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stract 

many modern enterprises, factory managers monitor their machinery and processes to prevent faults and product defects, and maximize the 
ductivity and efficiency. Asset condition, product quality and system productivity monitoring consume some 40-70% of the production costs. 

tentimes, resource constraints have prevented the adoption and implementation of these practices in small businesses. Recent evolution of 
nufacturing-as-a-service and increased digitalization opens opportunities for small and medium scale companies to adopt smart manufacturing 
ctices, and thereby surmount these constraints. Specifically, sensor wrappers that delineate the specifications of sensor integration into 
nufacturing machinery, with appropriate edge-cloud computing and communication architecture can provide even small businesses with a 
l-time data pipeline to monitor their manufacturing machines. However, the data in itself is difficult to interpret locally. Additionally, 
prietary standards and products of the various components of a sensor wrapper make it difficult to implement a sensor wrapper schema. In 

s paper, we report an open-source method to integrate sensors into legacy manufacturing equipment and hardware. We had implemented this 
eline with off-the-shelf sensors to a polisher (from Buehler), a shaft grinding machine (from Micromatic), and a hybrid manufacturing machine 

om Optomec), and used hardware and software components such as a National Instruments Data Acquisition (NI-DAQ) module to collect and 
eam live data. We evaluate the performance of the data pipeline as it connects to the Smart Manufacturing Innovation Platform (SMIP)—web-
sed data ingestion platform part of the Clean Energy Smart Manufacturing Innovation Institute (CESMII), a U.S. Department of Energy-
onsored initiative—in terms of data volume versus latency tradeoffs. We demonstrate a viable implementation of Smart Manufacturing by 
ating a vendor-agnostic web dashboard that fuses multiple sensors to perform real-time performance analysis with lossless data integrity. 
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Introduction and background 

In recent years, new business models are emerging to 
pport custom manufacturing to meet the personal preferences 
 individual customers [1-3], ostensibly without 
mpromising on the efficiencies and functionality [4]. While 
e technological advances during the past century have 
hanced the efficiencies and performance of high-volume 
anufacturing systems, manufacturing of low-volume, high-
ix custom products tends to incur comparatively longer cycle 

times, higher unit cost, and lower productivity [3].  These issues 
with custom manufacturing, together with the advent of 
technologies such as additive/hybrid manufacturing, cloud 
computing, sensor fusion, and IoT are fueling a trend towards 
digitization and the emergence of a manufacturing-as-a-service 
(MaaS) paradigm [5]. This paradigm promotes a democratized 
manufacturing sector where the customers as well as the major 
firms and producers alike can “uber” their (custom) production 
requirements to a distribution of smart micro- small- and 
medium-enterprises (MSMEs) [5]. Moreover, such digitization 
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and democratization of the manufacturing industry promotes 
original equipment manufacturing (OEM) and in-turn enhances 
innovation [6-10]. The presence of MSMEs in the cloud will 
keep them competitive and they can gain same level of visibility 
in the cyberspace as the big firms [11]. The companies that take 
a step towards virtualizing their business models and operations 
are likely to be among the first receivers of benefits from 
democratized manufacturing environment. 

Pertinently, MSMEs currently constitute over 90% of 
modern manufacturers, and a vast majority of them face 
significant challenges, the so-called digital divide barrier, in 
adopting smart manufacturing (SM) practices [12][5]. These 
challenges impede their entry into the MaaS paradigm [5]. In 
this context, over 70% of the manufacturing equipment, 
especially of those in MSMEs, are legacy machines. Resource 
constraints often prevent the upgrade and replacement of old 
machinery with those capable of connecting to the digital thread 
and leverage the on-line solutions to enhance their equipment 
condition, quality, and productivity [13].  

It is now becoming increasingly feasible to integrate the 
current machines and other assets of a manufacturing system 
with commercial off-the-shelf (COTS) sensors and industrial 
IOT technology as a part of an SM platform. However, mere 
sensorization does not meet the critical SM requirement of 
gaining access to reliable, accurate, and up-to-date data. The 
data needs to be collected, stored, and accessed while 
preserving its integrity. Additionally, it should be analyzed to 
provide timely and meaningful insights and inputs [2]. 

