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1. INTRODUCTION

Let B be a random n x n matrix whose entries are chosen independently and
uniformly from {—1,1}. It is an old problem, likely stemming from multiple origins,
to determine the probability that B is singular. While a moment’s thought reveals
the lower bound of (1 + 0(1))2n?2~", the probability that two rows or columns are
equal up to sign, establishing the corresponding upper bound remains an extremely
challenging open problem. Indeed, it is widely believed that

(1) P(det(B) = 0) = (1 + o(1))2n?27".

While this precise asymptotic has so far eluded researchers, a huge amount is now
known about this fascinating problem. The first advances were made by Komlds
[22] in the 1960s, who showed that the singularity probability is O(n~'/2) (see also
[23] and [3]).

Nearly 30 years later Kahn, Komlés and Szemerédi [19], in a remarkable paper,
showed that the singularity probability is exponentially small. At the heart of their
paper is an ingenious argument with the Fourier transform that allows them to give
vastly more efficient descriptions of “structured” subspaces of R™ that are spanned
by {—1,1}-vectors. Their method was then developed by Tao and Vu [45,46] who
showed a bound of (3/4 + o(1))™, by proving an interesting link between the ideas
of [19] and the structure of set addition and, in particular, Freiman’s theorem. This
trajectory was then developed further by Bourgain, Vu and Wood [5], who proved a
bound of (2712 4-0(1))", and by Tao and Vu [50], who pioneered the development
of “inverse Littlewood-Offord theory”, now an integral aspect of random matrix
theory (see Section 1.1).

In 2007, Rudelson and Vershynin, in an important and influential paper [33],
gave a different proof of the exponential upper bound on the singularity probability
of B. The key idea was to construct efficient e-nets for points on the sphere that
have special anti-concentration properties and are thus more likely to be in the
kernel of B. This then led them to prove an elegant inverse Littlewood-Offord type
result, inspired by [50], in a geometric setting.
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This perspective was then developed further in the 2018 breakthrough work of
Tikhomirov [51], who proved

P(det(B) =0) = (1/2+ o(1))",

thereby essentially proving the conjectured upper bound. One of the key inno-
vations in [51] was to adopt a probabilistic viewpoint of the (discretized) sphere:
instead of directly proving that efficient nets exist by latching onto some sort of
structure, he shows that the probability of randomly selecting a “structured” point
on the discrete sphere is incredibly unlikely. While this change in perspective may
not immediately sound useful, Tikhomirov’s “inversion of randomness” gives him
access to a whole host of probabilistic tools.

Another advance on the problem was made recently by Jain, Sah and Sawhney
[17], who (building on the recent work of Litvak and Tikhomirov [26]), proved the
natural analogue of (1) for random matrices with independent entries chosen from a
finite set S, for any non-uniform distribution on S. For the case of {—1, 1}-matrices,
however, they do not improve on the bound of Tikhomirov.

While the problem for matrices B with all entries independent is now very well
understood, the situation for symmetric random matrices remains somewhat more
mysterious. Indeed all of the previously mentioned works on random matrices
depend deeply on the fact that the entries of B are independent, and often treat B
as n independent copies of a row, thus allowing for an essentially “one-dimensional”
treatment of the problem. In the symmetric case, no such perspective is available.

Let A be a random n X n symmetric matrix, uniformly drawn from all symmetric
matrices with entries in {—1,1}. Again, it is generally believed that P(det A = 0) =
O(n?27") (see, e.g. [9,53,54]) but progress has come more slowly. The problem
of showing that A is almost surely non-singular goes back, at least, to Weiss in
the early 1990s but was not resolved until 2005 by Costello, Tao and Vu [9], who
obtained the bound

(2) P(det(A) = 0) < n~1/8+e),

The first super-polynomial bounds were obtained by Nguyen [31] and, simulta-
neously, Vershynin [52], the latter obtaining a bound of the form exp(—n¢). Nguyen
[31] developed the quadratic Littlewood-Offord theory introduced in [9], while Ver-
shynin [52] worked in the geometric framework pioneered in his work with Rudelson
[33-35].

In 2019, a more combinatorial perspective for inversion of random discrete ma-
trices was introduced by Ferber, Jain, Luh and Samotij [12] and applied by Ferber
and Jain [11] to show

P(det(A) = 0) < exp(—cn/4(logn)'/?).

In a similar spirit, Campos, Mattos, Morris and Morrison [8] then improved this
bound to

(3) P(det(4) = 0) < exp(—ev/n),

by proving a‘“rough” inverse Littlewood-Offord theorem, inspired by the theory of
hypergraph containers (see [2,41]). This bound was then improved by Jain, Sah and
Sawhney [18], who improved the exponent to —cnt/? logl/ 4 n, and, simultaneously,
by the authors of this paper [6] who improved the exponent to —cy/nlogn.
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The convergence of these results onto the exponent of —cy/nlogn is no coinci-
dence and in fact represents a natural barrier in the problem. Indeed, all of the
results up to now have treated “structured” vectors by only using the top-half of
the matrix (i.e. the half above the diagonal), which conveniently consists of inde-
pendent entries. However, as pointed out in [8], if one is restricted to working in the
top-half of A one cannot obtain an exponent better than —cy/nlogn. Thus to get
beyond this obstruction, somehow the randomness of the matrix must “reused”.

In this paper we prove an exponential upper bound on the singularity probability
of a random symmetric matrix, thereby breaking though this barrier and giving the
optimal bound, up to the constant in the exponent.

Theorem 1.1. Let A be uniformly drawn from all n x n symmetric matrices with
entries in {—1,1}. Then

(4) P(det(A) =0) < e ",
where ¢ > 0 is an absolute constant.

The main technical innovations of this paper are a new inverse Littlewood-Offord
type theorem for “conditioned” random walks and a new “inversion of randomness”
technique that allows us to “reuse” the randomness of our matrix by pushing some
of the randomness onto the random selection of a vector from our discretized sphere.
In fact, there is a delicate tradeoff between these two ingredients; a loss in the second
ingredient allows for an improvement in the first, unless some specific “arithmetic”
structure arises (see Section 2).

1.1. Inverse Littlewood-Offord theory. For v € R” and X uniform in {—1,1}",
we define the concentration function (one of several to come) as

(5) p(v) = maxP((v, X) = b).

The study of p(v) goes back at least to the classical work of Littlewood and Of-
ford [24,25] on the zeros of random polynomials, but perhaps begins in earnest with
the beautiful 1945 result of Erdds [10]: if v € R™ has all non-zero coordinates then

p(v) < p((1,...,1)) = O(n~*/?).
This was then developed by Sarkozy and Szemerédi [40], who showed that if all
of the v; are distinct then one can obtain the much stronger bound of O(n=3/?),
and by Stanley [42] who determined the ezact maximum in this case. A higher-
dimensional version of this problem also received considerable attention and was
studied by several authors [15, 20,21, 39] before it was ultimately resolved in the
work of Frankl and Fiiredi [14] (see also [48]).

Of these early results, the most important for us here is the work of Haldsz [16]
who made an important connection with the Fourier transform to prove (among
other things) the following beautiful result: if there are Ny solutions to x1 + -+ - +
T = Tk41 + -+ + T, among the entries of v, then p(v) = O(n_%_l/QNk).

More recently the question has been turned on its head by Tao and Vu [50], who
pioneered the study of “inverse” Littlewood-Offord theory. They suggested that
if p(v) is “large” then v must exhibit some particular arithmetic structure. For
example, Tao and Vu [47,50], and Nguyen and Vu [30,32] proved that if v is such
that p(v) > n~C then all but O(n'~¢) of the elements v; of v can be efficiently
covered with a generalized arithmetic progression of rank r = O ¢(1).
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While these results provide a very detailed picture in the range p(v) > n=¢,
they begin to break down® if p(v) = n=%() and therefore are of limited direct use
in showing that the singularity probability is exponentially small. Inverse results
which work for smaller p bring us to the “counting” Littlewood-Offord theorem
of Ferber, Jain, Luh and Samotij [12], and the “weak” inverse Littlewood-Offord
theorems of Campos, Mattos, Morris and Morrison [8] and of the present authors
in [6], which are useful for p(v) as small as exp(—c(nlogn)'/?), but afford less
structure.

