
Vol.:(0123456789)

Structural and Multidisciplinary Optimization            (2025) 68:5  
https://doi.org/10.1007/s00158-024-03936-2

RESEARCH PAPER

A geometry projection method for topology optimization of frames 
with structural shapes

Nicolás Cuevas-Carvajal1  · Miguel F. Montoya-Vallejo2 · Julián A. Norato1

Received: 5 April 2024 / Revised: 11 September 2024 / Accepted: 7 November 2024 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract
We present a topology optimization method based on the geometry projection technique for the design of frames made of 
structural shapes. An equivalent-section approach is formulated that represents the cross-section of the structural shapes as 
a homogeneous rectangular section. The accuracy of this approach is demonstrated by comparison to analyses performed 
using body-fitted meshes of the original sections for different loads and boundary conditions. A novel geometric representa-
tion is also introduced to represent the equivalent section as a cuboid. Like offset solids, this representation is endowed with 
an explicit expression for the computation of the signed distance to the boundary of the primitive and of its sensitivities, 
allowing for an efficient implementation. An overlap constraint is imposed via the formulation of auxiliary primitives associ-
ated to the structural members, which guarantees the resulting designs do not exhibit impractical intersections of primitives 
that would preclude their construction. The efficacy and efficiency of the method is demonstrated via 2D and 3D design 
examples. The examples demonstrate that the proposed method renders optimal designs and exhibits good convergence. 
They also illustrate the ability to design structures with far lower optimal volume fractions than those typically employed in 
continuum topology optimization techniques.

Keywords Feature mapping · Structural shapes · Structural profiles · Ultralight frame structures · Equivalent section

1 Introduction

Structural shapes (also known as structural profiles) are 
widely used in structural design, including in aerospace, 
automotive, and civil engineering structures. Their extensive 
use owes to the standardization of dimensions and mechani-
cal properties, making them readily available, practical, reli-
able, and easy to economically assemble. Common appli-
cations of these structures include machinery frames; civil 
structures like roofs, bridges, domes, and buildings; frames 
for aerospace applications like instruments and satellites; 

support structures for power transmission and chemical pro-
cessing plants; and offshore platforms, to mention a few. 
Structural shapes have been used for more than a century 
(Bates and Association 1987) and therefore robust and 
mature technologies exist for their design, simulation, and 
fabrication. Although prescribed solutions that are well-
understood and easy to fabricate exist for particular appli-
cations (e.g., bridges), there are frame design problems (for 
instance, those with irregularly shaped design regions) for 
which it is not intuitive to determine optimal frame designs, 
therefore we must resort to structural design techniques such 
as topology optimization.

The first topology optimization techniques used for the 
design of frame structures made of stock elements are the 
so-called ground-structure methods (cf. Zegard and Paulino 
2014; Rozvany 2011; Bendsøe 2004). In these methods, 
the stock members are modeled using 1D finite elements, 
such as truss and beam elements. A ground structure is 
created whereby a predefined set of nodes in the structure 
are connected among each other using 1D elements. The 
optimization consists of modifying the size of each ele-
ment, i.e., the cross-sectional area, with a zero size for a 
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member indicating it should be removed from the design. 
Some techniques also optimize the spatial positions of the 
nodes of the ground structure (Bendsøe et al. 1994). These 
methods have the advantage of being computationally effi-
cient, since the analysis with 1D elements is inexpensive. 
Moreover, they readily accommodate using structural shapes 
like the ones considered in this work by assigning the cor-
responding section properties to the beam or truss elements. 
However, these techniques have two important limitations: 
the topology of the optimal design is restricted to a subset of 
the ground structure, which may significantly decrease the 
design freedom; and the 1D representation cannot capture 
multi-dimensional stress states and so it cannot model stress 
concentrations arising at the joints due to intersections of 
the structural elements. Although the present work does not 
consider stress requirements, this is an important considera-
tion that the authors wish to address in future work, which 
precludes the use of ground-structure methods. In light of 
these limitations, we focus on topology optimization tech-
niques for continua.

Conventional density-based and level-set methods for 
continuum topology optimization (cf. Sigmund and Maute 
2013) cannot in general be used to design this type of struc-
tures, as they render organic designs that cannot be easily 
realized with structural shapes. An alternative to design 
frame structures with structural shapes using topology opti-
mization for continua is feature-mapping techniques (Wein 
et al. 2020). In these methods, the structure is represented 
via the combination of geometric primitives such as bars and 
plates. These primitives are described by high-level param-
eters associated with their dimensions, size and orientation. 
To perform the analysis, this parameterization is mapped 
onto, for example, a density field that facilitates the analysis 
on a fixed mesh in the same manner as density-based meth-
ods. While feature-mapping methods have been used suc-
cessfully to design structures made of solid bars and plates, 
they are yet to be used for design with structural shapes. The 
reason for this shortcoming is that these techniques require 
a finite element size small enough to accurately capture the 
structural behavior of each bar, and to ensure design sen-
sitivities are well defined (Norato et al. 2015; Zhang et al. 
2016). Roughly speaking, at least two elements are required 
through the thickness of the primitive. In the case of struc-
tural shapes, having two elements through the thickness of, 
e.g., the webs and flange of an H-beam or the wall of a tube 
would result in a large number of elements that would make 
the finite element analysis expensive and impractical. For 
example, consider the design of a bridge with a design space 
of 10 m  3 m  2 m and using an H-beam IPE 220 section. 
For this profile, the web thickness tw and flange thickness tf  
are 5.9 mm and 9.2 mm , respectively. Capturing the struc-
tural behavior of these elements with reasonable accuracy 
would require a mesh with an element size of at least than 

5.9/2 mm = 2.95 mm. This would result in a mesh of more 
than 2.3 billion elements, which is clearly unrealistically 
large for the purpose of designing the bridge. For this reason, 
while feature-mapping techniques have been used to model 
structural shapes such as rectangular tubes (Bai and Zuo 
2020; Zhao et al. 2021; Wang et al. 2024), the dimensions 
of the design region are comparable to those of the structural 
shapes, and the volume fraction of the optimal structure is 
much larger (  20% ) than that of the structures considered 
in this work (  2% ). It should also be noted that some meth-
ods have modeled panel stiffeners with structural shapes by 
employing beam elements to model the stiffeners, and planar 
elements (e.g., shells) (Li et al. 2019; Savine et al. 2021) or a 
meshless discretization (Li et al. 2021) to model the panel to 
be reinforced. However, these methods do not obtain optimal 
three-dimensional frames made of structural shapes that are 
not connected to a panel but only to each other.

To address these shortcomings, this work formulates a 
topology optimization method based on the geometry pro-
jection technique for the design of frames made of struc-
tural shapes. An equivalent-section approach is formulated 
that represents the cross-section of the structural shapes 
as a homogeneous rectangular section. The accuracy of 
this approach is demonstrated by comparison to analyses 
performed using body-fitted meshes of the original sec-
tions for different loads and boundary conditions. A novel 
geometric representation is also introduced to represent 
the equivalent section as a cuboid. Like the offset solids 
typically used in geometry projection techniques, this rep-
resentation is endowed with an explicit expression for the 
computation of the signed distance to the boundary of the 
primitive and of its sensitivities, allowing for an efficient 
implementation. An overlap constraint is imposed via the 
formulation of auxiliary primitives associated to the struc-
tural members, which guarantees the resulting designs do 
not exhibit impractical intersections of primitives that 
would preclude their construction.

