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ABSTRACT. For each a € (0,1), we construct a bounded monotone determin-
istic sequence (ci)k>0 of real numbers so that the number of real roots of the
random polynomial fr(2) = Y 7_, ckerz” is neto(1) with probability tending
to one as the degree n tends to infinity, where (gy) is a sequence of i.i.d. (real)
random variables of finite mean satisfying a mild anti-concentration assump-
tion. In particular, this includes the case when (ex) is a sequence of i.i.d.
standard Gaussian or Rademacher random variables. This result confirms a
conjecture of O. Nguyen from 2019. More generally, our main results also de-
scribe several statistical properties for the number of real roots of fy,, including
the asymptotic behavior of the variance and a central limit theorem.

1. INTRODUCTION

Consider the random polynomial
n
(1) fa(2) =D crerz”,
k=0

where (c) is a deterministic sequence of real numbers and (gi) is a sequence of
independent and identically distributed (i.i.d.) real-valued random variables (e.g.,
(er) is a sequence of i.i.d. standard Gaussian random variables). Beginning with
Bloch and Pdlya’s work in the 1930s [2], researchers have studied the roots (both
real and complex) of f,, and used random polynomials for a variety of applications
to many different areas of mathematics [1,2,4,6,16]. Among the earliest questions
is how the number of real roots of f,, depends on the sequence (cg).

In the case when (eg) is a sequence of i.i.d. Gaussian random variables, the
Kac—Rice formula and other tools which take advantage of special properties of
the Gaussian distribution are available and allow one to write the moments of the
number of real roots as a deterministic integral; see, for instance, [4,8,9,14,15,24,25]
and references therein. Recent developments have focused on universality results,
where (ej) is a sequence of i.i.d. non-Gaussian random variables, and one often
wishes to understand how the behavior of the roots depends of the distribution of
(ex). We refer the reader to [3,7,11,13,17,18,20-22,26,27] and references therein;
however, this list is far from complete.
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4934 MARCUS MICHELEN AND SEAN O’ROURKE

In this note, we focus on the number of real roots of f,. Some of the most
widely studied models for this problem include the Kac model (¢, = 1) and the
Weyl model (¢ = 1/VE!). Let R, denote the number of real roots of f,. We
review some previously studied models here:

e In the case when (g;) is a sequence of ii.d. standard Gaussian random
variables and ¢j, = 1 for all & > 1, it was shown by Kac [14] that!

2
ER, = ;logn+C+o(1),

where C is an explicit constant. See [5,10,12,19] and the references therein
for generalizations to other distributions.
e In the case when (eg;) is a sequence of ii.d. standard Gaussian random

variables and ¢ = #, it is known [4,26] that

ER, = (% + 0(1)> Vn.

e When (gj) is a sequence of i.i.d. Rademacher random variables and ¢; =
1/2, ¢, = 1/(kD)* for k > 2, Littlewood and Offord [16] showed that f,, has
all real roots with probability 1.

e When ¢;, = exp(—k”/2) and (g) is a sequence of i.i.d. standard Gaussian
random variables, Schehr and Majumdar [23] observed the following phase

transition:
(2 +0(1)) logn if 3€0,1)
ERy =4 (2+0(1) /20?2 it5e(1,2) .
(1+o(1))n if g>2

Notably, as 3 increases, the expected number of real roots “jumps” from
order logn to n'/2*¢ as § crosses 1.

Based on the above results, the following conjecture? is natural.

Conjecture 1.1 (O. Nguyen). Let () be an i.i.d. sequence of standard Gaussian
random variables. Given o € (0,1), there exists a bounded sequence (ci) of real
numbers so that ER,, = n®to),

Here, it is important that c; only depends on k; if ¢ is allowed to also depend
on n, it becomes straightforward to establish Conjecture 1.1.
In this note, we confirm Conjecture 1.1 with a monotone decreasing sequence.

Theorem 1.2. Let (1) be an i.i.d. sequence of standard Gaussian random vari-
ables. For any a € (0,1), there exists a monotone bounded sequence (ci) of real
numbers so that ER,, = noto),

More generally, our main result below (Theorem 1.4) establishes several other
statistical properties of R,, for our construction, including a central limit theorem,
and shows these properties hold for many other coefficient distributions, beyond
the Gaussian case.

1Here, o(1) denotes a term which tends to zero as n tends to infinity; see Section 1.2 for more
details about the asymptotic notation used here and throughout the paper.