Our novel inverse Littlewood-Offord theorem in this paper is most similar to that
of Rudelson and Vershynin [33,34,52], who showed that if p(v) > e~ " then there
exists ¢ > 0 with |¢| = O(1/p(v)) for which the dilated vector ¢v is exceptionally
close to the integer lattice Z™. In particular, Rudelson and Vershynin define the
following important notion. For « € (0, 1), define the least common denominator of
a vector v € R? to be the smallest ¢ > 0 for which ¢v is within vod of a non-zero
integer point. That is,

Do (v) =inf{¢ > 0: d(¢v, 2%\ {0}) < Vad},

where d(z, S) denotes infscg{||z — s||2} (not to be confused with the dimension d).
Note here that we have excluded the origin from Z? in the definition since ¢v ~ 0
does not tell us anything interesting about v. Indeed, given any v € S?~!, one
could always set ¢ < vad and obtain d(¢v,Z?%) < d(¢v,0) < Vad, and so this
degenerate case needs to be excluded somehow. In fact, in the course of the paper,
we will work with a slightly different non-degeneracy condition (see (29)). Here we
state the theorem of Rudelson and Vershynin in a slightly less general form than
they prove.

Theorem 1.2. Ford € N, a € (0,1) and t > 0, let v € S¥=! satisfy D, (v) > 16/t.
If X ~ {—1,1}7 is uniform then

P(|(X,v)| < t) < Ct + 2e %
Here C,c > 0 are absolute constants.

Thus we can think of D,(v) as a measure of the arithmetic structure of v; a
small value of D, (v) corresponds to more structure, a large value of D, (v) to less.

Our Littlewood-Offord theorem shows that a similar conclusion can be obtained
in the presence of a large number (k &~ n) of additional “soft” constraints on the
random walk. We prove the following result, which is in fact weaker than what we
really need (see Lemma 4.1), but captures its essence.

Theorem 1.3. Ford €N, a € (0,1) andt > 0, let v € S*! satisfy Do (v) > 16/t.
For 0 < k <d, let W be a k x d matriz with orthonormal rows. If X ~ {—1,1}% is
uniform then

(6) Py (|<X,v>| <t oand [WX]|» < C\/E) < Cteok 4 2¢—cad,
where C,c > 0 are absolute constants.

Note that if £ = 0 then our theorem reduces to Rudelson and Vershynin’s the-
orem, stated above. Here we interpret |[WX||2 < ¢Vk as encoding the k “soft”
constraints and (X, v)| < ¢ as the “hard” constraint. It is also useful to think of

ITechnically these results break down if p(v) < n~loglogn,
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~ p(v), although we actually apply this theorem with ¢ chosen with respect to a
related notion, tailored specifically to our application.
To understand the numerology of this theorem, it is perhaps best to think of it as
a result that allows us to “decouple” the hard constraint from the k soft constraints.
It says something to the effect of, if D, (v) > 16/t then

(7) P (I(X,0)] < t and [WX|» < eVE) < C-B((X,0)] <) -P(IWX]> < eVE).

Given this, we see that Rudelson and Vershynin’s theorem and the Hanson-Wright
inequality allow us to deal with these two quantities in isolation. These say that

8) P((X,v)|<t)<Ct+e® and P(|WX|2 < cvVk) <e <,

thus explaining the form of the conclusion of Theorem 1.3.

While we don’t prove exactly (7), the main difficulty for us lies in decoupling the
soft and hard constraints, which is ultimately achieved by a somewhat complicated
geometric argument on the Fourier side and will consume our focus in Sections 4,
5 and 6.

It is useful to compare our Theorem 1.3 to a mutlidimensional version of The-
orem 1.2 proved by Rudelson and Vershynin Theorem 7.5 in [38]. Using their
theorem, one could prove a version of our Theorem 1.3 if one added the additional
assumption that D, (u) is large for all unit vectors u that are obtained as certain?
linear combinations of v with the rows of W. This is insufficient for us as Theo-
rem 1.3 assumes no information about the the structure of the space spanned by
the rows of W.

2. PROOF SKETCH AND OUR NOVEL “INVERSION OF RANDOMNESS”’ TECHNIQUE

Here we sketch the proof of Theorem 1.1, assuming our Littlewood-Offord theo-
rem (Theorem 1.3) and show how it fits into our novel “inversion of randomness”
technique, which allows us to overcome the barrier encountered in previous works.
We highlight this main new idea in Section 2.3 after warming-up with some more
general discussion of our approach.

Throughout this section we keep our discussion loose and impressionistic and
only take up our careful study in the following sections.

2.1. Setup. A matrix is singular if and only if there exists v € S"~! such that
Av = 0. A central challenge in studying the singularity probability of discrete
random matrices lies in the fact that different v have vastly different probabilities
of being in the kernel of A. For example, it is easy to see that if

(9) v=2"Y2(1,1,0,...,0)  then P(Av=0)=2"".

Ifv = n71/2(1,...,1) it is significantly harder to determine the corresponding
probability, but one’s first guess actually resembles the truth; the probability that
the first entry of Av is 0 is ©(n~'/?), the probability a simple random walk returns
to 0 after n steps. Thus, boldly assuming the approximate independence of the
rows, we expect that if

(10) v=n"Y2(1,...,1) then P(Av = 0) ~ (Cn)~"/2,

2Specifically, if we let w; be the rows of W, we are interested in all linear combinations of the
form v + 3% | 6;w;, where [00] < C/e and |6;| < C, fori=1, ..., k
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a very different result from (9). But these are both very structured and special
examples. The opposite extreme comes from a random vector v ~ S™~! on the
unit sphere. Here we have to be a bit careful since there are only a finite number
of possible kernel vectors of a discrete random matrix and thus it is natural to
instead consider the probability that a random vector is e-far from the kernel, for
some well-chosen € > 0. Again this case is not easy to establish rigorously, but in
a similar way to the above, for € > e¢™“", we expect if

(11) v~ St is random then  P(||Av||2 < ev/n) = (Ce)",

with high probability, where C' > 0 represents a constant that is unimportant for
us.

Thus we see that there is a great variety in how different directions contribute
to the singularity probability. For us the key task is to understand how “many” of
each of these different directions there are. For example there are about n? different
vectors v of type (9), and this multiplied by the probability that one of these vectors
is in the kernel represents the conjectured asymptotic for the singularity probability.
On the other hand, there are about 2" vectors of the type (10), thus the expected
contribution of these vectors to the singulairty probability is significantly less than
(9).

The crux comes with estimating the quantity of vectors that fail to be of type
(11), for each £ > e~“": we would like to say that extremely few v deviate from
this heuristic, at any given scale € > 0. Here it does not quite make sense to count
the number of such offending vectors, since there are infinitely many; rather, we
“capture” these vectors by building efficient e-nets for them. From this point of
view, this is the main technical content of this paper.

2.2. Definition of the s-nets. To define our e-nets we would like to associate

each vector v € S"~1 with a scale € = ¢(v). Essentially, though we define things

a bit differently in the proof, we define the scale of a vector v to be the maximum
€ (0,1) for which

(12) P(||Avls < ev/n) = (Le)™,

where L is a large constant L > C. Intuitively speaking, the scale of the vector v is
the largest granularity at which our heuristic (11) fails. Importantly, we can prove
that at this scale we also have the reverse inequality P(||Av[s < ey/n) < (CLe)™,

Vectors that have scales that are smaller than e~ can be dealt with using now-
standard ideas dating back to Costello, Tao and Vu [9]. As such, our focus will
be on eliminating vectors with scales ¢ > e~¢". It will also be easy, in light of
previous work, to ignore “compressible” vectors, that is, vectors that have almost
all of their £5-mass on o(n) coordinates. Thus we can restrict to vectors which have
at least Q(n) coordinates of magnitude ©(n~1/2). Let Sj ' denote this subset of
the sphere; without loss of generality, we can assume that these coordinates are the
first d and that d/n = ©(1), but chosen to be sufficiently small.