The remainder of the paper is structured as follows. Sec-
tion 2 presents the formulation and validation of the equiva-
lent-section methodology. Section 3 introduces the geometry 
projection method, which constitutes the basis of the method 
developed in this work. A novel geometric representation 
of these equivalent sections is subsequently formulated in 
Sect. 4. The optimization problem description is detailed in 
Sect. 5. Examples of the application of the proposed tech-
nique to two design problems are detailed in Sect. 6. Finally, 
Sect. 7 presents the conclusions of this work.
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2  Equivalent section of structural shapes

As noted in Sect.  1, the central idea of the proposed 
work is to replace the intricate cross-sections of struc-
tural shapes with a solid rectangular (in 2D) or cuboid 
or cylindrical (in 3D) section of equivalent bending and 
axial stiffness. The advantage of doing this, is that the 
equivalent solid section can be meshed with much larger 
elements than what would be needed to mesh the structural 
shape, providing substantial computational savings. The 
proposed procedure is similar to the standard treatment 
given in mechanics of materials to composite beams (Hib-
beler and Yap 2022) made of multiple materials.

In this work we consider H-beam, square-tube and 
cylindrical-tube structural shapes. We find an equivalent 
rectangular section in 2D and an equivalent cuboid sec-
tion in 3D for all shapes. For the tubular section, a circular 
equivalent section could also be considered, but we do not 
consider it here for ease of implementation.

2.1  Determination of dimensions and modulus 
of equivalent section

The equivalent-section methodology starts from the con-
sideration that the original and equivalent beams must 
have the same axial deformation under axial loading. To 
ensure equivalency of the bending deformation, we start 
by considering the Euler-Bernoulli equation for beam 
deflection

where u denotes the beam deflection, p is the applied verti-
cal load by unit length, E is the modulus of elasticity, and I 
is the second moment of area. Since the real and equivalent 
beams must have the same solution u(x), it can be readily 
concluded that E0I0 = EeIe , where the subscripts 0 and e 
denote the original and equivalent properties, respectively. 
Note that E0 corresponds to the modulus E of the actual 
material the shape is made of, but we add the sub-index 
for clarity to differentiate it from the equivalent modulus 
Ee . Equation (1) must be satisfied for any orientation of the 
cross-section area, i.e., the Mohr’s circle of the inertia scaled 
by E has to be the same for the original and equivalent sec-
tions. Therefore, equivalent properties for any cross-section 
need only be computed for its principal axes. In the case of 
the sections considered in this work, the principal axes cor-
respond to the symmetry axes. For original cross-sections 
that are not symmetric (e.g., C-channels), one need simply 
consider asymmetric equivalent sections (i.e., they can be 
rectangular but with an off-center bending axis).

(1)EI
d4u

dx4
 p = 0,

The second relationship considered is the differential 
equation for axial strain of a bar made of a linearly elastic 
material, given by

where 𝛿 is the axial deformation, T is the axial load, and A 
the cross-section area. As before, the axial deformation of 
the original and equivalent beams should be the same, which 
is ensured when E0A0 = EeAe . It should be noted that both 
original and equivalent beams are assumed to have the same 
length. The previous considerations can be summarized in 
the following system equations:

The superscripts w and s denote the weak and strong axes 
of the section, respectively. We consider an equivalent rec-
tangular section of dimensions 2a  2b . For 2D-problems, 
we assume the section’s strong and weak axes lie in-plane 
and out-of-plane, respectively, and the analysis is performed 
considering plane-stress conditions. Note that we use a rec-
tangular section not only for the H-beam and square-tube 
shapes, but also for the circular tube, since the plane-stress 
analysis assumes a uniform out-of-plane thickness of the 
2D-elements. For 3D-problems, the rectangular section cor-
responds to a cuboid-shaped primitive. For this rectangular 
section, the equivalent modulus Ee and dimensions a and b 
can be easily obtained from (3) as

Note that since the foregoing derivation of equivalent modu-
lus and dimensions is based on the Euler beam equation 
(1), the equivalency is valid only under the conditions for 
which the Euler beam theory is valid, namely, that: a) the 
material is homogeneous, which is automatically satisfied 
by assuming a single modulus Ee for the equivalent section; 
b) the undeformed beam is straight, which is satisfied by the 
geometric representation of the beams used in the proposed 
method and described in Sect. 4; and c) that the cross-sec-
tion remains flat under deformation. The latter requirement 
is satisfied by imposing a minimum length for the beams, 
just like in Euler beam theory (see, for example, Öchsner 
2021), as demonstrated in Sect. 2.2.

It should also be noted that the polar moment 
of inertia Je of the equivalent section satisfies 

(2)d

dx

(
AE

d𝛿

dx

)
+ T = 0,

(3)
E0I0

w = EeIe
w

E0I0
s = EeIe

s

E0A0 = EeAe.

(4)

E0I0
w = Ee

4ba3

3

E0I0
s = Ee

4b3a

3

E0A0 = Ee4ab.
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EeJe = EeI
w
e
+ EeI

s
e
= E0I

w
0
+ E0I

s
0
= E0J0 . This relation is 

independent of the coordinate system, since Iw
0
+ Is

0
 is the 

trace of the area moment of inertia tensor, which is an invar-
iant. Therefore, even though the polar moment of inertia 
should not be used for non-circular cross-sections that may 
experience out-of-plane warping, it is reasonable to assume 
the original and equivalent sections have similar torsional 
rigidity.

2.2  Numerical validation

To validate that the equivalent sections provide a reasonably 
accurate approximation of the bending and axial deformation 
of beams made of structural shapes, we perform a compari-
son of finite element analyses of beams made of the original 
structural shape and of the equivalent section. We consider 
three structural shapes (see Fig. 1): an IPE 220 H-beam 
with dimensions tf = 9.2 mm, tw = 5.9 mm, bf = 110 mm, 
and d = 220mm; an RHS rectangular tube with dimensions 
bf = 120 mm, d = 200 mm, and tf = 8 mm; and a CHS cir-
cular tube of diameter d = 219.1 mm and tf = 5 mm.

Table 1 shows the cross-section properties of the original 
section, and the dimensions, modulus and cross-sectional 
properties of the respective equivalent section obtained from 
(4).

Two types of problems are considered, depicted in Fig. 2: 
a cantilever beam and a simply supported beam. Five inde-
pendent loads are applied to the cantilever beam: concen-
trated bending loads FX , FY and an axial load FZ applied at 
the tip, and distributed loads WX and WY uniformly applied 
along the beam’s length. Four independent loads are applied 

to the simply supported beam: concentrated bending loads 
FX and FY applied at the center point, and distributed loads 
WX and WY uniformly applied along the beam’s length.

The beams are modeled with hexahedral elements. For 
beams made of the equivalent section, a 3D model made 
of hexahedral elements is considered. Finite element mod-
els for beams of different lengths are created, and the cor-
responding linear elastic analyses performed. The analy-
ses are performed with the commercial software ANSYS 
Static Structural. The effectiveness of the equivalent-section 
approach is determined by computing the relative error of 
the y-displacement uy at the center point of the cross-section, 
measured at the tip of the cantilever beam and the center 
point (along z-direction) of the simply supported beam:

For tubular-shape sections, which are hollow and thus have 
no finite element node at the center point of the cross-sec-
tion, we simply add a shell mesh with negligible thickness 
at the z-position where the displacement is measured (i.e., 

(5)er =
|uye  uyr |

uyr
.

Fig. 1  Structural shapes considered in this work

Table 1  Cross-section properties of the original and respective equiv-
alent sections

H-section Rectangular tube Circular tube

Shape IPE 220 RHS 200x120 / 8 CHS 219.1 / 5
A0( mm2) 3213.44 4864.00 3363.07
I0

s( 106 mm4) 26.53 26.01 19.28
I0

w( 106 mm4) 2.04 11.55 19.28
E0(GPa) 200 200 200
a(mm) 157.37 126.66 131.15
b(mm) 43.69 84.41 131.15
Ee(GPa) 23.370 22.747 9.777
Ae( 10

3 mm2) 27.50 42.77 68.80
Ie

s( 106 mm4) 227.02 228.70 394.40
Ie

w( 106 mm4) 17.49 101.57 394.40

Fig. 2  Boundary conditions and loading cases considered in the vali-
dation
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at the tip for the cantilever beam, and at the center for the 
simply supported beam).

