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In this work, we performed massive crystal plasticity finite element (CPFE) simulations to reveal the effects of
element type on the accuracy of predicted mechanical fields and overall response over explicit periodic grain
structure meshes of polycrystalline Cu during simple tension (ST), simple shear (SS), and a strain path change
from ST to SS. Post-processing of the results provided a list of guidance for effective CPFE modeling of explicit
microstructures. First, it was confirmed that quadratic tetrahedral elements (C3D10) are the most suitable for
CPFE modeling owing to their accuracy, efficiency, and flexibility to describe complex geometries intrinsic to
microstructures. Moreover, these elements predicted the overall response between the stiff linear hexahedral
(C3D8) and compliant quadratic hexahedral (C3D20) elements. Next, quadratic hexahedral elements with
reduced integration (C3D20R) arose as the second choice for CPFE modeling owing to their accuracy and
computational efficiency but these elements generally require more memory than C3D10 elements. These ele-
ments were also effective in relaxing the issue of volumetric locking intrinsic to C3D20 elements. The issue could
not be eliminated by involving C3D20H or C3D20RH hybrid elements with constant pressure. Finally, corre-
sponding simulations of the same explicit grain structure represented in voxel-based formats using elasto-
viscoplastic fast Fourier transform (EVPFFT) full-field verified the overall response but predicted the local
fields to deviate with plastic strain for all element types.

1. Introduction

Modeling of polycrystalline metals increasingly employs spatio-
temporal microstructures allowing constituent grains to interact
explicitly with each other while ensuring the state of strain compatibility
and arriving at the stress equilibrium [1-6]. Such modeling is termed the
full-field approach to modeling polycrystalline microstructures of
metals. Purposely, the full-field modeling of microstructures accounts
for the topological structure of constituent grains and their evolution
while calculating the micromechanical fields and therefore facilitates
relatively accurate predictions and understanding of complex phenom-
ena pertaining to the material behavior. The plasticity fields modeling at
the grain scale is vital for understanding and predicting mechanical
extremes for damage/void nucleation driven by local stress/strain
concentrations at weak microstructural regions. The governing equation
of stress equilibrium in full-field modeling is usually solved numerically

using the finite element method (FEM) over a finite element mesh
[2,7,8] or a Green’s function method relying on the fast Fourier trans-
form (FFT) algorithm to solve the convolution integral for stress equi-
librium over a voxel-based microstructural cell [9]. The former class of
models is referred to as the crystal plasticity finite element (CPFE)
models [10,11], while the latter is the elasto-visco plastic FFT (EVPFFT)
models [12,13]. EVPFFT is a widely used computationally efficient
substitute to CPFE for simulating mechanical fields over a microstruc-
tural cell/cube and the overall response of polycrystalline grain struc-
tures in 3D as average over the cube [14-17]. It avoids many challenges
pertaining to mesh generation for CPFE because it utilizes voxel-based
microstructures. Both CPFE and EVPFFT involve a single crystal plas-
ticity constitutive law describing the material behavior under boundary
conditions in arriving at a solution in terms of a work-conjugated
stress—strain measures. The single crystal plasticity constitutive law
embedded at every FE material/integration point (CPFE) or voxel

* Corresponding author at: University of New Hampshire, Department of Mechanical Engineering, 33 Academic Way, Kingsbury Hall, W119, Durham, New

Hampshire 03824, United States.
E-mail address: marko.knezevic@unh.edu (M. Knezevic).

https://doi.org/10.1016/j.commatsci.2024.113002

Received 28 August 2023; Received in revised form 13 January 2024; Accepted 4 April 2024

Available online 10 April 2024
0927-0256/© 2024 Elsevier B.V. All rights reserved.


mailto:marko.knezevic@unh.edu
www.sciencedirect.com/science/journal/09270256
https://www.elsevier.com/locate/commatsci
https://doi.org/10.1016/j.commatsci.2024.113002
https://doi.org/10.1016/j.commatsci.2024.113002
https://doi.org/10.1016/j.commatsci.2024.113002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.commatsci.2024.113002&domain=pdf

J. Weiss and M. Knezevic

(EVPFFT) implies that the micromechanical fields and overall response
are governed by crystal lattice orientation and crystallographic defor-
mation mechanisms. Moreover, the evolution of inter- and intra-
granular misorientation fields over grains, grain shapes, and grain
boundary character distributions (GBCD) are also captured to influence
local/overall response [18,19].

To elucidate heterogeneous mechanical fields, the full-field
modeling using CPFE and EVPFFT requires generation of poly-
crystalline domains [20,21]. A BlueQuartz software package called
DREAM.3D (Digital-Representation-Environment-for-Analyzing-Micro-
structures in 3D) is a sophisticated tool to generate voxel-based synthetic
microstructures [22]. Statistics of grain size distribution, grain shape,
and orientation and misorientation distributions are inputs into
DREAM.3D to generate statistically equivalent voxel-based microstruc-
tural cells. Similarly, synthetic voxel-based microstructures can be ob-
tained using the Voronoi tessellation [23-28]. Furthermore, voxel-based
synthetic microstructures can be created by microstructure evolution
models such as Potts (Monte-Carlo) [29,30], phase-field [31], and
cellular automata [32,33] grain growth models. Finally, experimental
techniques have been developed to acquire real grain structure data in
3D. These experimental techniques include focused ion beam (FIB)
electron backscattered diffraction (EBSD) serial sectioning [34-39]. A
similar technique is robotic serial sectioning complemented with EBSD
[40,41] Finally, nf HEDM (near-field high-energy X-ray diffraction mi-
croscopy) is a very recent technique [42-48]. The data from these
techniques is also represented by voxels. Post processing of so acquired
experimental data is facilitated by DREAM.3D including the generation
of triangular surface mesh over every grain. The surface mesh is a
convenient input into volume mesh generation tools [49].

