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Abstract

We present a topology optimization method based on the geometry projection technique for the design of frames made of
structural shapes. An equivalent-section approach is formulated that represents the cross-section of the structural shapes as
a homogeneous rectangular section. The accuracy of this approach is demonstrated by comparison to analyses performed
using body-fitted meshes of the original sections for different loads and boundary conditions. A novel geometric representa-
tion is also introduced to represent the equivalent section as a cuboid. Like offset solids, this representation is endowed with
an explicit expression for the computation of the signed distance to the boundary of the primitive and of its sensitivities,
allowing for an efficient implementation. An overlap constraint is imposed via the formulation of auxiliary primitives associ-
ated to the structural members, which guarantees the resulting designs do not exhibit impractical intersections of primitives
that would preclude their construction. The efficacy and efficiency of the method is demonstrated via 2D and 3D design
examples. The examples demonstrate that the proposed method renders optimal designs and exhibits good convergence.
They also illustrate the ability to design structures with far lower optimal volume fractions than those typically employed in
continuum topology optimization techniques.

Keywords Feature mapping - Structural shapes - Structural profiles - Ultralight frame structures - Equivalent section

1 Introduction support structures for power transmission and chemical pro-

cessing plants; and offshore platforms, to mention a few.

Structural shapes (also known as structural profiles) are
widely used in structural design, including in aerospace,
automotive, and civil engineering structures. Their extensive
use owes to the standardization of dimensions and mechani-
cal properties, making them readily available, practical, reli-
able, and easy to economically assemble. Common appli-
cations of these structures include machinery frames; civil
structures like roofs, bridges, domes, and buildings; frames
for aerospace applications like instruments and satellites;
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Structural shapes have been used for more than a century
(Bates and Association 1987) and therefore robust and
mature technologies exist for their design, simulation, and
fabrication. Although prescribed solutions that are well-
understood and easy to fabricate exist for particular appli-
cations (e.g., bridges), there are frame design problems (for
instance, those with irregularly shaped design regions) for
which it is not intuitive to determine optimal frame designs,
therefore we must resort to structural design techniques such
as topology optimization.

The first topology optimization techniques used for the
design of frame structures made of stock elements are the
so-called ground-structure methods (cf. Zegard and Paulino
2014; Rozvany 2011; Bendsge 2004). In these methods,
the stock members are modeled using 1D finite elements,
such as truss and beam elements. A ground structure is
created whereby a predefined set of nodes in the structure
are connected among each other using 1D elements. The
optimization consists of modifying the size of each ele-
ment, i.e., the cross-sectional area, with a zero size for a
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member indicating it should be removed from the design.
Some techniques also optimize the spatial positions of the
nodes of the ground structure (Bendsge et al. 1994). These
methods have the advantage of being computationally effi-
cient, since the analysis with 1D elements is inexpensive.
Moreover, they readily accommodate using structural shapes
like the ones considered in this work by assigning the cor-
responding section properties to the beam or truss elements.
However, these techniques have two important limitations:
the topology of the optimal design is restricted to a subset of
the ground structure, which may significantly decrease the
design freedom; and the 1D representation cannot capture
multi-dimensional stress states and so it cannot model stress
concentrations arising at the joints due to intersections of
the structural elements. Although the present work does not
consider stress requirements, this is an important considera-
tion that the authors wish to address in future work, which
precludes the use of ground-structure methods. In light of
these limitations, we focus on topology optimization tech-
niques for continua.

Conventional density-based and level-set methods for
continuum topology optimization (cf. Sigmund and Maute
2013) cannot in general be used to design this type of struc-
tures, as they render organic designs that cannot be easily
realized with structural shapes. An alternative to design
frame structures with structural shapes using topology opti-
mization for continua is feature-mapping techniques (Wein
et al. 2020). In these methods, the structure is represented
via the combination of geometric primitives such as bars and
plates. These primitives are described by high-level param-
eters associated with their dimensions, size and orientation.
To perform the analysis, this parameterization is mapped
onto, for example, a density field that facilitates the analysis
on a fixed mesh in the same manner as density-based meth-
ods. While feature-mapping methods have been used suc-
cessfully to design structures made of solid bars and plates,
they are yet to be used for design with structural shapes. The
reason for this shortcoming is that these techniques require
a finite element size small enough to accurately capture the
structural behavior of each bar, and to ensure design sen-
sitivities are well defined (Norato et al. 2015; Zhang et al.
2016). Roughly speaking, at least two elements are required
through the thickness of the primitive. In the case of struc-
tural shapes, having two elements through the thickness of,
e.g., the webs and flange of an H-beam or the wall of a tube
would result in a large number of elements that would make
the finite element analysis expensive and impractical. For
example, consider the design of a bridge with a design space
of 10 m X 3 m X 2 m and using an H-beam IPE 220 section.
For this profile, the web thickness 7,, and flange thickness #;
are 5.9 mm and 9.2 mm, respectively. Capturing the struc-
tural behavior of these elements with reasonable accuracy
would require a mesh with an element size of at least than
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5.9/2 mm = 2.95 mm. This would result in a mesh of more
than 2.3 billion elements, which is clearly unrealistically
large for the purpose of designing the bridge. For this reason,
while feature-mapping techniques have been used to model
structural shapes such as rectangular tubes (Bai and Zuo
2020; Zhao et al. 2021; Wang et al. 2024), the dimensions
of the design region are comparable to those of the structural
shapes, and the volume fraction of the optimal structure is
much larger (> 20%) than that of the structures considered
in this work (< 2%). It should also be noted that some meth-
ods have modeled panel stiffeners with structural shapes by
employing beam elements to model the stiffeners, and planar
elements (e.g., shells) (Li et al. 2019; Savine et al. 2021) or a
meshless discretization (Li et al. 2021) to model the panel to
be reinforced. However, these methods do not obtain optimal
three-dimensional frames made of structural shapes that are
not connected to a panel but only to each other.

To address these shortcomings, this work formulates a
topology optimization method based on the geometry pro-
jection technique for the design of frames made of struc-
tural shapes. An equivalent-section approach is formulated
that represents the cross-section of the structural shapes
as a homogeneous rectangular section. The accuracy of
this approach is demonstrated by comparison to analyses
performed using body-fitted meshes of the original sec-
tions for different loads and boundary conditions. A novel
geometric representation is also introduced to represent
the equivalent section as a cuboid. Like the offset solids
typically used in geometry projection techniques, this rep-
resentation is endowed with an explicit expression for the
computation of the signed distance to the boundary of the
primitive and of its sensitivities, allowing for an efficient
implementation. An overlap constraint is imposed via the
formulation of auxiliary primitives associated to the struc-
tural members, which guarantees the resulting designs do
not exhibit impractical intersections of primitives that
would preclude their construction.

The remainder of the paper is structured as follows. Sec-
tion 2 presents the formulation and validation of the equiva-
lent-section methodology. Section 3 introduces the geometry
projection method, which constitutes the basis of the method
developed in this work. A novel geometric representation
of these equivalent sections is subsequently formulated in
Sect. 4. The optimization problem description is detailed in
Sect. 5. Examples of the application of the proposed tech-
nique to two design problems are detailed in Sect. 6. Finally,
Sect. 7 presents the conclusions of this work.