Figure 3 shows the displacement error of (5) for the 
H-section as a function of the ratio L/d of the length of the 
beam to its characteristic dimension. Figures for the rectan-
gular-tube and circular-tube shapes are not shown for brev-
ity, but the results are similar. All sections present a mono-
tonic decrease of the error with increasing beam length. The 
error for short beams is large, and this is expected since 
the assumptions of Euler beam theory are no longer valid. 
For beams with L d  10 , the relative error is at most 3%, 
which we deem to be sufficiently accurate for the optimiza-
tion. Therefore, in the proposed optimization technique, we 

will consequently impose a constraint that L d  10 for all 
beams.

3  Geometry projection

To map the geometric primitives representing the equivalent 
shapes onto the finite element mesh for analysis, we use the 
geometry projection method (Norato et al. 2015; Zhang et al. 
2016). A projected density is computed as

where zc denotes the vector of design parameters for primi-
tive c, 𝜙c is the signed distance to the boundary 𝜕𝜔c of primi-
tive c, r is a sampling radius, and

is a differentiable approximation of the Heaviside function. 
Although the projected density can be computed at any point 
in space, an element-wise projected density is computed at 
the centroid of each element. The radius r of the sample 
window is typically chosen relative to the element size (for 
instance, equal to the element largest diagonal), and it is 
fixed throughout the optimization.

An important and unique aspect of geometry projec-
tion methods is the introduction of a membership variable 
𝛼c  [0, 1] . This variable, as in solid isotropic material penal-
ization (SIMP) techniques used in density-based topology 
optimization, is penalized so that a value of 0.0 indicates 
the primitive must be removed altogether from the design 
regardless its dimensions and position, whereas a value of 
1.0 indicates the primitive must be retained in the design. 
The membership variable is used to define an effective den-
sity at element e as

where 𝜇 is a penalization function and q is the penalization 
parameter. For example, for SIMP penalization, 𝜇(x, q) = x q . 
The effect of this membership variable is that it makes it 
easier for the optimizer to remove a primitive and avoid fall-
ing in poor local minima. Moreover, the use of the member-
ship variables often leads to better convergence behavior.

To consider a structure made of multiple primitives, they 
are combined via a Boolean union. When the representation 
of the primitives is implicit, as is the case for the signed 
distance function, the Boolean union corresponds to the 
maximum of the signed distance functions for all primitives 

(6) c

 
"c

(
p, zc

)

r

)
 =

⎧
⎪
⎨
⎪⎩

0, if "c∕r < −1

H̃
(
"c∕r

)
, if − 1  "c∕r  1

1, if "c∕r > 1

,

(7)H̃(x) =

 
1  arccos x+x

√
1 x2

𝜋
, in 2D

1

2
+ 3x

4
 x3

4
, in 3D.

(8)𝜌ce
(
x, zc, q

)
 = 𝜇

(
𝛼c 𝜌c, q

)
,

Fig. 3  Relative displacement error for H-beam with rectangular 
equivalent section
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(Shapiro 2002). Since the maximum function is not differen-
tiable and we wish to employ efficient gradient-based opti-
mization methods, we replace the maximum function with a 
differentiable approximation. Here, we consider the softmax 
approximation introduced by Smith and Norato (2021) that 
computes the effective elasticity tensor for element e as the 
linear combination

where  c is the elasticity tensor for the material that primi-
tive c is made of,  void is the elasticity tensor of a weak 
material to ensure a well-posed analysis, nc is the number of 
primitives, and  𝝆e   

nc is the vector of effective densities 
𝜌ce for element e. The weights of the softmax linear combi-
nation with parameter p are given by

Note that the values of  (c, 𝝆̂e, p) for all primitives form a 
one-hot vector, with a component value  1.0 corresponding 
to the largest value of 𝜌ce of any primitive c, and  0.0 for 
all other vector components. Therefore, a point in the design 
region is effectively assigned the elasticity tensor of at most 
one of the available primitives. An advantage of this combi-
nation scheme over previous expressions used in geometry 
projection methods (e.g., those used in Norato et al. 2015; 
Zhang et al. 2016) is that it easily accommodates situations 
where the primitives are made of different and/or anisotropic 
materials. Finally, the volume of the structure is computed as

where ve is the volume of element e and

is a combined density. Note that an advantage of the softmax 
approximation as compared to other differentiable approxi-
mations of the maximum is that it renders a combined den-
sity strictly in the range [0, 1].

The computation of design sensitivities of a function J 
with respect to a geometric parameter zi in geometry projec-
tion techniques simply requires a chain rule:

where DJ dzi denotes the total derivative, 𝜕J 𝜕𝜌e is com-
puted as in density-based methods (without penalization), 
and 𝜕𝜌e 𝜕zi can be computed from the geometry projection.

(9) e =  void +

nc∑
c

 (c, 𝝆̂e, p) $̂ce( c   void),

(10)𝛽(i, x, p)  = softargmax
i

(i, x, p) =
epxi 
j e

pxj
.

(11)V =
∑
e

 "eve,

(12) "(x) =

nc∑
c

#(c, 𝝆̂e, p) "̂ce

(13)DJ

dzi
=

ne∑
e

𝜕J

𝜕𝜌e

𝜕𝜌e
𝜕zi

+
DJ

dzi
,

4  Geometric representation of equivalent 
sections

The offset bars commonly used in geometry projection tech-
niques (cf. Norato et al. 2015; Smith and Norato 2020 do 
not accommodate the rectangular and cuboid equivalent sec-
tions detailed in Sect. 2 because they are circular cylinders 
with semispherical ends. This chapter introduces a novel 
geometric representation for the equivalent section shapes. 
The computation of the signed distance for the proposed 
representation differs from that of offset solids, for which it 
simply corresponds to subtracting the radius (or thickness) 
rb of the offset solid from the distance dbe to the medial axis 
(or surface) of the primitive.

The representation proposed in this work corresponds to 
a cuboid with rounded edges. The boundary of the primi-
tive is partitioned in multiple regions. A coordinate trans-
formation follows, which allows a ready identification of the 
closest-surface region, after which a straightforward distance 
calculation to that region is made. Therefore, as with offset 
solids, the computation of the signed distance and its design 
sensitivities can be efficiently made in closed form as a func-
tion of the design parameters, which precludes the need for 
iterative techniques to compute the signed distance (as in, 
e.g., Norato 2018).

The rounded corners and edges in 2D and 3D, respec-
tively, ensure the signed distance field is differentiable 
everywhere and consequently renders a robust behavior 
with gradient-based optimization techniques. Although 
the proposed representation is formulated for rectangular 
and cuboid regions, the region subdivision strategy can be 
generalized to polygonal (or polytope) shapes. While other 
feature-mapping methods have considered such representa-
tions (see, for instance, Chandrasekhar (2023); Zhang and 
Zhou (2018)), these representations employ sharp corners 
and edges, which lead to non-differentiability of the signed 
distance.