For each £ > e~*", we would like to build an e-net for all v € S{ ' at scale e.
Our first move is to start with a decent e-net for all of Sj~', which we will call
A., and then define a subset N. C A., which will serve as our desired e-net. We
note that the most efficient e-nets for the whole of S~ are of size (C/¢)", which is
vastly too large for us and thus A, must be substantially smaller than A.. Indeed,
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we need something like

C n
13 N| < L72M|A. —

(13) v <l < (452 )
since we will be taking a union bound over |N;| events of the form ||Av|s < ev/n,
each with has probability at most (CLe)™, from the remark below (12).

We now prepare for the definition of N.. For this we first introduce a different
model of a random symmetric matrix, that is slightly cleaner to work with, and
which we will be able to “swap” for A, in the proof. We define the random matrix

0 HT
14 A = [Oaxia ] 7
(14) [ H O[d+1,n)x[d+1,n]
where H is a (n —d) x d random matrix with iid entries that are 1/4-lazy, meaning
that H, ; = 0 with probability 3/4 and H, ; = £1 with probability 1/8. The key
property that we have here is that for all v,

P(||Av]l2 < ev/n) < C™ - P([|Mvll2 < ev/n),

which we establish on the Fourier side, akin to [19]. We now crucially define® our
e-net

(15) Ne ={ve A P([Mv]l2 < evn) > (Le)" }.

It turns out that it is not too hard to show that this is an e-net; to do so, we
simply adapt some now-standard random rounding techniques [27] to this higher
dimensional setting. The real challenge lies in estimating the size of M. For this
we take a probabilistic vantage point (inspired by [51]) and it is this new source
of randomness that helps us “recover” some of the randomness lost due to the
symmetry of A. To prove (13), it is enough to show, for v € A, chosen uniformly
at random, that

(16)  Puer. (v €N:) = Pyea. (]P’M(HMvH2 <evi) > (La)") < (C/L2)".

(see Lemma 8.3 for the precise statement.) To get a feel for how we tackle this, let
us consider the event ||Mv||2 < ey/n. Indeed recalling the definition (14) of M, we

have that
My = {HTU[de]]
Hv[d]
and so to control the event ||[Mwvl||2 < ey/n, it is enough to control the intersection
of events
(17) [Hugllz <evn  and IH v 11,ml2 < ev/n.

Note that if we simply ignore the second event and bound

Par (| Mol < ev/n) < Pp ([|[Hogll2 < evn),

we land in a situation very similar to previous works; where half of the matrix is
neglected entirely. We are thus limited by the (nlogn)/? obstruction, mentioned
in the introduction. So to overcome this barrier, we need to control these two events
simultaneously.

To prove (16) we use a second moment argument. For now, however, we will
limit ourselves to a discussion of the first moment and then comment on the extra

3We actually use a slightly smaller net, see (27) for the formal definition.
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complications in working with the second moment. In particular, we outline a proof
of the inequality

(18) Evea.Pas (| Moz < ev/n) < (Ce)™,
which implies that |N:| < (C/L)"|A¢| < (C/eL)™, by Markov’s inequality:
N, c\"
] = Pren. (0 € 40) = Puc, (Par(lar0ll < 2vm) > (29) < ()
€

This falls short of (13), for which we will need to control the second moment, but
is a good starting point.

2.3. Rank splitting and inversion of randomness. In understanding (18) we
come to our novel “inversion of randomness” technique that allows us to weave the
randomness of v into our arguments. The idea is to use the randomness in H to
control the first event at (17) and to use the randomness in v € A, to control the
second. To get this to work, we crucially partition the outcomes of H, based on
a robust notion of rank. Indeed, let & be the event that all but k of the singular
values of H are “healthy”

&L = {H : O’d,k(H) > cy/n and O’d,kJrl(H) < C\/ﬁ},

where o1(H) > -+ > o4(H) denote the singular values of H. The point of this
definition is that it allows us to get some mileage out of the second event at (17).
At this point it is useful to point out that we may assume that the coordinates of
v ~ A, are iid random variables, which follows from an easy covering argument of
A, with product sets, as in [51]. Now, if H € & is a fived matrix, we prove, using
only the randomness in vjg4 1y, that

(19) Pojgi1 (H Vg1, ll2 < ev/n) < (Ce)*"

We prove (19) by adapting the main result of [37]. On the other hand, using only
the randomness in H, we bound Py, (|| Mv]|2 < ev/n) from above by
(20)

d
ZPH(”HTU[dJrl,n] |2 <ev/n [{||Huvg]l2 <€\/ﬁ}ﬁgk)PH({HHU[d] |2 <ev/n} ﬂgk)-

k=0

So to prove (18), we average (20) over all v € A, and use (19) to bound the first
term in each summand to obtain
(21)

d
Even.Par (1Mo]2 < evn) < (Ce)*- 3 (Ce) ™ Buen Prr ({| Huall2 < ev/n}ny),
k=0

where we have used the independence of vjg from vjgyy .

In dealing with the remaining probabilities in the sum at (21) we use our new
inverse Littlewood-Offord theorem, Theorem 1.3. We first note that
(22)

Pu ({IIHviall2 < evn} N &) < Par ({|Hols < ev/} 0 {oaier(H) < ev/n}),
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and then observe that since the rows of H are independent, the probability on
the right-hand side of (22) should approximately factor as the product of “one-
dimensional” events, corresponding to each row. In particular, we show the right-
hand side of (22) is at most

(23)

n—d

et (i (166, va)] < elX)] € en V2 (] < en ) )
1y Uk

using a (considerably easier) e-net argument along with a tensorization argument.

Here X ~ {—1,0,1}¢ is distributed as a row of H and the maximum is taken over

all orthonormal k-tuples w1, ..., u; € R? which correspond to the k orthonormal

singular directions of H that witness the event o4—p1+1(H) < cy/n.

We now observe that the probability in (23) is exactly the sort of quantity that
we can bound with our Littlewood-Offord theorem. There is a slight wrinkle here
in that we need to ensure D, (vjq) > 16/¢, but this is a technicality we can deal
with earlier in the proof by directly bounding the probability a random v € A, has
D (viq)) < 16/¢. Thus we can apply Theorem 1.3 to bound (23) and hence obtain

1) Pu({IHv@l2 < eV} 0 {oa-ria(H) < ev/n}) < (Ceemk)m.
We then apply this bound to each term in (21), by way of (22), to see that
Even.Pu ([ Moll2 < ev/n) < (Ce)",

where we have used that k¥ < d < n, d/n is small compared to 1/C and ¢ and that
g > e~ . This proves (18), as desired.

As we discussed above, this gives a bound in the direction of (16) but falls short
of our desired bound of (C//L?)". For this, we instead study the second moment,

(25) E, [Bar (| Moll2 < evm)]

Here, we decompose this quantity analogously to the above, to show that (25) is
bounded above by a quantity of the form

Even.Eq, Ph, <|H1U[d]|2 <evn, ||Havg |2 < ev/n, and [|HS vigy1qll2 < 26\/5)7

where Hy, Hy are independent copies of H and Hs := [H;, Hs| is the concatenation
of these two matrices. We then proceed in much the same way as above, treating
Hj in place of H. We shall also require a more complicated form of our Littlewood-
Offord theorem, where we allow two “hard” constrains corresponding to the first
two events in (25). Ultimately, we arrive at the bound

2
Even. [Par (|Mvll2 <evi) | < (€)™,
which implies the desired conclusion at (16).

2.4. Outline of the paper. In the next section we formally introduce the cen-
tral definitions and notions that will be used throughout this paper. The remain-
der of the paper is then roughly divided into three parts. The first part consists
of Sections 4-7. Sections 4-6 are dedicated to proving our conditioned inverse
Littlewood-Offord result, Lemma 4.1, which is the “real” version of Theorem 1.3.
This theorem is properly introduced in Section 4 where we go on to set up the
problem on the Fourier side. In Section 5, we establish the key geometric results
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we need for navigating the Fourier side of the problem, before completing the proof
of Lemma 4.1 in Section 6.

