facilitated 
the generation of this high-quality mesh, offering localized mesh 
refinement beneath the indenter tip zone while preserving node con
nectivity (Feather et al., 2020; Weiss and Knezevic, 2024). The mesh 
quality assessment involved comparing simulated load–displacement 
curves with experimental data. The authors’ observation sustained that 
a low-quality mesh produces oscillations in load–displacement curves. 
The mesh was refined to eliminate such unrealistic oscillations. In 

Fig. 7. IPF maps of the 15 grains for nanoindentation and their location in the standard IPF triangle. The sample axis is perpendicular per map and is TD for the 
grains numbered from 1 to 4 and ND for the grain numbered from 5 to 12. 

Fig. 8. Indentation stress − indentation strain based on the measured load − displacement data for the 15 grains. Intersections between the elastic slope black lines 
and the initial hardening slope black lines are taken as yield stresses. 
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Table 2 
Measured and simulated values of indentation elastic slope, indentation yield stress, and Young’s modulus for the 15 Ta crystals. The last two columns report the 
relative errors in percentage for both indentation elastic slope and indentation yield stress.  

Grain 
# 

Orientation Simulation 
Eind (GPa) 

Experiment 
Eind (GPa) 

Simulation 
σind (GPa) 

Experiment 
σind (GPa) 

Φ1, Φ, Φ2 Error (%)Error =

ABS
(

Eexp − Esim

Eexp

)

× 100  

Error (%)Error =

ABS
(

Yexp − Ysim

Yexp

)

× 100  

Grain 
1 

001 180 181.3 ± 0.21  0.74 0.76 ± 0.014 335.92◦, 
1.91◦, 
32.57◦

0.717 2.631 

Grain 
2 

144 188 188.2 ± 0.12  0.76 0.80 ± 0.015 81.11◦, 
44.41◦, 
8.27◦

0.106 5.0 

Grain 
3 

111 190 190.3 ± 0.12  0.78 0.84 ± 0.027 172◦, 
53.40◦, 
44.63◦

0.157 7.142 

Grain 
4 

011 188 188.3 ± 0.13  0.76 0.78 ± 0.007 89.72◦, 
41.25◦, 
85.57◦

0.159 2.948 

Grain 
5 

214 185 186.3 ± 0.16  0.79 0.80 ± 0.006 107.25◦, 
27.78◦, 
69.5◦

0.697 1.25 

Grain 
6 

113 184 185.3 ± 0.09  0.78 0.79 ± 0.011 187.39◦, 
30.04◦, 
49.76◦

0.701 1.265 

Grain 
7 

014 182 183.0 ± 0.36  0.75 0.77 ± 0.007 214.77◦, 
13.41◦, 
10.48◦

0.546 2.597 

Grain 
8 

122 188 189.3 ± 0.15  0.80 0.83 ± 0.011 202.58◦, 
46.53◦, 
24.94◦

0.686 3.614 

Grain 
9 

112 187 188.0 ± 0.33  0.77 0.79 ± 0.016 183.74◦, 
35.21◦, 
43.26◦

0.531 2.531 

Grain 
10 

223 189 189.4 ± 0.07  0.79 0.82 ± 0.014 144.99◦, 
42.97◦, 
43.61◦

0.211 3.6585 

Grain 
11 

012 184 185.5 ± 0.12  0.75 0.78 ± 0.001 72.91◦, 
23.78◦, 
1.15◦

0.808 3.846 

Grain 
12 

213 186.5 187.8 ± 0.09  0.79 0.81 ± 0.003 311.03◦, 
36.59◦, 
60.58◦

0.692 2.469 

Grain 
13 

104 182 182.6 ± 0.15  0.74 0.77 ± 0.019 284.46◦, 
14.99◦, 
69.53◦

0.328 3.896 

Grain 
14 

023 185 186.7 ± 0.20  0.77 0.79 ± 0.011 177.13◦, 
31.73◦, 
11.98◦

0.910 2.531 

Grain 
15 

104 181 182.6 ± 0.07  0.76 0.78 ± 0.004 247.06◦, 
8.35◦, 
63.26◦

0.876 2.564  

Fig. 9. (a) Projection of in-contact (green) and not-in-contact (blue) contours based on the contact status parameter (CSTATUS) in Abaqus at an instant during the 
indentation simulation of Grain 1. (b) Comparison between the CSTATUS in Abaqus determined curve as an average of three directions and analytical curve based on 
the Hertz theory (Donohue et al., 2012). 
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simulations, a final mesh underwent multiple loading–unloading cycles, 
which was necessary for recovering the indentation stress–strain curves. 