4.1  Definition of the primitives

For rectangular equivalent sections, we propose a rep-
resentation with rounded corners like the one shown in 
Fig. 4. Although the rounded corners ensure the distance 
function is differentiable at points along the diagonals of 
the rectangle, it should be noted that the distance func-
tion is always non-differentiable at points on the medial 
axis. A local coordinate system (x , y , z )c is associated 
with the rectangular cross-section of primitive c, with 
the x′ and y′ axes aligned with the sides of dimensions a 
and b, respectively, and the z′ axis perpendicular to the 
plane of the section. The dimensions, position, and orien-
tation of the bar c with rectangular equivalent section are 
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{a, b, Lc, qc, tc, r
 } , where qc = {q0, q1, q2, q3}c is the vector 

of quaternions that determines the primitive’s orienta-
tion, and t = {tx, ty, tz}c is the position of the center of the 
primitive in the global coordinate system. The orientation 
of the primitives via quaternions is detailed in Sect. 4.4.

The transformation of a point p′ from the local primi-
tive coordinate system to the global coordinate system is 
given by

where R is the rotation matrix given by (21). Conversely, the 
global-to-local system transformation is given by

where we use the fact that R is a rotation matrix and there-
fore orthogonal, hence its inverse equals its transpose.

4.2  Signed distance field computation

The computation of the signed distance for the proposed 
rectangular equivalent section rests on the fact that the dis-
tance in Euclidean space is rotation-invariant with respect to 
the coordinate system. Figure 5 illustrates the concept of the 
signed distance computation for the proposed representation 

(14)p = R(  qc)p
 + tc,

(15)p = RT (  qc)(p − tc),

using a 2D-representation only. To compute the distance 
from a point p to the primitive c, we first transform p p′ 
to the local coordinate system (x , y , z )c of the primitive 
using (15). Using the components of p′ , it is then simple to 
determine in the local coordinate system which of the eight 
regions of the primitive shown in Fig. 5 contains the clos-
est point to p′ , and a simple expression renders the signed 
distance. We can make an additional simplification to this 
procedure by taking advantage of the fact that the proposed 
section is symmetric with respect to the x′-z′ and y′-z′ planes: 
we first reflect the point so that it always lies on the first 
quadrant of x′-y′:

Consequently, we only need to check  p′ for Regions 1–3, 
see Table 2.

For 2D design problems, for which we employ a 
plane-stress assumption in the analysis and consequently 
employ a rectangular equivalent section, it is assumed the 
weak axis of the beam is out of plane. Also, in 2D it is 
easier to directly work with a single orientation angle 𝜃c 
instead of the two quaternions. With these considerations, 
the vector of five design variables for bar c in the case of 
2D-problems is given by z2D

c
= {Lc, 𝜃c, txc , tyc , 𝛼c} ; the 

out-of-plane thickness of the plane elements used for the 
analysis is set to b; Lc corresponds to the in-plane length of 
the bars; and the in-plane-width of the bars is fixed and set 
to a. It should be noted that this geometric representation 

(16) p = |p |.

Fig. 4  Primitive representation

Fig. 5  Regions used to compute the signed distance field
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allows for the optimization of structures made of struc-
tural profiles with arbitrary cross-sections (for example, an 
H-beam) as a solid bar in 2D. The vector of nine design 
variables for bar c in the case of 3D-problems is given by 
z3D
c

= {Lc, q0c , q1c , q2c , q3c , txc , tyc , tzc , 𝛼c} . As before, a and b 
are fixed.

For the 3D-bars with rectangular cross-section proposed 
in this work (see Fig. 5(b)), we use a similar strategy to sub-
divide the space in regions. The cuboid has three planes of 
symmetry and so, as before, we obtain the reflection  p′ of p′ 
that lies on the first quadrant ( x′, y′, z′  0 ), and then use the 
components of  p′ to determine which of the seven regions 
shown in Fig. 5(b) it belongs to; an appropriate expression 
is subsequently used to compute the signed distance, see 
Table 3.

It should be noted that the equivalent cross-section dimen-
sions a and b are non-designable in the optimization, since 
they are chosen to provide the equivalent properties of the 
structural profiles, as described in Sect. 2. All remainder 
parameters describing the dimensions, position, and orienta-
tion of the bars are designable. That is, the vector of design 
variables for bar c is given by zc = {Lc, qc, tc, 𝛼c} , where we 
recall that 𝛼c is the bar’s membership variable. This amounts 
to five design variables in 2D (with one angle and two com-
ponents of the translation vector), and nine design variables 
in 3D. The edges’ rounding radius r  is fixed and chosen as 
much smaller than the bar’s cross-section dimensions. Note 
that having Lc as a design variable allows the easy imposition 
of the minimum length requirement described in Sect. 2.2, as 
it can be prescribed as a lower bound on the variable.

4.3  Sensitivities of the signed distance

To enable the use of efficient gradient-based non-linear pro-
gramming methods for the optimization, it is necessary to 
compute design sensitivities of the objective and constraints 
of the optimization problem. As noted in Sect. 3, this requires 
a chain-rule computation, for which the design sensitivities 
of the signed distance are required. As seen from the expres-
sions listed in Tables 2–3, the signed distance has both an 
explicit dependence on the bar’s dimensions a, b, and Lc , and 
an implicit dependence on the bar’s quaternions qc and transla-
tion vector tc through the transformation (15). Therefore, the 
signed-distance sensitivities with respect to the design variable 
zi are computed as

with

which we obtain by differentiating (15), and

which we obtain by differentiating (16). Clearly, DR dzi = 0 
for any design variable other than the bar’s quaternions. 
The derivatives of R with respect to the quaternions can 
be obtained by differentiation of (21)–(23). The term 
Dtc dzi = 1 when zi corresponds to one of the components of 
tc , and it is zero otherwise. The terms  "c  p̃

′ and 𝜕𝜙c 𝜕zi 
can be readily derived from Tables 2 and 3 for 2D- and 
3D-problems, respectively.

An important observation is that it can be readily shown 
that the expressions for the signed distance are the same at the 
points/edges between the regions. For example, it can be seen 
in Table 2 that when  y = b − r∗ , the expression for the signed 
distance of Region 2 simplifies to a   p′

x
 , which is the same 

expression for Region 1; and when  x = a − r∗ , the expression 

(17)D 

dzi
=
" 

"p̃ 

T Dp̃ 

dp 

Dp 

dzi
+
" 

"zi

(18)
Dp 

dzi
=

DR

dzi

T

(p − tc) − RT Dtc
dzi

,

(19)D  p 

dp 
= diag(sgn(p )),

Table 2  Signed distance for rectangular region in 2D. 
 x ∶= a − r∗ −  p′

x
 ;  y ∶= Lc − r∗ −  p′

y

Region Definition  
c
(p̃ 

, z
c
)

1 ( y   x) ∧ (0   y)  x + r∗

2 (0 >  x) ∧ (0 >  y) r −
 
Δx2 + Δy2

3 ( y >  x) ∧ (0 <  x)  y + r∗

Table 3  Signed distance 
for cuboid region in 
3D.  x ∶= a − r∗ −  p′

x

;  y ∶= b − r∗ −  p′
y
 ; 

 z ∶= Lc − r∗ −  p′
z

Region Definition  
c
(p̃ 

, z
c
)

1 ( x   y) ∧ ( y   z) ∧ (0 <  y) ∧ (0 <  z)  x + r∗

2 ( x >  y) ∧ ( y   z) ∧ (0 <  x) ∧ (0 <  z)  y + r∗

3 ( x >  z) ∧ ( y >  z) ∧ (0 <  x) ∧ (0 <  y)  z + r∗

4 (0   x) ∧ (0   y) ∧ (0 <  z) r −
 
Δx2 + Δy2

5 (0   x) ∧ (0 <  y) ∧ (0   z) r −
 
Δx2 + Δz2

6 (0 <  x) ∧ (0   y) ∧ (0   z) r −
 
Δy2 + Δz2

7 (0   x) ∧ (0   y) ∧ (0   z) r −
 
Δx2 + Δy2 + Δz2
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for the signed distance of Region 2 simplifies to b   p′
y
 , which 

is the same expression for Region 3. This is expected, as the 
bar is a regular solid and the signed distance must be continu-
ous. However, importantly, the signed-distance derivatives are 
also continuous at the shared points/edges. Again for Table 2, 
for example, 𝜕𝜙 𝜕a = 1 and 𝜕𝜙 𝜕b = 0 when  y = b − r∗ for 
both Region 1 and Region 2. It can be verified that all other 
design derivatives (i.e., with respect to the quaternions and 
translation vector components) are also the same. This shows 
that the rounded corners ensure continuity of the design sen-
sitivities of the signed distance, which leads to robustness of 
the gradient-based optimization.

