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Abstract

This review presents current knowledge on applying bioelectrochemical sensors to monitor soil
fertility through microbial activity and discusses future perspectives. Soil microbial activity is
considered an indicator of soil fertility due to the interconnected relationship between soil
nutrient composition, microbiome, and plant productivity. Similarities between soils and
bioelectrochemical reactors provide the foundation for the design of bioelectrochemical sensors
driven by microorganisms enriched as electrochemically active biofilms on polarized electrodes.
The biofilm can exchange electrons with electrodes and metabolites with the nearby microbiome
to generate electrochemical signals that inform of microbiome functions and nutrient
bioavailability. Such mechanisms can be used as a bioelectrochemical sensor for proxy
monitoring of soil fertility to address the need for real-time monitoring of soils.
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Introduction: Can soil be a bioelectrochemical reactor?

Soil is a spatially heterogeneous mixture of inorganic minerals, organic matter, and dissolved
compounds. Approximately 45% of total soil volume is composed of three primary inorganic
minerals: sand, silt, and clay [1], whose relative percentages determine soil texture and structure.
Soil porosity, the void space in soil which is filled with gases or water, constitutes approximately
50% of total soil volume [2]. Organic matter accounts for the remaining 5% of soil and includes
living and decaying plants and animals, microorganisms, and humic substances [2]. Collectively,
organic and inorganic materials provide nutrients to microorganisms, either as dissolved
compounds moving through the soils or immobilized on soil surfaces. Chemotactic and motile
behaviors allow microorganisms to migrate towards nutrient rich areas in soil, such as near plant
roots [3]. Soil microorganisms are critical to the cycling of nutrients essential for plant growth,
including nitrogen, carbon, phosphorus, and potassium [4]. Soil microbes improve bioavailability
of nutrients for plant uptake and plants roots secrete nutrients that symbiotically support microbial
growth and diversity [5]. The high density of microbes in the soil and near plant roots (the
rhizosphere) interact with one another to develop surface-attached communities known as biofilm.
By linking nutrient availability in soil to plant productivity, the soil microbiome activity becomes
a dynamic indicator of soil fertility [6]. For this reason, there is great interest in harnessing the
symbiotic activities of soil microbiomes to enhance crop health and resilience, and to improve
nutrient availability without the use of chemical fertilizers [7].

Like bioelectrochemical reactors, soil contains electrolytes, microorganisms, nutrients, and redox
active compounds which can generate electrical current through an electrochemical system. For
example, soil microbial fuel cells (SMFC) harness the electrochemical activities of the local soil
microbiome and are operated as bioelectrochemical reactors. SMFCs have been developed for
energy harvesting and bioremediation of soil contaminants through biofilm enrichment on buried
electrodes [8]. Whether viewed on a macro or micro scale, soils share the features of a
bioelectrochemical reactor; however, many of these features are dynamic in soil. Novel
applications are being developed to operate SMFCs under reduced moisture, an important
consideration for performance under dynamic hydration levels [8]. To monitor other dynamic
properties of soil, sensors have been developed to quantify specific nutrients, redox active
compounds, and physical properties of soil. A bioelectrochemical sensor is yet to be developed for
monitoring the collective activities of the soil microbiomes, both in terms of structure and
functionality.

Importance of microbial biofilms in soil and dissolved organic matter

Biofilms in soils consist of multi-species microbial consortia attached to soil particles and biotic
surfaces including roots, fungal hyphae, and decomposing organic material [9]. Approximately
40-80% of the 3 x10% bacterial and archaeal cells present in the soil are estimated to reside in
biofilms [10]. Biofilms encase cells in a self-secreted matrix of extracellular polymeric substances
(EPS), which enhances biofilm resilience, extracellular electron transfer (e-transfer), and soil
stability [11,12]. Biofilms formed on soil particles and biotic surfaces (such as roots) are critical
for nutrient mobilization and provisioning, pathogen defense, and modulation of plant morphology
and physiology [13,14].

Nutrient availability in soil contributes to the formation and function of soil biofilms. For example,
dissolved organic matter (DOM) is a critical carbon source which soil biofilms convert into
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intermediate chemicals or gases essential to other organisms in the soil ecosystem. Redox-active
components of DOM contribute to the local redox state of soil, thereby influencing redox-
controlled activities of soil microbiomes. The addition of DOM increases soil respiration rates, an
indicator of microbial activity, and alter local soil microbial community functions across several
soil types [15,16].

