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A B S T R A C T   

In this work, we performed massive crystal plasticity finite element (CPFE) simulations to reveal the effects of 
element type on the accuracy of predicted mechanical fields and overall response over explicit periodic grain 
structure meshes of polycrystalline Cu during simple tension (ST), simple shear (SS), and a strain path change 
from ST to SS. Post-processing of the results provided a list of guidance for effective CPFE modeling of explicit 
microstructures. First, it was confirmed that quadratic tetrahedral elements (C3D10) are the most suitable for 
CPFE modeling owing to their accuracy, efficiency, and flexibility to describe complex geometries intrinsic to 
microstructures. Moreover, these elements predicted the overall response between the stiff linear hexahedral 
(C3D8) and compliant quadratic hexahedral (C3D20) elements. Next, quadratic hexahedral elements with 
reduced integration (C3D20R) arose as the second choice for CPFE modeling owing to their accuracy and 
computational efficiency but these elements generally require more memory than C3D10 elements. These ele
ments were also effective in relaxing the issue of volumetric locking intrinsic to C3D20 elements. The issue could 
not be eliminated by involving C3D20H or C3D20RH hybrid elements with constant pressure. Finally, corre
sponding simulations of the same explicit grain structure represented in voxel-based formats using elasto- 
viscoplastic fast Fourier transform (EVPFFT) full-field verified the overall response but predicted the local 
fields to deviate with plastic strain for all element types.   

1. Introduction 

Modeling of polycrystalline metals increasingly employs spatio- 
temporal microstructures allowing constituent grains to interact 
explicitly with each other while ensuring the state of strain compatibility 
and arriving at the stress equilibrium [1–6]. Such modeling is termed the 
full-field approach to modeling polycrystalline microstructures of 
metals. Purposely, the full-field modeling of microstructures accounts 
for the topological structure of constituent grains and their evolution 
while calculating the micromechanical fields and therefore facilitates 
relatively accurate predictions and understanding of complex phenom
ena pertaining to the material behavior. The plasticity fields modeling at 
the grain scale is vital for understanding and predicting mechanical 
extremes for damage/void nucleation driven by local stress/strain 
concentrations at weak microstructural regions. The governing equation 
of stress equilibrium in full-field modeling is usually solved numerically 

using the finite element method (FEM) over a finite element mesh 
[2,7,8] or a Green’s function method relying on the fast Fourier trans
form (FFT) algorithm to solve the convolution integral for stress equi
librium over a voxel-based microstructural cell [9]. The former class of 
models is referred to as the crystal plasticity finite element (CPFE) 
models [10,11], while the latter is the elasto-visco plastic FFT (EVPFFT) 
models [12,13]. EVPFFT is a widely used computationally efficient 
substitute to CPFE for simulating mechanical fields over a microstruc
tural cell/cube and the overall response of polycrystalline grain struc
tures in 3D as average over the cube [14–17]. It avoids many challenges 
pertaining to mesh generation for CPFE because it utilizes voxel-based 
microstructures. Both CPFE and EVPFFT involve a single crystal plas
ticity constitutive law describing the material behavior under boundary 
conditions in arriving at a solution in terms of a work-conjugated 
stress–strain measures. The single crystal plasticity constitutive law 
embedded at every FE material/integration point (CPFE) or voxel 
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(EVPFFT) implies that the micromechanical fields and overall response 
are governed by crystal lattice orientation and crystallographic defor
mation mechanisms. Moreover, the evolution of inter- and intra- 
granular misorientation fields over grains, grain shapes, and grain 
boundary character distributions (GBCD) are also captured to influence 
local/overall response [18,19]. 

To elucidate heterogeneous mechanical fields, the full-field 
modeling using CPFE and EVPFFT requires generation of poly
crystalline domains [20,21]. A BlueQuartz software package called 
DREAM.3D (Digital-Representation-Environment-for-Analyzing-Micro
structures in 3D) is a sophisticated tool to generate voxel-based synthetic 
microstructures [22]. Statistics of grain size distribution, grain shape, 
and orientation and misorientation distributions are inputs into 
DREAM.3D to generate statistically equivalent voxel-based microstruc
tural cells. Similarly, synthetic voxel-based microstructures can be ob
tained using the Voronoi tessellation [23–28]. Furthermore, voxel-based 
synthetic microstructures can be created by microstructure evolution 
models such as Potts (Monte-Carlo) [29,30], phase-field [31], and 
cellular automata [32,33] grain growth models. Finally, experimental 
techniques have been developed to acquire real grain structure data in 
3D. These experimental techniques include focused ion beam (FIB) 
electron backscattered diffraction (EBSD) serial sectioning [34–39]. A 
similar technique is robotic serial sectioning complemented with EBSD 
[40,41] Finally, nf HEDM (near-field high-energy X-ray diffraction mi
croscopy) is a very recent technique [42–48]. The data from these 
techniques is also represented by voxels. Post processing of so acquired 
experimental data is facilitated by DREAM.3D including the generation 
of triangular surface mesh over every grain. The surface mesh is a 
convenient input into volume mesh generation tools [49]. 

Voxel-based microstructures are a direct input into EVPFFT. In 
general, a voxel-based grid describing a microstructure of sufficient 
resolution requires a very large number of voxels to represent complex 
geometries of grains. If every voxel is considered as a hexahedral finite 
element [50], the mesh would contain the same number of finite ele
ments as voxels requiring a computational cost beyond practical limits. 
Moreover, direct meshes from voxels develop artificial field localiza
tions at interfaces and triple junctions due to the so called stair-case 
instead of smooth/flat grain boundaries unavoidable in such meshes 
[51,52]. In summary, a microstructure in a voxel-based format is an easy 
way to initialize CPFE simulations with hexahedral elements but many 
hexahedral elements equal to the number of voxels makes such simu
lations computationally demanding and, even more importantly, the 
stair-stepped grain boundaries intrinsic to such models make the simu
lations less accurate. Therefore, extra steps to convert the voxels into 
conformal FE meshes are needed. 

Given the surface triangular mesh decorating grains from 
DREAM.3D, we have developed procedures relying on Patran to mesh 
volumes of individual grains into tetrahedral elements conforming be
tween grains [49]. The conformal mesh means that the neighboring 
grains share nodes at grain boundaries. The meshing procedures were 
advanced to build meshes of polycrystals in various specimen geome
tries other than cubic microstructural cells [53]. Examples in micro- 
forming [54,55] and micro-mechanical testing [26] have been simu
lated. Several works relied on the procedure to study shear band for
mation [56] and explicit twins in microstructures [57,58]. Besides 
tetrahedral meshes, interface conformal meshes of polycrystals con
sisting of hexahedral elements can be generated from voxel-based ge
ometries using the Sculpt meshing tool [51,59,60], an application of the 
Cubit Meshing and Geometry Toolkit developed and maintained at SNL 
(Sandia National Laboratories) [61]. 