4.4  Primitives orientation via quaternions

In addition to specifying the primitive’s dimensions and posi-
tion, the orientation of the primitives must also be stipulated. 
Early geometry projection techniques for topology optimi-
zation with plates (e.g., Zhang et al. 2016) employed Euler 
angles to describe the primitive’s orientation. However, as 
noted in Smith and Norato (2022b), this description of the 
orientation can lead to a gimbal-lock-type of situation where 
one design of freedom is lost, making it more difficult for the 
optimizer to progress towards a good design. To circumvent 
this problem, Smith and Norato (2022b) introduced the use of 
quaternions to define the orientation of the primitive.

A quaternion is an extension of the concept of complex 
number, with one real and three imaginary parts. The property 
of interest of these numbers (specifically, of unit quaternions) 
is their ability to represent orientation in a 3D space (Kuipers 
2020). The parameterization of the orientation of a primitive 
with quaternions has the advantage over an Euler-angles rep-
resentation that it does not suffer from gimbal lock. Moreover, 
rotations of the primitive and design derivatives of these rota-
tions can be easily computed.

The quaternion for primitive c  is given by 
qc = {q0, q1, q2, q3}c   

4 . Euler’s rotation theorem states 
that any rotation of a rigid body or coordinate system can be 
represented by a single rotation 𝜃 about an axis a called the 
Euler axis. The quaternion is related to this rotation as

The rotation matrix associated with the unit quaternion  q 
is given by

for 3-dimensional rotations, with

(20)q = {cos(𝜃 2), a1 sin(𝜃 2), a2 sin(𝜃 2), a3 sin(𝜃 2)}.

(21)

R3D =
 
⎢
⎢⎣

1  2  q2
2
 2  q2

3
2  q1  q2  2  q0  q3 2  q1  q3 + 2  q0  q2

2  q1  q2 + 2  q0  q3 1  2  q2
1
 2  q2

3
2  q2  q3  2  q0  q1

2  q1  q3  2  q0  q2 2  q2  q3 + 2  q0  q1 1  2  q2
1
 2  q2

2

⎤
⎥
⎥⎦

For rotations in the e1  e2 plane about the e3 axis, 
q1 = q2 = 0 . Using the half-angle formulas together with 
(20) and (22), it can be readily shown that (21) simplifies to 
the well known rotation matrix

5  Optimization problem

The optimization problem considered in this work is that 
of minimizing the structural compliance subject to a con-
straint on the amount of material. While consideration for 
other structural criteria is obviously necessary for struc-
tural design, it is outside of the scope of this work and 
deferred to future work. The minimum-compliance prob-
lem is stated as

where z = {z1, , znc} is the vector of design variables for 
the nc bars, with zc the vector of design variables for bar c as 
described in Sect. 4.2; also,

is the structural compliance, u is the displacement vector, f 
is the design-independent force vector, and K is the global 
stiffness matrix. The logarithmic form of the objective func-
tion, which was introduced in Smith and Norato (2022a), 
exhibits better convergence behavior than the compliance 
itself and is adopted in this work.

The volume fraction of the structure relative to the design 
region is denoted by v, and it is defined as

where V is the volume of the structure given by (11) and we 
recall ve is the element volume. It is important to note that 

(22) q =
q

 q .

(23)R2D =
 
⎢
⎢⎣

cos 𝜃 sin 𝜃 0

 sin 𝜃 cos 𝜃 0

0 0 1

⎤
⎥
⎥⎦
.

(24)

min
z

J(z)  = log(C(z) + 1)

subject to:

𝐊(z)𝐮(z) = f

v(z)   veq

gcont(z)  "cont

gover(z)  1

z
i
 zi   zi,∀zi ∈ {z},

(25)C(z) = u (z)f

(26)v(z)  =
V(z) 
e ve

,
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the volume fraction computed via (26) corresponds to the 
equivalent section. Therefore, if a particular volume fraction 
limit  v is desired for the actual original section, an equiva-
lent limit  veq must be used for the optimization. This can be 
simply computed as

The constraints gcont and gover in (24), detailed in the sequel, 
ensure the bars remain fully contained within the design 
region, and that bars do not overlap in undesired ways, 
respectively.

As in previous geometry projection techniques (cf. Norato 
et al. 2015), the design variables are scaled to improve con-
vergence and to enable the imposition of a uniform move 
limit for all design variables:

where z
i
 and zi denote the lower and upper bounds of design 

variable zi , respectively. A move limit m is imposed on the 
design variables at iteration I to prevent large, erratic design 
steps in the optimization:

The optimization is stopped after any of the following three 
criteria are satisfied: 1) the relative change of the objec-
tive function in two consecutive iterations does not exceed 
a specified threshold, i.e., |J(I)  J(I 1)|∕J(I)

 𝜀J  ; 2) the 
maximum relative change of any design variable in two con-
secutive iterations does not exceed a specified threshold, i.e., 
 z(I)  z(I 1) ∞  𝜀z ; or 3) the iteration reaches a maximum 
number of iterations maxiter.

5.1  Containment constraint

One important practical consideration is to ensure that 
primitives are fully contained within the design region. If 
a portion of a primitive lies outside the design region, it 
has no effect on the analysis and should be removed in the 
physical realization of the structure. This could lead to cuts 
of the primitives that are highly impractical (for instance, 
a cut at a small angle relative to the long axis of the bar). 
Moreover, a bar that lies partially outside the design region 
and is therefore cut in the fabrication could end up violat-
ing the minimum length constraint. For these reasons, it is 
desirable to ensure that the bars lie completely within the 
design region.

One way to enforce this requirement is by using the so-
called ghost-points technique (Zhang et al. 2018), whereby 

(27) veq =
Aeq

A0

 v.

(28) zi =
zi  z

i

zi  z
i

,

(29)max
(
0,  z(I 1)

i
 m

)
  z(I)

i
 min

(
1,  z(I 1)

i
+ m

)
.

a set of ghost points is created just outside the boundaries of 
the design region. A constraint is introduced in the optimi-
zation that a differentiable approximation of the maximum 
combined density of (12) at these points is smaller than a 
specified value 0 <  n ≪ 1 . In other words, the combined 
density of any ghost point must be near zero. While this 
method is effective and has the advantage of being independ-
ent of the geometric representation used for the primitives, 
here we adopt the simpler approach introduced in Kazemi 
et al. (2020), whereby we force the difference between the 
volume of a primitive computed via the geometry projection 
(i.e., (11), here denoted as V numc

 ) and that computed directly 
from the primitive’s geometric parameters (here denoted as 
V geomc

 ) to be negligible. We define a volume difference ratio 
as

If a primitive c is entirely contained in the design space, 
𝜉c should be close to zero. It is desirable to define a single 
constraint for all of the primitives, as otherwise we would 
have as many constraints as primitives, which makes it 
increasingly difficult for non-linear programming methods 
to incorporate in the optimization. To this end, we employ 
the lower-bound Kreisselmeier-Steinhauser (LKS) function 
as a differentiable approximation of the maximum volume 
difference ratio of all primitives, and define the containment 
function as

with

where k is a parameter such that as k    , LKS(x)  max(x)

.