2The conjecture was formulated in a workshop at the American Institute of Mathematics and
can be found online at http://aimpl.org/randpolyzero/.
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POLYNOMIALS WITH AN INTERMEDIATE NUMBER OF ROOTS 4935

We now turn to the construction of the deterministic sequence (c). Fix a €
(0,1). Define the sequence m; := 2|j/%| and the interval of integers I; :=

(mj_1,m;]; we set m_; = —1 so that way the sequence (I;);>0 forms a partition
of {0,1,2,...}. We now define the sequence (cg)r>0 via
(2) cp = exp(—27) if kel;.

Note that the sequence (cj) depends on «, but we do not denote this dependence
in our notation.

We will assume (gi) is a sequence of i.i.d. random variables satisfying the fol-
lowing properties.

Assumption 1.3. Let (e)r>0 be a sequence of real-valued i.i.d. random variables
which satisfy the following assumptions:
(i) P(er, > 0) =:p € (0,1)
(i) Ele] < 1
(iii) There exists a constant Cy > 0 so that P(|eg| < ¢) < Cyt for all ¢ > 0.

Since the number of real roots is invariant under scaling the polynomial, Con-
dition (ii) of Assumption 1.3 simply asserts that the random variables lie in L.
Condition (iii) implies that e is non-zero with probability 1. In particular, both
the standard Gaussian distribution and the Rademacher distribution satisfy As-
sumption 1.3. We note that Condition (ii) and (iii) can be relaxed considerably,
although we do not pursue this direction.

Fix a € (0,1). Define the random polynomial f, of degree n by (1), where (cx)
is the sequence defined in (2) and (e;) is a sequence of i.i.d. real-valued random
variables satisfying Assumption 1.3. Note that f, has (1 + o(1))(n/2)* “blocks”
of coefficients, i.e., if we set j, = max{j : I; N {0,1,...,n} # @} then j, =
(140(1))(n/2)*. The idea will be that the terms indexed by the sequence (m;);>0
will dictate the behavior of the polynomial with high probability. As such, we will
let S, denote the number of sign changes among the sequence (&, );*:61 U (en)
(note that by Condition (iii) ¢; is non-zero with probability 1).

We say an event £ (which depends on n) holds with overwhelming probability if
for every k > 0 there exists a constant C,, > 0 so that P(€) > 1 — Cyn™" for all
n>C,.

Theorem 1.4. Fiz o € (0,1). Define the random polynomial f,, by (1), where
(ck) is the sequence defined in (2) and (ex) is a sequence of i.i.d. random variables
satisfying Assumption 1.3. Let R, be the number of real roots of f,, and let S,
be the number of sign changes among the sequence (€, );*:61 U (e,). Then there
exists an absolute constant C' > 0 so that the event | R, —2S,| < C(logn)/* holds
with overwhelming probability. In particular, there are constants c, and c; depend-
ing only on p from Condition (i) so that ER, ~ c,(n/2)*, Var R, ~ c,(n/2)%,
R, /(cp(n/2))* — 1 almost surely as n — oo, and

R, —ER,

v/Var R,,

in distribution as n — oo, where N'(0,1) denotes the standard normal distribution.

— N(0,1)

Theorem 1.2 follows immediately from Theorem 1.4. We outline the proof in the
following short subsection and prove Theorem 1.4 in Section 2.
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4936 MARCUS MICHELEN AND SEAN O’ROURKE

1.1. Outline and sketch of the proof of Theorem 1.4. The intuition for why
frn has n®t°(M) many real roots is that for each t € R we have one of two types of
behavior: either the m; term dominates, in which case we do not have a real root
with high probability; or we are transitioning from when the m; term dominates
to when the m ;i1 term dominates, in which case we have a real root if and only
if there is a sign change among {&;,&m,,, } with high probability. Since we have
chosen m; to always be an even integer, the behavior on the negative real axis is
quite similar to that on the positive real axis, and so we only focus on the positive
real axis.