Mesh convergence studies of polycrystalline microstructures have 
been performed in literature [62,63]. Such studies are more involved 
compared to conventional FE analyses as they are not only computa
tionally demanding but also require explicit meshing of individual 
grains involving many elements. Moreover, the mesh convergence is 
influenced by individual crystal orientations of grains and localized 

loading conditions. Representative volume element (RVE) studies for 
polycrystalline microstructures while varying factors such as initial 
textures, hardening models and boundary conditions have also been 
performed [62,64–66]. These works provided a list of useful guidelines 
for effective CPFE modeling. 

In this paper, a large number of massive CPFE simulations of explicit 
microstructures are carried out and postprocessed to investigate the 
effects of various element types on the accuracy of CPFE simulations in 
predicting mechanical fields and overall response and efficiency. A 
parallel computing infrastructure is used because the simulations are 
computationally demanding and require significant memory size. The 
work complements a recent study into mesh resolution consisting of 
either fully integrated linear or quadratic hexahedral (hex or brick) and 
tetrahedral (tet) elements [63] by further evaluating the effects of a 
broader element type library on accuracy, computational efficiency, and 
memory usage. A wide range of elements in the Abaqus element library 
provides opportunities to increase accuracy, efficiency, and flexibility in 
modeling different geometries/structures. An initial voxel-based poly
crystalline microstructural cell is created synthetically in DREAM.3D 
and converted to interface-conformal tet and hex meshes at two levels of 
discretization. Since boundary conditions may affect the results in 
addition to grain structure, three types of boundary conditions involving 
simple tension (ST), simple shear (SS), and a strain path change from ST 
to SS (ST + SS) are imposed over the models. Simulations of ST, SS, and 
ST + SS are performed using C3D8, C3D8R, C3D20, C3D20H, C3D20R, 
C3D20RH, C3D10, C3D10H, and C3D10MH element types. Comparisons 
of the results in terms of the accuracy of mechanical fields and overall 
response and computational efficiency and memory are presented and 
discussed. Even though CPFE is a widely used tool to understand and 
predict the mechanical response of polycrystalline materials, no sys
tematic study into the element types exists in current literature. The aim 
is to provide additional guidance for effective CPFE modeling of explicit 
microstructures. The paper also compares and verifies the CPFE results 
with the EVPFFT predictions. To this end, the EVPFFT code was 
advanced to implement an identical hardening law to the one present in 
CPFE and both codes were calibration using experimental data of 
polycrystalline copper (Cu) to facilitate fair comparisons. Although a 
study comparing EVPFFT and CPFE exist in the literature [67], we re
gard our study as more thorough because of the robust grain structure 
meshing with variable element types of high resolution. 

2. Modeling framework 

This section summarizes two crystal plasticity models for 
completeness of the study. Both models incorporate the same hardening 
law fit to model the response of polycrystalline Cu. 

2.1. CPFE 

In the finite strains kinematics of CPFE, the gradient of deformation 
tensor, F, imposed from Abaqus at every integration point is multipli
catively decomposed into an elastic part, F*, and a plastic part, Fp, as 
[68,69] 

F = F*Fp (1) 

While the elastic part embeds elastic stretching and any lattice 
rotation, the plastic part embeds the plastic deformation by crystallo
graphic slip. A single crystal constitutive law in CPFE is elasto- 
viscoplastic and relates a pair of work conjugated stress and strain 
measures as [70,71] 

T* = C: E*, T* = F*−1{(detF*)σ }F*−T , E* =
1
2

{
F*T F* − I

}
(2)  

where C is the elastic stiffness tensor, σ is the Cauchy-stress tensor, T* is 
the second Piola–Kirchhoff-stress tensor, and E* is the Green- 

J. Weiss and M. Knezevic                                                                                                                                                                                                                     



Computational Materials Science 240 (2024) 113002

3

Lagrangian-strain tensor. The flow rule of Fp is 

Ḟp
= LpFp, Lp =

∑

s
γ̇sbs

o ⊗ ns
o (3)  

where γ̇s is the shear rate per slip system s, and bs
o, and ns

o are the slip 
direction and slip plane normal, respectively, expressed in the total 
Lagrangian frame as indicated by the subscript ‘o’. Given Fp, F* can be 
evaluated for Eq. (2). 

The power-law relation is used for the shear rate as [72–76] 

γ̇s = γ̇s
0

(
|τs|

τs
c

)1/m

sign(τs) (4)  

where, τs is on the driving resolved shear stress (τs = T* : ms with 
ms(x) = 0.5(bs ⊗ ns +ns ⊗ bs)) on the slip system s, τs

c is the critical 
resolved shear stress (CRSS) resistance to slip, γ̇α

0 is a reference slip rate 
of 0.001 s−1, and m is the strain rate sensitivity exponent of 0.05. 

To capture texture evolution, the crystal lattice spin tensor, W*, is 
calculated using 

W* = Wapp − Wp, Wp =
1
2

(
Lp − LpT )

=
∑

s
0.5γ̇s(bs

o ⊗ ns
o − ns

o ⊗ bs
o

)
(5)  

where Wapp is an imposed spin over the polycrystal driven by boundary 
conditions and Wp is the plastic spin due to shearing by crystallographic 
slip. The numerical implementation of the above theory within the weak 
form of the boundary value problem solved using the finite element 
method was presented in [70]. 

2.2. EVPFFT 

In the small strain formulation of EVPFFT, the viscoplastic strain 
rate, ε̇p

(x) is related to the Cauchy stress σ(x) at a material point x 
through a sum over slip systems [77,78] 

ε̇p
(x) =

∑N

s=1
ms(x)γ̇s(x) = γ̇0

∑N

s=1
ms(x)

(
|ms(x) : σ(x) |

τs
c(x)

)n

sgn(ms(x) : σ(x) ),

(6)  

where γ̇0 and n = 1
m are the same as in CPFE. 