5.2  Overlap constraint

A second aspect that must be addressed for practical pur-
poses is the overlap of primitives. There is nothing pre-
venting the optimizer from placing primitives such that 
they overlap so as to obtain a larger structural member. For 
example, the optimizer may place one primitive right on 
top of another so that the effective load path provides, e.g., 
larger bending stiffness. While this is numerically correct, it 
is impractical from a fabrication and assembly point of view. 
We therefore wish to avoid these overlaps. This problem was 
addressed previously in Smith and Norato (2019) for offset 

(30)𝜉c =

(
V geomc

 V numc

V geomc

)2

.

(31)gcont(z) = LKS
c

(
𝜉c(zc)

)
,

(32)LKS
i
(x)  =

1

k
ln

(
1

n

∑
i

ekxi

)
, x ∈  n,
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bars with circular ends, whereby a no-overlap constraint 
limits only allows the ends of the bars to be connected to 
other bars. That is, it is possible for the end regions of a bar 
to be connected to any portion of another bar; but overlaps 
between the middle portion of two bars are precluded.

The approach formulated in this work is in the same spirit 
as the constraint of Smith and Norato (2019), but it avoids 
the need for Boolean operations by using an auxiliary primi-
tive associated to each bar. These auxiliary primitives are 
defined by introducing two positive parameters fL < 1 and 
fa > 1 . For 2D-bars with dimensions a  Lc the dimensions 
of the corresponding auxiliary primitive are faa  fLLc , see 
Fig. 6(a). The idea of the proposed overlap constraint is that 
the sum of the projected densities corresponding to all the 
auxiliary primitives at any point in the design region should 
not exceed 1.0. This means that two auxiliary primitives 
cannot overlap. cf. Fig. 6(b). On the other hand, overlaps 
between the regions of each bar outside of the auxiliary 
primitives with any region of another bar are permitted, cf. 
Fig. 6(c). The overlap constraint can be similarly formulated 
for 3D-bars by defining an auxiliary primitive with dimen-
sions faac  fab  fLLc.

As with the containment constraint, we wish to apply a 
single constraint for all the elements in the mesh. We there-
fore use again the LKS function and define the overlap con-
straint as

where 𝜌 
ce

 is the projected density of the auxiliary primi-
tive of the bar c at the centroid of element e. This projected 
density is computed via (6) and using the signed distance 
corresponding to the dimensions of the auxiliary primitive.

The purpose of the term 𝛼𝜂(1 𝛼)
c

 is to make sure that com-
ponents with low membership variables are not counted in 
the sum. A continuation strategy is used for this term and 
controlled by the parameter 𝜂 . For  > 0 , there is a range 
  [0, #̄] for which this term is close to zero. The larger the 
value of 𝜂 , the larger  " . At the beginning of the optimization, 
𝜂 is set to a value of, e.g., 𝜂0 = 6 . For this value, for exam-
ple,  "(1  c)c < 10 3 for 𝛼c  [0, 0.225] . This means that bars 
with membership variable values less than 0.225 are effec-
tively not counted in the overlap constraint, which allows 
for more overlaps in the initial optimization iterations. The 
parameter 𝜂 is subsequently decreased every time the rela-
tive change in the objective function at iteration I relative 
to the previous iteration falls below a specified value, i.e., 
when |J(I)  J(I 1)|∕|J(I 1)| <  " . The decrease is given by

As 𝜂 decreases,  " decreases and low-membership variable 
variables are penalized further, until overlaps are completely 
penalized for 𝜂  0.

It should be noted that we are applying the overlap con-
straint using the bars with the equivalent sections. Since 
the equivalent sections are larger than the original ones, a 
design with the equivalent sections that satisfies the overlap 
constraints will guarantee there will be no overlaps with the 
original sections. However, it is possible that there is a bet-
ter design with the original sections than the optimal design 
obtained with the equivalent sections (i.e., with lower value 
of J  ), such that the equivalent-section representation of that 
design presents overlaps.

It is worth noting this overlap constraint is not straight-
forward to implement in ground-structure methods that use 
1D elements for the analysis, (cf. Changizi and Jalalpour 
2017)), since it is not trivial to compute intersections of 
the bars at arbitrary orientations and positions based on 
their geometric representations. It is also not straightfor-
ward to implement such an overlap constraint in feature-
mapping methods that combine the geometric components 
prior to mapping the geometric representation onto the 
analysis mesh (the so-called combine-then-map strategies 
in Wein et al. (2020)), since once the components have 
been combined into a single representation, it is not pos-
sible to easily determined where they intersect.

The optimization problem is solved using the method 
of moving asymptotes (MMA) of Svanberg (1987). The 

(33)gover(z) = LKS
e

(∑
c

𝛼
𝜂(1 𝛼c)
c 𝜌∗

ce

)
,

(34)𝜂  max(𝜂min, 𝜂  Δ𝜂).

Fig. 6  Auxiliary primitives for overlap constraint
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MMA parameters used to perform the optimization are 
presented in Table 4 for completeness and to ensure repli-
cability of our results; the reader is referred to the forego-
ing reference for a detailed explanation of these param-
eters. As in Guest et al. (2011); Norato et al. (2022), we 
modify the parameter asyinit in MMA to produce a 
more conservative approximation of the optimization func-
tions in the first two optimization iterations.

The computation of the sensitivities of the compliance 
and volume fraction is the same as that presented in, for 
example, Norato et al. (2015); Smith and Norato (2020). 
The only difference is that the derivatives of the signed 
distance for the proposed geometric representation in this 
work are those of Sect. 4.3 as opposed to those of an offset 
bar presented in those works. The sensitivities of the over-
lap constraint can be readily obtained by differentiation of 
(33), which in turn requires the derivatives of the projected 
density of (6) and the signed distance of Sect. 4.3.

A flowchart showing the high-level steps of the pro-
posed method is shown in Fig. 7

6  Results

This section presents examples of the implementation of the 
proposed method to solve the minimal-compliance topology 
optimization problem formulated in Sect. 2. Every example 
is solved using an H-beam (IPE 220), a rectangular tube 
(RHS 200  120 / 8) and a cylindrical tube (CHS 219.1 / 
5). The beams are all made of steel, with properties shown 
in Table 1. To make the examples comparable, equivalent 
volume fraction limits  veq are computed for each of these 

sections so that the real volume fraction limit  v is the same 
for all designs. Three examples are presented: the well-
known 2D Messerschmitt-Bölkow-Blohm (MBB) beam, 
a 2D bridge, and a 3D bridge. A plane-stress condition is 
assumed for the 2D models. Table 4 lists the values of all 
method parameters used. For the finite element analysis, we 
use square and cubic elements in 2D and 3D, respectively, 
whose size h is chosen so that h  min(a, b) , which, as dis-
cussed in Sect. 1, is necessary to ensure continuous sensi-
tivities. All problems are solved using a workstation with 
an AMD Rysen 9 7950X3D 16-Core Processor, base clock 
speed of 4.2 GHz, an NVIDIA GeForce RTX 4090 (24 GB) 
card, and 64GB of RAM.

6.1  2D MBB-beam

Only half of the MBB-beam is modeled using symmetry 
boundary conditions on the right edge, as shown in Fig. 8. 
A real volume fraction limit of steel  v of 3% is imposed on 
the design.

Sensitivities for all of the functions in problem (24) are 
verified against finite-difference sensitivities. For this prob-
lem, we use the values fa=1.7 and fL=0.65 for the overlap 
constraint, and 𝜀J = 8  10−6 and 𝜀z = 4  10−3 for the stop-
ping criteria.