 In such a data processing pipeline, there must first exist an 
agreed-upon protocol to transfer information. Unfortunately, 
the manufacturing industry is currently inundated with 
competing SM related standards and closed architecture 
products [14]. A mixed-vendor stack must deal with 
incompatible processes and data structures, undermining SM's 
focus on cooperation and plug-and-play [15]. Sophisticated and 
complete package solutions such as OSIsoft's PI System exist 
that overcome this limitation. However, many of these are 
proprietary and expensive for adoption into many MSME 
environments. For example, in 2015, the city of Holland, 
Michigan, was quoted $118,968 for a PI System deployment at 
Holland Energy Park, a natural gas power plant [16].  

A few computational platforms, such as the Smart 
Manufacturing Innovation Platform (SMIP) of the Clean 
Energy Smart Manufacturing Innovation Institute (CESMII) 
[17] have emerged to address this limitation. A few parallel 
efforts that have been made towards sensorizing legacy 
machines, sending collected data to a database, analyzing it, and 
displaying it at client’s end as a webpage, exist in literature [18-
20]. Some of these implementations have investigated the 
introduction of different IoT elements, edge and cloud-
computing architectures, and machine learning methods. For 
example, Verma et al. [21] used a case study of an IoT-based 
vibration monitoring using commercial off-the-shelf sensors 
with open-source connections. However, the earlier methods 
largely ignore the data pipelines and the sensor wrapper needed 
to integrate an MSME as part of an established smart 
manufacturing platform, such as OSIsoft PI or SMIP. Again, a 
systematic study of data integrity and latency issues in a 

realistic context that considers a distributed, multivendor, and 
multi-ownership scenario does not exist. 

The proposed work differs from the prior efforts in studying 
the issues of accuracy and transmission of the data in the SM 
context that consider multivendor and multi-owner hardware 
and software data pipelines to integrate a manufacturer with an 
SM platform. The specific focus will be on how the data 
integrity and latency emerge in such real-world scenarios. 
These considerations can offer an approach to benchmark the 
performance of viable SM implementations.  

Moreover, the SM architecture described in this paper and 
its capabilities are unique in terms of its plug-and-play nature, 
real-time signal visualization and analytics, provision for 
various desirable metrics, and fusion of multiple sensors. It can 
achieve high throughput streaming with availability of open-
source connections, and can integrate with CESMII’s 
applications marketplace which is akin to an “App Store” where 
developers of such SM based applications can make their 
products available to customers via SMIP. Botcha et al. [2] 
provides the workflow towards transforming the current 
manufacturing systems into SM platform-integrated 
environments. This paper extends that work on integrating a 
traditional manufacturing environment with an SM platform by 
demonstrating a viable SMIP implementation built entirely on 
an open-source stack. 

We developed a viable implementation of SM which is both 
completely open-source and also compliant with a reliable 
cloud historian that can handle high frequency data. A live 
analysis functionality was also a part of this implementation 
and comes with our own web dashboard. The dashboard 
displays the real-time data stream in the time-domain, 
frequency-domain (FFT), as well as the time-frequency domain 
(spectrogram). It has capabilities for integrating desired add-in 
applications or metrics and can handle any further analyses 
based on these.  

For the SM implementation’s use-case on CESMII’s SMIP 
built based on the aforementioned investigations, we were able 
to preserve data integrity and achieve data loss-free 
transmission, i.e., the SMIP database did not drop even one 
sample of data for up to 23 kHz throughput rate. With this high 
throughput rate, we were able to enable cloud analytics for 
quality assurance and visualization. These capabilities also 
expand the possible set of applications and enhances the 
scalability and reproducibility of our SM implementation.  

This paper is organized as followed. Section 2 delves into 
the methodology and implementation. The architecture used, 
communication channel, dashboard development, and testing 
are also discussed here. Results and findings are summarized in 
Section 3 with extensive discussion on performance. Section 4 
summarizes the paper with a few conclusions based on our 
implementation and testing. 