In Section 7, the final section of this first part, we set ourselves up for the next
part of the paper by using Lemma 4.1 to establish the crucial inequality described
at (24), the formal statement of which takes the form of Theorem 7.1. Theorem 7.1
is the only result we carry forward into later sections.

The second part of the paper consists of Sections 8 and 9. In Section 8, we
obtain our crucial bound on the size of our net N, by carrying out our “inversion of
randomness” scheme, as outlined in Section 2.3. Section 9 contains the less exciting
proof that N, is in fact a net for X..

In the final section, Section 10, we pull together the various elements of this
proof, state the reductions we use from previous work and complete the proof of
Theorem 1.1.

In most cases, we have highlighted the main results of each section at the start.
So if the reader does not want to delve into the details of a particular element of
the proof, she can simply inspect the top of the section to glean what is needed for
going forward.

3. CENTRAL DEFINITIONS

We now turn to give a proper treatment of the proof, by laying out the key
definitions that will concern us in this paper. We begin by partitioning the sphere
S*=1into “structured” and “unstructured” vectors. Formally, we set v = e =", for
sufficiently small ¢ > 0, and then define the “structured” vectors as

Si={veS" " :pw) =1},

where p(v) is as defined at (5). The invertibility of a random symmetric matrix on
the set of “unstructured” vectors v € S"~! \ ¥ is already well understood and so
we can restrict our attention to this set of structured vectors. We refer the reader
to Section 10 for the details.

Following Rudelson and Vershynin [33], we make a further reduction to working
with vectors that are reasonably “flat” on a large part of their support. For D C [n],
|D| = d, define
(26)

(D) := {U € S" 1 (ko + ko/2)n M2 < Jui] < (k1 — Ko/2)n Y2 for all i € D} ,

where 0 < kg < 1 < k1 are absolute constants, fixed throughout the paper and de-
fined in Section 3.1. We will set d := ¢2n/2, where c is defined below in Section 3.1.
Now set

7:=|J1(D),

where the union is over all D C [n], |D| = d. The case of non-flat v is already taken
care of in the work of Vershynin [52] (see Section 10) and so it is enough to work
with ZNX. Since we will ultimately union bound over D, it is enough to work with
Z(D)N X%, for some fixed set D, and so, by symmetry it is enough to restrict our
attention to vectors v € Z([d]) N X.

Now, with this in mind, we further partition the set Z([d]) N £ C S"~!, but for
this we need to introduce another distribution on symmetric matrices. Define the
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probability space M, (u) by defining M ~ M,,(u) to be the random matrix
M = [Otxial HY ’
Hi  Ogy1m)xjd+1,n]
where H; is a (n — d) x d random matrix with i.i.d. entries that are p-lazy (that is,
(H1)i,; = 0 with probability 1 — p and (H1),; ; = £1 with probability 1/2).
Now, given v € Z([d]) and L > 0, we define the scale of v as
T (v) = sup {t € 10,1] : P(||[Mvl|]2 < tv/n) > (4Lt)n}7
in the style of [51] (where it is called the threshold). Note we are defining Ty, relative
to the matriz M, rather than our original distribution A. Now define our partition
of Z([d]) N X. For € € (0,1), let
Ye = {v e Z([d]) : TL(v) € [, 2¢]}.
We shall show (as it is not obvious) that indeed
snz(d)yc  |J S
e>y*/(212L)
With the definition of ¥, in hand, we are able to define A, which will be an efficient
net for 3. at scale e. It turns out that defining this net is not hard, although showing
that it satisfies the desired properties will be the main challenge of this paper. For
this, we first define the trivial net at scale € to be*
A. == B,(0,2) N (4en /2. 2") N T'([d)),
which is a natural net for Z([d]). Here Z'(D) is similar to Z(D) but with slightly
looser constraints:
7'(D) := {v ER™: kon V2 < || < kn Y2 for all i € D} .

Since we are only interested in approximating vectors in ., we can get away
with a significantly more efficient net. For this we introduce two more concentration
functions. First, we define the Lévy concentration function: if X is a random vector
taking values in R"™, define

L(X,t):= max P(|X —wl|2 <1t).
we n

Second, we define a variant of this concentration function for the uniform distribu-
tion on random symmetric matrices with bounded operator norm. For a matrix A,
we use the notation ||A[| := maxg.||,=1 [|A]|2 to denote the usual 2 — 2 operator
norm and define

Laop(v,t) 3= max P ({||dv — wllz <t} N {A]l < 4v/n}).

Here we are just cutting out the slightly irritating event that A has large operator
norm. Intuitively this is an acceptable move as the probability that |A|| > 4v/n
is exponentially small (see Lemma 10.5), however some care is needed as we are
mostly concerned with far less likely events.

We now introduce our nets N,

(27) M. :={v € A, : P(| Mv|l2 < 4ev/n) > (Le)” and L4 0p(v,ev/n) < (28Le)™}.
The reader should view the lower bound P(||Mv||2 < 4ey/n) > (Le)™ as the real

core of this definition, while the upper bound for L4 ,, is less important. The

4Here and throughout, By, (x,) is the £2 ball centered at 2 with radius r.
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two main tasks of this paper will be to show that N is indeed a net for X, (an
easier task) and secondly that |N¢|/|A| is smaller than ~ L=2", where L is a large
constant.

3.1. Discussion of constants and parameters. We will treat the constants
Ko, k1 (seen at (26)) as absolute throughout the paper, and we allow other absolute
constants C, C’, ... to depend on these exact quantities. In particular, we set
ko = p/3 and k1 = 6~ /2 4+ p/6, where §, p are as in Lemma 10.2 (which is a lemma
from [52]). While we have not computed these constants, it would not be too much
work to do so.

We also note our treatment of ¢g, which, for most of the paper, will be presented
as a parameter and dependencies involving ¢y will be explicitly noted. However, we
will ultimately fix cg = min{2724, p51/2/2} where, again, ¢, p are as in Lemma 10.2.
Thus it is no harm for the reader to view ¢y as an absolute constant which is fixed
throughout the paper. The reason for the extra care with ¢y comes from its delicate
relationship to d/n. Indeed, we will ultimately set d := [c3n/2].

Another point to note is our use of R, which represents related, but different con-
stants throughout the paper. Roughly speaking, these related values of R increase
as we get deeper into the proof.

4. INVERSE LITTLEWOOD-OFFORD FOR CONDITIONED RANDOM WALKS I:
STATEMENT OF RESULT AND SETTING UP THE PROOF

This section is the first of three sections where we lay out and prove our main
Littlewood-Offord type theorem, Lemma 4.1, which works in the presence of a
large number (k ~ n) of relatively soft constraints on our random walk. As we will
see, the proof of Lemma 4.1 is rather involved and consists mainly of a geometric
argument on the Fourier side to “decouple” the many soft constraints from the few
hard constraints.

Given a 2d x £ matrix W (which encodes these soft constraints on our walk, as
in Theorem 1.3) and a vector Y € R%, we define the Y-augmented matrix Wy as

_ 0. |Y
i =3 o)
Here Y =~ v/t will be a re-scaled version of v from Theorem 1.3. We define, for
a € (0,1), the least common denominator of a vector v € R? to be

(29) Da(v)i=inf {6 >0: |6~ vllr < min {llv]l2/2, Vad}},

where ||z||t := inf{||z — y||2 : y € Z9}, for x € RY, denotes the minimum distance
to an integer point. Note the definition at (29) is a bit different from the definition
presented in the introduction, in that the “non-degeneracy condition” is now ||¢ -
vt < @||v]l2/2. We will stick with this definition throughout the paper.