To exemplify the progression from the initial to the opti-
mal design, Fig. 9 shows some intermediate designs during 
the optimization for the structure obtained with a circular 
tube. The initial design, composed of 25 disconnected bars, 
is shown in Fig. 9(a). The lengths Lc of all bars in the initial Fig. 7  Flowchart of the optimization process

Table 4  Optimization 
parameters. Note Evoid and 𝜈void 
are the elastic modulus and the 
Poisson constant, respectively, 
that define the elasticity tensor 
of the void material  void in (9)

Property Value Reference

q 3 (8)
m 0.05 (29)
maxiter 300 Sect. 5
𝜀cont 0.002 (31)
kLKS 8 (31)
kLKS 8 (33)
𝜖2D𝜂 0.0004 (34)
𝜖3D𝜂 0.0005 (34)
𝜂min 0.1 (34)
 𝜂 1 (34)
𝜂0 6 (34)
r (mm) 25 Tables 2, 3
Evoid 10 4 (9)
𝜈void 0.33 (9)
a0 1 MMA
a1 0 MMA
c1 1000 MMA
d1 1 MMA
asyinit 0.1 MMA
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design are set to satisfy the minimum length condition 
( L d  10 ) discussed in Sect. 2. The history of the objective 
and constraint functions for this circular-tube MBB-beam 
design shown in Fig. 10 indicates the method exhibits good 
convergence and feasibility of the design. This behavior was 
observed in all the examples presented in this work.

The optimal MBB-beam designs for all three sections are 
shown in Fig. 11 along with their corresponding combined 
density plots. Table 5 presents information related to each 
section, including: the dimensions 2a  2b of the equivalent 
cross-section; the bounds on the design variables Lc , 𝜃c , tx , ty , 
and 𝛼 ; the number of elements nx  ny in each dimension; the 
corresponding total number of elements in the mesh Ne ; the 
number of iterations to convergence Nite ; and the equivalent 
volume fraction  veq , the average wall-clock time per iteration 
tite , the total wall-clock time ttotal for the entire optimization; 
and the compliance C of the optimal designs.

It is observed that, as expected, the optimal designs 
for all three sections look different. For instance, as can 
be seen in Table 5, the optimal design obtained with the 
rectangular tube performs the worst, and the H-beam 
performs the best (i.e., they have the highest and lowest 

compliance, respectively). This is as we would expect, 
since the applied loading is in-plane, and the H-beam 
and rectangular tube offer the highest and lowest in-plane 
inertia-to-volume ratio, respectively; that is, the ratio Is

0
 A0 

is highest for the H-beam and lowest for the rectangular 
tube (cf. Table 1). This is reflected in the fact that the 

Fig. 8  Dimensions, loading, and boundary conditions for MBB-beam 
problem

Fig. 9  Design iterates for MBB-beam optimization with circular-tube 
section. In this and subsequent 2D-design plots, the transparency of 
the color of the bars is proportional to the penalized membership var-
iable 𝛼q

c
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volume fraction
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Fig. 10  Optimization function history for MBB-beam optimization 
with circular-tube section. The dotted lines denote the constraint lim-
its

Fig. 11  MBB-beam optimization for the three different structural sec-
tions considered. The optimal design and density field are reflected 
about the symmetry line to show the entire beam. In this and subse-
quent figures, the plotted density corresponds to the combined den-
sity of (12)
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dimension a of the equivalent section is largest for the 
H-beam and lowest for the rectangular tube (cf. Table 1); 
and that the equivalent volume fraction is largest for the 
H-beam and lowest for the rectangular tube (cf. Table 5).

It should be noted that in the maximum stiffness design 
of structures subject to a single load condition, the optimal 
design should be made of tension-compression members 
aligned with the principal strains, as long as the con-
straints on the geometry allow it (see, for example, Bend-
søe and Haber (1993)). Therefore, the bending stiffness 
of the structural shape (and of the equivalent section) is 
irrelevant, and what dictates the design is the axial stiff-
ness of the members. Consequently, if the cross-sections 
of two types of structural shapes have the same area but 
different area moments of inertia, the optimal designs 
will be similar. The reason we get different designs in 
the examples presented in this section is the difference in 
the cross-sectional areas of the shapes and, to a smaller 
extent, the overlap constraint; this is because even if the 
cross-sectional areas of the shapes are the same, their area 
moments of inertia —and hence the dimensions of their 
equivalent sections and of the auxiliary regions for the 
overlap constraint—are different.

The optimal design with the circular-tube section is com-
pared with a conventional structural analysis using 1D beam 
elements, carried out in ANSYS Structural (see Fig. 12). 
The location of the center points of the bars, their length 
and their orientation in the optimal design are used to cre-
ate geometric line bodies in ANSYS. Since the bars in the 
proposed method are represented as solids, their correspond-
ing line bodies do not intersect. Therefore, these lines are 
subsequently extended or trimmed as necessary to ensure 

the frame is connected. These line bodies are meshed with 
ANSYS, which generates multiple beam elements along 
each line body (corresponding to the segments that can be 
observed in Fig. 12). BEAM188 ANSYS elements are used, 
which are based on Timoshenko theory and are the default 
2-node beam elements in ANSYS. It should be noted that 
ANSYS uses a 3-dimensional representation of the beam 
elements for visualization (i.e., the one shown in Fig. 12, 
however they are 1-dimensional elements. The elastic modu-
lus of the elements that have an intermediate membership 
variable in the optimal design (i.e., those that appear ‘gray’ 
in Fig. 11(f)) is computed in ANSYS as 𝛼q  E0 , to account 
for the penalization of the density field.

An absolute error of 11% is found between the compli-
ance of the density-based and the ANSYS model. This error 
can be attributed to multiple factors, including the fact that 
some bars have intermediate values of the membership 
variable and the different degrees of accuracy of the two 
models. Another important source of error will likely be the 
modeling of member intersections. The 1D model does not 
capture correctly the 2D- and 3D-intersections between bars, 
because bars are modeled as a line segment. The geometry 
projection technique, on the other hand, does capture multi-
dimensional intersections; however, it also incurs in error 
in the modeling of these intersections because the dimen-
sions of the equivalent sections are larger than those of the 
original section. Nevertheless, we deem this difference to be 
reasonable for conceptual design purposes.

6.2  2D bridge

This section presents 2D- and 3D-bridge design examples 
to demonstrate the proposed methodology on a common 
structural design problem. Considering the symmetry of the 
problem, a 2D topology optimization problem is first solved 
for half of the design region with symmetry boundary condi-
tions (shown in blue in Fig. 13(a)). It is assumed the deck is 
supported through its length by a non-designable horizon-
tal beam, represented as a fixed primitive in the topology 
optimization. A uniform distributed loading is applied on 
this beam; and a zero-displacement boundary condition is 
applied over a portion of the left edge of the design volume 
(shown in red in Fig. 13(a)). This fixed support is chosen 
to be disconnected from the horizontal beam so that the 
stiffness of the bridge comes primarily from the designable 
structure. The initial design for all runs, consisting of 20 

Table 5  Summary of the MMB-beam optimization data for  v = 3%

MBB-beam optimization
Property H-beam Rectangular tube Circular tube

r  c(mm) 25 25 25
a(mm) 157.371 126.661 131.145
2  b(mm) 87.374 168.820 262.29
Lc [1100,7500] [1000,7500] [1100,7500]
𝜃c [ 2𝜋, 2𝜋] [ 2𝜋, 2𝜋] [ 2𝜋, 2𝜋]

tx(mm) [0,15000] [0,15000] [0,15000]
ty(mm) [0,5000] [0,5000] [0,5000]
𝛼 [0,1] [0,1] [0,1]
 veq 25.67% 13.65% 20.44%

Ne 24300 24300 24300
nx  ny 270  90 270  90 270  90

Nite 237 285 300
tite (s) 2.43 2.00 2.19
ttotal (s) 582.74 576.35 664.73
C (J) 2102.32 2690.66 2584.24

Fig. 12  ANSYS comparison with optimal design
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bars, is shown in Fig. 13(b). For this problem, we use the 
values fa=1.5 and fL=0.65 for the overlap constraint, and 
𝜀J = 1  10−7 and 𝜀z = 2  10−3 for the stopping criteria.