Voxel-based microstructures are a direct input into EVPFFT. In
general, a voxel-based grid describing a microstructure of sufficient
resolution requires a very large number of voxels to represent complex
geometries of grains. If every voxel is considered as a hexahedral finite
element [50], the mesh would contain the same number of finite ele-
ments as voxels requiring a computational cost beyond practical limits.
Moreover, direct meshes from voxels develop artificial field localiza-
tions at interfaces and triple junctions due to the so called stair-case
instead of smooth/flat grain boundaries unavoidable in such meshes
[51,52]. In summary, a microstructure in a voxel-based format is an easy
way to initialize CPFE simulations with hexahedral elements but many
hexahedral elements equal to the number of voxels makes such simu-
lations computationally demanding and, even more importantly, the
stair-stepped grain boundaries intrinsic to such models make the simu-
lations less accurate. Therefore, extra steps to convert the voxels into
conformal FE meshes are needed.

Given the surface triangular mesh decorating grains from
DREAM.3D, we have developed procedures relying on Patran to mesh
volumes of individual grains into tetrahedral elements conforming be-
tween grains [49]. The conformal mesh means that the neighboring
grains share nodes at grain boundaries. The meshing procedures were
advanced to build meshes of polycrystals in various specimen geome-
tries other than cubic microstructural cells [53]. Examples in micro-
forming [54,55] and micro-mechanical testing [26] have been simu-
lated. Several works relied on the procedure to study shear band for-
mation [56] and explicit twins in microstructures [57,58]. Besides
tetrahedral meshes, interface conformal meshes of polycrystals con-
sisting of hexahedral elements can be generated from voxel-based ge-
ometries using the Sculpt meshing tool [51,59,60], an application of the
Cubit Meshing and Geometry Toolkit developed and maintained at SNL
(Sandia National Laboratories) [61].

Mesh convergence studies of polycrystalline microstructures have
been performed in literature [62,63]. Such studies are more involved
compared to conventional FE analyses as they are not only computa-
tionally demanding but also require explicit meshing of individual
grains involving many elements. Moreover, the mesh convergence is
influenced by individual crystal orientations of grains and localized
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loading conditions. Representative volume element (RVE) studies for
polycrystalline microstructures while varying factors such as initial
textures, hardening models and boundary conditions have also been
performed [62,64-66]. These works provided a list of useful guidelines
for effective CPFE modeling.

In this paper, a large number of massive CPFE simulations of explicit
microstructures are carried out and postprocessed to investigate the
effects of various element types on the accuracy of CPFE simulations in
predicting mechanical fields and overall response and efficiency. A
parallel computing infrastructure is used because the simulations are
computationally demanding and require significant memory size. The
work complements a recent study into mesh resolution consisting of
either fully integrated linear or quadratic hexahedral (hex or brick) and
tetrahedral (tet) elements [63] by further evaluating the effects of a
broader element type library on accuracy, computational efficiency, and
memory usage. A wide range of elements in the Abaqus element library
provides opportunities to increase accuracy, efficiency, and flexibility in
modeling different geometries/structures. An initial voxel-based poly-
crystalline microstructural cell is created synthetically in DREAM.3D
and converted to interface-conformal tet and hex meshes at two levels of
discretization. Since boundary conditions may affect the results in
addition to grain structure, three types of boundary conditions involving
simple tension (ST), simple shear (SS), and a strain path change from ST
to SS (ST + SS) are imposed over the models. Simulations of ST, SS, and
ST + SS are performed using C3D8, C3D8R, C3D20, C3D20H, C3D20R,
C3D20RH, C3D10, C3D10H, and C3D10MH element types. Comparisons
of the results in terms of the accuracy of mechanical fields and overall
response and computational efficiency and memory are presented and
discussed. Even though CPFE is a widely used tool to understand and
predict the mechanical response of polycrystalline materials, no sys-
tematic study into the element types exists in current literature. The aim
is to provide additional guidance for effective CPFE modeling of explicit
microstructures. The paper also compares and verifies the CPFE results
with the EVPFFT predictions. To this end, the EVPFFT code was
advanced to implement an identical hardening law to the one present in
CPFE and both codes were calibration using experimental data of
polycrystalline copper (Cu) to facilitate fair comparisons. Although a
study comparing EVPFFT and CPFE exist in the literature [67], we re-
gard our study as more thorough because of the robust grain structure
meshing with variable element types of high resolution.

2. Modeling framework

This section summarizes two crystal plasticity models for
completeness of the study. Both models incorporate the same hardening
law fit to model the response of polycrystalline Cu.

2.1. CPFE

In the finite strains kinematics of CPFE, the gradient of deformation
tensor, F, imposed from Abaqus at every integration point is multipli-

catively decomposed into an elastic part, F*, and a plastic part, F?, as
[68,69]

F=FF M

While the elastic part embeds elastic stretching and any lattice
rotation, the plastic part embeds the plastic deformation by crystallo-
graphic slip. A single crystal constitutive law in CPFE is elasto-
viscoplastic and relates a pair of work conjugated stress and strain
measures as [70,71]

T =CE T =F '{(detF" )6 }F " E" = % {F'F -1} 2

where C is the elastic stiffness tensor, ¢ is the Cauchy-stress tensor, T is
the second Piola—Kirchhoff-stress tensor, and E" is the Green-
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Lagrangian-strain tensor. The flow rule of F? is

F=UFL=) yb on 3

where »* is the shear rate per slip system s, and b, and n} are the slip
direction and slip plane normal, respectively, expressed in the total
Lagrangian frame as indicated by the subscript ‘o’. Given FP, F* can be
evaluated for Eq. (2).

The power-law relation is used for the shear rate as [72-76]

(1P
P =) siente) @

where, 7° is on the driving resolved shear stress (z° = T :m* with
m’(x) = 0.5(b° ®n* +n° ® b*)) on the slip system s, 7% is the critical
resolved shear stress (CRSS) resistance to slip, 7g is a reference slip rate
of 0.001 s71, and m is the strain rate sensitivity exponent of 0.05.

To capture texture evolution, the crystal lattice spin tensor, W", is
calculated using

1

W' = WP — WP, WP = 5 (-1 = Zo.s;f (b @n,—n,®b)) (5)

where WP is an imposed spin over the polycrystal driven by boundary
conditions and W? is the plastic spin due to shearing by crystallographic
slip. The numerical implementation of the above theory within the weak
form of the boundary value problem solved using the finite element
method was presented in [70].