In order to confirm this heuristic, we switch to exponential coordinates and de-
fine g,,(t) = fn(e') and first write a deterministic lemma that drives all of our com-
parisons between terms (Lemma 2.1). Here we introduce disjoint intervals [a;, b;]
where the m; term of g,, dominates on [a;,b;]. We then convert our deterministic
Lemma 2.1 to a probabilistic statement showing that in fact the m; term of g,
does dominate on [a;,b;] with high probability (Lemma 2.2). This immediately
implies there are no real roots in [a;,b;] with high probability (Lemma 2.3) and
that if {&,,,,€m,,, } are the same sign then there is no real root in [b;, a;41] with
high probability (Lemma 2.4). To handle the case when we do have a sign change
among {€m,,Em,,, }, Lemma 2.2 shows that g,, has a sign change on [bj, a; 1] with
high probability thus showing that there is a real root; in order to show that there is
only one real root, we show that the derivative of a rescaled version of g,, is nonzero
on [b;,a;y1] with high probability (Lemma 2.5). Finally, a simple application of
Rouché’s Theorem shows that there are not too many real roots near the origin
(Lemma 2.6), allowing us to use the asymptotic results we have proven up until
that point.

1.2. Notation. Starting in Section 2, unless otherwise noted, we use asymptotic
notation under the assumption that j — oo; this differs from Section 1, where we
used asymptotic notation under the assumption that n — oco. For two sequences
(a;) and (b;), we write a; = O(b;) if there exists a constant C' > 0 so that |a,;| < Cb;
for all j > C. If the constant C' depends on other parameters, e.g., C = C,, we
denote this with subscripts, e.g., a; = O (b;). We write a; = o(b;) to denote that
lim;_,o a;/b; = 0. The notation a; ~ b; denotes that a; = (14 o(1))b;. We use
i as an index (i.e., ¢ does not denote the imaginary unit). We let C, ¢ be positive
constants (i.e., they do not depend on n or j) that may change from one occurrence
to the next.

2. PROOF OF THEOREM 1.4

It will often be more convenient to work in exponential coordinates, and we write
Gn(t) i= fn(e?). Fix a € (0,1) and set B := min{1/2,1-%}. For each j > 1, define

’ 2
a; = aji=Ve2i=2(1 4 j=8) and bj == aj' M (1P,
It follows that that there exists a constant C' > 0 (depending only on «) so that
a; < b; for all j > C and (a;);>c and (b;);>c are increasing sequences. Further
define the functions ¢;(t) := ¢, €™ and set j. = max{j : I; N {0,1,...,n} # &}
SO we may write

mj—mj;_1—1 n
—it it
gn(t) = E ©;(t) E Em;—ie "+ E cieqe’.
§<is i=0 i=m;, _1+1
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POLYNOMIALS WITH AN INTERMEDIATE NUMBER OF ROOTS 4937

We write g, in this form to note that the blocks for j < j, are “complete”
while the last block may potentially be “incomplete.” We prove Theorem 1.4 via a
sequence of lemmas, starting with a deterministic lemma showing that ¢; dominates
on the interval [a;, b;]:

Lemma 2.1. There are constants C,c > 0 depending only on « so that for all
7 =1 we have

pi-1(t) .8
(3) log ( <=c2j7P+C
p;(t)
for any t > a; and
wj+1(t) g
(4) log (— < =277+ C
p;(t)
for allt < bj. In particular, there exist constants C', ¢’ > 0 depending only on o so
that
pj-1(t) toj B @j+1(t) toj B
(5) log (— < —c'2j and log | =———= | < =27
p;(t) p;(t)
for all j > C', where the first bound holds for all t > a; and the second for all
t < b;.

Proof. For t > a;, we compute

g (2] <2 4y (2L - 1) - 205)
—9i-1_ (ajlfl/a2j72(1 _'_j,g)) <2j1;a1 Lou +j1/a2)>

=27 (7 0.1 +5TY)

By the choice of 8 we note that # < 1 and 8 < 1/a — 1 and so we see that there
are constants C,c¢ > 0 so that (3) holds. Similarly, for ¢ < b;, we compute

£ (2] <2 -y (21 1)) 2050

) ) 2'1/(1—1
2/ + (aj' Vo2 (1 - 7)) ( J
(6%

=2 (774 0a( V5 7) -

The choice of 8 again establishes (4). The bounds in (5) follow from (3) and (4). O

+04(1 +j1/“—2))

We now extend this deterministic bound to show that the m; term of our random
polynomial dominates on [a;, b;]:

Lemma 2.2. There exist constants C,c > 0 (depending only on o and Cy) so that
the following holds.

e For any j > 1, with probability at least 1 — C exp(—cj?),

c e'HLJ'S e . .
(6) min mJ—|m’| - E leilcie® | > 0.
a;<s<b; 2 .
iEm
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4938 MARCUS MICHELEN AND SEAN O’ROURKE

e For any j > 1, with probability at least 1 — C exp(—cj?),

(7) inf M 3 Jelee’ | > 0.