A geometry projection method for topology optimization of frames with structural shapes

Page3of18 5

2 Equivalent section of structural shapes

As noted in Sect. 1, the central idea of the proposed
work is to replace the intricate cross-sections of struc-
tural shapes with a solid rectangular (in 2D) or cuboid
or cylindrical (in 3D) section of equivalent bending and
axial stiffness. The advantage of doing this, is that the
equivalent solid section can be meshed with much larger
elements than what would be needed to mesh the structural
shape, providing substantial computational savings. The
proposed procedure is similar to the standard treatment
given in mechanics of materials to composite beams (Hib-
beler and Yap 2022) made of multiple materials.

In this work we consider H-beam, square-tube and
cylindrical-tube structural shapes. We find an equivalent
rectangular section in 2D and an equivalent cuboid sec-
tion in 3D for all shapes. For the tubular section, a circular
equivalent section could also be considered, but we do not
consider it here for ease of implementation.

2.1 Determination of dimensions and modulus
of equivalent section

The equivalent-section methodology starts from the con-
sideration that the original and equivalent beams must
have the same axial deformation under axial loading. To
ensure equivalency of the bending deformation, we start
by considering the Euler-Bernoulli equation for beam
deflection

4
EI% _p=0, )

where u denotes the beam deflection, p is the applied verti-
cal load by unit length, E is the modulus of elasticity, and /
is the second moment of area. Since the real and equivalent
beams must have the same solution u(x), it can be readily
concluded that Eyl, = E,I,, where the subscripts 0 and e
denote the original and equivalent properties, respectively.
Note that E|, corresponds to the modulus E of the actual
material the shape is made of, but we add the sub-index
for clarity to differentiate it from the equivalent modulus
E,. Equation (1) must be satisfied for any orientation of the
cross-section area, i.e., the Mohr’s circle of the inertia scaled
by E has to be the same for the original and equivalent sec-
tions. Therefore, equivalent properties for any cross-section
need only be computed for its principal axes. In the case of
the sections considered in this work, the principal axes cor-
respond to the symmetry axes. For original cross-sections
that are not symmetric (e.g., C-channels), one need simply
consider asymmetric equivalent sections (i.e., they can be
rectangular but with an off-center bending axis).

The second relationship considered is the differential
equation for axial strain of a bar made of a linearly elastic
material, given by
d dé
a(AEa> +T=0, @)
where 6 is the axial deformation, 7 is the axial load, and A
the cross-section area. As before, the axial deformation of
the original and equivalent beams should be the same, which
is ensured when EyA, = E,A,. It should be noted that both
original and equivalent beams are assumed to have the same
length. The previous considerations can be summarized in
the following system equations:

Eolow = Eelew
EOIO‘Y = Eeles (3)
EyA, = E,A,.

The superscripts w and s denote the weak and strong axes
of the section, respectively. We consider an equivalent rec-
tangular section of dimensions 2a X 2b. For 2D-problems,
we assume the section’s strong and weak axes lie in-plane
and out-of-plane, respectively, and the analysis is performed
considering plane-stress conditions. Note that we use a rec-
tangular section not only for the H-beam and square-tube
shapes, but also for the circular tube, since the plane-stress
analysis assumes a uniform out-of-plane thickness of the
2D-elements. For 3D-problems, the rectangular section cor-
responds to a cuboid-shaped primitive. For this rectangular
section, the equivalent modulus E, and dimensions a and b
can be easily obtained from (3) as

3
Eyl," = E, 4ba
3
E,l,’ =E, 4’; a “)
E()AO = Ee4ab.

Note that since the foregoing derivation of equivalent modu-
lus and dimensions is based on the Euler beam equation
(1), the equivalency is valid only under the conditions for
which the Euler beam theory is valid, namely, that: a) the
material is homogeneous, which is automatically satisfied
by assuming a single modulus E, for the equivalent section;
b) the undeformed beam is straight, which is satisfied by the
geometric representation of the beams used in the proposed
method and described in Sect. 4; and c) that the cross-sec-
tion remains flat under deformation. The latter requirement
is satisfied by imposing a minimum length for the beams,
just like in Euler beam theory (see, for example, Ochsner
2021), as demonstrated in Sect. 2.2.

It should also be noted that the polar moment
of inertia J, of the equivalent section satisfies
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EJ, =E]I’ +E, = Eyl) + Eyl; = EyJ,. This relation is
independent of the coordinate system, since I(‘)" + IS is the
trace of the area moment of inertia tensor, which is an invar-
iant. Therefore, even though the polar moment of inertia
should not be used for non-circular cross-sections that may
experience out-of-plane warping, it is reasonable to assume
the original and equivalent sections have similar torsional
rigidity.

2.2 Numerical validation

To validate that the equivalent sections provide a reasonably
accurate approximation of the bending and axial deformation
of beams made of structural shapes, we perform a compari-
son of finite element analyses of beams made of the original
structural shape and of the equivalent section. We consider
three structural shapes (see Fig. 1): an IPE 220 H-beam
with dimensions i = 9.2 mm, ¢, = 5.9 mm, bf =110 mm,
and d = 220mm; an RHS rectangular tube with dimensions
bf = 120 mm, d = 200 mm, and = 8 mm; and a CHS cir-
cular tube of diameter d = 219.1 mm and 7, = 5 mm.

Table 1 shows the cross-section properties of the original
section, and the dimensions, modulus and cross-sectional
properties of the respective equivalent section obtained from
4).

Two types of problems are considered, depicted in Fig. 2:
a cantilever beam and a simply supported beam. Five inde-
pendent loads are applied to the cantilever beam: concen-
trated bending loads Fy, Fy and an axial load F, applied at
the tip, and distributed loads Wy and Wy uniformly applied
along the beam’s length. Four independent loads are applied

: } 8
d d
tW
Nz
‘ b, b,
r
(a) H-beam section (b) Rectangular

tube section

Lt

(c) Circular tube
section

Fig. 1 Structural shapes considered in this work
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Table 1 Cross-section properties of the original and respective equiv-
alent sections

H-section Rectangular tube Circular tube
Shape IPE 220 RHS 200x120/8  CHS 219.1/5
Ay(mm?) 3213.44 4864.00 3363.07
1,°(x10% mm*) 26.53 26.01 19.28
I,"(x10° mm*) ~ 2.04 11.55 19.28
Ey(GPa) 200 200 200
a(mm) 157.37 126.66 131.15
b(mm) 43.69 84.41 131.15
E,(GPa) 23.370 22.747 9.777
A,(x10° mm?) 27.50 42.77 68.80
15(x10® mm*) 227.02 228.70 394.40
1" (x10° mm*) 17.49 101.57 394.40

to the simply supported beam: concentrated bending loads
Fy and Fy applied at the center point, and distributed loads
Wy and Wy uniformly applied along the beam’s length.

The beams are modeled with hexahedral elements. For
beams made of the equivalent section, a 3D model made
of hexahedral elements is considered. Finite element mod-
els for beams of different lengths are created, and the cor-
responding linear elastic analyses performed. The analy-
ses are performed with the commercial software ANSYS
Static Structural. The effectiveness of the equivalent-section
approach is determined by computing the relative error of
the y-displacement u, at the center point of the cross-section,
measured at the tip of the cantilever beam and the center
point (along z-direction) of the simply supported beam:

luy, —uy |

o= = ®)

For tubular-shape sections, which are hollow and thus have
no finite element node at the center point of the cross-sec-
tion, we simply add a shell mesh with negligible thickness
at the z-position where the displacement is measured (i.e.,

2L

a~)

\

(a) Cantilever beam

2L

(c) Loading

(b) Simply-supported beam

Fig.2 Boundary conditions and loading cases considered in the vali-
dation
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at the tip for the cantilever beam, and at the center for the
simply supported beam).