The contact condition between the sample and indenter were defined 
as frictionless, hard surface-to-surface contact. The indenter’s reference 
point was fixed in all degrees of freedom except the Y-direction (the 
indentation direction), allowing for a displacement boundary condition 
in this specific direction. Additionally, the node set at the bottom surface 
of the sample along the Y-direction is constrained but the lateral surfaces 
of the deformable sample remained free throughout the simulation. Both 
the indenter displacement and the total applied force on the sample were 
recorded at every time increment during the simulation. 

The indenter displacement was initially set to 1nm up to 80nm, fol
lowed by a change to 3nm until the end of simulations. The change from 
1 nm to 3 nm was to improve computational efficiency without appre
ciably influencing the results. The 1 nm displacement increments at the 
start of simulations, where the elastic deformation prevails, allowed to 
accurately capture the elastic slope, yield stress, and initial hardening 
slope. The rest of the displacement increments were used to capture the 
subsequent hardening meaning that the change from 1 nm to 3 nm did 
not appreciably influence the results but only accelerated the 
simulations. 

3. Results 

This section presents results of the work beginning from the material 
characterization to model calibration to finally nanoindentation exper
iments and simulations. 

3.1. Material characterization 

High purity (99.995 %), polycrystalline Ta was used for this 

research. The samples were annealed at a relatively high temperature of 
1700 ◦C (0.6 TM for Ta) for 24 h under vacuum atmosphere to prevent 
spontaneous oxidation, resulting in large (few millimeters) sized grains 
which provide ample space for nanoindentation testing. The samples 
were prepared for electron backscattered diffraction (EBSD) and nano
indentation studies by mounting them in epoxy, followed by successive 
mechanical grinding and polishing steps with silicon carbide (SiC) 
abrasive papers and diamond suspensions, respectively. Finally, they 
were vibratory polished in a 0.05 µm colloidal silica on a Buehler 
vibratory polisher for 48 h. Vibratory polishing is a vital final step 
needed to produce smooth, strain free surfaces for EBSD and indentation 
measurements (Pathak et al., 2009a,2009b). 

Subsequently the crystallographic orientation of each grain in the Ta 
samples was obtained from the automated indexing of EBSD patterns 
obtained on the FEI Teneo field emission scanning electron microscope 
equipped with Oxford energy dispersive and backscattered electron 
(EDS/EBSD) detectors using the Aztec Crystal Oxford Software at a 
magnification of 20X and step size of 5 µm. Fig. 3 shown the grain 
structure and texture in the initial material. 

3.2. Model calibration for Ta 

Before simulating the spherical nanoindentation tests, we calibrate 
the hardening law parameters using a flow curve recorder in ST for Ta 
under a quasi-static strain rate at room temperature. Fig. 4 shows a 
tension specimen to test the material. Three tests were performed to 
verify the repeatability and no appreciable differences were detected. 

In all simulations, Ta is assumed to deform by {110}〈111〉 and 
{112}〈111〉 slip modes/families. The initial slip resistance and hard
ening parameters of both slip families are considered to be the same. 
Fig. 5 shows the prediction of the model compared to the experimental 

Fig. 10. Experimentally measured and simulates load − displacement curves for the 15 Ta crystals.  
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stress–strain curve. The experimental data is presented in the form of 
true and engineering curves to better appreciate the behavior of the 
annealed Ta. Evidently a good fit of the data is obtained especially for 
the yield stress and the initial hardening slope which are the focus of this 
study. 

In order to capture the response, the following model parameters are 
fit (Savage et al., 2021; Veasna et al., 2023): initial slip resistance or 
critical resolved shear stress, τα

0, trapping rate coefficient, kα
1, activation 

barrier for depinning, gα, drag stress, Dα, and an additional rate coeffi
cient qα. The fitting procedure consisted of varying τα

0 to fit yield stress. 
Next, kα

1, was adjusted such that the initial hardening slope was repro
duced. Next, gα and Dα are adjusted to match the rest of the hardening 
behavior. Finally, qα is adjusted to also capture the hardening behavior. 

The calibrated parameters were established using a cubic FE model 
consisting of 64 three-dimensional continuum elements with eight nodes 
(C3D8), akin to those used in the nanoindentation simulations. All ele
ments had initially an aspect ratio of 1. The model was initialized with 
3072 equally weighted crystal orientations representing the measured 
texture. Every integration point embedded 6 different equally weighted 
crystal orientations from the total of 3072. The response of the 6 crystal 
orientations is homogenized using the Taylor model (Weiss et al., 2024; 
Weiss et al., 2023). To replicate the uniaxial tension condition, 
displacement was applied in the RD direction, while the lateral surfaces 
were stress free. 

Table 1 presents the calibrated parameters of Ta for dislocation 
density-based hardening law. The crystal elastic constants for Ta are 
C11 = 268.5GPa, C12 = 159.9GPa, C44 = 87.1GPa. 