2. Methodology and implementation 

2.1. System architecture 

Our system architecture is loosely based on CESMII's model 
[16] and is composed of three components as shown in figure 
1: Edge Adapters, Data Historian, and Analytics Modules.  
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Figure 1. Diagram of the system architecture 

 
The Machines in Figure 1 correspond to a group of 

equipment on which various sensors are mounted for data 
acquisition. Edge Adapters physically connect to sensors, poll 
the sensors for data, and preprocess the data for transport to the 
Data Historian. The Data Historian stores incoming data from 
Edge Adapters in a database and responds to Analytics 
Modules' requests for data. Lastly, Analytics Modules provide 
user interfaces where users can request analysis. The Analytics 
Modules then pull relevant data from the Data Historian, 
performs the analysis, and display the results to the user/client. 
The Clients have the ability to specify certain parameters such 
as the sampling rate and get a visual illustration of real-time 
analytics given by the Analytics modules. This architecture 
allows for seamless plug-and-play for various commercial/off-
the-shelf implementations of each of these modules. 

In this paper, we discuss various connections we have 
implemented in our SM architecture described in figure 2. The 
proposed SM architecture has 4 layers in it which includes data 
collection, data processing and edge-based analytics, cloud-
based storage and analytics, and anyplace visualization. In the  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

first layer, multimodal data is collected from various sensors 
by utilizing suitable DAQ systems which are connected to an 
edge device such as a local computer. The connection between 
the sensors and DAQ systems is established via BNC cables 
while that between DAQ systems and the edge device is 
achieved via USB cables. For the second layer, several options 
are available for analyzing the collected data on the edge 
device. This layer harnesses the power of various machine 
learning techniques to process the data, conduct edge-based 
analyses such as those in the time domain, frequency domain, 
and time-frequency domain in form of real-time time series, 
FFT, and spectrogram plots.  

Similarly, this second layer is also capable of hosting 
applications such as predictive models which can be utilized to 
predict desired parameters and metrics. The processed data and 
supplementary information from the hosted applications can 
then be uploaded into the third layer with transmission usually 
via ethernet or LAN cables. This layer acts as a data historian 
for common data management and historization purposes with 
enabled browsing of data entities. Followed by this, the 
architecture also has capabilities for live real-time analysis of 
the data using an interactive dashboard as a part of the fourth 
layer.  

The proposed SM architecture is unique in its plug-and-play 
nature wherein various options are available at each of the 
layers discussed above. The user can install and integrate 
additional or replace already existing COTS components in the 
four layers as per their preference. These add-on components 
in the architecture can be both proprietary and open-source. 
There is also freedom to host additional desired applications 
and metrics in various locations in the existing architecture. 
Moreover, such a plug-and-play nature allows for potential 
edge-cloud partitioning and aiding the achievement of a sweet 
spot between computational requirements and expenditure. At 
this stage, we have successfully implemented the routes 
highlighted by green arrows in figure 2. At layer one, we have  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 2. Plug-and-play architectures lets Analytics Modules bring in any tools they need
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sensors such as accelerometer, acoustic emissions sensor, and 
force sensor, and we collect the data from them using National 
Instrument (NI) DAQs. Analytics and data processing options 
such as LabVIEW, Python, and MATLAB based 
implementations exist in the second layer. Followed by this, we 
have successfully implemented the third layer via OSIsoft’s PI 
system as well as an open-source GraphQL based cloud 
historian, CESMII’s SMIP.  

Our dashboard only relies on edge-based applications such 
as productivity metrics, quality metrics, and surface roughness 
predictor as of now at the fourth layer. Our implementation has 
dashboards which are based on LabVIEW as well as Python. 
Such a dashboard can be viewed both on the cloud as well as 
on edge devices, irrespective of the location of these systems 
and usually on client’s end. The routes highlighted by red 
arrows are still under progress as a part of our SM innovation 
initiative. In this paper, we will propose and focus on the open 
source implementation of SM via Python based approach 
which is highlighted in magenta and thicker green arrows in 
figure 2. After collecting multimodal sensor data using NI 
DAQs, the analyses and processing is done via Python. We also 
have edge-based Python generated metrics as mentioned in 
figure 2. Followed by this, the processed data is transmitted to 
CESMII’s SMIP in form of JSON objects over the internet. 
Finally, the data can be downloaded from the SMIP and 
visualized in the form of an interactive web-based Python 
dashboard. 

