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Learning graph-Fourier spectra of textured surface images for defect
localization

Abstract

In the realm of industrial manufacturing, product inspection remains a significant bottleneck, with only a small fraction of manufactured items
undergoing inspection for surface defects. Advances in imaging systems and AI can allow automated full inspection of manufactured surfaces.
However, even the most contemporary imaging and machine learning methods perform poorly for detecting defects in images with highly textured
backgrounds, that stem from diverse manufacturing processes. This paper introduces an approach based on graph Fourier analysis to automatically
identify defective images, as well as crucial graph Fourier coefficients that inform the defects in the images. The approach thereby facilitates precise
localization and characterization of defects, amidst highly textured backgrounds. A convolutional neural network model (1D-CNN) was trained
with the coefficients of the graph Fourier transform of the images as the input to identify, with classification accuracy of 99.4%, if the image
contains a defect. An explainable AI method using SHAP (SHapley Additive exPlanations) was used to further analyze the trained 1D-CNN
model to discern important spectral coefficients for each image. This approach sheds light on the crucial contribution of low-frequency graph
eigen waveforms to precisely localize surface defects in images, thereby advancing the realization of zero-defect manufacturing.
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1. Introduction

In recent years, the field of quality control in manufacturing
has witnessed a significant transformation owing to advance-
ments in imaging systems. A study by GlobeNewswire, projects
a remarkable surge for AI-based visual systems in manufac-
turing, anticipating an estimated global market value of $21.3
billion by 2028, with a compelling compound annual growth
rate of 43.4% [13]. The augmented availability and heightened
sophistication of AI-based vision systems have transcended
their role beyond traditional end-of-line product inspection to
encompass on-line, intermittent and in-situ quality monitor-
ing [2, 18]. Imaging systems have evolved into indispensable
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tools for identifying a myriad of morphological and geomet-
ric defects, including scratches, holes, warping, and inclusions,
throughout various stages of the manufacturing process [27].

One key aspect that contributes to the complexity of de-
fect identification is the diverse range of textures generated by
different manufacturing processes. In metallic manufacturing,
casting processes such as sand casting or investment casting
yield textures characterized by irregularities stemming from the
cooling and solidification of molten metal. In additive manu-
facturing, textures emerge as a result of layer-wise deposition
of material, frequently accompanied by porosity and shrink-
age defects [1, 3, 32]. Machining processes, including milling
and turning, impart distinct surface finishes with tool marks and
cutting patterns, contributing to the overall texture. Turning or
cutting operations performed on a lathe often lead to defects
like burrs, grooves, adhered material, and tearings [7, 33]. Plas-
tic and polymer manufacturing, specifically injection molding,
introduces textures contingent on mold surface finish and poly-
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mer type, with defects like sink marks and weld lines influenc-
ing the visual appearance. In the realm of composite manufac-
turing, lay-up processes shape textures through the arrangement
of fibers and resin distribution, while compression molding im-
parts textures affected by molding surface characteristics. Semi-
conductor manufacturing involves intricate processes yielding
specific surface textures influenced by factors such as etching
and deposition techniques, and defects in these processes can
profoundly impact the chip’s functionality [24, 28]. In contrast
to open-source datasets such as MVTEC-AD [5] that primar-
ily focus on defect localization, machining processes generate
intricate background textures, as depicted in Figure 1. The com-
plexity of these textures underscores the significance of under-
standing their diversity, representing a crucial aspect in advanc-
ing methodologies for defect identification within manufactur-
ing contexts.