We let ||A||us denote the Hilbert-Schmidt norm of a matrix A, that is, || A||4g :==
Do |4;;|* and for p € (0,1), m € N, define the m-dimensional p-lazy random
vector 7 ~ Q(m, u) to be the vector with independent entries (7;)7,, satisfying

P(r; =-1) =P(r; = +1) = p/2 and P(r;=0)=1-p.

We now state our main Littlewood-Offord type theorem, which is our “real” (and
strengthened) version of Theorem 1.3, from Section 1.1.
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Lemma 4.1. For deN and o, p€(0,1], let 0<k<27%ad and t > exp(—2~8puad).
For 0 < co <27 22p, let Y € RY satisfy ||Y]|2 = 27 Pc/t, let W be a 2d x k matrix
with [|[W| < 2 and |W ||lus = VE/2.

If 7~ Q(2d, 1) and D, (Y) > 16 then

(30) L (W;'FT 01/2\/k + ) < (Rt)? exp(—cok),
where R = 233 ¢y ?u=1/2.

Before we start working towards the proof of Lemma 4.1, we make a few informal
remarks on its statement and its connection to Theorem 1.3. The main difference
to note is that there are now two “hard” constraints encoded in the left-hand side
of (30); these are, in the notation of Theorem 1.3,

[{(v,01q), 7)<t and  [((O),v),T)| <t.

The “soft” constraints are, as above, encoded as the columns wy, ..., wg of W.
To combine the “hard” and “soft” constraints into a single matrix inequality, we
rescale v, thinking of |{(v,0(q)), 7)| < t as |(c 1/215 Y(v,014)), >| < CO/ . This explains
the scaling on Y, which is unusually written as HYH2 > 2710¢ /t, where t should
be thought of a very small number ~ e~ <",

The scaling of D, (Y) in Lemma 4.1, in contrast with the statement of The-
orem 1.3, is explained in a similar way. If ¢ - Y ~ Z% where ¢ = O(1) then
(¢/t) = O(1/t) satisfies (¢/t) - v ~ Z%, as we think of Y ~ v/t.

This also makes the numerology of Lemma 4.1 a little more transparent. If Y is
a random vector with ||Y||z &~ 1/t, we have |Y;| ~ t~'n~'/2 and thus we expect the
one dimensional random walk (Y, ) to have

c (<Y 7, 1/2) ~t.

Thus we expect Y to have some special structure if £ ((Y, T), 03/2) > t. On the

other hand, for each w; we expect that [(w;,7)| &~ 1 and, since the w; must be
“approximately orthogonal” (due to the assumption ||W|| < 2), we should expect

£(W7’ 60/2\/_) ~ ek ,

being somewhat vague about this constant ¢ > 0.
As a warm-up for the reader, we show how Lemma 4.1 easily implies Theorem 1.3.

Proof of Theorem 1.3. Let a,t € (0,1), v € S4~! with D, (v) > 16/t and W be
a k x d matrix with orthonormal rows. Let Y = (2723/t)v and note we have
V]2 = 272t and D,(Y) > 16. Now let X, X’ ~ {—1,1}¢ be iid uniform
random variables and let 7 = (X, X’). We bound the square of quantity at (6)
above by

P (1(v.X)| < co/2, [WX]| < Vak/2) <Y, X) + (¥, X' + W3
< colk + 1))

We now define W’ to be the k x 2d matrix formed by of concatenating two copies
of W. We note that ||[W’| = /2 and ||W’|lus = v2k. We then easily see that

P (Y, )% + (¥, X')? + W3 < ok +1)) < £ (Wi, ot *VE+1).
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We now apply Lemma 4.1 with ¢ =t + exp(2~8ad), 4 = 1 and ¢y = 2722 to see
L (W{/T, eV + 1) < (RY)? exp(—cok).

Now using that Y = (co/2t)v and letting C = R = 277 and ¢ = ¢p/2 = 272 we
obtain
Px (|<X,v>\ <tand [WX|2 < C\/E) < Cte™F 4 2¢7c0d,

as desired. O

For the remainder of this section, we take some first steps towards the proof
of Lemma 4.1. We first pass to the Fourier side and set up our problem there,
describing our goal in terms of a certain “level set”. We then make a first reduction,
by getting some basic control on the fibers of this level set. In the following section,
Section 5, we make a more significant reduction about the geometry of our level set.
In Section 6 we prove the key Lemma 6.1, the statement of which is very similar to
that of Lemma 4.1, but with a more complicated quantity replacing the right-hand
side of (30). Finally, with one further step, we conclude Section 6, with the proof
of Lemma 4.1.

4.1. Passing to the Fourier side. To prove Lemma 4.1 we will prove the contra-
positive; assume (30) fails and then obtain an upper bound on the least common de-
nominator by finding a non-trivial ¢ > 0 that satisfies ¢ = O(1) and ||¢-Y ||z < v ad.
Our first step in proving Lemma 4.1 is to use the lower bound in the negation of
(30) to obtain a lower bound on a level set of an appropriate Fourier transform.
This manoeuvre was pioneered by Haldsz [16] and has been a key step in all of the
Fourier approaches to inverse Littlewood-Offord theory.
For a 2d x ¢ matrix W, we define the W-level set, for t > 0, to be

Sw(t) i= {0 € R+ [Wo|lp < V)

and we define v, to be the ¢ dimensional Gaussian measure defined by ~,(S) =
P(g € S), where g ~ N(0, (27r)~11;) and I, denotes the ¢ x ¢ identity matrix.

The following Esseen-type lemma allows us relate the quantity seen at the left-
hand side of (30) with the Gaussian volume of a level set.

Lemma 4.2. Let 8> 0, v € (0,1], let W be a 2d x £ matriz and let 7 ~ Q(2d,v).
Then there exists m > 0 so that

LWTr, ﬂ\/@) < 2exp (2[325 - Vm/2) Ye(Sw (m)).

The proof of this lemma is a straightforward exercise with the characteristic
function of W7t and is postponed to Appendix A.

We can now describe how our least common denominator can be spotted in
Fourier space. From Lemma 4.2 along with the negation of (30), we obtain m > 0
and a set Sy, (m) C R¥*2 with Gaussian volume bounded below by (Rt)? exp(cym—
cok). Now, for reasons that we will not explain here (since it is just a consequence
of the Fourier transform), the first k-coordinates of the space correspond to the
k “soft” constraints while the final two coordinates correspond to the two “hard”
constraints.

With this in mind, the idea is to find an element ) € Sy, (m) for which |[¢by[|2 =

O(Vk), and one of ¥y 1, Y42 is O(1) and “non-trivial”. It will turn out that one
of ¥r41,Yry2 is a good candidate for our desired least common denominator. The
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condition on the 93 should be thought of as just getting these coordinates “out of

the way”.
To find this desired ¥ € Sy, (m), for r, s > 0, we define the cylinder
(31) Tooi={0 € R [|0y]], < 7 10ksa] < s and [Opyo| < s}

We now restate our condition on v in terms of I'; s: we want to show that there
exists an © € Sy, (m) for which

(32) (FQ\/EJG \ Fz\/ﬁs +2) N Swy (M) # 0,

where s is chosen depending on the non-triviality condition we need. We shall then
ultimately see that if y € (I'y, 7 16 \ Ty 5. + %), Where z € Sw,. (m), then (z —y)
is a good candidate for ¢ (see Claims 6.4-6.6). In what remains in this section, we
warm up by making a first easy reduction on the structure of Sy, (m) under the
assumption that (32) fails.

4.2. A first reduction: controlling the density on fibers. For our first re-
duction, we first record the following easy fact.

Fact 4.3. For s > 0, let S C R? be such that v2(S) > 852, then there exists
x,y € S so that s < ||z — y[|s < 16.