2.1.1. Edge adapters 

Off-the-shelf sensors commonly output their readings with 
a simple analog voltage. These signals cannot be used directly, 
so we must first convert them into digital values. Our 
implementation uses NI DAQ modules. National Instruments 
offers a wide variety of DAQ modules with varying tolerances 
and precisions. These modules have internal analog to digital 
converters and connect to a computer via USB. Using Python 
and the nidaqmx library, we can read the digital data and store 
it in Python lists, a standard data structure in data science.  

The storage can also be implemented using NI’s Technical 
Data Management Streaming (TDMS) file format [22], a 
proprietary high-efficiency format for compatibility with 
existing analysis workflows. These TDMS files are easy to 
extract using Python and the npTDMS library. Timestamps of 
when each sample is taken are also recorded so recreation of 
the signal is possible later on. The samples along with their 
timestamps can then be packaged into a JSON object, a 
common format for transmitting structured data over the 
internet, compressed, and sent to the Data Historian. An 
example of such a JSON object can be found in Listing 1. With 
this approach, Edge Adapters can be deployed on low-cost, 
low-performance hardware such as Raspberry Pis or internet-
enabled microcontrollers because they do not have to perform 
any computationally intensive analysis. 

2.1.2. Data historian 

As Edge Adapters and Analytics Modules may be spread 
across distant networks, the Data Historian must be deployed 

in the cloud. We chose CESMII's open-source SMIP for this 
role. The SMIP is a solution by CESMII to deliver industrial 
plug-and-play framework to the discrete, hybrid, and process 
manufacturing industries. With secure connectivity to 
equipment and processes, it adds valuable context with a goal 
to access information intelligently and in an automated manner. 
As a part of the SMIP platform, CESMII is also developing the 
Profiles standards to describe sensing elements, equipment, and 
processes. It also provides a semantics aspect to the data and 
describes the relationship among them. The culmination of all 
these aspects is expected to form the holy grail with an ability 
to define new systems without extensive middleware 
reconfigurations and maintenance issues. Specifically, we 
make use of the fact that SMIP stores data in an internal 
database which indexes data and allows for fast lookup and 
retrieval. It also provides a web endpoint, a web address where 
applications can send requests to insert and retrieve data. In our 
configuration, SMIP was deployed on a Linux server. It used 
PostgreSQL as its internal database, and PostGraphile to 
provide an endpoint. Requests to the endpoint are written in 
GraphQL, a query language developed by Facebook [23]. 

2.1.3. Analytics modules 

The fundamental aspect of smart manufacturing is data 
analysis. After collecting data and storing it in an easily 
accessible location, the Analytics Modules perform the 
analyses and display the results. Examples of Analytics 
Modules can be something as simple as a history viewer for 
raw sensor data or as complex as a live dashboard that 
outsources data processing to cloud services. We created a web 
dashboard for this project using Dash, a Python framework for 
creating data science web apps. Our dashboard runs directly in 
the web browser without the need of additional software. 
Moreover, it can be run by the client at any location irrespective 
of whether they have the software or not since all they have to 
do is modify the IP on which the dashboard will be displayed 
and then the user can view it. 
 