Figure 1: Images illustrating distinct complex surface textures
resulting from a turning process (left) and ripple formation from
laser direct energy deposition (L-DED) process (right) [3]

From an imaging perspective, defects emerge as irregular-
ities embedded within the diverse textures, presenting a myr-
iad of forms that pose challenges for precise classification and
localization. The intricacies reside on the subtle interactions
of pixel intensities within textures, and their accurate identi-
fication holds key to unveiling the underlying defect formation
mechanisms across diverse manufacturing processes. Nonethe-
less, this precision remains elusive with current image seg-
mentation methods. Traditional supervised learning methods
[1, 9, 27, 28], while effective, often demand substantial amounts
of labeled data for each type of defect. Despite their prowess
in defect classification, these methods encounter limitations
in localizing defects accurately and inferring the underlying
defect formation mechanisms. On the other hand, unsuper-
vised or semi-supervised learning methods, including feature
embedding-based methods (e.g., one-class classification [21],
distribution map [34]) and reconstruction-based methods (e.g.,
autoencoder [6], diffusion models [35]), may be less sensitive
to various types of defects, especially when there is a large vari-
ation in the training normal data.

Additionally, the need for a diverse dataset that spans the
range of possible defects across manufacturing processes poses
a practical challenge. Ganatma et al. [25] developed an AI
Toolbox to relate distinct class of defects with specific image
processing methodologies such as Wavelet Analysis, Morpho-
logical Component Analysis (MCA), and Basic Line Detector

(BLD). They proposed an empirical recommendation formula
based on three image metrics≻entropy, Universal Quality In-
dex (UQI), and Rosenberger’s≻to evaluate the performance of
a method across a specified class of images.

As an alternative paradigm, graph signal processing (GSP)
methods aim to leverage the relationship between signals and
the topology of the graph where they are supported, to make
meaningful inferences [12, 26, 30]. The intuition behind using
graph representations and analysis can be associated to the ap-
proach of Belkin and Niyogi [4], where they highlighted that
the graph Laplacian can capture the complex dynamics of high-
dimensional data and locality preserving properties in a low-
dimension space, namely, the graph G(V, E). Algebraic graph
theoretic approaches have been adopted for process monitoring
and anomaly detection in ultraprecision machining using mul-
tivariate time series sensor data [23, 31]. Bukkapatnam et al.
[8] employed a planar random graph representation to monitor
the surface morphology evolution of electron beam printed Ti-
6Al-4V samples during polishing and established an endpoint
criterion based on Fiedler number λ2, that is sensitive to the
neighbourhood asperity structure.

Spectral graph theoretic approaches have been previously
used to describe topological relationships in various physi-
cal domains involving image processing [10, 16, 29]. Hu-
nag et al. [15] utilized GSP framework to analyze brain ac-
tivity aligned with the structural brain graph, revealing sig-
nal variability during attention-switching tasks.They empha-
sized the framework’s versatility for conducting analyses on
both functional and structural connectivity in functional imag-
ing datasets. However, in most real world scenarios, the under-
lying graph topology is not readily available, and needs to be
inferred from the signal itself. The construction of a meaning-
ful graph topology from the data is crucial for effective repre-
sentation and inferring functional connectivity within the graph
[11, 22]. Models for developing graph topologyG from data are
either defined based on the underlying physical phenomenon on
the graph like heat diffusion, or statistically modelled as a func-
tion that draws realization from a probability distribution over
the variables that are representative of the graph structure [17].

In this study, we harness the principles of Graph Fourier
Transform (GFT) to effectively localize the presence of surface
defects in images. By conceptualizing the image as a signal dis-
tributed across a graph, where pixels are interconnected based
on their spatial relationships, we aim to uncover specific spec-
tral coefficients crucial for distinguishing and localizing de-
fects. A convolutional neural network (1D-CNN) classifier is
employed to categorize images with diverse surface textures,
discerning between those devoid of defects and those exhibit-
ing defects with varying shapes, sizes, and locations, encom-
passing a spectrum of morphological characteristics. Inferences
from subsequent explainable AI method using SHAP (SHap-
ley Additive exPlanations), not only helps identify important
spectral coefficients for defect localization within each image,
but also lays the foundation for correlating with the physical
mechanisms underlying defect formation. This graph-based ap-
proach enables us to capture both global patterns and localized
variations, making it a powerful tool for precise defect iden-
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Figure 2: Schematic representation of Graph Fourier Transforms for spectral coefficients extraction and defect localization

tification—an essential element in achieving zero-defect manu-
facturing. The rest of this paper is organized as follows: Section
2 provides a comprehensive overview of graph signal process-
ing and its application to surface defect localization. In Sec-
tion 3, we delineate the architecture of the 1D-CNN model and
evaluate its performance. In Section 4, we delve into the inter-
pretability of our model’s predictions through SHAP analysis
and validate the proposed method on publicly available textured
class MVTEC-AD dataset, followed by conclusions and future
work in Section 5.