Figure 3 shows the displacement error of (5) for the
H-section as a function of the ratio L/d of the length of the
beam to its characteristic dimension. Figures for the rectan-
gular-tube and circular-tube shapes are not shown for brev-
ity, but the results are similar. All sections present a mono-
tonic decrease of the error with increasing beam length. The
error for short beams is large, and this is expected since
the assumptions of Euler beam theory are no longer valid.
For beams with L/d > 10, the relative error is at most 3%,
which we deem to be sufficiently accurate for the optimiza-
tion. Therefore, in the proposed optimization technique, we

e, (%)

e (%)

9
L/d

(b) Simply supported beam

Fig.3 Relative displacement error for H-beam with rectangular
equivalent section

will consequently impose a constraint that L/d > 10 for all
beams.

3 Geometry projection

To map the geometric primitives representing the equivalent
shapes onto the finite element mesh for analysis, we use the
geometry projection method (Norato et al. 2015; Zhang et al.
2016). A projected density is computed as

0, if g /r<—1
b (P, 2, ~ ¢
P M = H(d)c/r)’ if—lsd)c/rsl’ (6)
d 1, if g /r>1

where z, denotes the vector of design parameters for primi-
tive ¢, ¢, is the signed distance to the boundary dw, of primi-
tive ¢, r is a sampling radius, and

- _ arccos x+xV1—x? . in2D
HO=9 1 % 2 3D O
5 + e n .

is a differentiable approximation of the Heaviside function.
Although the projected density can be computed at any point
in space, an element-wise projected density is computed at
the centroid of each element. The radius r of the sample
window is typically chosen relative to the element size (for
instance, equal to the element largest diagonal), and it is
fixed throughout the optimization.

An important and unique aspect of geometry projec-
tion methods is the introduction of a membership variable
a, € [0, 1]. This variable, as in solid isotropic material penal-
ization (SIMP) techniques used in density-based topology
optimization, is penalized so that a value of 0.0 indicates
the primitive must be removed altogether from the design
regardless its dimensions and position, whereas a value of
1.0 indicates the primitive must be retained in the design.
The membership variable is used to define an effective den-
sity at element e as

Pee(¥:2029) = p(a - q), ®)

where p is a penalization function and ¢ is the penalization
parameter. For example, for SIMP penalization, u(x, g) = x9.
The effect of this membership variable is that it makes it
easier for the optimizer to remove a primitive and avoid fall-
ing in poor local minima. Moreover, the use of the member-
ship variables often leads to better convergence behavior.
To consider a structure made of multiple primitives, they
are combined via a Boolean union. When the representation
of the primitives is implicit, as is the case for the signed
distance function, the Boolean union corresponds to the
maximum of the signed distance functions for all primitives
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(Shapiro 2002). Since the maximum function is not differen-
tiable and we wish to employ efficient gradient-based opti-
mization methods, we replace the maximum function with a
differentiable approximation. Here, we consider the softmax
approximation introduced by Smith and Norato (2021) that
computes the effective elasticity tensor for element e as the
linear combination

C, = Cua + Q. B Do P) ProC. = Cria), )

where C. is the elasticity tensor for the material that primi-
tive ¢ is made of, C, 4 is the elasticity tensor of a weak
material to ensure a well-posed analysis, 7, is the number of
primitives, and p, € R is the vector of effective densities
p.. for element e. The weights of the softmax linear combi-
nation with parameter p are given by

PXi
pU,x,p) 1= softarigmax(i, X,p) = ﬁ. (10)

Note that the values of f(c, p,, p) for all primitives form a
one-hot vector, with a component value ~ 1.0 corresponding
to the largest value of ., of any primitive ¢, and ~ 0.0 for
all other vector components. Therefore, a point in the design
region is effectively assigned the elasticity tensor of at most
one of the available primitives. An advantage of this combi-
nation scheme over previous expressions used in geometry
projection methods (e.g., those used in Norato et al. 2015;
Zhang et al. 2016) is that it easily accommodates situations
where the primitives are made of different and/or anisotropic
materials. Finally, the volume of the structure is computed as

EDWAS (11)

where v, is the volume of element e and
P =Y B(C, ppD) Pee (12)

is a combined density. Note that an advantage of the softmax
approximation as compared to other differentiable approxi-
mations of the maximum is that it renders a combined den-
sity strictly in the range [0, 1].

The computation of design sensitivities of a function J
with respect to a geometric parameter z; in geometry projec-
tion techniques simply requires a chain rule:

DI _ o dJ 9. DI
- = _ + =,
dZi - ape azl le (13)
where DJ/dz; denotes the total derivative, 0J/dp, is com-
puted as in density-based methods (without penalization),
and dp, /0z; can be computed from the geometry projection.
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4 Geometric representation of equivalent
sections

The offset bars commonly used in geometry projection tech-
niques (cf. Norato et al. 2015; Smith and Norato 2020 do
not accommodate the rectangular and cuboid equivalent sec-
tions detailed in Sect. 2 because they are circular cylinders
with semispherical ends. This chapter introduces a novel
geometric representation for the equivalent section shapes.
The computation of the signed distance for the proposed
representation differs from that of offset solids, for which it
simply corresponds to subtracting the radius (or thickness)
r, of the offset solid from the distance d,,, to the medial axis
(or surface) of the primitive.

The representation proposed in this work corresponds to
a cuboid with rounded edges. The boundary of the primi-
tive is partitioned in multiple regions. A coordinate trans-
formation follows, which allows a ready identification of the
closest-surface region, after which a straightforward distance
calculation to that region is made. Therefore, as with offset
solids, the computation of the signed distance and its design
sensitivities can be efficiently made in closed form as a func-
tion of the design parameters, which precludes the need for
iterative techniques to compute the signed distance (as in,
e.g., Norato 2018).

The rounded corners and edges in 2D and 3D, respec-
tively, ensure the signed distance field is differentiable
everywhere and consequently renders a robust behavior
with gradient-based optimization techniques. Although
the proposed representation is formulated for rectangular
and cuboid regions, the region subdivision strategy can be
generalized to polygonal (or polytope) shapes. While other
feature-mapping methods have considered such representa-
tions (see, for instance, Chandrasekhar (2023); Zhang and
Zhou (2018)), these representations employ sharp corners
and edges, which lead to non-differentiability of the signed
distance.

4.1 Definition of the primitives

For rectangular equivalent sections, we propose a rep-
resentation with rounded corners like the one shown in
Fig. 4. Although the rounded corners ensure the distance
function is differentiable at points along the diagonals of
the rectangle, it should be noted that the distance func-
tion is always non-differentiable at points on the medial
axis. A local coordinate system (x,y’,7’), is associated
with the rectangular cross-section of primitive ¢, with
the x’ and y’ axes aligned with the sides of dimensions a
and b, respectively, and the 7’ axis perpendicular to the
plane of the section. The dimensions, position, and orien-
tation of the bar ¢ with rectangular equivalent section are
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(a) Primitive representation

/

2a

(b) Cross-section of the primitive for 2’ = 0

Fig.4 Primitive representation

{a,b,L.,q.,t.,r*}, where q. = {qy, 9,92, 93} . 1s the vector
of quaternions that determines the primitive’s orienta-
tion, and t = {7,,7,,7,}, is the position of the center of the
primitive in the global coordinate system. The orientation
of the primitives via quaternions is detailed in Sect. 4.4.

The transformation of a point p’ from the local primi-
tive coordinate system to the global coordinate system is
given by

p=R@)p +t. (14)

where R is the rotation matrix given by (21). Conversely, the
global-to-local system transformation is given by

p =R'@)(p-t), (15)

where we use the fact that R is a rotation matrix and there-
fore orthogonal, hence its inverse equals its transpose.

4.2 Signed distance field computation

The computation of the signed distance for the proposed
rectangular equivalent section rests on the fact that the dis-
tance in Euclidean space is rotation-invariant with respect to
the coordinate system. Figure 5 illustrates the concept of the
signed distance computation for the proposed representation

R« R R

Rs R:

Re I Rs
(a) 2D

Fig.5 Regions used to compute the signed distance field

using a 2D-representation only. To compute the distance
from a point p to the primitive ¢, we first transform p — p’
to the local coordinate system (¥, y’,7’),. of the primitive
using (15). Using the components of p/, it is then simple to
determine in the local coordinate system which of the eight
regions of the primitive shown in Fig. 5 contains the clos-
est point to p’, and a simple expression renders the signed
distance. We can make an additional simplification to this
procedure by taking advantage of the fact that the proposed
section is symmetric with respect to the x’-z’ and y’-7’ planes:
we first reflect the point so that it always lies on the first
quadrant of x’-y’:

=1l (16)

Consequently, we only need to check p’ for Regions 1-3,
see Table 2.

For 2D design problems, for which we employ a
plane-stress assumption in the analysis and consequently
employ a rectangular equivalent section, it is assumed the
weak axis of the beam is out of plane. Also, in 2D it is
easier to directly work with a single orientation angle 6,
instead of the two quaternions. With these considerations,
the vector of five design variables for bar ¢ in the case of
2D-problems is given by z2” = {L_,6,, Ity a.}; the
out-of-plane thickness of the plane elements used for the
analysis is set to b; L, corresponds to the in-plane length of
the bars; and the in-plane-width of the bars is fixed and set
to a. It should be noted that this geometric representation
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Table2 Signed distance for rectangular

Ax :=a—-r* —ﬁ;;Ay =L -r —[7;,

region in 2D.

Region Definition 6.0'.2,)
(Ay < AX) A (0 < Ay) Ax 4 1

2 (0> Ax) A (0> Ay) r — /A2 T AR

3 (Ay > Ax) A (0 < Ax) Ay + 7

allows for the optimization of structures made of struc-
tural profiles with arbitrary cross-sections (for example, an
H-beam) as a solid bar in 2D. The vector of nine design
variables for bar c in the case of 3D-problems is given by
2° = (L., q0,- 91,95, 93 L » 1y, » 1, » @, ). As before, a and b
are fixed.

For the 3D-bars with rectangular cross-section proposed
in this work (see Fig. 5(b)), we use a similar strategy to sub-
divide the space in regions. The cuboid has three planes of
symmetry and so, as before, we obtain the reflection p’ of p’
that lies on the first quadrant (x’,y’,z’ > 0), and then use the
components of p’ to determine which of the seven regions
shown in Fig. 5(b) it belongs to; an appropriate expression
is subsequently used to compute the signed distance, see
Table 3.

It should be noted that the equivalent cross-section dimen-
sions a and b are non-designable in the optimization, since
they are chosen to provide the equivalent properties of the
structural profiles, as described in Sect. 2. All remainder
parameters describing the dimensions, position, and orienta-
tion of the bars are designable. That is, the vector of design
variables for bar c is given by z. = {L., q,, t,, .}, where we
recall that , is the bar’s membership variable. This amounts
to five design variables in 2D (with one angle and two com-
ponents of the translation vector), and nine design variables
in 3D. The edges’ rounding radius r* is fixed and chosen as
much smaller than the bar’s cross-section dimensions. Note
that having L as a design variable allows the easy imposition
of the minimum length requirement described in Sect. 2.2, as
it can be prescribed as a lower bound on the variable.

4.3 Sensitivities of the signed distance

To enable the use of efficient gradient-based non-linear pro-
gramming methods for the optimization, it is necessary to
compute design sensitivities of the objective and constraints
of the optimization problem. As noted in Sect. 3, this requires
a chain-rule computation, for which the design sensitivities
of the signed distance are required. As seen from the expres-
sions listed in Tables 2-3, the signed distance has both an
explicit dependence on the bar’s dimensions a, b, and L, and
an implicit dependence on the bar’s quaternions q, and transla-
tion vector t, through the transformation (15). Therefore, the
signed-distance sensitivities with respect to the design variable
z; are computed as

D¢ _ 94" Dy Dp' 3¢

dZ[ af), dp, dZi ()Z,- (17)
with
Dp’ _ DR’ r Dt
—=— (p—-t)-R' —,
dz; dz; P-t) dz; (%)
which we obtain by differentiating (15), and
Dp’ .
P = diag(sgn(p)). (19)

dp’ B

which we obtain by differentiating (16). Clearly, DR /dz; = 0
for any design variable other than the bar’s quaternions.
The derivatives of R with respect to the quaternions can
be obtained by differentiation of (21)—(23). The term
Dt /dz; = 1 when z; corresponds to one of the components of
t,, and it is zero otherwise. The terms d¢,./0p’ and ¢, /dz;
can be readily derived from Tables 2 and 3 for 2D- and
3D-problems, respectively.

An important observation is that it can be readily shown
that the expressions for the signed distance are the same at the
points/edges between the regions. For example, it can be seen
in Table 2 that when ' = b — r*, the expression for the signed
distance of Region 2 simplifies to @ — p’, which is the same
expression for Region 1; and when X' = a — r*, the expression

Table 3 Signed distance

! o Region Definition ¢, z,)
for cuboid region in
3D.Ax:=a—-r"-p, 1 (Ax < AY)A(AYy <A A0 < Ay) A0 < A7) Ax+ 7
Ay i=b—rt =l 2 (Ax > Ay) A (Ay < AZ) A (0 < Ax) A (0 < A7) Ay +7*
Azi=L —r —p 3 (Ax > A2 A (Ay > A2) A (0 < Ax) A (0 < Ay) Az+7*
4 0>Ax)AO>Ay) A0 < A2) = VA2 + Ay?
5 0= A) A0 <Ay A0 > A7) — AR + A2
6 0 <AxX) A0 > AY) A0 > A2) r* — /Ay + A
7 O=2A)AO0=Ay)A02A7) = VAR + Ay + A
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for the signed distance of Region 2 simplifies to b — ﬁ; , which
is the same expression for Region 3. This is expected, as the
bar is a regular solid and the signed distance must be continu-
ous. However, importantly, the signed-distance derivatives are
also continuous at the shared points/edges. Again for Table 2,
for example, d¢p/da = 1and d¢p/0b = 0 when j' = b — r* for
both Region 1 and Region 2. It can be verified that all other
design derivatives (i.e., with respect to the quaternions and
translation vector components) are also the same. This shows
that the rounded corners ensure continuity of the design sen-
sitivities of the signed distance, which leads to robustness of
the gradient-based optimization.

4.4 Primitives orientation via quaternions

In addition to specifying the primitive’s dimensions and posi-
tion, the orientation of the primitives must also be stipulated.
Early geometry projection techniques for topology optimi-
zation with plates (e.g., Zhang et al. 2016) employed Euler
angles to describe the primitive’s orientation. However, as
noted in Smith and Norato (2022b), this description of the
orientation can lead to a gimbal-lock-type of situation where
one design of freedom is lost, making it more difficult for the
optimizer to progress towards a good design. To circumvent
this problem, Smith and Norato (2022b) introduced the use of
quaternions to define the orientation of the primitive.

A quaternion is an extension of the concept of complex
number, with one real and three imaginary parts. The property
of interest of these numbers (specifically, of unit quaternions)
is their ability to represent orientation in a 3D space (Kuipers
2020). The parameterization of the orientation of a primitive
with quaternions has the advantage over an Euler-angles rep-
resentation that it does not suffer from gimbal lock. Moreover,
rotations of the primitive and design derivatives of these rota-
tions can be easily computed.

The quaternion for primitive ¢ is given by
q. = {40,919 95 }. € R*. Euler’s rotation theorem states
that any rotation of a rigid body or coordinate system can be
represented by a single rotation 6 about an axis a called the
Euler axis. The quaternion is related to this rotation as

q = {cos(6/2),a, sin(0/2),a, sin(0/2),a; sin(6/2)}. (20)

The rotation matrix associated with the unit quaternion §
is given by

1242 -2

Rip =124,9, + 24045
24,95 — 2409,

24,95 + 2409,
24,45 — 2404,
A2 A2

1 -24,-24;
21

24,4, — 24095

NIEYS)
lA—Aqu —AZC{B
24,45 + 24,4,

for 3-dimensional rotations, with

N q

q=-—. 22
lal @2

For rotations in the e; —e, plane about the e; axis,

q, = q, = 0. Using the half-angle formulas together with

(20) and (22), it can be readily shown that (21) simplifies to

the well known rotation matrix

cosf sinf 0
R,, =|—sinf cosf 0. (23)
0 0 1

5 Optimization problem

The optimization problem considered in this work is that
of minimizing the structural compliance subject to a con-
straint on the amount of material. While consideration for
other structural criteria is obviously necessary for struc-
tural design, it is outside of the scope of this work and
deferred to future work. The minimum-compliance prob-
lem is stated as

min J(z) :=log(C(z) + 1)

subject to:

Kz)u(z) =f

v(z) <V, (24)
8eont(Z) < Econ

Zover(2) < 1

7, £ £7;,Vz; € {z},

where z = {z,, -, z, } is the vector of design variables for
the n, bars, with z_ the vector of design variables for bar c as
described in Sect. 4.2; also,

C(z) =u' (z)f (25)

is the structural compliance, u is the displacement vector, f
is the design-independent force vector, and K is the global
stiffness matrix. The logarithmic form of the objective func-
tion, which was introduced in Smith and Norato (2022a),
exhibits better convergence behavior than the compliance
itself and is adopted in this work.

The volume fraction of the structure relative to the design
region is denoted by v, and it is defined as

V(z)
SR (26)

wz) .=

where V is the volume of the structure given by (11) and we
recall v, is the element volume. It is important to note that
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the volume fraction computed via (26) corresponds to the
equivalent section. Therefore, if a particular volume fraction
limit ¥ is desired for the actual original section, an equiva-
lent limit v,, must be used for the optimization. This can be
simply computed as

A

— eq _
Ve =37 @7)

The constraints g, and g..., in (24), detailed in the sequel,
ensure the bars remain fully contained within the design
region, and that bars do not overlap in undesired ways,
respectively.

As in previous geometry projection techniques (cf. Norato
et al. 2015), the design variables are scaled to improve con-
vergence and to enable the imposition of a uniform move
limit for all design variables:

21' = _l = )
;i —2X (28)

=i

&N

where 4 and z; denote the lower and upper bounds of design
variable z;, respectively. A move limit m is imposed on the
design variables at iteration / to prevent large, erratic design
steps in the optimization:

max (O, 251_1) - m) < 21@ < min (1, 251_1) + m> (29)

The optimization is stopped after any of the following three
criteria are satisfied: 1) the relative change of the objec-
tive function in two consecutive iterations does not exceed
a specified threshold, i.e., |j(1) - j"‘”|/J<I) <eg;2) the
maximum relative change of any design variable in two con-
secutive iterations does not exceed a specified threshold, i.e.,
1z — 2=V, < e_; or 3) the iteration reaches a maximum
number of iterations max;

ter®

5.1 Containment constraint

One important practical consideration is to ensure that
primitives are fully contained within the design region. If
a portion of a primitive lies outside the design region, it
has no effect on the analysis and should be removed in the
physical realization of the structure. This could lead to cuts
of the primitives that are highly impractical (for instance,
a cut at a small angle relative to the long axis of the bar).
Moreover, a bar that lies partially outside the design region
and is therefore cut in the fabrication could end up violat-
ing the minimum length constraint. For these reasons, it is
desirable to ensure that the bars lie completely within the
design region.

One way to enforce this requirement is by using the so-
called ghost-points technique (Zhang et al. 2018), whereby
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a set of ghost points is created just outside the boundaries of
the design region. A constraint is introduced in the optimi-
zation that a differentiable approximation of the maximum
combined density of (12) at these points is smaller than a
specified value 0 < €, < 1. In other words, the combined
density of any ghost point must be near zero. While this
method is effective and has the advantage of being independ-
ent of the geometric representation used for the primitives,
here we adopt the simpler approach introduced in Kazemi
et al. (2020), whereby we force the difference between the
volume of a primitive computed via the geometry projection
(i.e., (I1), here denoted as V', ) and that computed directly
from the primitive’s geometric parameters (here denoted as

V geom,) t0 be negligible. We define a volume difference ratio
as
2
4 m, Vn m,
go= =22 T (30)
VgeomE

If a primitive c is entirely contained in the design space,
£ should be close to zero. It is desirable to define a single
constraint for all of the primitives, as otherwise we would
have as many constraints as primitives, which makes it
increasingly difficult for non-linear programming methods
to incorporate in the optimization. To this end, we employ
the lower-bound Kreisselmeier-Steinhauser (LKS) function
as a differentiable approximation of the maximum volume
difference ratio of all primitives, and define the containment
function as

Zeont(®) = LKS (&,(2,)), 31)

with

LKS(x) 1= %m % Y ki) xer, (32)
i

where k is a parameter such that as k — oo, LKS(x) — max(x)

5.2 Overlap constraint

A second aspect that must be addressed for practical pur-
poses is the overlap of primitives. There is nothing pre-
venting the optimizer from placing primitives such that
they overlap so as to obtain a larger structural member. For
example, the optimizer may place one primitive right on
top of another so that the effective load path provides, e.g.,
larger bending stiffness. While this is numerically correct, it
is impractical from a fabrication and assembly point of view.
We therefore wish to avoid these overlaps. This problem was
addressed previously in Smith and Norato (2019) for offset
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bars with circular ends, whereby a no-overlap constraint
limits only allows the ends of the bars to be connected to
other bars. That is, it is possible for the end regions of a bar
to be connected to any portion of another bar; but overlaps
between the middle portion of two bars are precluded.

The approach formulated in this work is in the same spirit
as the constraint of Smith and Norato (2019), but it avoids
the need for Boolean operations by using an auxiliary primi-
tive associated to each bar. These auxiliary primitives are
defined by introducing two positive parameters f; < 1and
f. > 1. For 2D-bars with dimensions a X L, the dimensions
of the corresponding auxiliary primitive are f,a X f; L., see
Fig. 6(a). The idea of the proposed overlap constraint is that
the sum of the projected densities corresponding to all the
auxiliary primitives at any point in the design region should
not exceed 1.0. This means that two auxiliary primitives
cannot overlap. cf. Fig. 6(b). On the other hand, overlaps
between the regions of each bar outside of the auxiliary
primitives with any region of another bar are permitted, cf.
Fig. 6(c). The overlap constraint can be similarly formulated
for 3D-bars by defining an auxiliary primitive with dimen-
sions f,a. X f,b X f; L.

As with the containment constraint, we wish to apply a
single constraint for all the elements in the mesh. We there-
fore use again the LKS function and define the overlap con-
straint as

G |

\\ 2

| |

JL,

(a) Auxiliary primitive dimensions

[ al

(b) Example of a forbidden overlap

L]

(c) Example of an allowed overlap

Fig.6 Auxiliary primitives for overlap constraint

Zover(®) = LKS PN (33)

where p”, is the projected density of the auxiliary primi-
tive of the bar c at the centroid of element e. This projected
density is computed via (6) and using the signed distance
corresponding to the dimensions of the auxiliary primitive.

The purpose of the term a”!~® is to make sure that com-
ponents with low membership variables are not counted in
the sum. A continuation strategy is used for this term and
controlled by the parameter 5. For n > 0, there is a range
a € [0, 77] for which this term is close to zero. The larger the
value of #, the larger 77. At the beginning of the optimization,
n is set to a value of, e.g., n, = 6. For this value, for exam-

ple, aZ(l_a") < 107 for a, € [0,0.225]. This means that bars
with membership variable values less than 0.225 are effec-
tively not counted in the overlap constraint, which allows
for more overlaps in the initial optimization iterations. The
parameter # is subsequently decreased every time the rela-
tive change in the objective function at iteration / relative
to the previous iteration falls below a specified value, i.e.,
when | ) — 771 /| 77V < €,- The decrease is given by

1 < max(#n, 1 — An). (34)

As 7 decreases, 7 decreases and low-membership variable
variables are penalized further, until overlaps are completely
penalized for # = 0.

It should be noted that we are applying the overlap con-
straint using the bars with the equivalent sections. Since
the equivalent sections are larger than the original ones, a
design with the equivalent sections that satisfies the overlap
constraints will guarantee there will be no overlaps with the
original sections. However, it is possible that there is a bet-
ter design with the original sections than the optimal design
obtained with the equivalent sections (i.e., with lower value
of J), such that the equivalent-section representation of that
design presents overlaps.

It is worth noting this overlap constraint is not straight-
forward to implement in ground-structure methods that use
1D elements for the analysis, (cf. Changizi and Jalalpour
2017)), since it is not trivial to compute intersections of
the bars at arbitrary orientations and positions based on
their geometric representations. It is also not straightfor-
ward to implement such an overlap constraint in feature-
mapping methods that combine the geometric components
prior to mapping the geometric representation onto the
analysis mesh (the so-called combine-then-map strategies
in Wein et al. (2020)), since once the components have
been combined into a single representation, it is not pos-
sible to easily determined where they intersect.

The optimization problem is solved using the method
of moving asymptotes (MMA) of Svanberg (1987). The
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MMA parameters used to perform the optimization are
presented in Table 4 for completeness and to ensure repli-
cability of our results; the reader is referred to the forego-
ing reference for a detailed explanation of these param-
eters. As in Guest et al. (2011); Norato et al. (2022), we
modify the parameter asyinit in MMA to produce a
more conservative approximation of the optimization func-
tions in the first two optimization iterations.

The computation of the sensitivities of the compliance
and volume fraction is the same as that presented in, for
example, Norato et al. (2015); Smith and Norato (2020).
The only difference is that the derivatives of the signed
distance for the proposed geometric representation in this
work are those of Sect. 4.3 as opposed to those of an offset
bar presented in those works. The sensitivities of the over-
lap constraint can be readily obtained by differentiation of
(33), which in turn requires the derivatives of the projected
density of (6) and the signed distance of Sect. 4.3.

A flowchart showing the high-level steps of the pro-
posed method is shown in Fig. 7

6 Results

This section presents examples of the implementation of the
proposed method to solve the minimal-compliance topology
optimization problem formulated in Sect. 2. Every example
is solved using an H-beam (IPE 220), a rectangular tube
(RHS 200 x 120 / 8) and a cylindrical tube (CHS 219.1 /
5). The beams are all made of steel, with properties shown
in Table 1. To make the examples comparable, equivalent
volume fraction limits v,, are computed for each of these

| Equivalent section formulation
...............

Yes

Optimal Design

Fig. 7 Flowchart of the optimization process

/ Structural shape selection /

!

| Equivalent properties computation (Eq. 4) |

Computation of the sign distance
(Tabs. 1 and 2)

!

Computation of the sign distance
(Tabs. 1 and 2)

|

| Computation of effective density (Eq. 8) |

}

| Computation combined density (Eq. 12) |
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Table 4 Optimization

parameters. Note E, ;4 and v,y
are the elastic modulus and the q 3 ®)
Poisson constant, respectively,

Property ~ Value Reference

that define the elasticity tensor mn 0.05 29

of the void material C,;4 in (9) MaXier 300 Sect.5
€ cont 0.002 (31)
ik 8 @D
ik 8 (33
e’ 0.0004 (34)
esD 0.0005 (34)
Mmin 0.1 (34)
An 1 (34)
o 6 (34)
r*(mm) 25 Tables 2, 3
E i 104 O
Veoid 0.33 )
ag 1 MMA
a, 0 MMA
¢ 1000 MMA
d, 1 MMA

asyinit 0.1 MMA

sections so that the real volume fraction limit ¥ is the same
for all designs. Three examples are presented: the well-
known 2D Messerschmitt-Bolkow-Blohm (MBB) beam,
a 2D bridge, and a 3D bridge. A plane-stress condition is
assumed for the 2D models. Table 4 lists the values of all
method parameters used. For the finite element analysis, we
use square and cubic elements in 2D and 3D, respectively,
whose size & is chosen so that 4 > min(a, b), which, as dis-
cussed in Sect. 1, is necessary to ensure continuous sensi-
tivities. All problems are solved using a workstation with
an AMD Rysen 9 7950X3D 16-Core Processor, base clock
speed of 4.2 GHz, an NVIDIA GeForce RTX 4090 (24 GB)
card, and 64GB of RAM.

6.1 2D MBB-beam

Only half of the MBB-beam is modeled using symmetry
boundary conditions on the right edge, as shown in Fig. 8.
A real volume fraction limit of steel v of 3% is imposed on
the design.

Sensitivities for all of the functions in problem (24) are
verified against finite-difference sensitivities. For this prob-
lem, we use the values f,=1.7 and f;=0.65 for the overlap
constraint, and e ; = 8 X 10~%and e, = 4 X 107 for the stop-
ping criteria.

To exemplify the progression from the initial to the opti-
mal design, Fig. 9 shows some intermediate designs during
the optimization for the structure obtained with a circular
tube. The initial design, composed of 25 disconnected bars,
is shown in Fig. 9(a). The lengths L, of all bars in the initial
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Fig.8 Dimensions, loading, and boundary conditions for MBB-beam
problem

(a) Initial design (b) 10 iterations

—

K eyl A

(c) 20 iterations (d) 50 iterations

(e) 170 iterations

(f) 300 iterations

Fig.9 Design iterates for MBB-beam optimization with circular-tube
section. In this and subsequent 2D-design plots, the transparency of
the color of the bars is proportional to the penalized membership var-
iable a!

design are set to satisfy the minimum length condition
(L/d > 10) discussed in Sect. 2. The history of the objective
and constraint functions for this circular-tube MBB-beam
design shown in Fig. 10 indicates the method exhibits good
convergence and feasibility of the design. This behavior was
observed in all the examples presented in this work.

The optimal MBB-beam designs for all three sections are
shown in Fig. 11 along with their corresponding combined
density plots. Table 5 presents information related to each
section, including: the dimensions 2a X 2b of the equivalent
cross-section; the bounds on the design variables L, 0., 7., 1,
and «; the number of elements n, X n, in each dimension; the
corresponding total number of elements in the mesh N,; the
number of iterations to convergence N,,,; and the equivalent
volume fraction v,,, the average wall-clock time per iteration

t,,.» the total wall-clock time ¢,,,,, for the entire optimization;
and the compliance C of the optimal designs.

It is observed that, as expected, the optimal designs
for all three sections look different. For instance, as can
be seen in Table 5, the optimal design obtained with the
rectangular tube performs the worst, and the H-beam
performs the best (i.e., they have the highest and lowest

o 3
43 —J] 1

L L L L
0 50 100 150 200 250 300 350
iteration

volume fraction
edge constraint

overlap constraint

0 50 100 150 200 250 300 350
iteration

Fig. 10 Optimization function history for MBB-beam optimization
with circular-tube section. The dotted lines denote the constraint lim-

its

(a) Design with H-beams

S NTN

(b) Densities with H-beams

N ST\

(c) Design with rectangular tubes

YAVZAER VAN

(d) Densities with rectangular tubes

(e) Design with circular tubes

[N

(f) Densities with circular tubes

Fig. 11 MBB-beam optimization for the three different structural sec-
tions considered. The optimal design and density field are reflected
about the symmetry line to show the entire beam. In this and subse-
quent figures, the plotted density corresponds to the combined den-
sity of (12)

compliance, respectively). This is as we would expect,
since the applied loading is in-plane, and the H-beam
and rectangular tube offer the highest and lowest in-plane
inertia-to-volume ratio, respectively; that is, the ratio [ /A,
is highest for the H-beam and lowest for the rectangular
tube (cf. Table 1). This is reflected in the fact that the
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Table 5 Summary of the MMB-beam optimization data for v = 3%

MBB-beam optimization

Property H-beam Rectangular tube Circular tube
r % (mm) 25 25 25

a(mm) 157.371 126.661 131.145

2 % b(mm) 87.374 168.820 262.29

L, [1100,7500] [1000,7500] [1100,7500]
0. [-27,2x] [-27,27x] [—27,2x]
t(mm) [0,15000] [0,15000] [0,15000]
t,(mm) [0,5000] [0,5000] [0,5000]

a [0,1] [0,1] [0,1]

Veg 25.67% 13.65% 20.44%

N, 24300 24300 24300
n,Xn, 270 x 90 270 x 90 270 x 90
Ny, 237 285 300

tie (S) 2.43 2.00 2.19

Liorat (S) 582.74 576.35 664.73

ca 2102.32 2690.66 2584.24

dimension a of the equivalent section is largest for the
H-beam and lowest for the rectangular tube (cf. Table 1);
and that the equivalent volume fraction is largest for the
H-beam and lowest for the rectangular tube (cf. Table 5).

It should be noted that in the maximum stiffness design
of structures subject to a single load condition, the optimal
design should be made of tension-compression members
aligned with the principal strains, as long as the con-
straints on the geometry allow it (see, for example, Bend-
sge and Haber (1993)). Therefore, the bending stiffness
of the structural shape (and of the equivalent section) is
irrelevant, and what dictates the design is the axial stiff-
ness of the members. Consequently, if the cross-sections
of two types of structural shapes have the same area but
different area moments of inertia, the optimal designs
will be similar. The reason we get different designs in
the examples presented in this section is the difference in
the cross-sectional areas of the shapes and, to a smaller
extent, the overlap constraint; this is because even if the
cross-sectional areas of the shapes are the same, their area
moments of inertia —and hence the dimensions of their
equivalent sections and of the auxiliary regions for the
overlap constraint—are different.

The optimal design with the circular-tube section is com-
pared with a conventional structural analysis using 1D beam
elements, carried out in ANSYS Structural (see Fig. 12).
The location of the center points of the bars, their length
and their orientation in the optimal design are used to cre-
ate geometric line bodies in ANSYS. Since the bars in the
proposed method are represented as solids, their correspond-
ing line bodies do not intersect. Therefore, these lines are
subsequently extended or trimmed as necessary to ensure
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Fig. 12 ANSYS comparison with optimal design

the frame is connected. These line bodies are meshed with
ANSYS, which generates multiple beam elements along
each line body (corresponding to the segments that can be
observed in Fig. 12). BEAM188 ANSYS elements are used,
which are based on Timoshenko theory and are the default
2-node beam elements in ANSYS. It should be noted that
ANSYS uses a 3-dimensional representation of the beam
elements for visualization (i.e., the one shown in Fig. 12,
however they are 1-dimensional elements. The elastic modu-
lus of the elements that have an intermediate membership
variable in the optimal design (i.e., those that appear ‘gray’
in Fig. 11(f)) is computed in ANSYS as a? * E, to account
for the penalization of the density field.

An absolute error of 11% is found between the compli-
ance of the density-based and the ANSYS model. This error
can be attributed to multiple factors, including the fact that
some bars have intermediate values of the membership
variable and the different degrees of accuracy of the two
models. Another important source of error will likely be the
modeling of member intersections. The 1D model does not
capture correctly the 2D- and 3D-intersections between bars,
because bars are modeled as a line segment. The geometry
projection technique, on the other hand, does capture multi-
dimensional intersections; however, it also incurs in error
in the modeling of these intersections because the dimen-
sions of the equivalent sections are larger than those of the
original section. Nevertheless, we deem this difference to be
reasonable for conceptual design purposes.

6.2 2D bridge

This section presents 2D- and 3D-bridge design examples
to demonstrate the proposed methodology on a common
structural design problem. Considering the symmetry of the
problem, a 2D topology optimization problem is first solved
for half of the design region with symmetry boundary condi-
tions (shown in blue in Fig. 13(a)). It is assumed the deck is
supported through its length by a non-designable horizon-
tal beam, represented as a fixed primitive in the topology
optimization. A uniform distributed loading is applied on
this beam; and a zero-displacement boundary condition is
applied over a portion of the left edge of the design volume
(shown in red in Fig. 13(a)). This fixed support is chosen
to be disconnected from the horizontal beam so that the
stiffness of the bridge comes primarily from the designable
structure. The initial design for all runs, consisting of 20
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bars, is shown in Fig. 13(b). For this problem, we use the
values f,=1.5 and f;=0.65 for the overlap constraint, and
e7=1x10"and e, = 2 x 1072 for the stopping criteria.

The optimal 2D-bridge designs for all three sections
are shown in Fig. 14 along with their corresponding com-
bined density plots for v = 2%. Table 6 presents information
related to each section. In this case, the best results are found
with the H-beam, as expected. The design obtained with the
rectangular tube renders a poor (i.e., high) compliance value.
We posit the optimizer reaches this poor local minimum
because of the relatively low equivalent volume fraction
for this type of beam. Finally, the membership variables for
some of the bars in the circular-tube design are relatively low
and may be artificially increasing the compliance. If those
bars are removed, the compliance would increase noticeably;
or, if they are made fully solid, the volume fraction would
increase noticeably.

6.3 3D bridge

The dimensions of the 3D-bridge are shown in Fig. 15. Sym-
metry boundary conditions are employed so that only a quar-
ter of the design region is modeled; the symmetry planes are
marked with a blue hashing in Fig. 15. As in the 2D bridge,
a non-designable primitive is used to represent the deck,
on which a uniform loading is applied. Zero-displacement
boundary conditions are imposed on the region, shown
with a red hashing in Fig. 15. For this problem, we use the
values f,=1.7 and f;=0.75 for the overlap constraint, and
£;=1x10"*and e, = 4 x 1072 for the stopping criteria.

Figure 16 shows some intermediate designs produced
by the optimization for the design obtained with a circular
tube to illustrate the evolution from the initial to the optimal
design. The initial design for all runs is shown in Fig. 16(a),
and it is again composed of 20 bars.

3.5m

29m

P LT T T T T T T
P

(a) Design space and boundary conditions

(b) Initial design

Fig. 13 Configuration of the 2D-bridge example
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(a) Design with H-beams

\
é

(b) Densities with H-beams

\'
/

\
[

(c) Design with rectangular tubes

\
/

(d) Densities with rectangular tubes

5
:

(e) Design with circular tubes

I V4

(f) Densities with circular tubes

:

Fig. 14 2D-bridge optimization for the three different structural sec-
tions considered. The optimal design and density field are reflected
about the symmetry line to show the entire bridge

The optimal 3D-bridge designs for all three sections
with v = 0.2% are shown in Fig. 17. Table 7 presents
information related to each section for the 3D problem
including the bounds on the design variables L, g, q,,

Table 6 Summary of the 2D-bridge optimization for 2% of steel

2D bridge beam optimization

Property H-beam Rectangular tube Circular tube
7 (mm) 25 25 25

a(mm) 157.371 126.661 131.145

2 % b(mm) 87.374 168.820 262.29

L (mm) [1100,7500] [1000,75001] [1100,7500]
0, [-27,27] [-27z,2x] [—27,27x]
t(mm) [0,14000] [0,14000] [0,14000]
t,(mm) [0,3500] [0,3500] [0,3500]

a [0,1] [0,1] [0,1]

Vg 25.67% 13.65% 20.44%

N, 12544 12544 12544
n.xn, 224 X 56 224 x 56 224 x 56
Ny, 161 254 300

Lie (8) 1.17 1.00 1.15

Liorat (S) 193.70 259.82 351.12

cQ 2601.68 4333.63 2681.72
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) 50 iterations

(h) 200 iterations

(e) 20 iterations

Q,r_—

100 iterations

Fig. 16 Design iterates for 3D-bridge optimization with circular-tube
section

G2s G35 s By 1, and a; the number of elements n, X n,Xn,
in each dimension; and the corresponding total number
of elements in the mesh A,. This table also includes the
number of elements N, needed if the real section were
to be modeled with at least two finite elements across
the smallest dimension of the section. This requirement,
as noted in Sect. 1, is necessary to ensure sensitivities
of the projected density are well-defined. As observed
from the numbers in the table, the resulting mesh would
require billions of elements, making the solution of the
optimization problem highly impractical. This simple
example demonstrates that by employing the equivalent-
section approached proposed in this work, it is possible
to design ultralight structures using an individual engi-
neering workstation.

@ Springer

(b) Design with rectangular tubes

A A AN,

(c) Design with circular tubes

Fig. 17 3D-bridge optimization for the three different structural sec-
tions considered. The optimal design is reflected about the symmetry
planes to show the entire bridge

Table 7 Summary of the 3D-bridge optimization for 0.2% of steel

3D bridge optimization

Property H-beam Rectangular tube  Circular tube
r % (mm) 50 50 50

a(mm) 157.371 157.371 131.145
b(mm) 87.374 168.820 262.29

L (mm) [1100, 7500] [1000, 7500] [1100, 7500]
o (-L1] [(-L1] (-1,1]

9 (-L1] [(-L1] (-1,1]

9 (-1 1] [(-L.1] (-1,1]

s (-1 1] (-L1] (-1,1]
t(mm) [0, 1400] [0, 1400] [0, 1400]
t,(mm) [0, 3500] [0, 3500] [0, 3500]
t,(mm) [0, 1750] [0, 1750] [0, 1750]

a [0, 1] [0, 1] [0, 1]

Vg 7.426% 7.473% 9.81%

N, 1102736 432000 250000
n,Xn,Xn, 320x40x80 240 x 30X 60 200 x 25 x 50
N, 3.340 x 10° 1.340 x 10° 5.488 x 10°
Ny, 161 232 300

Lire (8) 383.16 112.28 67.17

Liotar (8) 116184.43 34104.96 20380.64
cq 353.14 354.36 360.54
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7 Conclusion

This work formulated a novel method for the topology
optimization of ultralight frame structures using struc-
tural shapes. The key ingredient of the proposed approach
is to replace the geometric representation of a structural
shape with an equivalent cross-section that has the same
effective axial and bending stiffness. The fact that the
equivalent section is larger than the corresponding origi-
nal shape substantially decreases the number of elements
required in the finite element analysis to perform the opti-
mization. The proposed method also introduced an over-
lap constraint using auxiliary primitives that ensures that
structural members do not intersect in ways that cannot be
practically fabricated.

The computational design examples demonstrate the
effectiveness of the proposed method in obtaining good
designs that satisfy all the constraints, and show the
method converges well within a reasonable number of
iterations. The 3D-bridge example demonstrates the design
of an ultralight structure (v = 0.2%) attained with a sin-
gle engineering workstation. While computationally more
expensive, the proposed method has important advantages
when compared to ground-structure methods that employ
1D elements for the analysis. These advantages include
the ability to produce good designs with only a few struc-
tural elements as the connectivity of the structure is not
restricted to a subset of a ground structure. Also, the pro-
posed method can capture 2D and 3D overlaps that cannot
easily be modeled with 1D elements. Finally, although not
studied in this work, the proposed method could in princi-
ple incorporate stress constraints that capture the stresses
arising from the intersection of primitives as in, for exam-
ple, Zhang et al. (2017); however, a correction would be
needed to account for the equivalent sections.

The proposed methodology can be easily extended in
multiple ways. It can be applied to structural shapes other
than the ones studied in this work, including designs with
asymmetric cross-sections like C- or T-sections. It could
incorporate other structural criteria such as stresses, buck-
ling, or vibrations. Finally, the structural shapes could be
made of a reinforced material like a carbon-fiber-rein-
forced polymer, as in Smith and Norato (2021); a compos-
ite material with different properties in tension and com-
pression such as reinforced concrete or a steel-concrete
composite; or an anisotropic material like wood.

Other considerations to be addressed in future work
include the incorporation of manufacturing cost considera-
tions as in Gu et al. (2023), the design of structures made
of multiple shapes, and the simultaneous optimization of
the structural layout and the cross-sections.
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