2.2. EVPFFT

In the small strain formulation of EVPFFT, the viscoplastic strain
rate, €°(x) is related to the Cauchy stress 6(x) at a material point x
through a sum over slip systems [77,78]

Ex) =) mx)Fx) =7y m'x) <4|m“(:3(;{()5(x) l

s=1 s=1

fmwwwwx
(6)

where 7, and n = L are the same as in CPFE.
In EVPFFT, Hooke’s law represents the elasto-plastic stress—strain
constitutive relation:

GHA’(X) — C(X) . EE,I+A[(X) — C(X) . (EHA’(X) _ ep,t(x) _ {-_:1).1+AI(X7Gt+Ar)At)7

(7)

in which €¢(x), €’(x), and &(x) are the elastic, plastic, and total strain

tensors, respectively. Using Eq. (7), the total strain is
€r+Ar(X) — C—I(X) . GI+At(X) + sll.l(x) + ép,1+AI(X761+At)A[. (8)

In Green’s approach, the elastic strain—stress constitutive relation is
written as

0;5(x) = 05(x) + Citrs(x) — Clyyurs (x), 9
where u;(x) is the displacement gradient tensor. Eq. (9) is

o;(x) = ij’.k,ukvl(x) + (%), (10)
where the term ¢;(x) is a polarization field as

qﬁij(x) = 0;(x) — Cgk,uk‘,(x). an

Invoking the equilibrium,s;;;(x) = 0, Eq (10) yields the following gov-
erning equation

Chrticyi(X) + by ;(x) = 0. a2
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Using Green’s approach for Partial differential equation [79] by
invoking Green’s function Gy, (x) correlated with the displacement uy (x)
we obtain

ClGnyi (X — X) + 8, 0(x —X) = 0. a3)
After applying the convolution theorem [80] we get

i (%) = / Guag(x — X )by (X) d. 14)
R

Solving Eq. (14) in the Fourier space and then obtaining an inverse
transform to return into the real space, we obtain the strain as

€,(x) = E; + FT"! (sym (ff;“(k)) Dulk) ) , (15)

where “ and FT~! symbols denote direct and inverse transforms,
respectively. k enumerates the frequencies in the Fourier space. Ej; de-
notes the macro strain over the whole polycrystal by taking the average
over a microstructural cell.

~0
The fourth order tensor Iy, (k) is

~0 ~ ~ —

Tyu(K) = —kiki G (K); Ga(k) = [Cyakik)] - (16)
Numerical solution of Eq. (12) necessitates an iterative Newton

Raphson procedure to obtain the stress and strain per voxel satisfying

equilibrium and compatibility, as described in [12]. Texture evolution in

EVPFFT is calculated the same way as in CPFE.

2.3. Hardening

The models summarized above incorporate the same hardening law
for the evolution of slip resistance to facilitate fair comparisons [10].
The law is based on the evolution of statistically stored dislocations
density governing the evolution of slip resistance, 7, per slip system
belonging to {111}(110) octahedral slip family. The 7} is the sum of
three contributions to the resistance [81-84]

Tp = To + Tp, + Tou a7

where 7 is an initial friction stress assumed to embed the Peierls stress,
barrier effect originating from grain size, and some initial dislocation
density. The term does not evolve with plastic strain. The remaining two
terms contribute to the evolution of slip resistance per slip system. The
middle term is the forest, while the last term is the substructure/debris
interaction stress. These two terms evolve with corresponding disloca-
tion densities [85-88]

Tor = XDHA/ Por a8

1
wp = 0.086ub,/ — 19
Tsub HON Psup 0g<b\/m) 19

where b is the Burgers vector (2.5563 x 10 m for Cu), u is the shear
modulus, and y is an interaction factor for dislocations set to 0.9 [89].
The initial forest dislocation density is set to g = 102 m~2
resembling an annealed state of the material. p}, evolves using a balance
between the rate of generation and the rate of dynamic recovery as
[85,90-93]

Wior _ Weengor _ Wrempor I 0jor
= z — . — s T 5 R A U A 5 2
oy o' o ki Plor ka (¢, )Pfgr, Pfor oy v (20)

where k; is a fitting coefficient for statistical trapping and k; is a rate-
sensitive coefficient obtained using [94-97]
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KT &
— 2 n(=
W g\ o» nG) @

k2 _)(b

In Eq. (12), k, &,, g and D are a constant of Boltzmann, a reference strain-
rate set to 107 s ™1, an activation enthalpy as a fitting constant, and a drag
stress as another fitting constant, respectively. The rate of debris dislo-
cation density evolution follows

Apgy, = qb\/ﬂkzﬂﬁ”ZIA}"‘ | (22)

with q as a fitting constant determining a fraction of dislocations that
lead to debris formation, while the rest is annihilated.

2.4. Calibration of the hardening law in CPFE and EVPFFT

The CPFE and EVPFFT models incorporating the same hardening law
were calibrated to simulate the stress—strain response of polycrystalline
copper. Consistent with the experiment, the calibration simulations
were performed under a strain rate of 0.001 s~ and at room tempera-
ture. Simple tension boundary conditions were imposed along a loading
direction which is the rolling direction while enforcing zero stress along
the two lateral directions over a rolling texture. The boundary condi-
tions for CPFE were facilitated by running a one element simulation in
Abaqus, while for EVPFFT a mixed Cauchy stress and strain rate
boundary conditions were imposed over an appropriate microstructural
cell.

The initial slip resistance, 7o, trapping rate coefficient, k;, activation
barrier, g, drag stress, D, and rate coefficient q were fit to reproduce the
stress-strain curve. First, 7o was fit to model yield stress. Next, k;, was
varied to model the initial hardening slope. Next, g and D were adjusted
to match the hardening response. Finally, g was adjusted to capture the
later stage of the hardening response. The hardening parameters are
given in Table 1. Only one parameter was necessary to be different for
EVPFFT from CPFE. Fig. 1 shows results of the calculations to reproduce
the flow stress response of Cu. The models predict nearly identical
stress—strain responses necessary for fair comparisons.