3.3. Spherical nanoindentation experiments and stress-strain analysis 

Fig. 6 shows the schematic view of the indentation process along 
with the parameters used in the equations. 

The nanoindentation tests were carried out using the MTS-XP and 
KLA iMicro systems with the continuous stiffness measurement option. 
A spherical indenter tip of 150 µm radius (manufacturer Synton-MDP, 
Switzerland) was used for the measurements. The tests were carried 
out in load-controlled mode with a specified maximum displacement of 
700 nm for all samples. At least 10 indents were analyzed for each grain/ 
region studied in this work. The importance of considering connections 
or the base of the indentation instrument and the environment in 
modeling was discussed in (Xu et al., 2022; Zhang et al., 2016) for micro- 
pillar testing. While the connection to the base can be important in 
micro-pillar testing experiments, it is less of a concern in the indentation 
experiments, especially for small depths. The indentation experiments 
were conducted under ambient conditions and therefore any effects of 
environment and temperature were not considered. Moreover, since Ta 
as a refractory metal, any temperature related effects would only be 
manifested at significantly higher temperatures (≥0.3 Tm, where Tm =

3290 K, 3017 ◦C is the melting point of Ta in Kelvin). The indentation 
experiments can be affected by Ta oxide which can form on the Ta 
surface at lower elevated temperatures, but the effect is minimal at room 
temperature. Finally, our experimental work relies on a protocol 
involving the determination of the zero point for the initial elastic 
segment of the spherical indentation experiments (Kalidindi and Pathak, 
2008). This zero-point correction ensures that any effects caused by the 
presence of a thin (~nm) oxide layer can be accounted for during the 

Fig. 11. Comparison of experimental and simulated indentation stress − indentation strain curves based on the corresponding load − displacement data for the 15 
grains. Intersections between the elastic slope blue lines and the initial hardening slope blue lines are simulated yield stresses. 
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initial contact of the indenter tip with the interrogated material (Pathak 
et al., 2009a). Given these arguments and that the CPFE model was 
calibrated to match the experimental conditions as accurately as 
possible for only the initial (~150 nm) portion of the indentation ex
periments, the consideration of the environment and connections or the 
base of the indentation instrument would be excessive. Further details of 
nanoindentation tests, and the data analysis protocols used to obtain 
indentation stress–strain curves can be found in prior reports (Pathak 
et al., 2009b), and are briefly summarized below. 

The load–displacement and stiffness measurements were converted 
into meaningful stress–strain curve using protocols described in prior 
reports (Pathak and Kalidindi, 2015; Pathak et al., 2009b). These pro
tocols are based on Hertz theory and can be explained as a two-step 
procedure. The first step includes the evaluation of the effective point 
of contact for a given data set in which the initial elastic loading segment 
is consistent with Hertz theory (Hertz, 1896). These protocols (Kalidindi 
and Pathak, 2008) demonstrate that the zero point can be conveniently 
determined using the following equation for the initial elastic segment in 
a frictionless, spherical indentation: 

S =
3P
2he

=
3

(
P̃ − P*

)

2
(

h̃e − h*

) (7)  

where P̃, h̃e, and S are the measured load signal, the measured 
displacement signal, and the continuous stiffness measurement (CSM) 
signal in the initial elastic loading segment from the machine, respec
tively, and P* and h* denote the values of the load and displacement 
values at the point of effective initial contact (i.e., P* and h* are the zero- 
point corrections needed). Rearrangement of the equation reveals that a 
plot of P̃ − 2

3 Sh̃e against S will produce a linear relationship whose slope 
is equal to − 2

3h
* and the y-intercept is equal to P*. A linear regression 

analysis can then be performed to identify the point of the effective 

initial contact (P* and h*) very accurately. 
In the second step, the values of indentation stress and strain can be 

calculated by recasting Hertz theory for frictionless, elastic, spherical 
indentation as 

σind = Eeff εind, σind =
P

πa2, εind =
4
3π

he

a
≈

he

2.4a  

a =
S

2Eeff
,

1
Eeff

=
1
β

(
1 − ν2

s
Es

)

+

(
1 − ν2

i
Ei

)