{ 
    “query” :  ‘ 

       mutation  AddData($id:  BigInt,  $entries: 
[TimeSeriesEntryInput])  { 

 replaceTimeSeriesRange( 
        input :  { 
               attributeOrTagId :  $id , 
               entries:  $entries 
         } 
 }  { 
          Json 
 } 
    ‘ , 
    “variables” :   { 
            “id” :  5356, 
            “entries” :   [ 
  { 
      “value” :  3.9729e-23 , 
      “timestamp” : “2021-07-25T23:11:41.462553+00:00”, 
      “status” :  0 
  } ,  
  { 
      “value” :  3.9729e-23 , 
      “timestamp” :  “2021-07-26T19:09:57.809348+00:00”, 
      “status” :  0 
  }  
       ] 
} 

} 
Listing 1. Example of a JSON object used to upload data 
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2.2. Implementation of communication library 

We achieve seamless communication between components 
in the SM network with a custom library, which takes care of 
low-level operations like authentication, managing HTTP 
sessions, and converting between Python data structures and 
GraphQL. Our communication library provides a developer-
friendly interface for communicating between programs and 
the SMIP. Communication with SMIP takes place via HTTP 
POST requests, each containing a JSON object with two keys: 
query and variables. The query value is a GraphQL query for a 
database operation, such as adding data or getting data. Each 
query is a constant string, with placeholder tags for variables. 
The variables value contains key-value pairs of variables to be 
substituted into the placeholder tags in the query. Database-
modifying requests additionally must include an authentication 
token. To obtain a token, we must first request a challenge from 
the endpoint with a username. The SMIP replies with a 
challenge for the user. We then request a token by sending the 
challenge combined with the password. 

To streamline this process as much as possible for 
developers, we take an object-oriented approach. The library 
defines one class that acts as a connection manager. The class 
constructor takes the endpoint address, a username, and a 
password as arguments, requests a token, and stores it in the 
object as a private variable. It also opens an HTTP session to 
reduce overhead on repeated requests. The class also provides 
methods for database operations that take Python data types. 
These methods then construct the appropriate HTTP POST 
request, attach the token, and return with the server's response. 
With this approach, how the requests are made is abstracted 
away from the developer, and database operations can be made 
with one line of code. A flowchart of this process is shown in 
figure 3. 

 

Figure 3. Flowchart of using the communication library to upload data to 
SMIP 

2.3. Implementation of dashboard 

The dashboard consists of a web app frontend and a Dash 
backend. The web app frontend runs in the browser, and the 
Dash backend is deployed on a server in the cloud. Variables 
are stored in the browser, and calculations take place on the 
backend via callbacks. This split of responsibilities is so that 
any server instance can service any client. Thus the dashboard 
can be scaled up by simply adding more server instances. 
Callbacks are functions that the frontend can request the 
backend to run. In our dashboard, one main callback asks the 
backend for new data every second, and other callbacks trigger 
when the data updates. These other callbacks use the updated 
data to draw new graphs and calculate performance metrics. 
Since callbacks are self-contained functions, new functionality 
can be added easily without affecting existing functionality. 

A screenshot of the dashboard is shown in figure 4. For this 
example, we envision a use-case for a grinding machine. For 
the use-case discussed [24], experiments were conducted on an 
external cylindrical plunge grinding machine from Micromatic 
Grinding Technologies Ltd., India. The machine is capable of 
producing parts with an IT3 tolerance grade by using an A80-
L5-V alumina grinding wheel. An EN-31 cylindrical steel 
workpiece with a hardness value of 60 HRC and initial 
diameter of 21 mm was used as the starting stock for all 
experiments. In total, each workpiece goes through four stages, 
namely, roughing, semi-finishing, finishing, and spark-out. 
Surface roughness measurements are taken at the end of each 
stage using a Mahr perthometer. In each stage, data was 
collected simultaneously from three sources, namely from two 
accelerometers, one in the tangential and other in the normal 
direction of the wheel, and a power cell to capture the power 
drawn by the grinding wheel when engaged with the 
workpiece. The accelerometers are single axis piezoelectric 
type from Dytran (Specifications- Range: ±10 g, Sensitivity: 
500-1000 mV/g) and the power cell is a hall effect based power 
cell from Loadcontrol Inc., USA (Specifications- Range: 0-25 
kW, Output: 0-10 V/set power range). 

The data collection was possible by using National 
Instruments Data Acquisition Systems- NI DAQ-9234 and NI 
DAQ-9205 with sampling frequencies of 10 kHz and 66.67 Hz 
for the accelerometers and the power cell respectively. The 
process parameters, namely the wheel speed, workpiece speed, 
and in-feed of the grinding wheel were varied with each 
experiment. 