3. Microstructural cells and boundary conditions

Initial voxelated microstructural cells were generated in DREAM.3D
according to the specifications in Table 2. Three resolutions of 67 grains
were created to study heterogeneous deformation in ST, SS, and ST + SS.
The middle resolution is shown in Fig. 2, as an example. The figure
shows a selected grain completely embedded into the microstructure.
The stair-stepped morphology decorating the grain is evident. The stair-
stepped grain boundaries will be smoothed by meshing for CPFE. Me-
chanical fields would be influenced if such a hexahedral mesh with the
stair-case grain boundaries is used as an input into a CPFE simulation.
Unrealistic intense plasticity regions could arise as a result of stair-case
morphologies as revealed in a study comparing stair-case versus
smooth/flat grain boundaries [52]. Therefore smooth/flat grain
boundary morphologies are highly recommended in CPFE simulations.

A numerical study using a CPFE model was performed in [52] to
investigate the influence of the grain boundary morphology (stair-case
versus smooth/flat) on the distribution of simulated mechanical fields.
The study revealed that while the volume averaged responses showed no
appreciable dependence on the grain boundary representation, the stair-

Table 1
Model parameters fit to predict the curves in Fig. 1 using the CPFE and EVPFFT
models.

7o[MPa] D [MPa] Ky [m™1] g q
EVPFFT 7 55 1.5x108 0.01 5
CPFE 7 87.5 1.5x108 0.01 5
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Fig. 1. Flow curves showing fits of the CPFE and EVPFFT calculated curves
against the measured curve for polycrystalline Cu.

case grain boundaries showed more extreme local plasticity values (i.e.
heads and tails of the field distributions). Depending upon the level of
the deformation compatibility between the grains neighboring each
other, the simulation results showed that the grain boundary repre-
sented by the stair-case morphology can be sources and/or sinks for
local extreme plasticity, compared to the grain boundary represented by
the smooth (or flat) morphology. Increasing the mesh density can
decrease the stair-case boundary effects and improve the discrepancy in
local plasticity responses between the smooth and the stepped cases at
the expanse of a prohibitive computational expense [51]. Nevertheless,
the conformal discretization across interfaces eliminates such artificial
stress localizations intrinsic to the non-conformal discretization.
Therefore, interface conformal meshing is a way to go to eliminate
artificial behavior owing to numerical discretization, which is especially
important when attempting to model localized damage and failure.

We relied on the Cubit/Sculpt meshing tool [59-61] to generate
smooth and interface conformal hexahedral meshes of the poly-
crystalline structure from Fig. 2. The procedure began by forming grid
nodes to approximate grain interfaces ensuring volume fractions of
grains and then one or more hexahedra were inserted on both sides of
the interfaces. To improve smoothness of the interfaces and the resulting
quality of the hexahedra, one or multiple smoothing steps were then
performed. The smoothing steps extend the time to generate hex mesh
and make the procedure semi-automatic to obtain good mesh quality. A
more detailed description of interface conformal meshing with hex-
ahedral structural elements in Cubit/Sculpt can be found in [51,59].

Following our earlier work on mesh resolutions [63], two mesh
densities, ‘medium’ and ‘fine’, were generated for the present work. The
earlier work categorized meshes by an approximate number of IPs per
mesh density (extra-coarse, coarse, medium, and fine). Six initial meshes
per density were selected for the present numerical study of the
following element types: 8-node linear brick (hex) (C3D8), 8-node linear
brick with reduced integration (C3D8R), 20-node quadratic brick
(C3D20), 20-node quadratic brick, which is hybrid with linear pressure
(C3D20H), 20-node quadratic brick with reduced integration (C3D20R),
and 20-node quadratic brick with reduced integration, which hybrid
with linear pressure (C3D20RH).

The procedures described in [49] and later refined in [53] were
followed to generate tetrahedral meshes. This procedure begins with
triangular surface meshes of grains extracted as STL files from the hex-
ahedral meshes. To this end, each rectangular element at grain bound-
aries was split over its diagonal to make the triangles. The STLs were
then meshed in MSC Patran [98] with the internal element size
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Table 2
Parameters of microstructural cells for the EVPFFT simulations.
Number of Number of voxels per  Average number of voxels Equivalent sphere Average aspect ratio of grains Voxel edge Cell
grains cell per grain diameter (a/b, a/c) length dimensions
64° 67 262,144 3,912 2.73 0.51 0.14 9x9x9
128° 67 2,097,152 31,301 2.73 0.51 0.07 9x9x9
256° 67 16,777,216 250,406 2.73 0.51 0.0351 9x9x9

Z

WV

&

Fig. 2. A periodic polycrystalline microstructure consisting of 67 grains discretized into voxels. The image on the right shows the internal structure highlighting the
selected central grain along with the stair-stepped morphology of the grain boundary voxels in the voxel-based microstructure. The edge length of the microstructural

cell is taken as 9 (Table 2).

coarsening on. In contrast to hex mesh generation, the tet mesh gener-
ation is automatic and rapid. A total of three tetrahedral meshes per
density were generated for the present numerical study of the following
element types: 10-node quadratic tet (C3D10), 10-node quadratic tet-
rahedron, which is hybrid with linear pressure C3D10H, and 10-node
modified tetrahedron with hourglass control, which is also hybrid
with linear pressure (C3D10MH).

The meshes are shown in Fig. 3. Table 3 and Table 4 list character-
istics of the meshes. Elements containing the same number of IPs are
grouped together. The selected meshes of two resolutions and nine
element types can facilitate a variety of comparisons in terms of accu-
racy of local and global mechanical fields during deformation, compu-
tational speed, and memory requirements as will be presented in
subsequent sections of the paper. An RVE of a microstructure must have
enough constituent grains to homogenize the variability of mechanical
fields arising from local microstructural features. We point out that the
67 grains model used in the present work is not intended to be an RVE
but a microstructural cell facilitating the numerical study. Pole figures
depicting the distribution of crystal lattice orientations assigned to the
model are shown in Fig. 4. There are 67 grains treated as separate
element sets in the overall model. Each crystal orientation is randomly
assigned to the sets.