,
1

Reff
=

1
Ri

+
1
Rs

(8)  

where σind and εind are the indentation stress and indentation strain, a is 
the radius of the contact boundary at the indentation load P, he is the 
elastic indentation depth, S (=dP/dhe) is the elastic stiffness described 
earlier, Reff and Eeff are the effective radius and the effective stiffness of 
the indenter and the specimen system, ν and E are the Poisson’s ratio and 
the Young’s modulus, and the subscripts s and i refer to the specimen and 
the indenter, respectively. β is an anisotropic parameter defined in 
(Vlassak and Nix, 1993, 1994) which is used to account for elastic 
indentation of anisotropic cubic materials. For cubic crystals, the value 
of β depends strongly on the crystal lattice orientation and the degree of 
cubic elastic anisotropy (also known as Zener’s ratio A (Meyers and 
Chawla, 2009) usually defined as A = 2C44/(C11 − C12), where C11, C12, 
and C44 denote the cubic elastic constants used to define the crystal 
elastic stiffness in its own reference frame. Tantalum has a body 
centered cubic structure with a Zener’s ratio of A = 1.56. Thus from Eq. 
(16), the value of β for Ta should vary between 0.97–1.03. I.e., for Ta the 
values of the indentation modulus should range from 181.1 GPa for the 
(001) orientation to 190.3 GPa for the (111) orientation. The measured 
values of β (range ~ 0.98 to 1.03, i.e. indentation modulus of 181.3 GPa 
for the (001) orientation and to 190.4 GPa for the (111) orientation) 
from our spherical indentation stress–strain analysis are highly consis
tent with the predictions from Eq. (16). 

Fig. 7 depicts fifteen grain orientations evenly spaced over the in
verse pole figure triangle selected for our detailed study of spherical 
nanoindentation. Fig. 8 shows the indentation stress − indentation 
strain curves based on the measured load − displacement data for the 15 
grains. 

3.4. Nanoindentation and simple compression simulations 

As already said, the general methodology for converting indentation 
load–displacement data into stress strain data can be found in (Pathak 
et al., 2009a,2009; Kalidindi and Pathak, 2008). Like in the experiments, 
the key equations for obtaining the indentation stress and strain from the 
simulations are also εind = 4

3π
he
a and σind = P

πa2, where he is the elastic 
portion of the displacement as shown in Fig. 6 and P is the load at the 
peak for each single loading then unloading step. Based on these equa
tions, estimation of the indentation stress and strain necessiates 
knowledge of the contact area a under the indenter tip. To apply Hertz’s 
theory in these calculations, a should only be calculated from the elastic 
unloading segments of the load displacement curves using a = S

2Eeff
. 

Here, S is the stiffness of the unloading portion of the loading–unloading 
curve and Eeff is the effective Young’s modulus of the indenter and the 
specimen system defined using 1

Eeff
= 1− νs

2

Es
+ 1− νi

2

Ei
, where E and ν are 

Young’s modulus and Poisson’s ratio with the subscripts s and i identi
fying the specimen and the indenter, respectively. In this study, we take 
Ei = 1140GPa, νi = 0.07, and νs = 0.3 for all 15 crystals, and Es is the 
experimental data given in Table 2 (Eind) like in (Donohue et al., 2012). 

As highlighted in (Pathak et al., 2009a,2009; Kalidindi and Pathak, 
2008), accurately determining the unloading (elastic) stiffness (S) plays 
a pivotal role in reliably estimating the contact area. This quantity is 
essential for computing both indentation stress and indentation strain 
measures. Also, note that each unloading step provides a single data 
point for indentation stress strain curves (only one value for both 

Table 3 
Yield stress and Young’s modulus determined by simulating SC for the 15 Ta 
crystals.  

Grain 
# 

Orientation Φ1, Φ, Φ2 YS 
(MPa) 

Young’s Modulus 
E = 1/S1111 (GPa)  

Grain 
1 

001 335.92◦ , 
1.91◦, 32.57◦

272.6 152.5  

Grain 
2 

144 81.11◦, 
44.41◦, 8.27◦

243.3 201.4  

Grain 
3 

111 172◦, 53.40◦ , 
44.63◦

243.3 200.7  

Grain 
4 

011 89.72◦, 
41.25◦, 85.57◦

244.8 200.6  

Grain 
5 

214 107.25◦ , 
27.78◦, 69.5◦

259.4 178.5  

Grain 
6 

113 187.39◦ , 
30.04◦, 49.76◦

235.9 182.1  

Grain 
7 

014 214.77◦ , 
13.41◦, 10.48◦

235.2 203.5  

Grain 
8 

122 202.58◦ , 
46.53◦, 24.94◦

205.6 209.9  

Grain 
9 

112 183.74◦ , 
35.21◦, 43.26◦

242.8 201.2  

Grain 
10 

223 144.99◦ , 
42.97◦, 43.61◦

225.3 183.9  

Grain 
11 

012 72.91◦, 
23.78◦, 1.15◦

268.4 184.6  

Grain 
12 

213 311.03◦ , 
36.59◦, 60.58◦

213.9 191.9  

Grain 
13 

104 284.46◦ , 
14.99◦, 69.53◦

278.6 160.2  

Grain 
14 

023 177.13◦ , 
31.73◦, 11.98◦

273.7 153.5  

Grain 
15 

104 247.06◦ , 
8.35◦, 63.26◦

237.3 201.6   
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indentation stress and indentation strain per unloading). Therefore, it is 
mandatory to apply a very large number of unloading steps in the sim
ulations to be able to document the accurate evolution of nano
indentation stress vs strain. These unloading segments will be 
highlighted for grain 15. 