a;<s
/ i<my

e For any j > 1, with probability at least 1 — C exp(—cj?),

c '"L J

. ;€78 |Em, |
(8) inf % > leileie™ | > 0.
= 1>mJ

o With probability at least 1 — C exp(—cj?),
(9) ajlnis (cne”s|€n| - ; |5i|cieis> >0

Proof. We prove (6); the proofs of (7), (8) and (9) are similar, and we omit the
details. We first show that the m; term dominates all others in its block. To this
end, since ¢; = ¢y, for all mj_1 +1 <@ < my, we write

mj—l |E | mJ—mj,1—1
ijemjs|5mj ‘/4 - Z |5i|CieZS 4 ijemjs <% - Z |5i|615> )
i=mj_1+1 i=1

d e e . " "
where = denotes equality in distribution. Using Condition (ii), we bound
my —mj71—1
. -2
E max Z leile™ < 2e7% = =2l
a; gsgb]‘ i—1

By Markov’s inequality along with Condition (iii), we can bound

(10) P| min cmje’“| | = 3 feilee™ | <O | <P(lem,| < Ce"/?)

a;<s<b; e
+ e Qal®)
— el
To handle the coefficients not in I;, first note that

Z |€Z czema Z SDT Z| &if -

i¢l; ZEI
By iteratively applying Lemma 2.1 and using Condition (ii), we have
S -2 2
E < T I|e "
o, \ o B | < Cmae e Bl
r#j i€l r>j

— o~ Q(®)

By applying Markov’s inequality and Condition (iii) as in the proof of (10), one finds

Cm, €% |Em, | , 2
11 P min — 7 gileie® | <0 =e U7
(11) i, 1 i; el
J
Combining bounds (10) and (11) shows (6). O
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POLYNOMIALS WITH AN INTERMEDIATE NUMBER OF ROOTS 4939

We now want to show that the number of positive real roots is the same as the
number of sign changes among the coefficients (e,,,;);. We first show that there are
no real roots in the interval [a;, b;] with high probability.

Lemma 2.3. There exist constants C,c > 0 (depending only on « and Cy) so
that the following holds. For each j > 1 with m; < n, with probability at least

1— Ce " we have that sgn(gy(s)) = sgn(em,) for all s € [a;,b;]. In particular,
with probability at least 1 — Ce=%", gn(s) has no roots in [a;,b;]. Similarly, for all
s > a;, we have sgn(gn(s)) = sgn(e,) with probability at least 1 — Ce—cir .

Proof. Applying the triangle inequality, we see that
190()] > emy €™ lem,| = D leileie™.
i£m

Thus, the conclusion follows from Lemma 2.2. The assertion for s > a;, follows
from Lemma 2.2 as well. O

We next show that if there is no sign change among {&,,;,&m;,, } then there is
no real root on [bj, aj1].

Lemma 2.4. There exist constants C,c > 0 (depending only on « and Cy) so
that the following holds. For each j < j. with mj41 < n, with probability at

least 1 — Ce=" | if sgn(em,) = 5gN(Em,,,) then gn(t) has no roots in the interval
[bj, aj1]. Similarly, if m;, >n and sgn(en,;, _,) = sgn(e,) then g, has no roots in
the interval [b;, —1,a;,] with probability at least 1 — Ce—ci?.

Proof. Assume without loss of generality that sgn(ey,;) = sgn(em,,,) = +1. Then
for any s € [b;, aj4+1], we bound

Em: Cm. €75 ) Emmir Comsr €718 )
J J 18 j+1 jt+1 18
gn(s) = — = E leilcie®® | + 5 - E leilcie
i<mg i>mjq1
mit1—1
m;s m;iy18 Jj+1
gmjcmje J Emj+1cmj+1e It

9 + 9 - Z ‘€i|Ci6iS

i:m]‘+1

The first two terms can be bounded using (7) and (8) from Lemma 2.2. The
third term on the right-hand side can be bounded by following a nearly identical
argument which led to (10). The assertion for m;, > n follows in a similar way
from Lemma 2.2. ]

We now handle the other case and show that if there is a sign change among

{€m;,€m,,, } then there is precisely one real root on [b;,a;41]. For this, we show
that after rescaling our function g,,, the derivative does not have a sign change with
high probability.
Lemma 2.5. There exist constants C,c > 0 (depending only on « and Cy) so
that the following holds. For each j > 1 with mj;1 < n, with probability at least
1—Ce<" if sgn(em,;) = —sgn(em,,,), then g, has a single root in the interval
[bj, aj1]. Similarly, if m;, > n and sgn(em,, ,) = —sgn(en) then g, has a single
root in the interval [bj, _1,a;,] with probability at least 1 — Ce=i=.

Licensed to Univ of lllinois at Chicago. Prepared on Thu Dec 26 09:49:36 EST 2024 for download from |P 128.248.156.45.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Proof. We prove the first assertion as the second is similar. By replacing g,, with
—gn if necessary, assume without loss of generality that &,,, ., > 0 and &,,;, < 0.
Write g,,(t) = et(mi+1+m3)/2p, (#) with
ho(t) := 5mjcmje*t(mj+rmj)/2 + EmHlCmHlet(ermj)/Q
I Z ejcietlimmyer/2=m;/2)

i¢{m;, m;1}
It is sufficient to show that h,,(t) has precisely one root in [b;,a;41]. By Lemma
2.3, hy, exhibits a sign change on the interval [b;, a;41] with probability at least 1 —

Ce=<7". Thus, it will be sufficient to show that with probability at least 1 —Ce=%",
h!, is positive on the interval. We compute

2et(mititm;)/2

by, (t) = (=€m, )Cm, emit 4 Emjy1Cm;, €

L 20— M1 — My
+ 5 eicie”-¢.
Mj+1 = My

mjt1t
Mjt1 = My

i¢{m;,m;i1}
Recalling that (—&,,) > 0 and &,,;,, > 0, it suffices to show that

21 — mjiy1 — My

|em, [Cm, €™ — E lei|cie’ >0
i<m m‘jJrl - mj
and
i |20 —mjp1 —my
i+1t 2 : t Jj+1 J
‘emj+1 |ij+1€m]+1 — |<€1'|Cq;€z W >0

i>my,iFEm
with probability at least 1 — Ce™% ®. Since

20— mjL1 —m; .
20— e+l — TRy < 20+ 2m;

Mj+1 — My

(this follows from the triangle inequality since m;y1 —m; > 1), the conclusion
follows by applying the proof of Lemma 2.2 (with only slight changes to account
for this extra factor of 2i + 2m;). O

Since our previous lemmas are all asymptotic as j — oo, we now need to show
that the behavior of the first few terms does not contribute too many roots close
to the origin. A simple application of Rouché’s theorem will allow us to bound the
number of roots in a ball centered at 0:

Lemma 2.6. There exist constants C,c > 0 (depending only on o and Cy) so that
the following holds. For each j > 1 with m; < n, with probability at least 1—C675j2,
the polynomial f,,(z) has at most m; roots in the disk {z € C : |z| < €% }.

Proof. We will use Rouché’s theorem. In particular, if we show that for all z € C
with |z| = €% we have

(12) Em;Cm; 2" | > Z g2,

i;ﬁm]‘
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POLYNOMIALS WITH AN INTERMEDIATE NUMBER OF ROOTS 4941

then we will have that f,(2) has at most m; roots in the disk {z € C: |z] < €% }.
We lower bound

mirb lem, Cm; 2™ — g giciz'| | 2 |em;lcm; emibi — E |5i|cie“’j
|Z‘=6 ’ i;émj i;émj
and hence the conclusion follows from Lemma 2.2. O

With the lemmas above in hand, we are now ready to complete the proof of
Theorem 1.4.

Proof of Theorem 1.4. Choose k = logn and apply Lemma 2.6 to see that, with
overwhelming probability, the number of real roots of f, differs from the number
of real roots in {z € R : |z| > e} by at most 2(logn)'/*. Combining Lemmas
2.3, 2.4 and 2.5 shows that, with overwhelming probability, the number of real
roots in {t € R : ¢t > e} is equal to the number of sign changes of the sequence
(Em, )ﬁ:;l U (gn); similarly, the same argument shows that the number of negative
real roots in {t € R : t < —e®} is also equal to the number of sign changes of
(Em,)75% U (en).

This shows that |R,, — 25,| < 4(logn)'/® with overwhelming probability. The
other conclusions of Theorem 1.4 follow from this bound. For example, the classical
law of large numbers for S,, implies the same conclusion for R,,. O
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