Periodic boundary conditions were prescribed to all microstructural
meshes, wherein the deformation of each pair of boundary faces (front/
back, top/bottom, and left/right) is equal. Nodes belonging to each
boundary face were made as a node-set to facilitate pairing between
nodes on opposite faces. A node on the opposite face is found and tied to
the first node on the given face and these are made as a node pair set. On
top of the periodic boundary conditions, ST was prescribed as a com-
bination of displacement in the positive Y direction and stress-free
lateral surfaces. Likewise, on top of the periodic boundary conditions,
SS boundary conditions were prescribed as displacement along the Y-
direction on the positive Z face, while the negative Z face was con-
strained in the Y direction. The applied displacement in both ST and SS
corresponded to the effective strain of 0.2 under a strain rate of 0.001 /s

at room temperature. Finally, ST + SS boundary conditions were a
combination of the ST boundary conditions to a strain of 0.1 and the SS
boundary conditions from 0.1 to 0.2 strain.

Boundary conditions in EVPFFT are naturally periodic. Mixed Cau-
chy stress and velocity gradient boundary conditions are used to impose
ST and SS identically as in CPFE. For example, ST boundary conditions
were imposed with a velocity along a loading direction, while enforcing
zero average stress along the two lateral directions over the micro-
structural cell.

4. Results

The CPFE model in the implicit finite element Abaqus Standard
software was used to solve the boundary value problems of ST, SS, and
ST + SS over the microstructural cell domains. A total of 54 (18 ST, 18
SS, and 18 ST + SS) simulations were performed and post-processed for
this paper. Table 5 and Table 6 present the computational time needed
to complete the jobs for the two mesh resolutions, respectively. The MPI
parallel computing infrastructure of Abaqus was utilized, as indicated in
the tables. Table 7 and Table 8 present the RAM memory needed to
complete the jobs for the two resolutions, respectively. Memory usage is
a function of the number of CPUs used in simulations. The CPFE model
stores variables pertaining to the crystallography and the hardening law
such as slip resistance and dislocation densities, in addition to the me-
chanical fields data. Evidently, the simulations were demanding in both
RAM size requirement and computational time.

Given approximately the same number of IPs per mesh, the trends in
computational time showed that C3D10 elements are the fastest of all
element types explored in the work. C3D20R elements were found to
also be very efficient and interestingly faster than C3D8 elements having
the same number of IPs. Time requirements of C3D8R elements
increased substantially relative to C3D8 elements given the overall
number of IPs. The strain path change simulations took longer to com-
plete than monotonic ST or SS simulations, especially for the quadratic
hex elements. The quadratic hex elements were more memory
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Fig. 3. (a) The same periodic polycrystalline microstructure as in Fig. 2 is
discretized into different types of finite elements indicated in the figure. Grain
boundaries in the FE models are conformal squares (hexahedral elements) and
triangles (tetrahedral elements) representing grain boundary planes/curvatures
shared between volume elements of neighboring grains. The images at bottom
show the internal structure highlighting one central grain in tet (left) and brick
(right) meshes. Quadratic tet (C3D10), linear brick (C3D8), and quadratic brick
(C3D20) element schematics are shown. The edge length of the FE cubes is
taken as 9.

Table 3

Characteristics of ‘fine’ meshes. The number of IPs for C3D8/20R/20RH ele-
ments is 8, for C3D10/10H/10MH elements is 4, for C3D20/20H elements is 27,
and C3D8R elements is 1.

Element types C3D8/20R/  C3D10/ C3D20/ C3D8R
20RH 10H/10MH 20H

Number of elements 362,228 524,332 197,622 5,370,600
per model

Average number of 43,248 31,304 79,650 80,158
integration points
per grain

Average number of 5,406 7,826 2,950 80,158
elements per grain

Average element 0.0126 0.0113 0.0158 0.0052
edge length

Degrees of freedom 1,133,379 2,786,493 5,035,791 12,673,439

demanding than linear hex elements. The hybrid element formulations
took more time to complete the simulations. While the hybrid formu-
lations required slightly more memory for every element type, the
hourglass control hybrid tet elements, C3D10MH, appeared to be the
most memory demanding, and much more than C3D10 and C3D10H

Computational Materials Science 240 (2024) 113002

Table 4

Characteristics of ‘medium’ meshes. The number of IPs for C3D8/20R/20RH
elements is 8, for C3D10/10H/10MH elements is 4, for C3D20/20H elements is
27, and C3D8R elements is 1.

Element types C3D8/20R/ C3D10/ C3D20/ C3D8R
20RH 10H/10MH  20H

Number of elements 331,908 156,526 87,962 2,196,565
per model

Average number of 39,632 9,344 35,451 32,785
integration points
per grain

Average number of 4,954 2,336 1,313 32,785
elements per grain

Average element edge 0.0131 0.0169 0.0205 0.0075
length

Degrees of freedom 1,039,779 701,013 2,374,972 6,742,131

Fig. 4. Pole figures showing the distribution of 67 crystal orientations assigned
to the models in Fig. 2 and 3.

elements. Like the time requirements, the memory requirements of
C3D8R elements increased substantially relative to C3D8 elements given
the overall number of IPs.

Figs. 5-7 show von-Mises stress, equivalent plastic strain, and pres-
sure contours after ST, SS, and ST + SS to a macroscopic strain of 0.2.
The fields vary owing to the different shape changes driven by the
different boundary conditions. A view showing the fields at the surface
and a section revealing the internal fields of the entire model as well as
of the central grain are presented. The software ParaView was used for
the visualization. To that end, Abaqus ODB files were converted into
ParaView VTK files using the procedures described in [99].

Comparisons of the results with ‘medium’ and ‘fine’ resolutions
revealed differences < 0.5 %. Given the independence on the level of
discretization, only results of fine discretization are shown. Predicted
strong/hot versus weak/cold spots in the microstructures of two reso-
lutions were indistinguishable. Such predictions are not surprising based
on our prior work in [63]. Also, the ‘medium’ grade meshes had element
size like models used in several prior works in which mesh sensitivity
studies were performed [49,100,101]. The ‘fine’ grade meshes were
intended to further improve the accuracy of the simulations but
evidently, the ‘medium’ grade meshes were already converged as the
further refinement only slightly changed accuracy for < 0.5 %.