Proof. First note that if 8s? > 1 then the statement holds trivially and so we may
assume 852 < 1. We prove the contrapositive and assume there is no pair z,y € S
with s < [[2—yloe < 16. We cover R? = |, 1442 Qp where @, := p+[—8,8]*. Thus
Y2(8) < 22 c16.22 12(SNQp). Since there is no x,y € S so that s < [lz —y|lo < 16,
then for each @, there is x = z(p) € @, so that

12(SNQp) = 12(SNQp N (x(p) + [=5,5*)) < 72(2(p) + [-5,5]%).
Letting g ~ N(0, (2m) 1), we have
~Yo(x + [—5,5]2) < P(ml —s<g< 2 —l—s)P(ch —s<g< ac2+s)
< 4s” exp(—|pl|3/16),

where we have used that (z; — s)? > p?/8, which holds since s < 1. Now we may
bound

12(8) < D n(SNQ,) <45 > exp(—nlp|3/16) < 857,
pe16.22 pE16-72

which completes the proof. O
Now for S C R*¥*2 and O € RF, we define the “vertical fiber”

(33) S(Q[k]) = {(9k+1, 9k+2) € RQ : (Q[k], 9k+1, 0k+2) S S} .

Lemma 4.4 tells us that if we are unable to find a point in our desired intersection
(Tr16\Trs+2) NS, for all z € S, we can obtain good control on the measure of
the vertical fibers of S.

Lemma 4.4. Fork € N, r >0 and s > 0, let S C RF*2 be such that for all x € S
we have

(Fnlﬁ \Fr,s + JJ) ns=40.
Then

S(0)) < 852
4£g§k72( (O1r)) < 8s
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Proof. We prove the contrapositive; let 1) be such that o (S(Q/J[k])) > 852, This
implies (Fact 4.3) that there exists (011, 0k12), (0} 11, 0412) € S(Ypr)) with

s < max{[fy 1 — Oy, 16r2 — O]} < 16.

Unpacking what this means in the full space R**2: we have 0,0’ € S so that
Q[k],ﬁfk] = 1/)[k], and s < max{|9k+1 - 0];+1|, |0k+2 - 9;6+2|} < 16. Thus

0 e (9/ —+ Phlﬁ \ ].—‘7«75),
as desired. 0

In the next section we go on to obtain a more complicated reduction of this form,
that will ultimately be key in proving Lemma 4.1.

5. INVERSE LITTLEWOOD-OFFORD II: A GEOMETRIC INEQUALITY

We now turn to make a more intricate and subtle reduction from that seen in
Section 4.2, that will be key in finding our least common denominator. The lemma
we prove here is purely geometric, but one should always think of it as being applied
to an appropriate level set S = Sy, (m), as seen in Lemma 4.2.

Given a set S C R**2 and y € R**2, define the “translated horizontal fiber”,

Fy(S;a,b) :== {0 = (01,...,0k) € R¥ : (61,...,01,a,b) € S —y}.
Our main goal of this section tells us that under the assumption

(F2\/E716\F2\/E7S+{E)HS:®,

for all x € S, the total measure of S can be controlled by the measure of the k-
dimensional fibers F,(S;a,b). We state it in the contrapositive form to make the

application (in Section 6) a little easier to spot. Given sets A, B C R, we let
A—B={a—b:a€ A be B} and define A+ B similarly.

Lemma 5.1. Fork € N and s > 0, let S C RF*2 be a measurable set which satisfies

(34) 8s2e M8 1 645> max (Ve (Fy(S;a,b) — Fy(S;a, b)))1/4 < Yit+2(S5).

a,0,y

Then there is an x € S so that®
(35) (F2\/E,16 \Fz\/E,s +xz)NS #0.

To prove this lemma, we will need a few facts about Gaussian space, which we
collect in Sections 5.1 and 5.2, before moving on to prove Lemma 5.1 in Section 5.3.

5.1. A few facts about Gaussian space. Recall that for £ € N, ~y, is the £ dimen-
sional Gaussian measure defined by 7,(S) = P(g € S), where g ~ N(0, (27)~11,).

Lemma 5.2. Letk > 0, r >0 and S C R**2 be measurable. Then there exists
x €S, and h €l g so that

Yrt2(S N B) < 8Yp42((S — ) N Loy 16 + h),
where B := {0 € R*2 . || < r}.

5Note, in particular, that Lemma 5.1 says that if (34) is satisfied then we must have s < 16.
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Proof. Consider translates I',. s + y where yji1, yr+2 € 16Z2 to write
(36) We(SNB) = > 2SN (Trs+y)).
ye{0}F x16Z2

We express y44+2(S N (Frg +9)) as
(37)

/ 1[6 € SN(Tys+y)]e " I015/2 dg = / 1[¢p € (S—y)NT,g]e ™IovIE/2 g,
Rk+2

Rk+2

Rewriting the exponent in the integrand at (37)

o+ yll3 = —118l13 — 20kt+1Ykt1 — 20k+2Yk+2 — Yir1 — Yoo
we use that |¢rr1], |Prr2| < 8 whenever 1[¢ € (S —y)NT,.5] #0, to see
(38) rr2(SN (Trs+y))

i v
< exp (_§y£+1 - 5y,%+2 + 87| Yk1| + 87T|yk+2\> Yer2((S—y)NThg).

So, apply (38) to (36) to get

Yi+2(S N B)

T2 _m,2
<Y (S —y) NTyg)e Bk Bubtsrivcal il
ye{0}F x 1672

Smaxyusa((S—y) NThs) D e BV Sviea Sl ¥8rles
Y Yk+1,Yk+2€16Z
< 16 maxye42((S —y) N T'rs).

Let y be a vector at which the above maximum is attained. Now observe that if
SN (s +y) =0 then (S—y) NI, s =0 and thus v,12(S N B) = 0; so there is
nothing to prove. Thus we may assume SN (I, s+y) # 0 and let z € SN(Ts - +y).
Define h := x —y € I'; g and notice that

(S—yNlg—h=(S—y—h)Nn(Ts—h) C(S—x)NTy 16,

where the inclusion holds since h € T, g. Therefore (S—y)NI'ys C (S—z)NTa16+h,
allowing us to conclude that

Ye+2(S N B) < 167,42((S —y) NTrg) < 1679k42((S — 2) NTap 16 + ),

as desired. O

We also need the following standard tail estimate on a k-dimensional Gaussian.
Fact 5.3. v ({z € R* : ||z|3 > k}) < exp(—k/8).

Proof. For any ¢ € (0,1) the standard Gaussian measure of the set {z € RF :
|lz||3 > k/(1—¢)} is at most exp(—e2k/4). Recalling that +; has standard deviation
(27r)_1/2 and taking ¢ = 1 — (27) ! gives the desired bound. O
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5.2. A Gaussian Brunn-Minkowski type theorem. We now lay out a useful
tool which gives us some control of the Gaussian measure of the sum set A 4+ B,
relative to the Gaussian measures of A and B. Indeed, the following theorem due
to Borell [4] can be viewed as a Brunn-Minkowski-type theorem for Gaussian space.

For this, let ®(z) be the cumulative probability function ®(z) = P(Z < x),
for the standard one dimensional Gaussian Z ~ AN(0,1), while 7y is (still) the
k-dimensional Gaussian with covariance matrix (27) =1 1j.

Theorem 5.4 (Borell). Let A, B C R¥ be Borel sets. Then
(A4 B) > (07 (4) + 07 (u(B) ).

Proof. In [4] Theorem 5.4 is proved for the standard Gaussian measure rather than
. However we can change the standard deviation of the measure by taking dilates
of the sets A and B. O

We will use the following simple consequence of Theorem 5.4.
Lemma 5.5. Let A C R be Borel sets. Then
(A —A) =y (A)*.
Proof. By Theorem 5.4, we have
(39) (A= A) > 287" (1x(4))) = &(2),
where we have set x = ®~!(y;(A4)). Note that
(40) ®(22) =P(Z < 22) =P(Zy + Zo+ Z3 + Zy < 4x) > P(Z < 2)* = ®(2)*,

where Z; are i.i.d. copies of Z ~ N(0,1). Combining (39) and (40) completes the
proof. (Il

5.3. Proof of Lemma 5.1. With these pieces now in place, we can move on to
prove Lemma 5.1, our key geometric lemma on the Fourier side.