The calculation of S = 3P
2he 

presents several challenges, emphasizing 
the critical need to verify the accuracy of estimating the contact area 
(Donohue et al., 2012). Therefore, to ensure the adequacy of calculated 
indentation stress and strain data points, the derived values of a deter
mined through the procedure mentioned above (Hertz’s theory), are 
compared with the actual contact area obtained from the FE model for 
grain 1. The outcomes of this comparison are depicted in Fig. 9. In the 
figure, simulation (model) represents the contact area values extracted 
from the FE model (left figure) at different time steps. The good 

agreement between the two curves verifies the accuracy in the calcu
lation of the contact area. To quantify the result of this comparison and 
get a better estimation of the overall accuracy, the following equation is 
used to calculate the error term in percentage: 

Error(%) =

∑N
i=1ABS

(
amodel

i − aHertz
i

amodel
i

)

N
× 100 (9)  

In Eq. (9), N is number of data points which is 30. The value of error for 
calculation of contact area based on this Eq. is 3.87%, which is an 
acceptable accuracy in the calculation of the contact area evolution. 

Fig. 10 displays a comparison between the simulated and experi
mental load–displacement curves for the 15 Ta crystals. Specifically, the 
unloading segments are magnified for grain 15 to enhance visibility. The 

Fig. 12. (a) Surface contour plots in MPa comparing the measured and simulated indentation yield stresses based on the values for the 15 crystal orientations of Ta. 
Also plotted is a surface of simple compression yield stresses based on the values for the 15 crystal orientations of Ta simulated using two slip modes. (b) A surface 
plot of the ratio between indentation yield stress and simple compression yield stress based on the values for the 15 crystal orientations of Ta. 
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figure shows good agreement between the simulations and experiments. 
Given the study’s primary focus on capturing the elastic slope, yield 
stress, and initial hardening rate per crystal, we limited the simulation 
range. Instead of extending the load–displacement curves to ~ 600 nm, 
simulations were terminated at 150 nm. This strategy not only suc
cessfully captured the yield stress for all crystals but also notably 
reduced computational time. Nevertheless, every simulation took about 
two days using 32 CPUs. Additionally, the zoomed-in section for grain 
15 reveals two distinct displacement steps, as previously mentioned. 
This deliberate approach aimed to generate more data points within the 
elastic segment of the indentation stress vs. indentation strain curves. 

Fig. 11 illustrates the indentation stress vs. indentation strain curves 
for the 15 crystals, computed using the equations introduced earlier in 
this section. The calibrated parameters presented in Table 1 were used in 
these simulations. The calculation of the stiffness parameter, S, involved 
selecting data points corresponding to loads at each peak before 
unloading. Subsequently, the slope of the unloading section immedi
ately following the peak point is determined. The methodology for 
capturing the indentation stress versus indentation strain relationship is 
outlined in detail in prior works (Weaver and Kalidindi, 2016; Weaver 
et al., 2016). 

The calibrated parameters presented in Table 1 were employed to 
simulate SC tests for the 15 crystals, primarily aimed at determining the 
yield stress of the single crystals. The FE model was the same as the one 
used for parameter calibration, except that the loading is reversed from 
simple tension to compression and every integration point of the model 
received the same crystal orientation. Also, Young’s modulus is calcu
lated for every crystal. To this end, the elastic compliance tensor is 
calculated for every crystal and the Young’s modulus obtained using E =

1/S1111 relationship (Cantara et al., 2019). Table 3 provides a summary 
of the results from these simulations conducted using the previously 
described model setup for ST. 

Fig. 11 shows a very good alignment between the experimental and 
simulation results. To quantify the precision of the simulations pre
sented in this figure, the values of elastic slope (Eind) and yield stress 
(Yind) for the 15 crystals are presented in Table 2 and compared with the 
experiments. Additionally, the error percentages for these parameters 
are calculated and listed in the last two columns of the table. Notably, 
the maximum error for calculating the indentation elastic slope is nearly 

1 %, while for the indentation yield stress, it is approximately 5 %. These 
findings substantiate the accuracy of simulations in capturing the 
nanoindentation stress–strain profiles. Moreover, the predictions show 
that the variation in the response of individual crystals is driven by 
crystallography. The significant role played by crystal orientation- 
driven anisotropy was recently discussed for Ta single crystals in 
(Feng et al., 2022). 

Fig. 12a presents a combined illustration of the yield stresses for the 
15 Ta crystals through a yield surface-type plot over the orientation 
space. The figure depicts surface plots representing experimental and 
simulation results from nanoindentation and SC simulations, facilitating 
a direct comparison. The yield stresses in SC are notably lower when 
contrasted with the indentation yield stresses. While the averaged ratio 
of indentation to compressive yield stresses is about 3.1, the range is 
approximately from 2.6 to 3.6. The finding is a remarkable result given 
that computational results of Donohue (Donohue et al., 2012) and Patel 
(Patel and Kalidindi, 2016, 2017) had postulated a ratio of 2.2 for 
isotropic elastic–plastic solids. Fig. 12b shows the surface plot of the 
ratio based on the 15 crystal orientations of Ta. This difference between 
yield stresses observed in indentation and SC is attributed to the acti
vation of distinct crystallographic glide mechanisms under varying 
loading conditions. The complex stress and strain states experienced by 
crystals during indentation differ significantly from those in compres
sion, thereby resulting in different yield stress behaviors. In particular, 
the yield stress in indentation is higher than in SC because of the need to 
activate additional and more difficult to activate slip systems to 
accommodate the imposed deformation. Moreover, the resulting inho
mogeneous deformation causes localized hardening of regions under
going more straining also contributing to the higher yield stress in 
indentation. Appendix of the paper presents stress–strain fields for one 
of the crystals. 

Fig. 13 provides a quantitative comparison of the measured and 
simulated elastic slopes for nanoindentation, complemented with the 
Young’s modulus values for the crystals. The surface plots in this figure 
aim to visually depict the accuracy in predicting the measured elastic 
slope values through simulations. Notably, the surface plots represent
ing the measured and simulated values demonstrate a close alignment, 
appearing nearly flat. In contrast, the surface plot illustrating the 
Young’s modulus values shows noticeable deviations. The deviation in 

Fig. 13. Surface contour plots comparing the measured and simulated indentation elastic slopes along with Young’s modulus based on the values for the 15 crystal 
orientations of Ta. 
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Table 4 
Activated slip systems in the 15 grains in nanoindentation. Also marked are the most active slip system with blue, the second active slip system with green, and the third 
active slip system with orange.  
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Table 5 
Activated slip systems in the 15 grains in simple compression. Also marked are the most active slip system with blue, the second active slip system with green, and the 
third active slip system with orange.  
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this surface plot is primarily attributed to the approximately 30 GPa gap 
in elastic slope values for crystal numbers 1 and 14, between the 
simulated and Young’s modulus values. 

4. Discussion 

An FE model was developed for the simulation of elasto–plastic 
spherical indentation involving a rigid indenter and a flat deformable 
specimen of Ta single crystal relying on the CPFE constitutive descrip
tion. Experiments and corresponding simulations of nanoindentation 
were used to determine elastic slope, yield stress, and initial hardening 
per crystal. Moreover, SC simulations were performed for the same 
crystals to study the differences in compression versus indentation 
yielding. The model parameters were calibrated using a flow curve ob
tained in ST. Initial microstructure and texture were characterized using 
EBSD to initialize the simulations. 

Accurate predictions of indentation load–displacement, indentation 
stress–strain, and yielding of Ta imply that the predicted relative ac
tivities of the slip systems contributing to the plastic deformation in 
indentation and SC are correct. Table 4 and Table 5 list the activated slip 
systems in indentation and SC, respectively. Appendix A provides the 
corresponding plots detailing the activities per slip system for all 24 slip 
systems across two families (12 per family) with strain. The observed 
variation in yield stresses between indentation and SC lies in the activ
ities of slip systems. The yield stress in indentation is higher than in SC 
because of the need to activate additional and more difficult to activate 
slip systems to accommodate the imposed deformation. Moreover, the 
resulting inhomogeneous deformation causes localized hardening of 
regions undergoing more straining also contributing to the higher yield 
stress in indentation than in SC. Owing to the activation of more glide 
systems in indentation than in SC, the indentation yield stress is less 
anisotropic than the SC yield stress. 

The simulations of both indentation and SC for the same set of Ta 
crystals allowed us to establish the relationship between conventional 
yielding and elasticity response obtained in homogeneous uniaxial stress 
state and yielding and elasticity response in indentation. While the 
averaged ratio of indentation to SC yield stresses is about 3.1, the range 
is approximately from 2.6 to 3.6. The variation is owing to the response 
of individual crystals as driven by their crystallography. The significant 
role played by crystal orientation-driven anisotropy was recently dis
cussed for Ta single crystals in (Feng et al., 2022). 