Evaluations of the fields as a function of element type showed that
the fields predicted by C3D8 and C3D8R elements are not appreciably
different. Softer fields and the smallest extent of the heterogeneities
were predicted using the quadratic hex elements. The reduced integra-
tion hex elements, C3D20R and C3D20RH, slightly improved the
sharpness of the fields relative to C3D20 and C3D20H elements.
Quadratic tet elements predicted the fields like C3D8 elements. The
sharpest predicted fields amongst the quadratic tet elements and nearly
the same as those of C3D8 elements were those of C3D10MH elements.
Quadratic hex elements predicted large range of values in pressure. Such
large deviations are unrealistic and pose issues to the applicability of
these elements in CPFE modeling of microstructures. Invoking the
hybrid element formulation with constant pressure to possibly relax the
issue did not help. The large range of values and underlying heteroge-
neity in the pressure fields relaxed with reduced integration. In sum-
mary, fields predicted by linear hex, quadratic hex with reduced
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Table 5
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Number of nodes x CPUs per node / total number of CPUs / total CPU time [h] / time per CPU [h] for the simulation cases using ‘fine’ meshes. One or multiple computer
workstations of the type. Intel (R) - Xeon (R) - Gold 6130 CPU @ 2.10 GHz having 32 cores and 772 GB of RAM were used to perform the simulations.

Element C3D8 C3D20 C3D20R C3D20RH C3D20H C3D10 C3D10H C3D10MH C3D8R

types

Tension 2x8/16/ 2x16/32/ 2x16/32/ 2x16/32/52.2/ 2x16/32/ 4x4/16/ 4x4/16/ 4x4/16/ 2x16/32/
30.12/1.88 84.2/2.6 47.7/1.4 1.6 96.7/3.0 14.1/0.88 42.2/2.6 116.23/7.26 312.7/9.78

Shear 2x8/16/ 2x16/32/ 2x16/32/ 2x16/32/44.9/ 2x16/32/ 4x4/16/ 4x4/16/ 4x4/16/104.2/ 2x16/32/
27.5/1.7 72.8/2.3 38.78/1.2 1.40 90.7/2.8 13.3/0.83 39.2/2.45 6.5 296.3/9.25

Tension + 2x8/16/ 2x16/32/ 2x16/32/ 2x16/32/ 2x16/32/ 4x4/16/ 4x4/16/ 4x4/16/122.2/ 2x16/32/

shear 30.4/1.90 113.9/3.6 94.53/2.95 116.2/3.6 132.2/4.1 20.0/1.25 47.3/2.95 7.63 339.2/10.6
Table 6

Number of nodes x CPUs per node / total number of CPUs / total CPU time [h] / time per CPU [h] for the simulation cases using ‘medium’ meshes. One or multiple
computer workstations of the type. Intel (R) - Xeon (R) - Gold 6130 CPU @ 2.10 GHz having 32 cores and 772 GB of RAM were used to perform the simulations.

Element C3D8 C3D20 C3D20R C3D20RH C3D20H C3D10 C3D10H C3D10MH C3D8R
types
Tension 2x8/16/ 2x16/32/ 2x16/32/28.8/ 2x16/32/33.9/ 2x16/32/ 4x4/16/ 4x4/16/23.2/ 4x4/16/96.73/ 2x16/32/
22.7/1.41 48.9/1.5 0.9 1.06 62.3/1.9 16.23/1.0 1.45 6.04 221.5/6.92
Shear 2x8/16/ 2x16/32/ 2x16/32/ 2x16/32/33.4/ 2x16/32/ 4x4/16/9.78/ 4x4/16/19.2/ 4x4/16/90.08/ 2x16/32/
22.4/1.4 40.1/1.25 27.23/0.85 1.04 53.3/1.6 0.611 1.2 5.63 219.5/6.85
Tension + 2x8/16/ 2x16/32/ 2x16/32/ 2x16/32/90.2/ 2x16/32/ 4x4/16/ 4x4/16/31.7/ 4x4/16/98.8/ 2x16/32/
shear 24.8/1.55 101.1/3.6 86.65/2.70 2.82 101.6/3.2 17.44/1.09 1.98 6.18 228.9/7.2
Table 7
Memory usage in GB per simulation case for ‘fine’ meshes.
Element types C3D8 C3D20 C3D20R C3D20RH C3D20H C3D10 C3D10H C3D10MH C3D8R
Tension 66.8 382.1 305.2 313.2 398.5 120.9 128.7 438.92 512.2
Shear 70.21 378.9 316.3 331.4 404.7 118.6 122.2 388.2 485.4
Tension + shear 77.32 380.6 313.2 328.9 401.2 118.6 122.4 492.2 509.9
Table 8
Memory usage in GB per simulation case for ‘medium’ meshes.
Element types C3D8 C3D20 C3D20R C3D20RH C3D20H C3D10 C3D10H C3D10MH C3D8R
Tension 57.4 303.8 281.6 292.5 311.4 28.22 30.6 352.7 438.3
Shear 57.43 288.8 281.6 298.8 326.8 36.32 38.4 376.7 412.9
Tension + shear 71.55 272 270.7 292 318.3 23.62 29.1 421.8 400.8

integration, and quadratic tetrahedral elements were similar with no
issues arising in the pressure fields. Given that these observations are the
same looking at ST, SS, or ST + SS, sensitivity on the boundary condi-
tions was secondary.