Microbial electron transfer in soil

Microbial metabolic interactions that drive nutrient cycling and biogeochemical processes in soil
are made of e-transfer processes between electron donors and acceptors [6]. Soil organic matter,
dissolved oxygen availability, soil moisture, and pH can modulate these redox activities [12].
Physical parameters of soil such as structure and texture control oxygen penetration, indirectly
influence local redox activities [13]. Some of the most abundant redox-active fractions of DOM,
humic substances, and other redox-active soil compounds can be detected using electrodes [17,18].
Through the detection of these redox-active compounds, electrodes indirectly measure shifts in the
metabolic activities of the local microbiomes and electrochemical gradients in soil. Thus, soil
microbiomes may serve as indicators of many physical, chemical, and biological soil parameters.

Soil microbes are also capable of changing macro-scale soil properties through e-transfer. For
example, cable bacteria (discovered in 2012) form cm-long filaments that conduct electrons
vertically across sediments [19-21]. A study published in 2020 showed inoculating cable bacteria
to rice fields reduces anthropogenic methane emission by 93% [22]. Similarly, in 2023, cable
bacteria were identified as an important microbe in the regulation of phosphorus release in
sediment by altering soil pH gradients [23]. Moreover, cable bacteria can interact with electrodes
[24,25], so their presence and activity can be monitored. Cable bacteria connected to oxygen
sources attract flocks of bacteria to the anoxic section when e-transport in cable bacteria is active,
but if the cable bacteria are cut (interrupting e-transport), these microbes disperse [26]. These
studies illustrate how modulation of e-transfer processes impacts microbiome composition and
influence soil properties.

Harnessing the bioelectrochemical properties of soils

The presence of redox-active compounds, e-transfer mediators (ETMs), and electrochemically
active biofilms (EABs) allows us to consider soils as a bioelectrochemical reactor and each
component can be electrochemically probed. DOM represents one of the most mobile and reactive
organic compounds in the ecosystem and plays an important role in the transport of soil organic
content and nutrient cycling [27-30]. Cyclic voltammetry (CV) and chronoamperometry (CA)
demonstrate the e-transfer capability of some redox-active DOMs in soil [27]. Furthermore,
differential pulse voltammetry (DPV) and CV in combination with spectroscopic techniques (FT-
IR, UV-Vis and fluorescence spectroscopy), effectively determined the electrochemical and redox
properties of DOM in soil [28]. Since the discovery of e-transfer in soil, researchers have focused
on how to improve this process. For instance, pyrogenic carbon or other conductive carbon-based
materials have been proposed as soil amendments to improve e-transfer [31]. The addition of
pyrogenic carbon is expected to improve soil fertility by increasing the amount of ETMs, but this
relationship is yet to be validated. It is also unclear how other biological components of terrestrial
belowground systems, notably plant roots, modulate electrochemical signals or e-transfer of
associated biofilms.
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Soil bacteria have significant variations in metabolic capabilities, which is observed as variance in
electrochemical potentials, e-transfer mechanisms, and the electrical currents they generate
[17,22,32,33]. Microbial activities and nutrient availability can be monitored by the current (e-
transfer rate) of an electrode colonized by EAB, which can exchange electrons with the inert
electrode [34,35]. Polarized electrodes therefore can be used for in sifu detection of microbial life
in soils [36]. Amending soils with electron donors enhances the biologically produced current and
allows for the stimulation and detection of dormant electrochemically active microbes
[29,30,37,38]. Polarized electrodes in soil provide a method to detect local metabolisms without
prior knowledge of the microbiome present and determine if signals are biological through
electrochemical measurements [37]. Photosynthetic metabolisms can also be monitored in this
manner in remote areas using custom electronics [39],[40,41]. Polarized electrodes have facilitated
the isolation of electrochemically active bacteria and soil microbes with extracellular e-transfer
ability [32].

Enriched electrochemically active microbial communities growing on polarized electrodes
respond to the local soil electrochemistry [21,42]. Previous research demonstrates biofilm grown
on electrodes can monitor microbe-environment interactions in sediment systems [34,35].
Through the selective enrichment of local electrochemically active species, the electrode-
associated biofilm alters the local microbiome structure and function and opens opportunities for
engineering soil activities [42-44]. With increasing interest in utilizing natural microbiomes in
place of chemical fertilizers, electrochemical enrichment may have applications in supporting
plant-growth-promoting microorganisms, stimulating nutrient cycling, and promoting the
bioremediation of contaminated soils [7,45]. Thus, studies to date demonstrate that soil is a
dynamic redox-active bioelectrochemical system, that can be probed using electrochemical
techniques.
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An  attractive  property  of CA oV EIS CA oV EIS
measuring  bioelectrochemical

signals in soil and linking them /k ﬁb / \r qv /
to specific processes is that they /i /4
can be precisely tuned in
multiple dimensions. In this
review, electrochemical signals
are defined as a set of
multidimensional e-transfer
measurements: 1) CA measures
anodic or cathodic current
generation at a set potential to
monitor EAB metabolism, 2) CV
can inform metabolic/redox

Anodic Biofilm Cathodic Biofilm
electrochemical electrochemical
signals signals

L g Biological ; i J Biological
activity across a range of applied  Oxidation: Reduction:
potentials, 3) square wave Biofilm donates Biofilm accepts
voltammetry signals can be electrode electrode
related to the activity or . : : :
concentration of redox Figure 1. EABs are selectively enriched on polarized electrodes at

. positive (anode) or negative (cathode) potentials, producing
mediators, 4).C.Onduc:tar}ce shows  ¢jectrochemical signals based on their interactions with the bulk soil
e-transfer ability of soil, and 5)  microbes and nutrients.

electrochemical impedance

spectroscopy (EIS) identifies mass transport limitations or reaction kinetic limitations at the
electrode surface. Some of these measurements are illustrated in Figure 1, which shows electrodes
in soil selectively enriching EABs with a reductive (electron-accepting) or oxidative (electron-
donating) metabolism on the cathode and anode, respectively. Linking the electrochemical signals
to specific properties of the soil microbiome is critical to develop a new generation of
bioelectrochemical sensors informing of soil microbiome metabolic activities and available
metabolites.

Electrochemically active biofilms as bioelectrochemical sensors

Bioelectrochemical sensors provide real-time measurements of microbial activity through current
measurements. EABs have been utilized to quantify microbial activity and available nutrients. For
example, microbiosensors using the EAB, Geobacter sulfurreducens, effectively detected acetate
(electron donor) and fumarate (electron acceptor) at concentrations as low as 79 uM and 258uM,
respectively [46,47]. EABs have also been used to monitor microbial activities in hot springs
located in Yellowstone National Park [44] and in a hypersaline lake [41]. Biofilm-based sensors
have also been used for measuring formaldehyde toxicity in water, dissolved oxygen, and volatile
fatty acids [48,49]. Overall, these works of literature provide a strong foundation for harnessing
EABs as bioelectrochemical sensors in soil.
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A recent study  determined

electrochemical signals of EAB can A Areesa By s

be used to distinguish fertile and less ~ |_ g _ s

fertile soils (determined by plant |2, g .

productivity) within two days by % £ .
monitoring current generation and ' 0 -E?:Figi‘%yo
observing an increase in redox peaks e . || g Shumdneliilind
in CV measurements [42]. Addition

Time (Days) Vo
of  glucose (carbon source and i ‘
electron donor) to both soils
increased anodic current, indicating
nutrient  availability may limit
microbial activity, even in fertile
systems [42]. Micrographs of the
electrodes surface confirmed biofilm
enrichment in more fertile soils.
Similarly, another study in 2024,
demonstrated high levels of DOM
enriched more diverse, weakly
electrochemically active bacteria
from soil on polarized electrodes;
while low DOM samples exhibited a
higher relative abundance of strong electrochemically active bacteria such as Geobacter on
polarized electrodes [50]. The availability of DOM influenced the microbial community structure
and generated distinct electrochemical signals through CV and CA measurements, indicating a
correlation between nutrient availability, microbial community, and electrochemical signals.

Figure 2. A) Current generated by biofilms enriched from fertile
soil (red) in reference to autoclaved soil controls (blue). B) Cyclic
voltammograms showing increased redox peaks in fertile soils
compared to controls. Scanning electron micrographs of biofilms
enriched on polarized electrodes with C) fertile soil and D) triple
autoclaved soil, in reference to E) non-polarized electrode in
fertile soil.

The electrochemical protocol of Mohamed et al. (2021) was followed to evaluate the difference
in biotic and abiotic electrochemical signals generated by fertile soil and triple autoclaved fertile
soil (Figure 2) [42]. Fertile soil with microbes generated significantly greater current and
increased redox peaks in the CV than autoclaved soil. Abiotic redox active compounds in soil
may explain the increased redox peak over time in autoclave soil at day 20 (Figure 2 b).
Scanning electron micrographs (Figure 2 c-e) confirmed biofilm enrichment on the polarized
electrode in fertile soil compared to the autoclaved soil. Biotic electrochemical signals from soil
may be differentiated from abiotic electrochemical signals through a combination of
electrochemical measurements. However, further research is required to 1) quantify distinctions
between abiotic and biotic electrochemical signals in soil systems, and 2) characterize EAB.

Perspectives on the use of bioelectrochemical soil sensors as a new tool to monitor soil
microbiome activity and proxy for soil fertility

Soil sensors provide quick, non-destructive measurements of individual soil parameters including
water content, electrical conductivity, temperature, pH, and soil water potential [51]. However,
measurements of multiple physical and chemical properties are often required to quantify soil
fertility and do not measure biological properties of the soil. Current methods for characterizing
soil biofilm communities and functions require meta-omic studies and advanced microscopy
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techniques [14]. However, these approaches are limited in their ability to rapidly monitor
biological activities and their correlation to other soil parameters. Biodegradable sensors have been
developed to correlate measured electrical resistance to microbial decomposition ability [52].
These sensors provide information on biological activity but have limitations in monitoring
microbiome structure, selectivity for identification of beneficial microbes, and changes in the soil
microbiome. New sensory modalities are thus needed to monitor the microbial activities of soil.

Soil microorganisms respond rapidly to changes in their physical and chemical environment.
Bioelectrochemical sensors can provide continuous monitoring of biological activities in response
to physical and chemical fluctuation in space and time through CA measurements. However
multiple parameters, such as water content, temperature, pH, and available nutrients, will affect
the measured EAB signals, limiting our ability to distinguish the cause (Figure 3) [53]. Integration
of bioelectrochemical sensors with other sensors to measure the most influential parameters (e.g.,
water content or temperature) could overcome some of these challenges and enable integrative
approaches for the monitoring of soil fertility. Such capability would enable real-time monitoring
of microbial activities in soil, potentially allowing farmers to make faster decisions regarding soil
amendments for crop yield optimization.

Bioelectrochemical sensors have the
potential to correlate EAB with
nutrient content in soil. Monitoring Parametc_ars_ Affecting Blo_ﬂlm Responses to

. . .. . Biofilm Environmental Change
microbial activity and nutrient

availability requires both nutrients Soil pH 's_ Metabolic Activity

. e  —
and microbes to be present to produce Water Content ﬂ Redox Mediator Production
a sensor response. These sensors are e ' —
currently unable to distinguish Nutrients R, Metabolites

] E—— >

between the absence of nutrients or Temperature Biofilm Growth
microbes. Bioelectrochemical @ or Death

sensors also face reproducibility
challenges due to the heterogeneity
of soil, as electrochemical responses  Figure 3. Bioelectrochemical sensors measure EAB activity, which
are likely to vary spatially. Many soil  can be affected by many environmental factors including soil pH,
types of multiple fertility standards  Wwater content, availability of local nutrients, and temperature.

need to be evaluated and correlated

with relative crop yield to verify the range of soil fertility a bioelectrochemical sensor can measure.
Optimization of a sturdy sensor design, polarization potential for different soil types, and analytical
methods are required for development of a field-deployable bioelectrochemical sensor. These
challenges highlight that research on bioelectrochemical sensors to monitor soil fertility is in the
early stages of development and the need for continued advancement. Overcoming these
challenges could lead to improved understanding of soil microbiome functions and the
development of sensors that provide farmers with valuable, real-time information of soil properties
needed for strategic management.

EPS Production
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Annotated references

** Qin2024: Authors demonstrated weak electrochemically active bacteria are more prominent in soils
rich in DOM and increased total biological current generation. Electroactive microbial communities in
soil are influenced by DOM abundance in soils.

* Atreya2023: Biodegradable soil sensor measures resistive signals that correlates with microbial
decomposition activity, which is critical to maintaining soil fertility through carbon cycling.

*» Mattila2024: Redox processes in soil which drive microbial community functions are controlled by
several factors including soil structure. Redox measurements of soil can be utilized as an additional
measurement in soil mapping because of correlation with soil structure and biological activity.

* Miele2023: Soil column experiments demonstrate the relationship between redox potential in soil and
the soil saturation dynamics and authors identified saturation velocity as a major driver in redox potential
changes.

** Bjerg2023: Diverse bacteria move towards the anoxic part of cable bacteria and disperse rapidly when
it is cut off from oxygen, suggesting cable bacteria’s electron transfer chain may influence surrounding
microbial community and act as an electron donor.

* Xu2023: Cable bacteria activity can influence phosphorus (P) mobility in freshwater by acidification of
the suboxic zone, releasing dissolved Fe?* and Mn**. The formation of a metal oxide layer in the sediment
traps dissolved P in sediment which may counteract eutrophication in freshwater.
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