Proof of Lemma 5.1. Write r = v/k for simplicity. We prove the contrapositive and
assume for every x € S we have
(41) (P2T,16 \P2T,s + QC) ns = @
We recall that

B={0 cR"?: |6y <1},
and proceed to bound vj42(S) from above by first bounding ~;42(S \ B) and then
bounding vx12(S N B).

Step 1 (Upper bound for vx12(S \ B)). For O € R¥, let S(0})) be as defined at
(33):

S(Ow) = {(Or41,0k12) € R? : (O], Oh11,0812) € S}
We may write

(42) ’Yk+2(S \ B) = /|9 | 72 (S(G[k])) dryy
w22
and thus
(43) Yr+2(S\ B) < <9£}12§k Y2 (S(8))) )%({W[k]”z >r}).
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Lemma 4.4 and (41) show that

44 S0 < 842,
(44) 9[1;12@72( (O1x)) < 8s

Fact 5.3 bounds

(45) Y ({10 ll2 = r}) < exp(—k/8)
and so from (43), (44) and (45) we learn
(46) Yrt2(S\ B) < 8s2eF/8,

197

Step 2 (Upper bound for v;42(S N B)). By Lemma 5.2, there exists z € S and

h € I, g such that

(47) ”yk+2(S N B) < 16’}/k+2((8 — I) N 16 + h).
Now since x € S, we use (41) to deduce that
(48) (S - l‘) N F2r716 - (S - J?) N ans

and so letting y = x — h, we see

(49) (S—2)NTys+h=(S—z+h)N(Tors+h)=(S—y)N (Lo s+ h).

Thus by (47), (48) and (49), we have

(50) Yet2(S N B) < 16v412((S — y) N (Taps + h)).

Bound

G w28 =9) N (Tars + 1) < / W (Fy(S;a,0)) dys
la—hgy1l,|b—hgy2|<s

and apply Lemma 5.5 to obtain

(52)  r2((S = 9) N (Lars + h)) < 45" max(ye (F,(S; a,b) — Fy (S5a,b))"*.

a,by
Combining (50) and (52) gives
(53) Ye2(S N B) < 645% max (i (F,(S;a,b) — F,(S;a,0)))"*.

ab,y

Putting Step 1 and Step 2 together: (53) together with (46) implies

Yi+2(S) < 85%€ ™S + 645 max (i (Fy (S: a,b) = Fy(Sa,0))M%,
a,0,y

completing the proof of the contrapositive.

O

6. INVERSE LITTLEWOOD-OFFORD III: COMPARISON TO A LAZIER WALK AND

THE PROOF OF LEMMA 4.1

In Section 5 we proved our key geometric ingredient, Lemma 5.1, to deal with
the geometry of our level set (as seen in Section 4.1). We now use this lemma to

take the following big step towards Lemma 4.1.

Lemma 6.1. FordeN and a, p€(0,1], let 0 < k < 27 8%ad and t > exp(—2"3uad).
For0 < co <27 2p, letY € RY satisfy ||Y| = 279/t and let W be a 2d x k matriz
with |W|| < 2. Also let 7 ~ Q(2d, p) and 7/ ~ Q(2d,27 ") and B € [co/2'°, \/co),

€ (0, o)
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If
(54)

LOWET BVEFT) > (RN exp(4%k) (BUIW 7'l < #VE) +exp(—878))
then Do (Y) < 16. Here we have set R = 232c5?u=1/2.

Of course, Lemma 6.1 looks quite a bit like Lemma 4.1 save for quantity
(55) P(IWTr'l2 < B'VE) + exp(—5k),

on the right-hand side of (54). One should view this quantity as an approximation
of the contribution that the “soft” constraints make. Indeed, if one reads this
lemma in the contrapositive, it says that we can successfully “decouple” the “soft”
constraints from the “hard” constraints, provided Y is sufficiently “unstructured”,
meaning D, (Y) > 16. Of course, this story is not quite an honest one; we have to
use the lazier vector 7/, rather than 7, to get things to work out, and we also take
a loss in the exponent of 1/4. The key here is that we obtain the correct power of ¢
in our bound, which is deeply important for our application. We also note that our
use of “decoupling” should not be confused with the “decoupling” step in Costello,
Tao and Vu [9], which is used to deal with very unstructured vectors.

We prove this lemma in Section 6.2 after laying out a few facts on level sets
in Section 6.1. We will then conclude this section in Section 6.3 with a proof of
Lemma 4.1, by combining Lemma 6.1 with one further ingredient to bound (55).

6.1. Working with level sets. To prepare for the proof of Lemma 6.1, we record
two basic facts about level sets. First off, we note a sort of converse to the Esseen-
type inequality that we saw in Section 4, Lemma 4.2. Again, we will postpone the
straightforward proof of this lemma to Appendix A. Recall that we defined, for a
2d x ¢ matrix W, the W-level set, for t > 0, to be

Sy (t) == {9 eR: Wy < \/E}.
Lemma 6.2. Let 8> 0,v € (0,1/4], let W be a 2d x £ matriz, and let 7 ~ Q(2d,v).
Then for all t > 0, we have
Ye(Sw (£)e 32 <P (|WTr||2 < BVE) + exp (—4%) .

We remark that we impose laziness v € (0,1/4] here to make the characteristic
function of W71 non-negative.

We need also need the following basic fact about level sets. Recall that, for a set
S C R**2 and y € R**2, we defined the “translated horizontal fiber”,

Fy(S;a,b) :== {0 = (01,...,0,) € R¥ : (61,...,0),a,b) € S —y}.
Fact 6.3. For any 2d x (k + 2) matrix W. If m > 0 we have
Sw(m) — Sw(m) C Sw(4m).
Similarly, for any y € R**2 and a,b € R we have
(56) Fy(Sw(m); a,b) — Fy(Sw(m); a,b) C Fo(Sw(4m); 0,0).

Proof. Notice that if z,y € Sy (m) then by definition |[Wx||r, |Wy|r < +/m. Thus,
by the triangle inequality,

W (2 —y)lr < Wl + [Wylr < 2¢m.
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For (56), let 0, 9[ € Fy(S;a,b). We have that

(01,...,0k,a,b),(0,...,05,a,b) € Sw(m) —y
and so 0":=(01—07,...,0,—0;,0,0) € Sy (4m). Thus O — 01 € Fo(Sw (4m); 0,0),
implying (56). O

6.2. Proof of Lemma 6.1. We may now turn to proving Lemma 6.1, our big step
towards Lemma 4.1.

Proof of Lemma 6.1. Apply Lemma 4.2, with parameter u, to find m > 0 such that
the level set

S = Sy, (m) = {6 € R*2 . |[Wy0|r < vVm}
satisfies

(57) e Ry 5 (8) = LW T, BVEFT).
Thus (57) together with our hypothesis (54) gives a lower bound

1 um
(58) 7k+2(5) 2 4 }T+2182 (Rt)2 T1/4,
where we have set
T :=P(|WTr||y < B'VE) + exp(—B"k),

where we recall that 7/ ~ Q(2d,2~"u). We now make the following important
designations,

(59) ro:=vk and  so:= 2% (v/m + VE)t.
Recall from (31) that for r, s > 0 we defined the cylinder
I s:= {0 e RFF2 ., H(‘)[k]H2 rand |Og+1] < 8, |Okq2] < s}.
Claim 6.4. There exists € S C R¥t2 g0 that®
(60) (T2r6,16 \ T2rg,s0 +2) NS # 0.
Proof of Claim 6.4. We look to apply Lemma 5.1 with s = s¢. For this, we bound

M := max {% (Fy(S§a7b) - Fy(S;a,b))},

ab,y

above by e*™T, thus giving a lower bound on 712(S) and allowing us to apply
Lemma 5.1. Use Fact 6.3 to see that for any v, a, b, we have

(61) F,(S;a,b) — Fy(S;a,b) C Fy(Sw, (4m);0,0).
Now carefully observe that

Fo(Sw, (4m);0,0) = {9[k] € RE - [[Wopy |l < \/4m} = Sy (4m),

which is a level set corresponding to the (“decoupled”) event P (||W 77|l < #'Vk),
where 7/ ~ Q(2d,277p) and 8’ € (0,1/2) is as in the hypothesis. Thus we may
apply Lemma 6.2 (with v = 277y and ¢ = 4m) along with (61) to obtain

M < 7 (Fo(Swy (4m),0,0)) = v (Sw (4m)) < e™T.