Like CPFE in Abaqus, EVPFFT was also used to solve the same
boundary value problems of ST, SS, and ST + SS over the microstructural
cell domains. Table 9 shows the time involved in the simulations using
three resolutions, while Table 10 shows the corresponding memory re-
quirements. Given that the EVPFFT simulations were completed using a
computing infrastructure involving GPUs, which is different from the
infrastructure used for the CPFE simulations, the times are not
compared. Such comparisons were performed in earlier works [67,102].
Fig. 8 shows the contours of von-Mises stress and equivalent plastic
strain after ST, SS, and ST + SS. While there are some similarities in the
fields predicted by CPFE and EVPFFT, there are also substantial differ-
ences at the strain of 0.2. Appendix A shows the comparisons at a strain
of 0.02. The fields at 0.02 strain are much more similar meaning that the
fields deviate with plastic strains. While the macroscopic behavior
predicted by EVPFFT, through the stress—strain curves, is nearly insen-
sitive to the degree by which interfaces between adjoining grains were
numerically represented and resolved, differences in the local response
evidently exist between voxelated versus conformal. Voxelated repre-
sentation of the structures near interfaces yielded larger oscillations in
the mechanical fields at grain boundaries. To relax these issues, methods
of irregular discretization of microstructural domains are being

developed for more accurate modeling using EVPFFT [103].
5. Discussion

Results of 54 large-scale CPFE simulations involving nine element
types are used to discuss the effects of element type on accuracy and
efficiency of the polycrystalline CPFE modeling. To the authors’
knowledge, this is the first study comparing the solution accuracy and
computational time as a function of element type in CPFE simulations of
polycrystalline explicit grain structures. Insights from such a study are
essential in predicting the evolutions of local fields during plastic
deformation, especially for predicting phenomena such as void forma-
tions and propagation. The studies was challenging to perform as the
simulations are not only computationally demanding but also require
explicit meshing of grain structure using many elements of different
types. In our work, the starting model was a voxel-based polycrystalline
grain structure created synthetically in DREAM.3D. The voxel-based
structure was then converted into the interface conformal hex and tet
meshes relying on the software packages Cubit/Sculpt and Patran,
respectively. Such interface conformal FE meshes are necessary for
predicting localized behavior of polycrystals such as damage formation
and failure. However, rapid generation of such 3D conformal meshes of
polycrystalline microstructures is challenging, especially for hex ele-
ments because of the inherent difficulties in describing complex shapes
with hex elements. To that end, the latest versions of Cubit/Sculpt are
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Fig. 5. Contours of von-Mises stress, pressure, and equivalent plastic strain after simple tension to an axial strain of 0.2 calculated using CPFE.

very advanced mesh generation tools. In contrast, tet elements are
flexible for complex geometries.

Computing in parallel was utilized to run the jobs. The models with
more elements required more time than smaller sized models, as ex-
pected. The computational time per CPU involved per simulation varied
for every element type. The results showed that the time requirements
varied for different boundary conditions per element type. In particular,

the strain path change simulations took longer to complete for the
quadratic hex elements than for other elements relative to tension and
shear. The results further showed that C3D10 elements are the most
efficient of all element types explored in the work. C3D20R elements
were found to also be very efficient and interestingly faster than C3D8
elements. However, C3D20R elements were memory demanding.
C3D8R elements increased both time and memory requirements
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Fig. 6. Contours of von-Mises stress, pressure, and equivalent plastic strain after simple shear to a shear strain of 0.2 calculated using CPFE.

substantially relative to C3D8 elements. The hybrid element formula-
tions required more time and memory to complete the simulations. In
the hybrid formulation, the pressure stress is treated as an independent
solution variable, coupled to the displacement solution through the
constitutive theory. As a result, the hybrid formulation introduces more
variables into the problem to alleviate the volumetric locking problem.
The added variables make these elements more expensive. The hourglass
control hybrid tet elements, C3D10MH, were the most time/memory
demanding of all explored elements.

Simulation results in terms of predicted mechanical fields revealed
strong functions of the element type. The fields predicted by C3D8 and
C3D8R elements are about the same. In addition to being demanding as
far as the computational time and memory, C3D8R elements are not
recommended in some simulation cases due to their propensity to show
the hourglass effect [104]. Hourglass effects can propagate easily
through a mesh of first-order reduced integration elements, causing
unreliable results. The effects are not a problem if multiple elements are
used, e.g., at least four elements through the thickness in thin structures.

Softer fields and the smallest extent of the heterogeneities were pre-
dicted using the quadratic hex elements. In general, the quadratic hex
elements are not recommended for large distortions and plasticity [104].
According to the User Manual of Abaqus [104], the quadratic reduced-
integration hex elements are more accurate than the corresponding
fully-integrated elements. C3D20R and C3D20RH elements indeed
improved the sharpness of the fields relative to C3D20 and C3D20H
elements. While the fully integrated elements are not prone to exhibit
the hourglass effect, the quadratic fully integrated hex elements are
susceptible to volumetric locking, especially while modeling nearly or
completely incompressible solids. C3D20 showed spurious pressure
fields developed while enforcing the volume conservation. These ele-
ments are the most susceptible to lock with larger plastic strains.
Invoking the hybrid element formulation with constant pressure,
C3D20H did not fix the issue. However, the reduced-integration
quadratic elements, C3D20R, successfully eliminated the issue.
Although the reduced integration effectively eliminates volumetric
locking in most problems with nearly incompressible material, hybrid
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Fig. 7. Contours of von-Mises stress, pressure, and equivalent plastic strain after simple tension to an axial strain of 0.1 followed by simple shear to a shear strain of

0.1 calculated using CPFE.

Table 9

Number of nodes x GPUs per node / total time [h] / time per node [h] for the
EVPFFT simulations. One or multiple computer workstations of the type. Intel
(R) - Xeon (R) - Gold 6130 CPU @ 2.10 GHz having 32 cores and 772 GB of RAM
were used to perform the simulations. The workstations incorporate an NVIDIA
Tesla V100 GPU.

Tension Shear Tension + shear
64° 2x1/2.18/1.09 2x1/2.17/1.085 2x1/2.94/1.47
128° 4x1/12.82/3.205 4x1/13.72/3.43 4x1/18.24/4.56
256° 4x1/72.96/18.24 4x1/82.12/20.53 4x1/92.95/23.24

10

Table 10
Memory usage in GB per EVPFFT simulation case.
Tension Shear Tension + shear
64° 10.4 10.4 10.4
128° 55.0 55.0 55.1
256> 498.4 498.3 498.3

elements are recommended for meshes of reduced-integration elements
that still show volumetric locking problems. Such problems can occur
with elasto-plastic materials strained far into the plastic regimes.
Nevertheless, the simulations run with C3D20RH in this work did not
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show appreciable differences from those run with C3D20R, except for
being a bit softer. Quadratic tet elements, C3D10, predicted the fields
similar to C3D8 elements and also similar to C3D20R elements with no
issues arising in the pressure fields. Our results suggest that these three
element types are recommended for CPFE modeling of grain structures.
Of the three, C3D10 elements are the most flexible to describe the shape
of grains as the shapes are far from being rectangular for hex elements.
Additionally, meshing with C3D10 elements is fully automatic.

To further confirm the qualitative observations described above,
Fig. 9 compares the overall and local response in terms of major stress
versus strain components from the nine CPFE and one EVPFFT simula-
tions of ST and SS. Importantly, predictions of grain averaged stresses as
shown in Fig. 9b can be validated using high energy synchrotron x-rays
measurements. Such grain averaged quantities have been presented in
[105]. The predicted variations imply that the hardening law parame-
ters would vary depending on the selected element type for modeling.
The figure confirms the qualitative observations that C3D8 elements
produce the strongest response, right above the response produced by
the C3D8R elements. The softest response is produced by C3D20 ele-
ments, while the reduced integration C3D20R elements slightly elevate
the response. Quadratic tet elements produce the response in-between
the stiff C3D8 and the compliant C3D20 elements. The response pre-
dicted by EVPFFT is the most similar to the response of C3D10 elements.

In closing, we attempt to quantify the difference in predicted fields
using CPFE and EVPFFT. To this end, we calculate the stress deviations
for CPFE and EVPFFT after simulating ST, SS, and ST + SS to a strain of
0.2. A vector of the normalized deviations for stress is evaluated using

AG* = (23)

where 6* is stress at a voxel or an IP k, G is average stress over all voxels
or IPs, and s is the deviatoric stress. Histograms of von-Mises stress de-
viation are presented in Fig. 10. While averaged stresses are close, there

11

are differences in local properties between CPFE and EVPFFT pre-
dictions. The intensity is slightly higher for CPFE, while the spread is
slightly higher for EVPFFT. The origin of the differences is primarily in
the formulations of the models. The EVPFFT model is formulated using
small strains in an updated scheme, while CPFE is a finite strain total
Lagrangian scheme model. The integral equations in finite elements are
turned into the weak formulation, while the interactions in EVPFFT are
handled by the Green’s function. The evolution of voxels in EVPFFT is a
uniform map during deformation, while finite elements change their
shape in CPFE capturing nonlinearities. Likewise, the overall micro-
structural cell after deformation using EVPFFT preserves faces like in-
dividual voxels, while meshes result in irregular shapes. Grain
boundaries are conformal in CPFE, while stair-stepped in EVPFFT.

6. Conclusions

Large-scale CPFE simulations were performed to evaluate the suit-
ability of nine element types for the modeling of explicit grain struc-
tures. A voxel-based polycrystalline grain structure was generated in
DREAM.3D and converted to interface conformal hexahedral elements
using Cubit/Sculpt and interface conformal tetrahedral elements using
Patran of two resolutions. Simple tension, simple shear, and a strain path
change deformation involving simple tension and simple shear condi-
tions were simulated using nine element types. The same simulations
were performed using EVPFFT to facilitate comparisons. Post-processing
of the simulation results allowed us to draw the following conclusions:

e The quadratic tet elements offer the best compromise between ac-
curacy, efficiency, memory requirements, and flexibility to describe
complex geometries for CPFE simulation of explicit microstructures.
Moreover, these elements are suitable for rapid and automatic mesh
generation algorithms. Amongst the explored elements, these ele-
ments predict the overall response the most similar to EVPFFT. The
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Fig. 10. Histograms of von-Mises stress deviation after simple tension to an
axial strain of 0.2 (left), simple shear to a shear strain of 0.2 (middle), and
simple tension to an axial strain of 0.1 followed by simple shear to a shear strain
of 0.1 (right) predicted using (a) CPFE (C3D10) and (b) EVPFFT.

response is in between the stiff linear hex and compliant quadratic
hex elements.

Linear hex elements and quadratic hex elements with reduced inte-
gration are recommended for modeling nearly incompressible solids.
While linear hex elements are an acceptable choice for CPFE
modeling of explicit microstructures owing to their accuracy, effi-
ciency, and memory requirements, the quadratic hex elements with
reduced integration arise as the second choice for CPFE simulations
owing to their accuracy and computational efficiency but require
more memory. Although recommended for high mesh distortions in
bulk metal forming, the linear hex elements with reduced integration
increase both time and memory requirements substantially relative
to the fully integrated linear hex elements for a given number of IPs.
The quadratic hex elements are not suitable for large plastic defor-
mation of complex grain structures due to their propensity to volu-
metric locking. While the hybrid formulation elements with constant
pressure could not relax the issue, the quadratic hex elements with
reduced integration fix the issue of volumetric locking. The hourglass
control elements substantially increase the computational time and
memory requirements.

Appendix A

Computational Materials Science 240 (2024) 113002

e Different element types predict not only the local response to vary
but also the overall response to vary. The predicted variation in the
overall response implies that the hardening law parameters would
also vary depending on the selected element type requiring calibra-
tion for every element type selected for modeling. While EVPFFT
predicts the overall response similar to CPFE, especially to the
quadratic tet elements, the predicted local fields deviate from those
predicted by CPFE for all element types. The deviations increase with
plastic strain.

It is anticipated that these conclusions provide useful guidance for
CPFE modeling of explicit grain structures. As a specific crystal plasticity
model formulation has minor effects on a selected element type, the
guidance above should be applicable to any crystal plasticity model.
Numerical analyses into the effects of element type on the localized
phenomena at grain boundaries, other defects, and crack tips like in
[106] will be studied in future works after advancing our models into
strain gradient-based formulations considering geometrically necessary
dislocations. Conducting such study would be essential since the strain
gradient plasticity formulations exhibit strong sensitivity to both
element type and mesh size as nonphysical values of geometrically
necessary dislocation densities can lead to severe errors of local field
quantities [107,108]. Mapping of not only mechanical fields but also
microstructural evolution characteristics and underlying statistical an-
alyses like in [109] will be pursued.
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