While we have shown good predictive capabilities of the CPFE model 
in simulating spherical nanoindentation after been calibrated using the 
polycrystalline flow stress and texture data, the predictive characteris
tics of the model can be further improved by calculating geometrically 
necessary dislocations (GND) and their contribution to hardening and 
underlying backstress fields. The GNDs have been shown to be impor
tant in determining the deformation of crystalline materials under 
various loadings including indentation using theoretical models 
(Arsenlis and Parks, 1999; Lu et al., 2020; Nix and Gao, 1998), multi- 
scale simulations (Xu et al., 2019), and experiments (Kysar et al., 
2007). Future works will focus on these aspects. Moreover, we will 
attempt to experimentally verify identified slip systems via slip trace 
analyses and/or a combination of Digital Image Correlation (DIC) and 
EBSD. 

5. Conclusions 

This work adapted and calibrated a crystal plasticity finite element 
(CPFE) model with dislocation density-based hardening to simulate 
nanoindentation within the FE framework. Nanoindentation elastic 
slope and yield stress were measured and simulated for 15 Ta crystals. 
Moreover, simple compression (SC) simulations were performed for the 
same crystals. The main conclusions of the combined experimental and 
modeling study are:  

• Successful simulations of spherical nanoindentation showed good 
predictive capabilities of the CPFE model calibrated using poly
crystalline flow stress and texture data to capture the significant role 
played by crystal orientation-induced anisotropy.  

• While the measured and simulated elastic slopes for nanoindentation 
were in good agreement and not strong functions of crystal orien
tation, Young’s modulus values of the crystals substantially varied.  

• The yield stress in indentation was higher than in SC because of the 
need to activate additional and more difficult to activate slip systems 
to accommodate the imposed deformation. Inhomogeneous defor
mation intrinsic to indentation caused localized hardening of regions 
undergoing more straining, which also contributed to the higher 
yield stress in indentation. Indentation to compressive yield stress 
ratios varied with crystal orientation in the range from 2.6 to 3.6.  

• Owing to the activation of more glide systems in indentation than in 
SC, the indentation yield stress was less anisotropic than the SC yield 
stress. 
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Appendix A 

The CPFE model is a user material subroutine (UMAT) coupled with Abaqus implicit/standard (Knezevic et al., 2010; Knezevic et al., 2013b). The 
FE solver of Abaqus iteratively provides guesses of displacement fields at current times, τ (t + Δt), under imposed boundary conditions over the mesh. 
A deformation gradient, F, available at each integration point (IP) is provided to the UMAT at each gauss. The UMAT solves for Cauchy stress, σ, 
calculates the Jacobian, and updates state variables to be returned to Abaqus. 

The model decomposes F into its elastic and plastic parts as: 

F = FeFp (A1)  

The rate of change of Fp is: 

Ḟp
= LpFp (A2)  

Integrating Eq. (A2) from time at the beginning of the given strain increment, t, to the current time, τ = t + Δt, gives: 

Fp(τ) = exp(Lp(τ)Δt )Fp(t) (A3)  

The constitutive relations at each IP are: 

T = CEe, with T = Fe− 1
{(detFe)σ }Fe− T and Ee =

1
2

{
FeT Fe − I

}
(A4) 

with T denoting the second Piola-Kirchhoff stress tensor, Ee denoting the Lagrangian strain tensor, and C denoting the fourth-rank elastic stiffness 
tensor. Fe must be known from Fe(τ) = FFp− 1

(τ) = FFp− 1
(t){I − ΔtLp(τ) } to calculate stress. Lp must also be known. Here, L is additively decomposed to 

its plastic, Lp, and elastic, Le, parts. The former consists of slip shearing contributions as: 

L = Le + Lp = Le + Lsl = Le +
∑Nsl

s
γ̇sSs

0 (A5)  

In Eq. (A5), Ss
0 = bs

0 ⊗ ns
0 are Schmid tensors for slip systems, s, in their reference configuration denoted with 0. These Schmid tensors are based on bs

0 
Burgers vectors and ns

0 plane normal vectors. γ̇s is the rate of shearing. 
The Schmid resolved shear stress for activation of a slip system is modified by adding the non-Schmid effects/projections as (Dao and Asaro, 1993; 

Knezevic et al., 2014a; Lim et al., 2013; Savage et al., 2017; Savage et al., 2018): 

τs = Ss
0 • T + Ps

ns • T = Ps
tot • T (A6)  

where the non-Schmid tensor is a weighted sum of the following five dyads: 

Ps
ns = c1

(
ts
0 ⊗ bs

0
)

+ c2
(
ts
0 ⊗ ns

0
)

+ c3
(
ns

0 ⊗ ns
0
)

+ c4
(
ts
0 ⊗ ts

0
)

− (c3 + c4)
(
bs

0 ⊗ bs
0
)

(A7)  

In Eq. (A7), ts is a unit vector in the glide plane but perpendicular to the slip direction, ts = ns × bs and ci are the weighting non-Schmid coefficients. 
These coefficients for Ta at room temperature reported in (Lim et al., 2013): c1 = − 0.15, c2 = 0.13, c3 = − 0.07, c4 = 0.04 are used in the present work 
like in several other studies (Knezevic et al., 2014a; Zecevic and Knezevic, 2018). Finally, the power-law equation for slip systems is (Asaro and 
Needleman, 1985; Hutchinson, 1976; Kalidindi, 1998; Knezevic et al., 2016; Vasilev et al., 2020; Zecevic et al., 2016). 

γ̇s = γ̇0

(
τs

τs
c

)1
m

withτs < 0→γ̇s = 0 (A8)  

where γ̇0 is a reference value for shearing rate (γ̇0 = 0.001s− 1), τs is the resolved shear stress on system s, τs
c is a threshold value to slip defined shortly, 

and 1
m is the power-law exponent with m representing a strain-rate sensitivity. The exponent, 1

m = n = 20, is appropriate for Ta (Feng et al., 2022; 
Knezevic et al., 2014a). Note that positive and negative slip directions are considered separately. 

Appendix B 

This appendix presents stress–strain fields for one of the crystals (Figure B1) and relative activities of slip systems activated in nanoindentation 
(Figure B2) and simple compression (Figure B3).      
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Fig. B1. Effective strain fields (left) and von Mises stress fields (right) underneath the indenter sectioned through the middle YX plane of the model during the 
indentation of (001) crystal orientation: (a) at yield, (b) end of indentation, and (c) after retracting the indenter.  
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Fig. B2. Predicted relative activities of each slip system in (a) mode and (b) mode accommodating the plasticity in nanoindentation of the 15 grains.  
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Fig. B2. (continued).  
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Fig. B3. Predicted relative activities of each slip system in (a) mode and (b) mode accommodating the plasticity in simple compression of the 15 grains. Legends are 
the same as in Figure B2. 
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Fig. B3. (continued).  

References 

Al-Harbi, H.F., Knezevic, M., Kalidindi, S.R., 2010. Spectral approaches for the fast 
computation of yield surfaces and first-order plastic property closures for 
polycrystalline materials with cubic-triclinic textures. CMC: Computers Materials, & 
Continua 15, 153–172. 

Ardeljan, M., Beyerlein, I.J., McWilliams, B.A., Knezevic, M., 2016a. Strain rate and 
temperature sensitive multi-level crystal plasticity model for large plastic 
deformation behavior: Application to AZ31 magnesium alloy. Int. J. Plast. 83, 
90–109. 

Ardeljan, M., Beyerlein, I.J., Knezevic, M., 2017. Effect of dislocation density-twin 
interactions on twin growth in AZ31 as revealed by explicit crystal plasticity finite 
element modeling. Int. J. Plast. 

Ardeljan, M., Knezevic, M., 2018. Explicit modeling of double twinning in AZ31 using 
crystal plasticity finite elements for predicting the mechanical fields for twin variant 
selection and fracture analyses. Acta. Mater. 157, 339–354. 

Ardeljan, M., Knezevic, M., Nizolek, T., Beyerlein, I.J., Mara, N.A., Pollock, T.M., 2015a. 
A study of microstructure-driven strain localizations in two-phase polycrystalline 
HCP/BCC composites using a multi-scale model. Int. J. Plast. 74, 35–57. 

Ardeljan, M., McCabe, R.J., Beyerlein, I.J., Knezevic, M., 2015b. Explicit incorporation of 
deformation twins into crystal plasticity finite element models. Comput. Methods 
Appl. Mech. Eng. 295, 396–413. 

Ardeljan, M., Savage, D.J., Kumar, A., Beyerlein, I.J., Knezevic, M., 2016b. The plasticity 
of highly oriented nano-layered Zr/Nb composites. Acta. Mater. 115, 189–203. 

Arsenlis, A., Parks, D.M., 1999. Crystallographic aspects of geometrically-necessary and 
statistically-stored dislocation density. Acta. Mater. 47, 1597–1611. 

Asaro, R.J., Needleman, A., 1985. Texture development and strain hardening in rate 
dependent polycrystals. Acta Metall. Mater. 33, 923–953. 

Beghini, M., Bertini, L., Fontanari, V., 2006. Evaluation of the stress–strain curve of 
metallic materials by spherical indentation. Int. J. Solids Struct. 43, 2441–2459. 
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