2. Spectral graph theoretic approach for defect localization

We introduce the formulation of graph and graph signals,
i.e., signals whose samples are indexed by the nodes of an arbi-
trary graph. Let us define some of the notations associated with
graph signals, graph fourier transform and the interpretation of
graph variation operators.

Consider a weighted graph G = (V, E,W) where V =

1, 2, . . . ,N is a finite set of N nodes or vertices, E V V
is a set of edges defined as ordered pairs (i, j) representing pair-
wise relations between vertices, and W : E R is a mapping
from the set of edges to scalar values wi j representing the edge
weight between vertex i to vertex j. A graph signal X : V C
is a mapping from the vertices of the graph to complex num-
bers X CN . This graph signal can be represented as a vector
X = x1, x2, x3, . . . , xN where xk indicates the value of the sig-
nal at the kth vertex in V .

Here, we define a grid-based undirected graph structure on
an image (see Figure 2) by representing each pixel as a node
and connecting adjacent pixels with edges E defined as ordered
pairs (i, j) where i and j are pixel indices. In contrast to tra-

ditional image segmentation methods, where edge weights are
determined based on pixel intensities utilizing exponential or
gaussian functions, our approach formulates a graph structure
solely based on spatial relationships, specifically considering
immediate neighbors in the x and y directions. The associated
adjacency matrix A RN N for the graph is defined as

Ai j =

wi j = 1, if (i, j) E
0, otherwise

(1)

The degree matrix D RN N for the graph is a diagonal matrix
defined as follows:

Dii = deg(i) =
∑
j n(i)

wi j (2)

where n(i) stands for the neighborhood of vertex i. The lapla-
cian matrix L RN N for the above defined graph structure G
with adjacency matrix A and degree matrix D is defined as

L = D ≻ A (3)

For undirected graphs with real and non-negative edge weights,
the graph Laplacian matrix L inherits properties of being real,
symmetric, and positive semi-definite [14].

2.1. Eigen decomposition of the graph laplacian matrix

The real and symmetric nature of the graph Laplacian ma-
trix L allows for eigen decomposition into a complete set of
orthonormal eigenvectors u0, u1, . . . , uN≻1 and corresponding
eigenvalues, in ascending order 0 = λ0 < λ1 . . . λN≻1:

L = UΛUT (4)
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Figure 3: Eigen waveforms illustrating select low and high frequency modes of the defined graph structure

where U is the eigenvector matrix containing the eigenvec-
tors u0, u1, . . . , uN≻1 as columns, satisfying U≻1 = UT , and
Λ is a diagonal matrix containing the eigenvalues, i.e., Λ =
diag(λ0, λ1, . . . , λN≻1). Each eigenvector uk of the graph lapla-
cian matrix L satisfies Luk = λkuk. The eigenvalue λk is referred
to as the graph frequency/spectrum, with a smaller eigenvalue
corresponding to a lower graph frequency [14].

The eigen decomposition of the graph Laplacian matrix L
into eigenvectors U and corresponding eigenvalues Λ embod-
ies a profound depiction of the graph’s underlying structure and
dynamics. In the context of a grid structure representing an im-
age, where each edge directly connects neighboring pixels and
bears a unit weight, the derived eigenvectors U offer nuanced
insights into the image’s representation. The eigenvector linked
to λ0 acts as a fundamental mode, resembling a constant func-
tion and offering a comprehensive perspective on the overall
structure of the image grid. Similarly, the eigenvector associ-
ated with λ1 (second smallest eigen value), widely recognized
as the Fiedler vector, encapsulates vital information regarding
the graph’s connectivity, acting as a representation of the first
non-trivial mode.

Moving beyond these foundational eigenvectors, the subse-
quent high-frequency modes unveil localized variations within
the image grid. These high-frequency eigenvectors delve into
fine-grained features, highlighting intricate patterns and de-
tails that might be imperceptible in lower-frequency modes. As
eigenvalues ascend, each associated eigenvector offers a more
refined perspective on the spatial relationships and structural
intricacies within the image. Figure 3 provides a visual repre-
sentation of few select eigen vectors having low and high fre-
quency waveforms. In this study, we construct graph represen-

tations on images with 64 64 pixels resulting in 4096 graph
vertices (see Figure 2). However, when dealing with extensive
graph networks in defect detection for large images (charac-
terized by larger values of N), the use of sparse matrices and
relevant approximations for eigenvalue decomposition becomes
imperative to reduce computational costs and enhance the scal-
ability of the approach for real-time applications.

2.2. Graph fourier transform

The graph fourier transform (GFT) is a mathematical tool
applied to signals defined on graphs. For a given graph Lapla-
cian operator L = UΛUT , whereU is the matrix of eigenvectors
and Λ is the diagonal matrix of corresponding eigenvalues, the
GFT of a signal X = (x1, x2, . . . , xN) is defined as

S = UTX, sk = X, uk =
N∑
i=1

xi uk(i ≻ 1) (5)

where spectral coefficient sk = X, uk is the inner product be-
tween the signal X and eigenvector uk, representing the projec-
tion of the signal onto the kth graph frequency mode.

Anomalous patterns or defects within an image often man-
ifest as distinct localized variations, stemming from diverse
physical mechanisms encountered throughout various stages
of the manufacturing process. The spectral coefficients S =
s0, s1, s3, . . . , sN≻1 derived by projecting the signal onto the
eigenvectors not only accentuate the presence of defects in the
graph frequency domain but also provide a distinctive signature
for precise defect localization.

Leveraging the orthogonality property of the eigenvector
matrix (U UT = I), the original image can be precisely recon-
structed using X = US . In sections 3 and 4, we employ a 1D-
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CNN binary classifier using spectral coefficients from an image
dataset characterized by diverse background textures, includ-
ing images with defects and non-defect scenarios. Employing
SHAP explanations, we identify important spectral coefficients
S for each image. The localization of defects becomes visually
discernible through the reconstruction process X = US , cap-
italizing on the essential spectral coefficients that encapsulate
distinct signatures of the defects.

3. 1D Convolutional neural network classifier

We construct a binary classifier using 1D-CNN, taking the
spectral coefficients as inputs from an image dataset charac-
terized by diverse background textures, including images with
defects, and non-defect scenarios. We utilized a dataset of
256 256 surface images obtained from the turning process,
generously provided by our collaborator Marposs-STIL.

Figure 4: Top row containing images with diverse background
textures and no defects, and bottom row showcasing images
with defects.

This dataset comprises 228 instances of defects and 800
non-defective images. To prepare for the subsequent classifi-
cation task, we extracted 1000 defect and non-defect patches,
each measuring 64x64, from the original dataset, as illustrated
in Figure 4. Employing set rotation and flipping for augmenta-
tion, we expanded the dataset to include 6000 defect and 6000
non-defect patches. Following this, Graph Fourier Transform
(GFT) features were extracted from each patch, resulting in a
final dataset sized 12000 4096. To assess the effectiveness of
our methodology, an 80-20 split was employed, allocating 80%
of the dataset for training a 1D Convolutional Neural Network
(CNN) model on the GFT features. This model was purpose-
fully designed to classify patches into defect and non-defect
categories, leveraging GFT features as the basis for our explo-
ration into surface image defect localization.

Figure 5: 1D-CNN model architecture

The proposed model architecture for defect classification, il-
lustrated in Figure 5, involves a sequence of two 1D Convolu-
tion layers with ReLU activation functions, utilizing 32 and 64
kernels and a stride of 3. Following the convolutional layers,
the output is flattened and subjected to a dropout layer. Sub-
sequently, two fully connected layers are integrated, featuring
hidden neurons arranged as (128, 2), accompanied by ReLU
and Sigmoid activation functions, respectively. The model is
compiled using categorical cross-entropy as the chosen loss
function, the Adam optimizer (learning rate = 0.001), and ac-
curacy as the primary evaluation metric. The training regimen
spans 50 epochs with a batch size of 64, utilizing labeled image
vectors for both training and testing phases. This architectural
configuration, along with the specified training parameters, is
strategically designed to enhance the model’s proficiency in ac-
curately classifying defects and non-defects within the surface
image dataset. Figure 6 shows that the model achieves a training
accuracy of 99.94% and a testing accuracy of 99.91%, under-
scoring its robust performance in accurately classifying defects
and non-defects within the surface image dataset.

Figure 6: Performance of 1D-CNN binary classifier

To validate the significance of spectral coefficients in clas-
sification, we employed a Random Forest Classifier with these
coefficients as features, achieving notable training and testing
accuracies of 99.89% and 96.87%, respectively. This under-
scores the discriminative power of spectral coefficients in de-
fect identification. Subsequently, our focus shifts to SHAP ex-
planations from the trained 1D-CNN classifier in the upcoming
section. This analysis aims to pinpoint essential spectral coeffi-
cients crucial for defect localization, providing key insights into
the model’s decision-making process.

4. Results and discussion

After successfully classifying an image as defect or non-
defect using the trained 1D CNN model f , we aim to iden-
tify the GFT spectral coefficients that exert the most influence
on the model’s output. These dominant coefficients provide in-
sights into the defect localization process, enabling us to move
beyond binary classification and pinpoint the specific spectral
coefficients associated with defects.

Shapley value is a game theory-based metric widely used
for quantifying the contribution of each player in a cooperative
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game. In our context, Shapley values measure the importance of
each spectral coefficient in determining whether an image con-
tains a defect. Specifically, the contribution of a coefficient si to
the model output for an input X is determined by the difference
between outputs when including and excluding coefficient si,
expressed as f (XR si ) ≻ f (XR). Here, R is a subset of S si
(the entire set of coefficients S excluding the coefficient si). XR

represents a modified input that only contains coefficients in R
and takes the same coefficient values as X does. Overall, the
marginal contribution (or Shapley value) of coefficient si re-
garding the input X (denoted as ϕXsi ) is computed as a weighted
average of the output differences over all possible coefficient
subsets, that is

ϕXsi =
∑

R S si

R !( S ≻ R ≻ 1)!
S !

[ f (XR si ) ≻ f (XR)] (6)

wherein is the size of a set. ϕxsi satisfies

ϕ0 +

S∑
i=1

ϕXsi = f (X) (7)

where f (X) is the original model output on X. ϕ0 denotes the
model output when all spectral coefficients are zero, i.e., ϕ0 is a
constant based on the model’s historical training data regardless
of X. Based on Eq. (7), a positive Shapley value for a particular
coefficient of a defect image indicates an increased likelihood
of the image being classified as defective, and vice versa.

However, the computation complexity of Eq.(6) can be ex-
trememly large when considering all possible coefficient sub-
sets [20]. Therefore, SHAP, particularly the DeepSHAP algo-
rithm in our case, approximates the Shapley value using se-
lected representative subsets. DeepSHAP also approximates
f (XR si ) ≻ f (XR) for a given coefficient subset R by leverag-
ing the gradient information obtained through backpropagation
[20]. The resulting estimate of the Shapley value for coefficient
si is referred to as the SHAP value, denoted by ϕ̂Xsi .

When applied to individual images, SHAP unveils impor-
tant spectral coefficients to each image, contributing to effective
defect localization. In addition, SHAP also provides a global
inference perspective, which considers the collective impact
of coefficients across the entire dataset. Specifically, after ob-
taining the SHAP value of coefficient si for every image X( j),
j = 1, 2, ...,M, the algorithm aggregate the SHAP values over
all M images to derive the global contribution of coefficient si,
denoted by Gsi , as

Gsi =

M∑
j=1

ϕ̂X
( j)

si , si S (8)

Two curated data subsets, each comprising 15 images, en-
compass instances of defects and non-defects. SHAP values for
each of the 15 images are subsequently derived using SHAP
DeepExplainer, trained on 500 images from the overall train-
ing dataset, which includes both classes. The outcomes demon-
strate a pronounced discriminative capability between images
with defects and those without, particularly emphasizing the
importance of low-frequency spectral coefficients. Cumulative
summaries of the top 10 important spectral coefficients for clas-

sifying each data class are visually presented in Figures 7 and 8,
offering insights into the key features influencing the classifica-
tion process. The color bars in Figures 7 and 8 are normalized
for each feature individually, allowing for a relative compari-
son of the impact of the different feature values on the model’s
output. The x-axis on the other hand, indicates the feature sig-
nificance values (i.e., shapley explanation values).

Figure 7: Summary plot of SHAP values for a subset of cor-
rectly classified 15 defect images

Figure 8: Summary plot of SHAP values for a subset of cor-
rectly classified 15 non-defect images

Subsequent to this analysis, we examine the marginal dis-
tribution of the first 16 low-frequency spectral coefficients, de-
noted as s0 to s15, across the entire dataset for each class. As
emphasized by SHAP, a noteworthy shift in median values is
observed, particularly for s4, s5, and s2. Additionally, Fig 9 il-
lustrates the distinct dissimilarity in the marginal distribution
of spectral coefficient s0 between the two classes. The defects
examined in this study demonstrate a tendency to disturb the
low-frequency eigen waveforms in contrast to non-defect im-
ages with distinctive background textures as observed in Fig-
ure 9. The pronounced discriminative capability between de-
fect and non-defect images, as clarified by SHAP through low-
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Figure 9: Marginal distribution of low-frequency spectral coefficients for defct and non-defect images

frequency spectral coefficients, receives additional validation
through the Root Mean Square plot of the spectral coefficients
across the entire test dataset (Fig 10). It is important to note that
high-frequency spectral coefficients may exhibit elevated val-
ues in instances involving subtle defects within intricate textural
backgrounds. Consequently, we need to delve deeper into local-
ized explanations for each image, unveiling the specific contri-
butions of individual graph spectral coefficients. This approach
facilitates a more nuanced understanding of how the model re-
sponds to high-frequency variations in texture, particularly in
the context of detecting subtle defects.

Defect localization on the 256 256 surface image is con-
ducted by classifying each 64 64 patch with a stride of 8 across
the entire image, leveraging the capabilities of the trained 1D
CNN model. The outcome is a sparse defect localization out-
put of dimensions 49 49. The defect localization results from
our model are visually presented in the third column of Fig-
ure 11, providing a representation of the spatial localization
of identified defects across the surface image. As discussed
in Section 1 and illustrated in Figure 1, the surfaces derived
from various manufacturing processes exhibit complex back-

ground patterns, complicating the development and training of
algorithms tailored for defect localization unique to the pro-
cess. The proposed method revolves around the core idea of
capturing these complexities through the utilization of well-
established GFT features. Our defect localization approach is
then assessed through a comparative analysis with SimpleNet
[19], a widely recognized state-of-the-art methodology which
stands out as a simple yet application-friendly network. On the
MVTEC-AD benchmark dataset, SimpleNet [19] demonstrates
notable performance, achieving an anomaly detection AUROC
of 99.6% and reducing errors by 55.5% compared to the next
best-performing model. This comparative study highlights the
challenge of formulating effective and customized methods for
defect localization on intricate machining textures. Figure 11
visually compares the defect localization outputs from both our
model and SimpleNet, juxtaposed with the ground truth. The
authors of SimpleNet proposed a predefined set of hyperparam-
eters, employed in training of various textural classes within
the MVTEC-AD dataset. Leveraging this established frame-
work, we adopt these hyperparameters as a validated foundation
for configuring the SimpleNet model during its training on the
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Figure 10: Root mean square measures of the first 500 low-frequency spectral coefficients for defect and non-defect images

Figure 11: Visual comparison of defect localization: Input image (with defects), ground truth, and localization outputs from our
method and SimpleNet
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Figure 12: Defect localization performance comparison be-
tween our model and SimpleNet on highly textured manufac-
turing dataset

STIL dataset. Quantitative insights are presented in Figure 12,
featuring boxplots comparing the models’ performance using
AUROC, AUPR, and F1 score metrics. Our observations reveal
that graph fourier based model excels in sparse localization and
detection of defects within the surface images. Furthermore, a
consistent observation highlights the intricate nature of textural
patterns within the STIL dataset, revealing greater complexity
compared to those in MVTecAD. These patterns encompass di-
verse image attributes such as irregular contrasts, non-periodic
textures, and concealed defects.

4.1. Model performance on MVTEC-AD textural datasets

To validate our proposed method, we conducted a compara-
tive analysis of graph Fourier spectral-based defect localization
across various textural classes in the MVTEC-AD dataset, in-
cluding carpet, grid, leather, tile, and wood. Five distinct classi-
fier models were developed, each tailored to a specific textural
dataset. We computed patches of size 64 64 from all defect and
non-defect images, generated graph Fourier coefficients using a
graph structure representation similar to Figure 2, and followed
a procedure akin to that described in Section 3 to train the clas-
sifiers.

We developed 5 different classifier models, one for each tex-
tural dataset. We extracted 64 64 patches, generated graph
fourier coefficients and repeated a similar procedure as de-
scribed in Section 3 to train the classifier. We consistently
achieved high classification accuracies (> 98%) on both train-
ing and testing datasets. Figure 13 illustrates a defect image
from each of the textural classes, followed by the ground truth
and our model prediction for defect localization. In Table 1,
we present pixel AUROC scores for each class of textural
dataset, showing near-comparable defect localization perfor-
mance across all classes with respect to SimpleNet and Patch-
Core.

5. Conclusion and Future Work

This work is one of the first investigations of graph Fourier
analysis for detection and localization of defects and artifacts
from images with highly textured background. A convolutional
neural network model (1D-CNN) trained on the graph Fourier

Table 1: Pixel-wise AUROC performance comparison of the GFT Model
(Ours), SimpleNet, and PatchCore on MVTEC-AD textural datasets.

AUROC GFT Model (Ours) SimpleNet PatchCore
Carpet 93.2 98.2 99.0
Grid 93.18 98.8 98.7

Leather 98.4 99.2 99.3
Tile 93.5 97.0 95.6
Wood 90.79 94.5 95.0

spectral coefficients was able to classify, with classification ac-
curacy exceeding 98%, whether the image contains a defect.
The CNN classifier was able to exceed the performance of per-
haps the most contemporary image-based defect (artifact) de-
tection method (called SimpleNet) by 70% in terms of the area
under the receiver operating characteristic (AUROC), and F1
score on the high textured manufacturing dataset. The subse-
quent application of SHAP, an explainable AI (XAI) method
enabled the identification of the key components of the graph
Fourier spectrum that inform the defects, including its loca-
tion and other surface morphological characteristics. The SHAP
analysis indicates that eigen waveforms 4 and 5, which capture
the lower frequency components, exhibit heightened sensitivity
to the presence of defects within the given dataset.

The current research assumes a constant graph structure to
derive spectral coefficients for each patch. This choice proved
advantageous as both defect and non-defect images shared the
same underlying graph structure, and their pixel intensities
served as graph signals. The spectral coefficients derived from
projecting these intensities onto the graph eigenvectors demon-
strated robust discerning capabilities between defect and non-
defect images. While the model achieves very high classifica-
tion accuracy on the manufacturing dataset, its performance on
other datasets may be limited, requiring retraining. structures
for defect localization. In the absence of labelled data, it be-
comes important to construct a graph representation based on
the data attributes, (here, pixel intensities) to learn textural pat-
terns and enhance defect localization using methodologies such
as Graph Wavelet transforms.

A promising extension involves formulating a dataset-
specific graph structure through the utilization of Graph Neural
Networks (GNNs). By employing GNNs, we can dynamically
construct a unique graph topology tailored to the dataset charac-
teristics. This innovative approach would enable the derivation
of spectral coefficients for patches, potentially enhancing the
efficiency of defect localization in surface images. This exten-
sion holds the potential to further refine the model’s adaptability
to diverse datasets, contributing to more effective and nuanced
defect identification methodologies across various domains.
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[6] Bergmann, P., Löwe, S., Fauser, M., Sattlegger, D., Steger, C., 2018. Im-
proving unsupervised defect segmentation by applying structural similarity
to autoencoders. arXiv preprint arXiv:1807.02011 .

[7] Bordin, A., Bruschi, S., Ghiotti, A., 2014. The effect of cutting speed and
feed rate on the surface integrity in dry turning of cocrmo alloy. Procedia
Cirp 13, 219–224.

[8] Bukkapatnam, S.T., Iquebal, A.S., Kumara, S.R., 2018. Planar random
graph representations of spatiotemporal surface morphology: Application
to finishing of 3-d printed components. CIRP Annals 67, 495–498.

[9] Caggiano, A., Zhang, J., Alfieri, V., Caiazzo, F., Gao, R., Teti, R., 2019.
Machine learning-based image processing for on-line defect recognition in
additive manufacturing. CIRP annals 68, 451–454.

[10] Cheung, G., Magli, E., Tanaka, Y., Ng, M.K., 2018. Graph spectral image
processing. Proceedings of the IEEE 106, 907–930.

[11] Dong, X., Thanou, D., Rabbat, M., Frossard, P., 2019. Learning graphs
from data: A signal representation perspective. IEEE Signal Processing
Magazine 36, 44–63.

[12] Dong, X., Thanou, D., Toni, L., Bronstein, M., Frossard, P., 2020. Graph
signal processing for machine learning: A review and new perspectives.
IEEE Signal processing magazine 37, 117–127.

[13] GlobeNewswire, 2022. Global artificial intelligence in manufacturing mar-
ket size, share and industry trends analysis report, outlook and forecast,
2022-2028. Report Linker .

[14] Hu, W., Pang, J., Liu, X., Tian, D., Lin, C.W., Vetro, A., 2021. Graph signal
processing for geometric data and beyond: Theory and applications. IEEE
Transactions on Multimedia 24, 3961–3977.

[15] Huang, W., Bolton, T.A., Medaglia, J.D., Bassett, D.S., Ribeiro, A., Van
De Ville, D., 2018. A graph signal processing perspective on functional
brain imaging. Proceedings of the IEEE 106, 868–885.

[16] Iquebal, A.S., Bukkapatnam, S., 2020. Consistent estimation of the max-
flow problem: Towards unsupervised image segmentation. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 44, 2346–2357.

[17] Koller, D., Friedman, N., 2009. Probabilistic graphical models: principles
and techniques. MIT press.

[18] Konstantindis, F.K., Gasteratos, A., Mouroutsos, S.G., 2018. Vision-based
product tracking method for cyber-physical production systems in indus-
try 4.0, in: 2018 IEEE international conference on imaging systems and
techniques (IST), IEEE. pp. 1–6.

[19] Liu, Z., Zhou, Y., Xu, Y., Wang, Z., 2023. Simplenet: A simple net-
work for image anomaly detection and localization, in: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
20402–20411.

[20] Lundberg, S.M., Lee, S.I., 2017. A unified approach to interpreting model
predictions. Advances in Neural Information Processing Systems 30.

[21] Massoli, F.V., Falchi, F., Kantarci, A., Akti, Ş., Ekenel, H.K., Amato, G.,
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