SNote that this claim shows, in particular, that sop < 16.
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We may combine this with the fact that T > exp(—/3"2k) > e~ */4 since 8’ < 1/2,
to get

(62) TV S %e—um/zl(e—k/lﬁ + MYy,
So combining (62) with (58) gives
(63) yrsa(S) = (1/8)e!™/A+25k(Ri)2 (/16 4 MV/4) > 6453 (e /16 4 MY,

allowing us to apply Lemma 5.1 and complete the proof of the claim. The last
inequality at (63) follows from a simple check. First note that

(64) 52 = 22652/ + VB < 259 + m) (t/co)?.
Now use (64) and the facts that R = pu~/2¢; 2232 and 8 > 27 '%¢, to bound
6452 < 239tzca2(22006262k + 4~ (um/4)) < é(Rt)ze”m/“ka
thus showing the second inequality at (63) and finishing the proof of the claim. O
We now observe the simple consequence of Claim 6.4.
Claim 6.5. We have that Sy, (4m) N (Targ.16 \ T2rg.s0) 7 0.

Proof of Claim 6.5. By Claim 6.4, there exists x,y € S = Sw,.(m) so that y €
(T2r4,16 \ 2.0 —l—x) NS. Set ¢ := y—x and observe that ¢ € Sy, (4m) N (Tary 16\
T2r4.5), by Fact 6.3. O

We now conclude the proof of Lemma 6.1 with Claim 6.6.

Claim 6.6. If ¥ € Sw, (4m) N (T2py.16 \ T'2rg,s,) then there exists i € {k+ 1,k + 2}
so that

Y || < min{es[|Y[|2/2, Vad}.
Proof of Claim 6.6. Note that since ¢ € Sy, (4m) there is a p € Z?¢ so that
Wy € Bag(p,2y/m). So if we express

Wy = Wippy + Yr41 [3;] + Yrt2 B}i} ;
we have that
(65)  Yrs1 B;] + Yrt2 Bﬁi} € Baa(p,2v/m) — Wby C Baa(p, 2v/m + 4Vk),

where the last inclusion holds because 1) € I'yy 16 and so [[{ll2 < 2rg < 2vk and
W <2

Since ¢ & oy, s, we have that at least one of [¢g41], [r+2| are > sg. So, assume
without loss that |¢k11]| > so and that i1 > 0 (otherwise replace ¢ with —1).
Now project (65) onto the first d coordinates, to obtain

(66) V1Y € Ba(pa, 2v/m + 4Vk).

We now observe that ||p+1Y |1 < W%HY”Q Indeed,

(67) Q/Jk+12\|YH2 > 50”;/H2 > (215(\/77_20‘1' \/E)t) (210070) > (2vm + 4VE),

where we have used the definition of sy and that ||Y|2 > 2719 /t.
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Finally, we note that m < 27 %ad. To see this, we use (58), the bounds 41 2(S) <
1,T> e=#”* and our assumption t > exp(—2~%uad) to see that
1 ,
e 2 qga(S)e T > (RTINS exp(=270 pad),
where we have used R?2 > 4, k < 27 7ad and ' < V/¢o for the last inequality. It
follows that m < 27%ad and so by (66) and (67) we have

1Y ]lr < 2v/m +4VE < Vad,
as desired. This completes the proof of the Claim 6.6. O

Let ¢ and i € {k+ 1,k + 2} be as guaranteed by Claim 6.6. Then v; < 16, since
dj S FQm,lG; and
[%:Y lr < min{|j4;Y[|2/2, Vad},
and so D, (Y) < 16 thus completing the proof of Lemma 6.1. O

6.3. Proof of Lemma 4.1. Before turning to prove Lemma 4.1, we require one
further result which tells us that |[Wol||; is anti-concentrated when o is a random
vector and W is a fixed matrix. While there are several interesting results of this
type in the literature [13,16,36] (and we will encounter another in Subsection 8.2),
we state here a variant of the Hanson-Wright inequality with an explicit constant.
A proof can be found in Appendix D of [7], the arXiv version of this paper, and is
a consequence of a classical concentration inequality due to Talagrand [43].

Lemma 6.7. Ford € N, v € (0,1), let § € (0,/v/16), let 0 ~ Q(2d,v), and let
W be a 2d x k matriz satisfying |W||luas = Vk/2 and |W| < 2. Then

(68) P(|[W7olly < 6VE) < 4exp(—2~2vk).
We now turn to prove Lemma 4.1.

Proof of Lemma 4.1. Setting ' := 4,/co, we look to apply Lemma 6.1. For this,
note that the hypotheses in Lemma 4.1 imply the hypotheses in Lemma 6.1 with
respect to co,d, o, k, Y, W and 7 (and we have the extra condition on ||W|lgs). So
if we additionally assume D, (Y) > 16, we may apply Lemma 6.1 (in the contra-
positive) to obtain

(69)

c (WE;T, BVE+ 1) < (23232 um 12t /2)2e 4"k (P(HWTT'HQ < BVE) + 675/2k>
To deal with the right-hand side, we apply Lemma 6.7 to take care of the quantity

involving 7/ € {—1,0,1}??, our v = 277y lazy random vector. Note that 4,/cy <

279 /n < /16, and that our given W satisfies ||W||lgs > VE/2 and |[W| < 2.
Thus we may apply Lemma 6.7, with 6 = 8’ and o = 7/, to see

(70) B(IWT 'l < BVE) < dexp(—27120k).
Plugging this into the right-hand side of (69) yields

1/4

1/4
exp(46%k) (P(IW 712 < #VE) + exp(—B72k)
< 2exp(4eok — 27k + 2exp(2cok — 4eok)
< dexp(—cok).
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Putting this together with (69), yields
c (W%ﬂ\/k n 1) < (Rt)? exp(—cok),
as desired. (]

7. INVERSE LITTLEWOOD-OFFORD FOR CONDITIONED RANDOM MATRICES

In this section we lift the main result of the previous sections (Lemma 4.1) to
study the concentration of the vector H; X, where H; is a random (n—d) x d matrix,
conditioned on having k singular values which are much smaller than “typical” and
X is a fixed vector for which |X;| = N for each 1.

Here N should be thought of as ~ 1/¢, in the context of the proof (see Section 2)
and H; comes from its appearance in our matrix M,

A = [Ouxia H ‘
Hi  Ogy1m)xd+1,n

The main result of this section is Theorem 7.1.7

Theorem 7.1. Forn € N and 0 < ¢g < 272, let d < 2n, and for o € (0,1), let

0< k<2 %d and N < exp(27'%d). Let X € R? satisfy || X||2 > co27'%n!/2N,

and let H be a random (n—d) x 2d matriz with i.i.d. (1/4)-lazy entries in {—1,0,1}.
If Do(rpX) > 16 then

(71)

R 2n—2d
Prr (02a—kt1(H) < co2™*V/n and | H1 X |2, [|H2 X ||2 < n) < e~comk/4 (N) 7
where we have set Hy := Hp,_gxjq), H2 = