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Abstract  16 
This review presents current knowledge on applying bioelectrochemical sensors to monitor soil 17 
fertility through microbial activity and discusses future perspectives. Soil microbial activity is 18 
considered an indicator of soil fertility due to the interconnected relationship between soil 19 
nutrient composition, microbiome, and plant productivity. Similarities between soils and 20 
bioelectrochemical reactors provide the foundation for the design of bioelectrochemical sensors 21 
driven by microorganisms enriched as electrochemically active biofilms on polarized electrodes. 22 
The biofilm can exchange electrons with electrodes and metabolites with the nearby microbiome 23 
to generate electrochemical signals that inform of microbiome functions and nutrient 24 
bioavailability. Such mechanisms can be used as a bioelectrochemical sensor for proxy 25 
monitoring of soil fertility to address the need for real-time monitoring of soils. 26 
 27 
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Introduction: Can soil be a bioelectrochemical reactor?  33 
Soil is a spatially heterogeneous mixture of inorganic minerals, organic matter, and dissolved 34 
compounds. Approximately 45% of total soil volume is composed of three primary inorganic 35 
minerals: sand, silt, and clay [1], whose relative percentages determine soil texture and structure. 36 
Soil porosity, the void space in soil which is filled with gases or water, constitutes approximately 37 
50% of total soil volume [2]. Organic matter accounts for the remaining 5% of soil and includes 38 
living and decaying plants and animals, microorganisms, and humic substances [2]. Collectively, 39 
organic and inorganic materials provide nutrients to microorganisms, either as dissolved 40 
compounds moving through the soils or immobilized on soil surfaces. Chemotactic and motile 41 
behaviors allow microorganisms to migrate towards nutrient rich areas in soil, such as near plant 42 
roots [3]. Soil microorganisms are critical to the cycling of nutrients essential for plant growth, 43 
including nitrogen, carbon, phosphorus, and potassium [4]. Soil microbes improve bioavailability 44 
of nutrients for plant uptake and  plants roots secrete nutrients that symbiotically support microbial 45 
growth and diversity [5]. The high density of microbes in the soil and near plant roots (the 46 
rhizosphere) interact with one another to develop surface-attached communities known as biofilm. 47 
By linking nutrient availability in soil to plant productivity, the soil microbiome activity becomes 48 
a dynamic indicator of soil fertility [6]. For this reason, there is great interest in harnessing the 49 
symbiotic activities of soil microbiomes to enhance crop health and resilience, and to improve 50 
nutrient availability without the use of chemical fertilizers [7]. 51 
 52 
Like bioelectrochemical reactors, soil contains electrolytes, microorganisms, nutrients, and redox 53 
active compounds which can generate electrical current through an electrochemical system. For 54 
example, soil microbial fuel cells (SMFC) harness the electrochemical activities of the local soil 55 
microbiome and are operated as bioelectrochemical reactors. SMFCs have been developed for 56 
energy harvesting and bioremediation of soil contaminants through biofilm enrichment on buried 57 
electrodes [8]. Whether viewed on a macro or micro scale, soils share the features of a 58 
bioelectrochemical reactor; however, many of these features are dynamic in soil. Novel 59 
applications are being developed to operate SMFCs under reduced moisture, an important 60 
consideration for performance under dynamic hydration levels [8]. To monitor other dynamic 61 
properties of soil, sensors have been developed to quantify specific nutrients, redox active 62 
compounds, and physical properties of soil. A bioelectrochemical sensor is yet to be developed for 63 
monitoring the collective activities of the soil microbiomes, both in terms of structure and 64 
functionality. 65 
 66 
Importance of microbial biofilms in soil and dissolved organic matter 67 
Biofilms in soils consist of multi-species microbial consortia attached to soil particles and biotic 68 
surfaces including roots, fungal hyphae, and decomposing organic material [9].  Approximately 69 
40-80% of the 3 ×1029 bacterial and archaeal cells present in the soil are estimated to reside in 70 
biofilms [10]. Biofilms encase cells in a self-secreted matrix of extracellular polymeric substances 71 
(EPS), which enhances biofilm resilience, extracellular electron transfer (e-transfer), and soil 72 
stability [11,12]. Biofilms formed on soil particles and biotic surfaces (such as roots) are critical 73 
for nutrient mobilization and provisioning, pathogen defense, and modulation of plant morphology 74 
and physiology [13,14].  75 
 76 
Nutrient availability in soil contributes to the formation and function of soil biofilms. For example, 77 
dissolved organic matter (DOM) is a critical carbon source which soil biofilms convert into 78 



intermediate chemicals or gases essential to other organisms in the soil ecosystem. Redox-active 79 
components of DOM contribute to the local redox state of soil, thereby influencing redox-80 
controlled activities of soil microbiomes. The addition of DOM increases soil respiration rates, an 81 
indicator of microbial activity, and alter local soil microbial community functions across several 82 
soil types [15,16].  83 
 84 
Microbial electron transfer in soil  85 
Microbial metabolic interactions that drive nutrient cycling and biogeochemical processes in soil 86 
are made of e-transfer processes between electron donors and acceptors [6]. Soil organic matter, 87 
dissolved oxygen availability, soil moisture, and pH can modulate these redox activities [12]. 88 
Physical parameters of soil such as structure and texture control oxygen penetration, indirectly 89 
influence local redox activities [13]. Some of the most abundant redox-active fractions of DOM, 90 
humic substances, and other redox-active soil compounds can be detected using electrodes [17,18]. 91 
Through the detection of these redox-active compounds, electrodes indirectly measure shifts in the 92 
metabolic activities of the local microbiomes and electrochemical gradients in soil. Thus, soil 93 
microbiomes may serve as indicators of many physical, chemical, and biological soil parameters. 94 
 95 
Soil microbes are also capable of changing macro-scale soil properties through e-transfer. For 96 
example, cable bacteria (discovered in 2012) form cm-long filaments that conduct electrons 97 
vertically across sediments [19-21]. A study published in 2020 showed inoculating cable bacteria 98 
to rice fields reduces anthropogenic methane emission by 93% [22]. Similarly, in 2023, cable 99 
bacteria were identified as an important microbe in the regulation of phosphorus release in 100 
sediment by altering soil pH gradients [23]. Moreover, cable bacteria can interact with electrodes 101 
[24,25], so their presence and activity can be monitored. Cable bacteria connected to oxygen 102 
sources attract flocks of bacteria to the anoxic section when e-transport in cable bacteria is active, 103 
but if the cable bacteria are cut (interrupting e-transport), these microbes disperse [26]. These 104 
studies illustrate how modulation of e-transfer processes impacts microbiome composition and  105 
influence soil properties. 106 
 107 
Harnessing the bioelectrochemical properties of soils  108 
The presence of redox-active compounds, e-transfer mediators (ETMs), and electrochemically 109 
active biofilms (EABs) allows us to consider soils as a bioelectrochemical reactor and each 110 
component can be electrochemically probed. DOM represents one of the most mobile and reactive 111 
organic compounds in the ecosystem and plays an important role in the transport of soil organic 112 
content and nutrient cycling [27-30].  Cyclic voltammetry (CV) and chronoamperometry (CA) 113 
demonstrate the e-transfer capability of some redox-active DOMs in soil [27]. Furthermore, 114 
differential pulse voltammetry (DPV) and CV in combination with spectroscopic techniques (FT-115 
IR, UV-Vis and fluorescence spectroscopy), effectively determined the electrochemical and redox 116 
properties of DOM in soil [28]. Since the discovery of e-transfer in soil, researchers have focused 117 
on how to improve this process. For instance, pyrogenic carbon or other conductive carbon-based 118 
materials have been proposed as soil amendments to improve e-transfer [31]. The addition of 119 
pyrogenic carbon is expected to improve soil fertility by increasing the amount of ETMs, but this 120 
relationship is yet to be validated. It is also unclear how other biological components of terrestrial 121 
belowground systems, notably plant roots, modulate electrochemical signals or e-transfer of 122 
associated biofilms.  123 
 124 



Soil bacteria have significant variations in metabolic capabilities, which is observed as variance in 125 
electrochemical potentials, e-transfer mechanisms, and the electrical currents they generate 126 
[17,22,32,33]. Microbial activities and nutrient availability can be monitored by the current (e-127 
transfer rate) of an electrode colonized by EAB, which can exchange electrons with the inert 128 
electrode [34,35]. Polarized electrodes therefore can be used for in situ detection of microbial life 129 
in soils [36]. Amending soils with electron donors enhances the biologically produced current and 130 
allows for the stimulation and detection of dormant electrochemically active microbes 131 
[29,30,37,38]. Polarized electrodes in soil provide a method to detect local metabolisms without 132 
prior knowledge of the microbiome present and determine if signals are biological through 133 
electrochemical measurements [37]. Photosynthetic metabolisms can also be monitored in this 134 
manner in remote areas using custom electronics [39],[40,41]. Polarized electrodes have facilitated 135 
the isolation of electrochemically active bacteria and soil microbes with extracellular e-transfer 136 
ability [32]. 137 
 138 
Enriched electrochemically active microbial communities growing on polarized electrodes 139 
respond to the local soil electrochemistry [21,42]. Previous research demonstrates biofilm grown 140 
on electrodes can monitor microbe-environment interactions in sediment systems [34,35].  141 
Through the selective enrichment of local electrochemically active species, the electrode-142 
associated biofilm alters the local microbiome structure and function and opens opportunities for 143 
engineering soil activities [42-44]. With increasing interest in utilizing natural microbiomes in 144 
place of chemical fertilizers, electrochemical enrichment may have applications in supporting 145 
plant-growth-promoting microorganisms, stimulating nutrient cycling, and promoting the 146 
bioremediation of contaminated soils [7,45]. Thus, studies to date demonstrate that soil is a 147 
dynamic redox-active bioelectrochemical system, that can be probed using electrochemical 148 
techniques. 149 
 150 



An attractive property of 151 
measuring bioelectrochemical 152 
signals in soil and linking them 153 
to specific processes is that they 154 
can be precisely tuned in 155 
multiple dimensions. In this 156 
review, electrochemical signals 157 
are defined as a set of 158 
multidimensional e-transfer 159 
measurements: 1) CA measures 160 
anodic or cathodic current 161 
generation at a set potential to 162 
monitor EAB metabolism, 2) CV 163 
can inform metabolic/redox 164 
activity across a range of applied 165 
potentials, 3) square wave 166 
voltammetry signals can be 167 
related to the activity or 168 
concentration of redox 169 
mediators, 4) conductance shows 170 
e-transfer ability of soil, and 5) 171 
electrochemical impedance 172 
spectroscopy (EIS) identifies mass transport limitations or reaction kinetic limitations at the 173 
electrode surface. Some of these measurements are illustrated in Figure 1, which shows electrodes 174 
in soil selectively enriching EABs with a reductive (electron-accepting) or oxidative (electron-175 
donating) metabolism on the cathode and anode, respectively. Linking the electrochemical signals 176 
to specific properties of the soil microbiome is critical to develop a new generation of 177 
bioelectrochemical sensors informing of soil microbiome metabolic activities and available 178 
metabolites.  179 
 180 
Electrochemically active biofilms as bioelectrochemical sensors 181 
Bioelectrochemical sensors provide real-time measurements of microbial activity through current 182 
measurements. EABs have been utilized to quantify microbial activity and available nutrients. For 183 
example, microbiosensors using the EAB, Geobacter sulfurreducens, effectively detected acetate 184 
(electron donor) and fumarate (electron acceptor) at concentrations as low as 79 µM and 258µM, 185 
respectively [46,47]. EABs have also been used to monitor microbial activities in hot springs 186 
located in Yellowstone National Park [44] and in a hypersaline lake [41]. Biofilm-based sensors 187 
have also been used for measuring formaldehyde toxicity  in water, dissolved oxygen, and volatile 188 
fatty acids [48,49]. Overall, these works of literature provide a strong foundation for harnessing 189 
EABs as bioelectrochemical sensors in soil.  190 

Figure 1. EABs are selectively enriched on polarized electrodes at 
positive (anode) or negative (cathode) potentials, producing 
electrochemical signals based on their interactions with the bulk soil 
microbes and nutrients.  



 191 
A recent study determined 192 
electrochemical signals of EAB can 193 
be used to distinguish fertile and less 194 
fertile soils (determined by plant 195 
productivity) within two days by 196 
monitoring current generation and 197 
observing an increase in redox peaks 198 
in CV measurements [42]. Addition 199 
of  glucose (carbon source and 200 
electron donor) to both soils 201 
increased anodic current, indicating 202 
nutrient availability may limit 203 
microbial activity, even in fertile 204 
systems [42].  Micrographs of the 205 
electrodes surface confirmed biofilm 206 
enrichment in more fertile soils. 207 
Similarly, another study in 2024, 208 
demonstrated high levels of DOM 209 
enriched more diverse, weakly 210 
electrochemically active bacteria 211 
from soil on polarized electrodes; 212 
while low DOM samples exhibited a 213 
higher relative abundance of strong electrochemically active bacteria such as Geobacter on 214 
polarized electrodes [50]. The availability of DOM influenced the microbial community structure 215 
and generated distinct electrochemical signals through CV and CA measurements, indicating a 216 
correlation between nutrient availability, microbial community, and electrochemical signals.  217 
 218 
The electrochemical protocol of Mohamed et al. (2021) was followed to evaluate the difference 219 
in biotic and abiotic electrochemical signals generated by fertile soil and triple autoclaved fertile 220 
soil (Figure 2) [42]. Fertile soil with microbes generated significantly greater current and 221 
increased redox peaks in the CV than autoclaved soil. Abiotic redox active compounds in soil 222 
may explain the increased redox peak over time in autoclave soil at day 20 (Figure 2 b). 223 
Scanning electron micrographs (Figure 2 c-e) confirmed biofilm enrichment on the polarized 224 
electrode in fertile soil compared to the autoclaved soil. Biotic electrochemical signals from soil 225 
may be differentiated from abiotic electrochemical signals through a combination of 226 
electrochemical measurements. However, further research is required to 1) quantify distinctions 227 
between abiotic and biotic electrochemical signals in soil systems, and 2) characterize EAB.   228 
 229 
Perspectives on the use of bioelectrochemical soil sensors as a new tool to monitor soil 230 
microbiome activity and proxy for soil fertility  231 
Soil sensors provide quick, non-destructive measurements of individual soil parameters including 232 
water content, electrical conductivity, temperature, pH, and soil water potential [51]. However, 233 
measurements of multiple physical and chemical properties are often required to quantify soil 234 
fertility and do not measure biological properties of the soil. Current methods for characterizing 235 
soil biofilm communities and functions require meta-omic studies and advanced microscopy 236 

Figure 2. A) Current generated by biofilms enriched from fertile 
soil (red) in reference to autoclaved soil controls (blue). B) Cyclic 
voltammograms showing increased redox peaks in fertile soils 
compared to controls.  Scanning electron micrographs of biofilms 
enriched on polarized electrodes with C) fertile soil and D) triple 
autoclaved soil, in reference to E) non-polarized electrode in 
fertile soil. 



techniques [14]. However, these approaches are limited in their ability to rapidly monitor 237 
biological activities and their correlation to other soil parameters. Biodegradable sensors have been 238 
developed to correlate measured electrical resistance to microbial decomposition ability [52]. 239 
These sensors provide information on biological activity but have limitations in monitoring 240 
microbiome structure, selectivity for identification of beneficial microbes, and changes in the soil 241 
microbiome. New sensory modalities are thus needed to monitor the microbial activities of soil. 242 
 243 
Soil microorganisms respond rapidly to changes in their physical and chemical environment. 244 
Bioelectrochemical sensors can provide continuous monitoring of biological activities in response 245 
to physical and chemical fluctuation in space and time through CA measurements. However 246 
multiple parameters, such as water content, temperature, pH, and available nutrients, will affect 247 
the measured EAB signals, limiting our ability to distinguish the cause (Figure 3) [53]. Integration 248 
of bioelectrochemical sensors with other sensors to measure the most influential parameters (e.g., 249 
water content or temperature) could overcome some of these challenges and enable integrative 250 
approaches for the monitoring of soil fertility. Such capability would enable real-time monitoring 251 
of microbial activities in soil, potentially allowing farmers to make faster decisions regarding soil 252 
amendments for crop yield optimization.  253 
 254 
Bioelectrochemical sensors have the 255 
potential to correlate EAB with 256 
nutrient content in soil. Monitoring 257 
microbial activity and nutrient 258 
availability requires both nutrients 259 
and microbes to be present to produce 260 
a sensor response. These sensors are 261 
currently unable to distinguish 262 
between the absence of nutrients or 263 
microbes. Bioelectrochemical 264 
sensors also face reproducibility 265 
challenges due to the heterogeneity 266 
of soil, as electrochemical responses 267 
are likely to vary spatially. Many soil 268 
types of multiple fertility standards 269 
need to be evaluated and correlated 270 
with relative crop yield to verify the range of soil fertility a bioelectrochemical sensor can measure. 271 
Optimization of a sturdy sensor design, polarization potential for different soil types, and analytical 272 
methods are required for development of a field-deployable bioelectrochemical sensor. These 273 
challenges highlight that research on bioelectrochemical sensors to monitor soil fertility is in the 274 
early stages of development and the need for continued advancement. Overcoming these 275 
challenges could lead to improved understanding of soil microbiome functions and the 276 
development of sensors that provide farmers with valuable, real-time information of soil properties 277 
needed for strategic management.  278 
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Annotated references 301 
•• Qin2024: Authors demonstrated weak electrochemically active bacteria are more prominent in soils 302 
rich in DOM and increased total biological current generation. Electroactive microbial communities in 303 
soil are influenced by DOM abundance in soils. 304 

• Atreya2023: Biodegradable soil sensor measures resistive signals that correlates with microbial 305 
decomposition activity, which is critical to maintaining soil fertility through carbon cycling. 306 

•• Mattila2024: Redox processes in soil which drive microbial community functions are controlled by 307 
several factors including soil structure. Redox measurements of soil can be utilized as an additional 308 
measurement in soil mapping because of correlation with soil structure and biological activity. 309 

• Miele2023: Soil column experiments demonstrate the relationship between redox potential in soil and 310 
the soil saturation dynamics and authors identified saturation velocity as a major driver in redox potential 311 
changes.  312 

•• Bjerg2023: Diverse bacteria move towards the anoxic part of cable bacteria and disperse rapidly when 313 
it is cut off from oxygen, suggesting cable bacteria’s electron transfer chain may influence surrounding 314 
microbial community and act as an electron donor.  315 

• Xu2023: Cable bacteria activity can influence phosphorus (P) mobility in freshwater by acidification of 316 
the suboxic zone, releasing dissolved Fe2+ and Mn2+. The formation of a metal oxide layer in the sediment 317 
traps dissolved P in sediment which may counteract eutrophication in freshwater.  318 
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