The optimal 2D-bridge designs for all three sections 
are shown in Fig. 14 along with their corresponding com-
bined density plots for  v = 2% . Table 6 presents information 
related to each section. In this case, the best results are found 
with the H-beam, as expected. The design obtained with the 
rectangular tube renders a poor (i.e., high) compliance value. 
We posit the optimizer reaches this poor local minimum 
because of the relatively low equivalent volume fraction 
for this type of beam. Finally, the membership variables for 
some of the bars in the circular-tube design are relatively low 
and may be artificially increasing the compliance. If those 
bars are removed, the compliance would increase noticeably; 
or, if they are made fully solid, the volume fraction would 
increase noticeably.

6.3  3D bridge

The dimensions of the 3D-bridge are shown in Fig. 15. Sym-
metry boundary conditions are employed so that only a quar-
ter of the design region is modeled; the symmetry planes are 
marked with a blue hashing in Fig. 15. As in the 2D bridge, 
a non-designable primitive is used to represent the deck, 
on which a uniform loading is applied. Zero-displacement 
boundary conditions are imposed on the region, shown 
with a red hashing in Fig. 15. For this problem, we use the 
values fa=1.7 and fL=0.75 for the overlap constraint, and 
𝜀J = 1  10−4 and 𝜀z = 4  10−3 for the stopping criteria.

Figure 16 shows some intermediate designs produced 
by the optimization for the design obtained with a circular 
tube to illustrate the evolution from the initial to the optimal 
design. The initial design for all runs is shown in Fig. 16(a), 
and it is again composed of 20 bars.

The optimal 3D-bridge designs for all three sections 
with  v = 0.2% are shown in Fig.  17. Table 7 presents 
information related to each section for the 3D problem 
including the bounds on the design variables Lc , q0 , q1 , 

Fig. 13  Configuration of the 2D-bridge example

Fig. 14  2D-bridge optimization for the three different structural sec-
tions considered. The optimal design and density field are reflected 
about the symmetry line to show the entire bridge

Table 6  Summary of the 2D-bridge optimization for 2% of steel

2D bridge beam optimization
Property H-beam Rectangular tube Circular tube

r  c(mm) 25 25 25
a(mm) 157.371 126.661 131.145
2  b(mm) 87.374 168.820 262.29
Lc(mm) [1100,7500] [1000,7500] [1100,7500]
𝜃c [ 2𝜋, 2𝜋] [ 2𝜋, 2𝜋] [ 2𝜋, 2𝜋]

tx(mm) [0,14000] [0,14000] [0,14000]
ty(mm) [0,3500] [0,3500] [0,3500]
𝛼 [0,1] [0,1] [0,1]
 veq 25.67% 13.65% 20.44%

Ne 12544 12544 12544
nx  ny 224  56 224  56 224  56

Nite 161 254 300
tite (s) 1.17 1.00 1.15
ttotal (s) 193.70 259.82 351.12
C (J) 2601.68 4333.63 2681.72
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q2 , q3 , tx , ty , tz , and 𝛼 ; the number of elements nx  ny  nz 
in each dimension; and the corresponding total number 
of elements in the mesh Ne . This table also includes the 
number of elements Nr needed if the real section were 
to be modeled with at least two finite elements across 
the smallest dimension of the section. This requirement, 
as noted in Sect. 1, is necessary to ensure sensitivities 
of the projected density are well-defined. As observed 
from the numbers in the table, the resulting mesh would 
require billions of elements, making the solution of the 
optimization problem highly impractical. This simple 
example demonstrates that by employing the equivalent-
section approached proposed in this work, it is possible 
to design ultralight structures using an individual engi-
neering workstation.

Fig. 15  Design space for 3D bridge

Fig. 16  Design iterates for 3D-bridge optimization with circular-tube 
section

Fig. 17  3D-bridge optimization for the three different structural sec-
tions considered. The optimal design is reflected about the symmetry 
planes to show the entire bridge

Table 7  Summary of the 3D-bridge optimization for 0.2% of steel

3D bridge optimization
Property H-beam Rectangular tube Circular tube

r  c(mm) 50 50 50
a(mm) 157.371 157.371 131.145
b(mm) 87.374 168.820 262.29
Lc(mm) [1100, 7500] [1000, 7500] [1100, 7500]
q0 [ 1, 1] [ 1, 1] [ 1, 1]

q1 [ 1, 1] [ 1, 1] [ 1, 1]

q2 [ 1, 1] [ 1, 1] [ 1, 1]

q3 [ 1, 1] [ 1, 1] [ 1, 1]

tx(mm) [0, 1400] [0, 1400] [0, 1400]
ty(mm) [0, 3500] [0, 3500] [0, 3500]
tz(mm) [0, 1750] [0, 1750] [0, 1750]
𝛼 [0, 1] [0, 1] [0, 1]
 veq 7.426% 7.473% 9.81%

Ne 1102736 432000 250000
nx  ny  nz 320  40  80 240  30  60 200  25  50

Nr 3.340  109 1.340  109 5.488  109

Nite 161 232 300
tite (s) 383.16 112.28 67.17
ttotal (s) 116184.43 34104.96 20380.64
C (J) 353.14 354.36 360.54
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7  Conclusion

This work formulated a novel method for the topology 
optimization of ultralight frame structures using struc-
tural shapes. The key ingredient of the proposed approach 
is to replace the geometric representation of a structural 
shape with an equivalent cross-section that has the same 
effective axial and bending stiffness. The fact that the 
equivalent section is larger than the corresponding origi-
nal shape substantially decreases the number of elements 
required in the finite element analysis to perform the opti-
mization. The proposed method also introduced an over-
lap constraint using auxiliary primitives that ensures that 
structural members do not intersect in ways that cannot be 
practically fabricated.

The computational design examples demonstrate the 
effectiveness of the proposed method in obtaining good 
designs that satisfy all the constraints, and show the 
method converges well within a reasonable number of 
iterations. The 3D-bridge example demonstrates the design 
of an ultralight structure (  v = 0.2% ) attained with a sin-
gle engineering workstation. While computationally more 
expensive, the proposed method has important advantages 
when compared to ground-structure methods that employ 
1D elements for the analysis. These advantages include 
the ability to produce good designs with only a few struc-
tural elements as the connectivity of the structure is not 
restricted to a subset of a ground structure. Also, the pro-
posed method can capture 2D and 3D overlaps that cannot 
easily be modeled with 1D elements. Finally, although not 
studied in this work, the proposed method could in princi-
ple incorporate stress constraints that capture the stresses 
arising from the intersection of primitives as in, for exam-
ple, Zhang et al. (2017); however, a correction would be 
needed to account for the equivalent sections.

The proposed methodology can be easily extended in 
multiple ways. It can be applied to structural shapes other 
than the ones studied in this work, including designs with 
asymmetric cross-sections like C- or T-sections. It could 
incorporate other structural criteria such as stresses, buck-
ling, or vibrations. Finally, the structural shapes could be 
made of a reinforced material like a carbon-fiber-rein-
forced polymer, as in Smith and Norato (2021); a compos-
ite material with different properties in tension and com-
pression such as reinforced concrete or a steel-concrete 
composite; or an anisotropic material like wood.

Other considerations to be addressed in future work 
include the incorporation of manufacturing cost considera-
tions as in Gu et al. (2023), the design of structures made 
of multiple shapes, and the simultaneous optimization of 
the structural layout and the cross-sections.
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