As seen in figure 4, by monitoring the power usage and the 
acceleration of the grinding wheel, the dashboard can provide 
several real-time visualization and insights into the 
synchronous variations of multiple signal patterns in the time 
domain, frequency domain, as well as time-frequency domain 
in form of live time series, FFT, and spectrogram plots. Along 
with these live visuals, it also captures various metrics. 

The dashboard provides a visual and point-and-click 
interactive web interface based on Python Analytics. It was 
built using Dash, an open source Python framework written on 
the top of Flask, Plotly.js, and React.js. Our implementation 
takes in the data coming from data acquisition systems 
mentioned above and provides visuals into the real-time time 
series data signal as well as frequency spectra and other spectral 
features based on the last second of the streaming data. The 
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dashboard also has the functionality to select the appropriate 
window type and other parameters for the generation of 
spectrograms. 

We can keep the performance of our SM implementation in 
check by tracking the latest update or response from the cloud 
and the number of data samples received during that time 
frame. We also have a functionality of tracking the wall time 
and machine states such as the status of machine being idle or 
active. 

With regards to productivity, by monitoring the power 
usage, the dashboard can track how long the machine spends 
actively working versus idling. It can also keep a count of how 
many parts have been produced which provides useful 
information and hints the operators on need for optimization of 
their workflow. It also keeps track of the Run time, Idle time, 
Down time, and total Elapsed time both in terms of units of 
time as well as in percentage. 

Our dashboard also keeps an indirect track of quality of the 
parts produced by the machine. The Python and MATLAB 
based analyses work atop the dashboard in order to perform 
various real-time analyses and predictions. It keeps a check for 
any abnormally high power usage and works behind the scenes 
with an ability to predict and mark these parts as good or 
potentially anomalous. This provides operators with an early 
warning of expected malfunctions and allows time for 
preventative maintenance before any failure. Moreover, by 
using a pre-trained random forest machine learning regression 
model in MATLAB, the dashboard can provide the predicted 
surface roughness value of a produced part using parameters 
such as feed rate, speed, power usage, and acceleration of the 
grinding wheel.  

The case study of external cylindrical plunge grinding 
machine demonstrates the SM implementation only for the case 
of vibration and power cell signals. However, with the growth  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

in imaging technologies, the SM implementation and the 
predictive models working behind the scenes can be integrated 
to include image based analyses as well. Although, at present, 
technologies are available for fast visual inspections, much of 
the inline imaging technologies which are affordable are 
confined to measuring and identifying geometrical errors and 
large morphological defects [25]. They are not mature enough 
yet to measure aspects such as surface roughness values and 
other fine features in an industrial environment. In the proposed 
SM implementation, most predictions and metrics are based on 
open-source Python based analyses except for the surface 
roughness which is based on a MATLAB engine based 
machine learning model. However, it can be easily swapped for 
a model based on open-source languages such as Python or R. 
This provides a means of automating the long and complex 
process of manual inspection of the surface roughness and can 
result in time and cost savings. Obviously, these can be 
swapped with for any other use-case with its own desired 
prediction models and analyses. 

The use case provided in this paper is just one example. We 
envision similar dashboards can be created based on the same 
framework to monitor multi-sensor data from any machine or 
a group of machines to look into real-time insights and provide 
feedback on productivity and quality metrics. 