In EVPFFT, Hooke’s law represents the elasto-plastic stress–strain 
constitutive relation: 

σt+Δt(x) = C(x) : εe,t+Δt(x) = C(x) : (εt+Δt(x) − εp,t(x) − ε̇p,t+Δt
(x, σt+Δt)Δt ),

(7)  

in which εe(x), εp(x), and ε(x) are the elastic, plastic, and total strain 
tensors, respectively. Using Eq. (7), the total strain is 

εt+Δt(x) = C−1(x) : σt+Δt(x) + εp,t(x) + ε̇p,t+Δt
(x, σt+Δt)Δt. (8) 

In Green’s approach, the elastic strain–stress constitutive relation is 
written as 

σij(x) = σij(x) + C0
ijkluk,l(x) − C0

ijkluk,l(x), (9)  

where uk,l(x) is the displacement gradient tensor. Eq. (9) is 

σij(x) = C0
ijkluk,l(x) + ϕij(x), (10)  

where the term ϕij(x) is a polarization field as 

ϕij(x) = σij(x) − C0
ijkluk,l(x). (11)  

Invoking the equilibrium,σij,j(x) = 0, Eq (10) yields the following gov
erning equation 

C0
ijkluk,lj(x) + ϕij,j(x) = 0. (12)  

Using Green’s approach for Partial differential equation [79] by 
invoking Green’s function Gkm(x) correlated with the displacement uk(x)

we obtain 

C0
ijklGkm,lj(x − x′) + δimδ(x − x′) = 0. (13)  

After applying the convolution theorem [80] we get 

ũk,l(x) =

∫

R3
Gki,jl(x − x′)ϕij(x′) dx′. (14)  

Solving Eq. (14) in the Fourier space and then obtaining an inverse 
transform to return into the real space, we obtain the strain as 

εij(x) = Eij + FT−1
(

sym
(

Γ̂
0
ijkl(k)

)
ϕ̂kl(k)

)
, (15)  

where “^” and FT−1 symbols denote direct and inverse transforms, 
respectively. k enumerates the frequencies in the Fourier space. Eij de
notes the macro strain over the whole polycrystal by taking the average 
over a microstructural cell. 

The fourth order tensor Γ̂
0
ijkl(k) is 

Γ̂
0
ijkl(k) = −kjkl Ĝik(k); Ĝik(k) =

[
Ckjilklkj

]−1
. (16) 

Numerical solution of Eq. (12) necessitates an iterative Newton 
Raphson procedure to obtain the stress and strain per voxel satisfying 
equilibrium and compatibility, as described in [12]. Texture evolution in 
EVPFFT is calculated the same way as in CPFE. 

2.3. Hardening 

The models summarized above incorporate the same hardening law 
for the evolution of slip resistance to facilitate fair comparisons [10]. 
The law is based on the evolution of statistically stored dislocations 
density governing the evolution of slip resistance, τs

c, per slip system 
belonging to {111}〈110〉 octahedral slip family. The τs

c is the sum of 
three contributions to the resistance [81–84] 

τs
c = τ0 + τs

for + τsub (17)  

where τ0 is an initial friction stress assumed to embed the Peierls stress, 
barrier effect originating from grain size, and some initial dislocation 
density. The term does not evolve with plastic strain. The remaining two 
terms contribute to the evolution of slip resistance per slip system. The 
middle term is the forest, while the last term is the substructure/debris 
interaction stress. These two terms evolve with corresponding disloca
tion densities [85–88] 

τs
for = χbμ

̅̅̅̅̅̅̅
ρs

for

√
(18)  

τsub = 0.086μb
̅̅̅̅̅̅̅̅ρsub

√ log

(
1

b ̅̅̅̅̅̅̅̅ρsub
√

)

(19)  

where b is the Burgers vector (2.5563 × 10-10 m for Cu), μ is the shear 
modulus, and χ is an interaction factor for dislocations set to 0.9 [89]. 
The initial forest dislocation density is set to 

∑
sρ0,for = 1012 m−2 

resembling an annealed state of the material. ρs
for evolves using a balance 

between the rate of generation and the rate of dynamic recovery as 
[85,90–93] 

∂ρs
for

∂γs =
∂ρs

gen,for

∂γs −
∂ρs

rem,for

∂γs = k1

̅̅̅̅̅̅̅
ρs

for

√
− k2(ε̇, T)ρs

for, Δρs
for =

∂ρs
for

∂γs Δγs (20)  

where k1 is a fitting coefficient for statistical trapping and k2 is a rate- 
sensitive coefficient obtained using [94–97] 
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k2

k1
=

χb
g

⎛

⎝1 −
kT

Db3 ln(
ε̇
ε̇o

)

⎞

⎠ (21)  

In Eq. (12), k, ε̇o, g, and D are a constant of Boltzmann, a reference strain- 
rate set to 107 s−1, an activation enthalpy as a fitting constant, and a drag 
stress as another fitting constant, respectively. The rate of debris dislo
cation density evolution follows 

Δρsub = qb
̅̅̅̅̅̅̅̅ρsub

√
k2ρfor

∑

s
|Δγs| (22)  

with q as a fitting constant determining a fraction of dislocations that 
lead to debris formation, while the rest is annihilated. 

2.4. Calibration of the hardening law in CPFE and EVPFFT 

The CPFE and EVPFFT models incorporating the same hardening law 
were calibrated to simulate the stress–strain response of polycrystalline 
copper. Consistent with the experiment, the calibration simulations 
were performed under a strain rate of 0.001 s−1 and at room tempera
ture. Simple tension boundary conditions were imposed along a loading 
direction which is the rolling direction while enforcing zero stress along 
the two lateral directions over a rolling texture. The boundary condi
tions for CPFE were facilitated by running a one element simulation in 
Abaqus, while for EVPFFT a mixed Cauchy stress and strain rate 
boundary conditions were imposed over an appropriate microstructural 
cell. 

The initial slip resistance, τ0, trapping rate coefficient, k1, activation 
barrier, g, drag stress, D, and rate coefficient q were fit to reproduce the 
stress–strain curve. First, τ0 was fit to model yield stress. Next, k1, was 
varied to model the initial hardening slope. Next, g and D were adjusted 
to match the hardening response. Finally, q was adjusted to capture the 
later stage of the hardening response. The hardening parameters are 
given in Table 1. Only one parameter was necessary to be different for 
EVPFFT from CPFE. Fig. 1 shows results of the calculations to reproduce 
the flow stress response of Cu. The models predict nearly identical 
stress–strain responses necessary for fair comparisons. 

3. Microstructural cells and boundary conditions 

Initial voxelated microstructural cells were generated in DREAM.3D 
according to the specifications in Table 2. Three resolutions of 67 grains 
were created to study heterogeneous deformation in ST, SS, and ST + SS. 
The middle resolution is shown in Fig. 2, as an example. The figure 
shows a selected grain completely embedded into the microstructure. 
The stair-stepped morphology decorating the grain is evident. The stair- 
stepped grain boundaries will be smoothed by meshing for CPFE. Me
chanical fields would be influenced if such a hexahedral mesh with the 
stair-case grain boundaries is used as an input into a CPFE simulation. 
Unrealistic intense plasticity regions could arise as a result of stair-case 
morphologies as revealed in a study comparing stair-case versus 
smooth/flat grain boundaries [52]. Therefore smooth/flat grain 
boundary morphologies are highly recommended in CPFE simulations. 

A numerical study using a CPFE model was performed in [52] to 
investigate the influence of the grain boundary morphology (stair-case 
versus smooth/flat) on the distribution of simulated mechanical fields. 
The study revealed that while the volume averaged responses showed no 
appreciable dependence on the grain boundary representation, the stair- 

case grain boundaries showed more extreme local plasticity values (i.e. 
heads and tails of the field distributions). Depending upon the level of 
the deformation compatibility between the grains neighboring each 
other, the simulation results showed that the grain boundary repre
sented by the stair-case morphology can be sources and/or sinks for 
local extreme plasticity, compared to the grain boundary represented by 
the smooth (or flat) morphology. Increasing the mesh density can 
decrease the stair-case boundary effects and improve the discrepancy in 
local plasticity responses between the smooth and the stepped cases at 
the expanse of a prohibitive computational expense [51]. Nevertheless, 
the conformal discretization across interfaces eliminates such artificial 
stress localizations intrinsic to the non-conformal discretization. 
Therefore, interface conformal meshing is a way to go to eliminate 
artificial behavior owing to numerical discretization, which is especially 
important when attempting to model localized damage and failure. 

We relied on the Cubit/Sculpt meshing tool [59–61] to generate 
smooth and interface conformal hexahedral meshes of the poly
crystalline structure from Fig. 2. The procedure began by forming grid 
nodes to approximate grain interfaces ensuring volume fractions of 
grains and then one or more hexahedra were inserted on both sides of 
the interfaces. To improve smoothness of the interfaces and the resulting 
quality of the hexahedra, one or multiple smoothing steps were then 
performed. The smoothing steps extend the time to generate hex mesh 
and make the procedure semi-automatic to obtain good mesh quality. A 
more detailed description of interface conformal meshing with hex
ahedral structural elements in Cubit/Sculpt can be found in [51,59]. 

Following our earlier work on mesh resolutions [63], two mesh 
densities, ‘medium’ and ‘fine’, were generated for the present work. The 
earlier work categorized meshes by an approximate number of IPs per 
mesh density (extra-coarse, coarse, medium, and fine). Six initial meshes 
per density were selected for the present numerical study of the 
following element types: 8-node linear brick (hex) (C3D8), 8-node linear 
brick with reduced integration (C3D8R), 20-node quadratic brick 
(C3D20), 20-node quadratic brick, which is hybrid with linear pressure 
(C3D20H), 20-node quadratic brick with reduced integration (C3D20R), 
and 20-node quadratic brick with reduced integration, which hybrid 
with linear pressure (C3D20RH). 

The procedures described in [49] and later refined in [53] were 
followed to generate tetrahedral meshes. This procedure begins with 
triangular surface meshes of grains extracted as STL files from the hex
ahedral meshes. To this end, each rectangular element at grain bound
aries was split over its diagonal to make the triangles. The STLs were 
then meshed in MSC Patran [98] with the internal element size 

Table 1 
Model parameters fit to predict the curves in Fig. 1 using the CPFE and EVPFFT 
models.   

τ0[MPa] D [MPa] k1 [m−1] g q 

EVPFFT 7 55 1.5x108  0.01 5 
CPFE 7 87.5 1.5x108  0.01 5  

Fig. 1. Flow curves showing fits of the CPFE and EVPFFT calculated curves 
against the measured curve for polycrystalline Cu. 
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coarsening on. In contrast to hex mesh generation, the tet mesh gener
ation is automatic and rapid. A total of three tetrahedral meshes per 
density were generated for the present numerical study of the following 
element types: 10-node quadratic tet (C3D10), 10-node quadratic tet
rahedron, which is hybrid with linear pressure C3D10H, and 10-node 
modified tetrahedron with hourglass control, which is also hybrid 
with linear pressure (C3D10MH). 

The meshes are shown in Fig. 3. Table 3 and Table 4 list character
istics of the meshes. Elements containing the same number of IPs are 
grouped together. The selected meshes of two resolutions and nine 
element types can facilitate a variety of comparisons in terms of accu
racy of local and global mechanical fields during deformation, compu
tational speed, and memory requirements as will be presented in 
subsequent sections of the paper. An RVE of a microstructure must have 
enough constituent grains to homogenize the variability of mechanical 
fields arising from local microstructural features. We point out that the 
67 grains model used in the present work is not intended to be an RVE 
but a microstructural cell facilitating the numerical study. Pole figures 
depicting the distribution of crystal lattice orientations assigned to the 
model are shown in Fig. 4. There are 67 grains treated as separate 
element sets in the overall model. Each crystal orientation is randomly 
assigned to the sets. 

Periodic boundary conditions were prescribed to all microstructural 
meshes, wherein the deformation of each pair of boundary faces (front/ 
back, top/bottom, and left/right) is equal. Nodes belonging to each 
boundary face were made as a node-set to facilitate pairing between 
nodes on opposite faces. A node on the opposite face is found and tied to 
the first node on the given face and these are made as a node pair set. On 
top of the periodic boundary conditions, ST was prescribed as a com
bination of displacement in the positive Y direction and stress-free 
lateral surfaces. Likewise, on top of the periodic boundary conditions, 
SS boundary conditions were prescribed as displacement along the Y- 
direction on the positive Z face, while the negative Z face was con
strained in the Y direction. The applied displacement in both ST and SS 
corresponded to the effective strain of 0.2 under a strain rate of 0.001 /s 

at room temperature. Finally, ST + SS boundary conditions were a 
combination of the ST boundary conditions to a strain of 0.1 and the SS 
boundary conditions from 0.1 to 0.2 strain. 

Boundary conditions in EVPFFT are naturally periodic. Mixed Cau
chy stress and velocity gradient boundary conditions are used to impose 
ST and SS identically as in CPFE. For example, ST boundary conditions 
were imposed with a velocity along a loading direction, while enforcing 
zero average stress along the two lateral directions over the micro
structural cell. 

4. Results 

The CPFE model in the implicit finite element Abaqus Standard 
software was used to solve the boundary value problems of ST, SS, and 
ST + SS over the microstructural cell domains. A total of 54 (18 ST, 18 
SS, and 18 ST + SS) simulations were performed and post-processed for 
this paper. Table 5 and Table 6 present the computational time needed 
to complete the jobs for the two mesh resolutions, respectively. The MPI 
parallel computing infrastructure of Abaqus was utilized, as indicated in 
the tables. Table 7 and Table 8 present the RAM memory needed to 
complete the jobs for the two resolutions, respectively. Memory usage is 
a function of the number of CPUs used in simulations. The CPFE model 
stores variables pertaining to the crystallography and the hardening law 
such as slip resistance and dislocation densities, in addition to the me
chanical fields data. Evidently, the simulations were demanding in both 
RAM size requirement and computational time. 

Given approximately the same number of IPs per mesh, the trends in 
computational time showed that C3D10 elements are the fastest of all 
element types explored in the work. C3D20R elements were found to 
also be very efficient and interestingly faster than C3D8 elements having 
the same number of IPs. Time requirements of C3D8R elements 
increased substantially relative to C3D8 elements given the overall 
number of IPs. The strain path change simulations took longer to com
plete than monotonic ST or SS simulations, especially for the quadratic 
hex elements. The quadratic hex elements were more memory 

Table 2 
Parameters of microstructural cells for the EVPFFT simulations.   

Number of 
grains 

Number of voxels per 
cell 

Average number of voxels 
per grain 

Equivalent sphere 
diameter 

Average aspect ratio of grains 
(a/b, a/c) 

Voxel edge 
length 

Cell 
dimensions 

643 67 262,144 3,912  2.73  0.51  0.14 9x9x9 
1283 67 2,097,152 31,301  2.73  0.51  0.07 9x9x9 
2563 67 16,777,216 250,406  2.73  0.51  0.0351 9x9x9  

Fig. 2. A periodic polycrystalline microstructure consisting of 67 grains discretized into voxels. The image on the right shows the internal structure highlighting the 
selected central grain along with the stair-stepped morphology of the grain boundary voxels in the voxel-based microstructure. The edge length of the microstructural 
cell is taken as 9 (Table 2). 
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demanding than linear hex elements. The hybrid element formulations 
took more time to complete the simulations. While the hybrid formu
lations required slightly more memory for every element type, the 
hourglass control hybrid tet elements, C3D10MH, appeared to be the 
most memory demanding, and much more than C3D10 and C3D10H 

elements. Like the time requirements, the memory requirements of 
C3D8R elements increased substantially relative to C3D8 elements given 
the overall number of IPs. 

Figs. 5–7 show von-Mises stress, equivalent plastic strain, and pres
sure contours after ST, SS, and ST + SS to a macroscopic strain of 0.2. 
The fields vary owing to the different shape changes driven by the 
different boundary conditions. A view showing the fields at the surface 
and a section revealing the internal fields of the entire model as well as 
of the central grain are presented. The software ParaView was used for 
the visualization. To that end, Abaqus ODB files were converted into 
ParaView VTK files using the procedures described in [99]. 

Comparisons of the results with ‘medium’ and ‘fine’ resolutions 
revealed differences < 0.5 %. Given the independence on the level of 
discretization, only results of fine discretization are shown. Predicted 
strong/hot versus weak/cold spots in the microstructures of two reso
lutions were indistinguishable. Such predictions are not surprising based 
on our prior work in [63]. Also, the ‘medium’ grade meshes had element 
size like models used in several prior works in which mesh sensitivity 
studies were performed [49,100,101]. The ‘fine’ grade meshes were 
intended to further improve the accuracy of the simulations but 
evidently, the ‘medium’ grade meshes were already converged as the 
further refinement only slightly changed accuracy for < 0.5 %. 

Evaluations of the fields as a function of element type showed that 
the fields predicted by C3D8 and C3D8R elements are not appreciably 
different. Softer fields and the smallest extent of the heterogeneities 
were predicted using the quadratic hex elements. The reduced integra
tion hex elements, C3D20R and C3D20RH, slightly improved the 
sharpness of the fields relative to C3D20 and C3D20H elements. 
Quadratic tet elements predicted the fields like C3D8 elements. The 
sharpest predicted fields amongst the quadratic tet elements and nearly 
the same as those of C3D8 elements were those of C3D10MH elements. 
Quadratic hex elements predicted large range of values in pressure. Such 
large deviations are unrealistic and pose issues to the applicability of 
these elements in CPFE modeling of microstructures. Invoking the 
hybrid element formulation with constant pressure to possibly relax the 
issue did not help. The large range of values and underlying heteroge
neity in the pressure fields relaxed with reduced integration. In sum
mary, fields predicted by linear hex, quadratic hex with reduced 

Fig. 3. (a) The same periodic polycrystalline microstructure as in Fig. 2 is 
discretized into different types of finite elements indicated in the figure. Grain 
boundaries in the FE models are conformal squares (hexahedral elements) and 
triangles (tetrahedral elements) representing grain boundary planes/curvatures 
shared between volume elements of neighboring grains. The images at bottom 
show the internal structure highlighting one central grain in tet (left) and brick 
(right) meshes. Quadratic tet (C3D10), linear brick (C3D8), and quadratic brick 
(C3D20) element schematics are shown. The edge length of the FE cubes is 
taken as 9. 

Table 3 
Characteristics of ‘fine’ meshes. The number of IPs for C3D8/20R/20RH ele
ments is 8, for C3D10/10H/10MH elements is 4, for C3D20/20H elements is 27, 
and C3D8R elements is 1.  

Element types C3D8/20R/ 
20RH 

C3D10/ 
10H/10MH 

C3D20/ 
20H 

C3D8R 

Number of elements 
per model 

362,228 524,332 197,622 5,370,600 

Average number of 
integration points 
per grain 

43,248 31,304 79,650 80,158 

Average number of 
elements per grain 

5,406 7,826 2,950 80,158 

Average element 
edge length 

0.0126 0.0113 0.0158 0.0052 

Degrees of freedom 1,133,379 2,786,493 5,035,791 12,673,439  

Table 4 
Characteristics of ‘medium’ meshes. The number of IPs for C3D8/20R/20RH 
elements is 8, for C3D10/10H/10MH elements is 4, for C3D20/20H elements is 
27, and C3D8R elements is 1.  

Element types C3D8/20R/ 
20RH 

C3D10/ 
10H/10MH 

C3D20/ 
20H 

C3D8R 

Number of elements 
per model 

331,908 156,526 87,962 2,196,565 

Average number of 
integration points 
per grain 

39,632 9,344 35,451 32,785 

Average number of 
elements per grain 

4,954 2,336 1,313 32,785 

Average element edge 
length 

0.0131 0.0169 0.0205 0.0075 

Degrees of freedom 1,039,779 701,013 2,374,972 6,742,131  

Fig. 4. Pole figures showing the distribution of 67 crystal orientations assigned 
to the models in Fig. 2 and 3. 

J. Weiss and M. Knezevic                                                                                                                                                                                                                     



Computational Materials Science 240 (2024) 113002

7

integration, and quadratic tetrahedral elements were similar with no 
issues arising in the pressure fields. Given that these observations are the 
same looking at ST, SS, or ST + SS, sensitivity on the boundary condi
tions was secondary. 

Like CPFE in Abaqus, EVPFFT was also used to solve the same 
boundary value problems of ST, SS, and ST + SS over the microstructural 
cell domains. Table 9 shows the time involved in the simulations using 
three resolutions, while Table 10 shows the corresponding memory re
quirements. Given that the EVPFFT simulations were completed using a 
computing infrastructure involving GPUs, which is different from the 
infrastructure used for the CPFE simulations, the times are not 
compared. Such comparisons were performed in earlier works [67,102]. 
Fig. 8 shows the contours of von-Mises stress and equivalent plastic 
strain after ST, SS, and ST + SS. While there are some similarities in the 
fields predicted by CPFE and EVPFFT, there are also substantial differ
ences at the strain of 0.2. Appendix A shows the comparisons at a strain 
of 0.02. The fields at 0.02 strain are much more similar meaning that the 
fields deviate with plastic strains. While the macroscopic behavior 
predicted by EVPFFT, through the stress–strain curves, is nearly insen
sitive to the degree by which interfaces between adjoining grains were 
numerically represented and resolved, differences in the local response 
evidently exist between voxelated versus conformal. Voxelated repre
sentation of the structures near interfaces yielded larger oscillations in 
the mechanical fields at grain boundaries. To relax these issues, methods 
of irregular discretization of microstructural domains are being 

developed for more accurate modeling using EVPFFT [103]. 

5. Discussion 

Results of 54 large-scale CPFE simulations involving nine element 
types are used to discuss the effects of element type on accuracy and 
efficiency of the polycrystalline CPFE modeling. To the authors’ 
knowledge, this is the first study comparing the solution accuracy and 
computational time as a function of element type in CPFE simulations of 
polycrystalline explicit grain structures. Insights from such a study are 
essential in predicting the evolutions of local fields during plastic 
deformation, especially for predicting phenomena such as void forma
tions and propagation. The studies was challenging to perform as the 
simulations are not only computationally demanding but also require 
explicit meshing of grain structure using many elements of different 
types. In our work, the starting model was a voxel-based polycrystalline 
grain structure created synthetically in DREAM.3D. The voxel-based 
structure was then converted into the interface conformal hex and tet 
meshes relying on the software packages Cubit/Sculpt and Patran, 
respectively. Such interface conformal FE meshes are necessary for 
predicting localized behavior of polycrystals such as damage formation 
and failure. However, rapid generation of such 3D conformal meshes of 
polycrystalline microstructures is challenging, especially for hex ele
ments because of the inherent difficulties in describing complex shapes 
with hex elements. To that end, the latest versions of Cubit/Sculpt are 

Table 5 
Number of nodes x CPUs per node / total number of CPUs / total CPU time [h] / time per CPU [h] for the simulation cases using ‘fine’ meshes. One or multiple computer 
workstations of the type. Intel (R) - Xeon (R) - Gold 6130 CPU @ 2.10 GHz having 32 cores and 772 GB of RAM were used to perform the simulations.  

Element 
types 

C3D8 C3D20 C3D20R C3D20RH C3D20H C3D10 C3D10H C3D10MH C3D8R 

Tension 2x8/16/ 
30.12/1.88 

2x16/32/ 
84.2/2.6 

2x16/32/ 
47.7/1.4 

2x16/32/52.2/ 
1.6 

2x16/32/ 
96.7/3.0 

4x4/16/ 
14.1/0.88 

4x4/16/ 
42.2/2.6 

4x4/16/ 
116.23/7.26 

2x16/32/ 
312.7/9.78 

Shear 2x8/16/ 
27.5/1.7 

2x16/32/ 
72.8/2.3 

2x16/32/ 
38.78/1.2 

2x16/32/44.9/ 
1.40 

2x16/32/ 
90.7/2.8 

4x4/16/ 
13.3/0.83 

4x4/16/ 
39.2/2.45 

4x4/16/104.2/ 
6.5 

2x16/32/ 
296.3/9.25 

Tension +
shear 

2x8/16/ 
30.4/1.90 

2x16/32/ 
113.9/3.6 

2x16/32/ 
94.53/2.95 

2x16/32/ 
116.2/3.6 

2x16/32/ 
132.2/4.1 

4x4/16/ 
20.0/1.25 

4x4/16/ 
47.3/2.95 

4x4/16/122.2/ 
7.63 

2x16/32/ 
339.2/10.6  

Table 6 
Number of nodes x CPUs per node / total number of CPUs / total CPU time [h] / time per CPU [h] for the simulation cases using ‘medium’ meshes. One or multiple 
computer workstations of the type. Intel (R) - Xeon (R) - Gold 6130 CPU @ 2.10 GHz having 32 cores and 772 GB of RAM were used to perform the simulations.  

Element 
types 

C3D8 C3D20 C3D20R C3D20RH C3D20H C3D10 C3D10H C3D10MH C3D8R 

Tension 2x8/16/ 
22.7/1.41 

2x16/32/ 
48.9/1.5 

2x16/32/28.8/ 
0.9 

2x16/32/33.9/ 
1.06 

2x16/32/ 
62.3/1.9 

4x4/16/ 
16.23/1.0 

4x4/16/23.2/ 
1.45 

4x4/16/96.73/ 
6.04 

2x16/32/ 
221.5/6.92 

Shear 2x8/16/ 
22.4/1.4 

2x16/32/ 
40.1/1.25 

2x16/32/ 
27.23/0.85 

2x16/32/33.4/ 
1.04 

2x16/32/ 
53.3/1.6 

4x4/16/9.78/ 
0.611 

4x4/16/19.2/ 
1.2 

4x4/16/90.08/ 
5.63 

2x16/32/ 
219.5/6.85 

Tension +
shear 

2x8/16/ 
24.8/1.55 

2x16/32/ 
101.1/3.6 

2x16/32/ 
86.65/2.70 

2x16/32/90.2/ 
2.82 

2x16/32/ 
101.6/3.2 

4x4/16/ 
17.44/1.09 

4x4/16/31.7/ 
1.98 

4x4/16/98.8/ 
6.18 

2x16/32/ 
228.9/7.2  

Table 7 
Memory usage in GB per simulation case for ‘fine’ meshes.  

Element types C3D8 C3D20 C3D20R C3D20RH C3D20H C3D10 C3D10H C3D10MH C3D8R 

Tension  66.8  382.1  305.2  313.2  398.5  120.9  128.7  438.92  512.2 
Shear  70.21  378.9  316.3  331.4  404.7  118.6  122.2  388.2  485.4 
Tension + shear  77.32  380.6  313.2  328.9  401.2  118.6  122.4  492.2  509.9  

Table 8 
Memory usage in GB per simulation case for ‘medium’ meshes.  

Element types C3D8 C3D20 C3D20R C3D20RH C3D20H C3D10 C3D10H C3D10MH C3D8R 

Tension  57.4 303.8  281.6 292.5  311.4  28.22  30.6  352.7  438.3 
Shear  57.43 288.8  281.6 298.8  326.8  36.32  38.4  376.7  412.9 
Tension + shear  71.55 272  270.7 292  318.3  23.62  29.1  421.8  400.8  
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very advanced mesh generation tools. In contrast, tet elements are 
flexible for complex geometries. 

Computing in parallel was utilized to run the jobs. The models with 
more elements required more time than smaller sized models, as ex
pected. The computational time per CPU involved per simulation varied 
for every element type. The results showed that the time requirements 
varied for different boundary conditions per element type. In particular, 

the strain path change simulations took longer to complete for the 
quadratic hex elements than for other elements relative to tension and 
shear. The results further showed that C3D10 elements are the most 
efficient of all element types explored in the work. C3D20R elements 
were found to also be very efficient and interestingly faster than C3D8 
elements. However, C3D20R elements were memory demanding. 
C3D8R elements increased both time and memory requirements 

Fig. 5. Contours of von-Mises stress, pressure, and equivalent plastic strain after simple tension to an axial strain of 0.2 calculated using CPFE.  
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substantially relative to C3D8 elements. The hybrid element formula
tions required more time and memory to complete the simulations. In 
the hybrid formulation, the pressure stress is treated as an independent 
solution variable, coupled to the displacement solution through the 
constitutive theory. As a result, the hybrid formulation introduces more 
variables into the problem to alleviate the volumetric locking problem. 
The added variables make these elements more expensive. The hourglass 
control hybrid tet elements, C3D10MH, were the most time/memory 
demanding of all explored elements. 

Simulation results in terms of predicted mechanical fields revealed 
strong functions of the element type. The fields predicted by C3D8 and 
C3D8R elements are about the same. In addition to being demanding as 
far as the computational time and memory, C3D8R elements are not 
recommended in some simulation cases due to their propensity to show 
the hourglass effect [104]. Hourglass effects can propagate easily 
through a mesh of first-order reduced integration elements, causing 
unreliable results. The effects are not a problem if multiple elements are 
used, e.g., at least four elements through the thickness in thin structures. 

Softer fields and the smallest extent of the heterogeneities were pre
dicted using the quadratic hex elements. In general, the quadratic hex 
elements are not recommended for large distortions and plasticity [104]. 
According to the User Manual of Abaqus [104], the quadratic reduced- 
integration hex elements are more accurate than the corresponding 
fully-integrated elements. C3D20R and C3D20RH elements indeed 
improved the sharpness of the fields relative to C3D20 and C3D20H 
elements. While the fully integrated elements are not prone to exhibit 
the hourglass effect, the quadratic fully integrated hex elements are 
susceptible to volumetric locking, especially while modeling nearly or 
completely incompressible solids. C3D20 showed spurious pressure 
fields developed while enforcing the volume conservation. These ele
ments are the most susceptible to lock with larger plastic strains. 
Invoking the hybrid element formulation with constant pressure, 
C3D20H did not fix the issue. However, the reduced-integration 
quadratic elements, C3D20R, successfully eliminated the issue. 
Although the reduced integration effectively eliminates volumetric 
locking in most problems with nearly incompressible material, hybrid 

Fig. 6. Contours of von-Mises stress, pressure, and equivalent plastic strain after simple shear to a shear strain of 0.2 calculated using CPFE.  
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elements are recommended for meshes of reduced-integration elements 
that still show volumetric locking problems. Such problems can occur 
with elasto-plastic materials strained far into the plastic regimes. 
Nevertheless, the simulations run with C3D20RH in this work did not 

Fig. 7. Contours of von-Mises stress, pressure, and equivalent plastic strain after simple tension to an axial strain of 0.1 followed by simple shear to a shear strain of 
0.1 calculated using CPFE. 

Table 9 
Number of nodes x GPUs per node / total time [h] / time per node [h] for the 
EVPFFT simulations. One or multiple computer workstations of the type. Intel 
(R) - Xeon (R) - Gold 6130 CPU @ 2.10 GHz having 32 cores and 772 GB of RAM 
were used to perform the simulations. The workstations incorporate an NVIDIA 
Tesla V100 GPU.   

Tension Shear Tension + shear 

643 2x1/2.18/1.09 2x1/2.17/1.085 2x1/2.94/1.47 
1283 4x1/12.82/3.205 4x1/13.72/3.43 4x1/18.24/4.56 
2563 4x1/72.96/18.24 4x1/82.12/20.53 4x1/92.95/23.24  

Table 10 
Memory usage in GB per EVPFFT simulation case.   

Tension Shear Tension + shear 

643  10.4  10.4  10.4 
1283  55.0  55.0  55.1 
2563  498.4  498.3  498.3  
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show appreciable differences from those run with C3D20R, except for 
being a bit softer. Quadratic tet elements, C3D10, predicted the fields 
similar to C3D8 elements and also similar to C3D20R elements with no 
issues arising in the pressure fields. Our results suggest that these three 
element types are recommended for CPFE modeling of grain structures. 
Of the three, C3D10 elements are the most flexible to describe the shape 
of grains as the shapes are far from being rectangular for hex elements. 
Additionally, meshing with C3D10 elements is fully automatic. 

To further confirm the qualitative observations described above, 
Fig. 9 compares the overall and local response in terms of major stress 
versus strain components from the nine CPFE and one EVPFFT simula
tions of ST and SS. Importantly, predictions of grain averaged stresses as 
shown in Fig. 9b can be validated using high energy synchrotron x-rays 
measurements. Such grain averaged quantities have been presented in 
[105]. The predicted variations imply that the hardening law parame
ters would vary depending on the selected element type for modeling. 
The figure confirms the qualitative observations that C3D8 elements 
produce the strongest response, right above the response produced by 
the C3D8R elements. The softest response is produced by C3D20 ele
ments, while the reduced integration C3D20R elements slightly elevate 
the response. Quadratic tet elements produce the response in-between 
the stiff C3D8 and the compliant C3D20 elements. The response pre
dicted by EVPFFT is the most similar to the response of C3D10 elements. 

In closing, we attempt to quantify the difference in predicted fields 
using CPFE and EVPFFT. To this end, we calculate the stress deviations 
for CPFE and EVPFFT after simulating ST, SS, and ST + SS to a strain of 
0.2. A vector of the normalized deviations for stress is evaluated using 

Δσk =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(σk − σ) : (σk − σ)

√

̅̅̅̅̅̅̅̅̅̅
3
2s : s

√ with s = σ −
tr(σ)

3
I (23)  

where σk is stress at a voxel or an IP k, σ is average stress over all voxels 
or IPs, and s is the deviatoric stress. Histograms of von-Mises stress de
viation are presented in Fig. 10. While averaged stresses are close, there 

are differences in local properties between CPFE and EVPFFT pre
dictions. The intensity is slightly higher for CPFE, while the spread is 
slightly higher for EVPFFT. The origin of the differences is primarily in 
the formulations of the models. The EVPFFT model is formulated using 
small strains in an updated scheme, while CPFE is a finite strain total 
Lagrangian scheme model. The integral equations in finite elements are 
turned into the weak formulation, while the interactions in EVPFFT are 
handled by the Green’s function. The evolution of voxels in EVPFFT is a 
uniform map during deformation, while finite elements change their 
shape in CPFE capturing nonlinearities. Likewise, the overall micro
structural cell after deformation using EVPFFT preserves faces like in
dividual voxels, while meshes result in irregular shapes. Grain 
boundaries are conformal in CPFE, while stair-stepped in EVPFFT. 

6. Conclusions 

Large-scale CPFE simulations were performed to evaluate the suit
ability of nine element types for the modeling of explicit grain struc
tures. A voxel-based polycrystalline grain structure was generated in 
DREAM.3D and converted to interface conformal hexahedral elements 
using Cubit/Sculpt and interface conformal tetrahedral elements using 
Patran of two resolutions. Simple tension, simple shear, and a strain path 
change deformation involving simple tension and simple shear condi
tions were simulated using nine element types. The same simulations 
were performed using EVPFFT to facilitate comparisons. Post-processing 
of the simulation results allowed us to draw the following conclusions: 

• The quadratic tet elements offer the best compromise between ac
curacy, efficiency, memory requirements, and flexibility to describe 
complex geometries for CPFE simulation of explicit microstructures. 
Moreover, these elements are suitable for rapid and automatic mesh 
generation algorithms. Amongst the explored elements, these ele
ments predict the overall response the most similar to EVPFFT. The 

Fig. 8. Contours of von-Mises stress and equivalent plastic strain after simple tension to an axial strain of 0.2, simple shear to a shear strain of 0.2, and to an axial 
strain of 0.1 followed by simple shear of 0.1 calculated using EVPFFT. 
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Fig. 9. (a) Overall and (b) central grain stress - strain response for simple tension (left) and simple shear (right). (a’) and (b’) are zoom in inserts at the ends of 
deformation. 
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response is in between the stiff linear hex and compliant quadratic 
hex elements. 

• Linear hex elements and quadratic hex elements with reduced inte
gration are recommended for modeling nearly incompressible solids. 
While linear hex elements are an acceptable choice for CPFE 
modeling of explicit microstructures owing to their accuracy, effi
ciency, and memory requirements, the quadratic hex elements with 
reduced integration arise as the second choice for CPFE simulations 
owing to their accuracy and computational efficiency but require 
more memory. Although recommended for high mesh distortions in 
bulk metal forming, the linear hex elements with reduced integration 
increase both time and memory requirements substantially relative 
to the fully integrated linear hex elements for a given number of IPs. 

• The quadratic hex elements are not suitable for large plastic defor
mation of complex grain structures due to their propensity to volu
metric locking. While the hybrid formulation elements with constant 
pressure could not relax the issue, the quadratic hex elements with 
reduced integration fix the issue of volumetric locking. The hourglass 
control elements substantially increase the computational time and 
memory requirements.  

• Different element types predict not only the local response to vary 
but also the overall response to vary. The predicted variation in the 
overall response implies that the hardening law parameters would 
also vary depending on the selected element type requiring calibra
tion for every element type selected for modeling. While EVPFFT 
predicts the overall response similar to CPFE, especially to the 
quadratic tet elements, the predicted local fields deviate from those 
predicted by CPFE for all element types. The deviations increase with 
plastic strain. 

It is anticipated that these conclusions provide useful guidance for 
CPFE modeling of explicit grain structures. As a specific crystal plasticity 
model formulation has minor effects on a selected element type, the 
guidance above should be applicable to any crystal plasticity model. 
Numerical analyses into the effects of element type on the localized 
phenomena at grain boundaries, other defects, and crack tips like in 
[106] will be studied in future works after advancing our models into 
strain gradient-based formulations considering geometrically necessary 
dislocations. Conducting such study would be essential since the strain 
gradient plasticity formulations exhibit strong sensitivity to both 
element type and mesh size as nonphysical values of geometrically 
necessary dislocation densities can lead to severe errors of local field 
quantities [107,108]. Mapping of not only mechanical fields but also 
microstructural evolution characteristics and underlying statistical an
alyses like in [109] will be pursued. 
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Appendix A 

This appendix presents comparisons of the mechanical fields predicted by CPFE and EVPFFT at a strain of 0.02 (Fig. A1). 

Fig. 10. Histograms of von-Mises stress deviation after simple tension to an 
axial strain of 0.2 (left), simple shear to a shear strain of 0.2 (middle), and 
simple tension to an axial strain of 0.1 followed by simple shear to a shear strain 
of 0.1 (right) predicted using (a) CPFE (C3D10) and (b) EVPFFT. 
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Fig. A1. Contours of von-Mises stress and equivalent plastic strain after simple tension to an axial strain of 0.02 and simple shear to a shear strain of 0.02 calculated 
using CPFE and EVPFFT. 
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plasticity model for predicting mechanical response and texture evolution during 
strain-path changes: application to beryllium, Int. J. Plast. 49 (2013) 185–198. 

[93] M. Zecevic, M. Knezevic, Modeling of sheet metal forming based on implicit 
embedding of the elasto-plastic self-consistent formulation in Shell elements: 
application to cup drawing of AA6022-T4, JOM 69 (2017) 922–929. 

[94] M. Knezevic, L. Capolungo, C.N. Tomé, R.A. Lebensohn, D.J. Alexander, 
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