2.4. Testing methodology 

To be viable, the SM network must support a high enough 
bandwidth to provide meaningful analysis and ensure that 
information is not corrupted or lost during transmission. Since 
the Data Historian coordinates communication between the 
network components, we focused our testing on the SMIP and 
the performance of transmission of data and instructions 
between the edge and the SMIP. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 4. Screenshot of the SM dashboard 
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To test this, we define Integrity and Speed as our objectives. 
For integrity, every sample sent must be received. We test for 
this by creating a dataset of 𝑛 samples, uploading the dataset to 
SMIP, downloading the dataset from SMIP, and confirming 
that the downloaded and original datasets contain the same 
number of samples. Additionally, the data contained within 
each sample should not change when transmitted. We tested 
this by generating a dataset of random-valued samples, 
uploading it to SMIP, downloading them from SMIP, and 
calculating the difference between the downloaded dataset and 
the original. Lastly, speed is tested by timing how long it takes 
to transfer a dataset of 𝑛 samples. We tested several different 
transmission methods. Firstly, SMIP has an upper limit of 
8,000 samples per upload request, so larger datasets must be 
split into chunks before uploading. We tested both small chunk 
size (𝑛 =  1000) and large chunk size (𝑛 = 8000) requests. 
Secondly, we tested parallelization by comparing the 
performance of sending requests serially, i.e., one at a time, 
versus sending them all at once asynchronously. 

3. Results and discussion 

3.1. Integrity 

While testing SMIP’s performance, we used a dataset with 
240,000 samples between 0 and 1 which were randomly 
generated. This dataset was uploaded/transmitted to the SMIP 
database and later on downloaded from the same. It was 
observed that the database did not drop even a single sample, 
but there were minor differences in the timestamps and floats. 
However, as seen in Figures 5 and 6, the differences between 
the downloaded samples and the original ones are very small. 
The timestamp differences was uniformly distributed with a 
maximum and minimum at exactly ± 6.0 × 10ି଻ s, 
respectively, indicating that timestamps are rounded at the 
microsecond precision. The distribution corresponding to the 
floating point differences seems to be a combination of 
multiple gaussian distributions each corresponding to a 
variable source. The float differences has a mode of 0 , 
indicating that most floats are losslessly preserved. Still, a 
significant numbers of samples exhibit small variations due to 
floating-point errors and rounding. However, the size of the 
differences is not large enough to affect analyses though, so we 
conclude that SMIP preserves data integrity. 

 

 
Figure 5. Timestamp difference between downloaded and original data 

 
Figure 6. Floating point difference between downloaded and original data 

3.2. Speed 

As seen in Table 1, we found that when transmitting 240,000 
total samples serially, larger chunk sizes significantly increased 
the performance. Requests using chunks of size 8,000 complete 
nearly twice as fast as requests using chunks of size 1,000. 
However, this trend reverses itself once we allow multiple 
requests at the same time. By using a smaller chunk size, we 
split one upload task into more numerous requests, which can 
be more evenly distributed across all server threads. 
 
Table 1. Time to upload 240,000 samples by various methods 

Method Run 1 Run 2 Run 3 
Serial 8k 16.881 17.020 16.724 
Serial 1k 31.324 31.943 31.350 
Async 8k 11.309 10.919 11.114 
Async 1k 8.499 8.734 8.808 

 
Having  identified asynchronous requests with chunk sizes 

of 1,000 as the fastest upload method, we measured the time to 
upload and download increasingly large datasets, the results of 
which are plotted in Figure 7. We notice that both upload and 
download trends appear linear and at larger sizes of datasets, 
the downloads consistently complete faster than uploads. This 
is expected since the database lookups are much faster than 
insertions. In the proposed work, the lag consideration due to 
variations in the internet speeds was not explicitly discussed. 
In other words, the communication and computing network 
conditions were treated as random effects as opposed to 
considering their blocking effects. However, with a faster 
internet connection with higher upload speeds, we expect the 
upload trend to be more gradual and behave similar to that of 
download trend. This behavior is anticipated to change with a 
weaker internet connection, wherein the upload trend will be 
much steeper than the download trend.  

In our open-source Python based implementation using 
CESMII’s SMIP, we were able to sustain a data rate of around 
23,000 samples per second with our configuration, although we 
expect this will scale by deploying the SMIP database on faster 
hardware. 
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Figure 7. Upload and download times versus sample count. Uploads were 
async with 1k chunk size. 

4. Discussion and concluding remarks 

In this project, we tested and demonstrated an open-source 
implementation that integrates multiple layers of data handling 
pipeline in SM with CESMII's SMIP.  

The effort has also investigated the handling of high-
frequency data in SM platform. The open-source 
implementation of SM provides live visualization and analysis 
of data via our web dashboard. Our dashboard displays not only 
the data stream but also data analytics such as FFT and 
spectrogram along with any add-in applications or metrics such 
as those based on machine learning predictive models.  

Next, the effect of different data upload methods were 
studied, and the parameters of these were optimized to achieve 
a loss-free transmission of data at 23 kHz rates. This is one of 
the highest transmission rates reported with the currently 
deployed SMIP database and historian. While this data rate per 
channel of data stream does not match up what was 
demonstrated with other proprietary based or our OSIsoft PI 
system implementations, we expect it to scale with deployment 
of SMIP database over faster hardware and the onset of 5G 
technologies.  

More pertinently, such a high sampling rate is essential to 
enable advanced process monitoring methods that can learn 
from IoT vibration and vision sensors combining the 
computing capabilities at the edge and cloud. We can also 
measure and analyze certain short time-scale phenomenon 
associated with a manufacturing process. This opens new doors 
and helps manufacturers and operators have a better insight into 
higher frequency features along with a higher quality data 
stream which was not possible earlier.  

Better rate also implies capturing more sample data points 
for a given timestamp. With the availability of more data, the 
machine learning models for various metrics can be further 
improved, making prediction of the results with a better 
accuracy. The higher data rates also enable functionalities to 
install additional sensors and measurement challenges, and 
implement data fusion methods to improve condition 
monitoring of the machines and quality assurance. Potential 
applications of our SM implementation include continuous 
health and productivity monitoring of a machine, incipient 

detection of anomalous parts from a process on a machine, and 
anomaly detection schema by looking for any abrupt 
divergence from the usually observed time and frequency 
domain plots, among others.  

As the data streaming rates improve and the architecture 
opens to accommodate larger plug-and-play capabilities, the 
smart manufacturing platforms begin to offer value to the 
industry, especially to address certain asset management and 
quality assurance challenges. While the present effort 
contributes to the advancement of process monitoring in SM 
platforms, this effort does not address near real-time control of 
anomalies. Given the latencies, we need to be extremely 
cognizant of performance of true real-time control however set 
point control can be achieved based on such cloud based SM 
systems. 

Additionally, these emerging SM architectures and 
paradigms render the manufacturing environments vulnerable 
to cyber-attacks [26]. Mahesh et al. provides one of the most 
comprehensive taxonomy in regard to various cyber security 
threats, attack modes, goals, targets, and preventive 
countermeasure approaches in this context. In near future, we 
envision integration of our SM architecture with important 
cyber security solutions such as secure distributed-streaming of 
encrypted manufacturing data or instructions [5]. 

As SMIP matures, we envision this project as a 
steppingstone for future SM systems, which can build off our 
work. In the future, we hope to see traditional manufacturing 
for small- and medium-sized businesses adopt SM to respond 
to a rapidly developing production landscape. As part of our 
ongoing effort, we are enhancing the plug-and-play capability 
with the functionality to choose the desired data pipeline and 
ingestion option throughout the SM implementation. For 
example, an OSIsoft PI based dashboard along with Python and 
MATLAB based data analyses can be combined to offer a 
custom-solution to an MSME. Such an architecture will 
provide freedom to the client or user to choose any desired 
component based on their existing setup without disrupting 
their operations in any way. CESMII’s SMIP is just one use-
case among various other SM initiatives. The future efforts 
include testing of the current implementation on other open-
source platforms similar to SMIP and improving the data rates 
we have achieved. Moreover, we in early stages of adding 
functionalities of closed loop feedback system which can 
enhance the SM implementation to go beyond only monitoring. 
The closing of the loop aspect will allow for real-time update 
of the parameters in case of any deteriorating or undesired 
performance in the metrics. Furthermore, with the growing 
adoption of 5G technologies, we intend to scale our SM 
implementation to make it compatible for a network of 
connected machines that allow data collection, analyses, and 
communication channel with lower latencies, higher reliability, 
and bandwidth. 
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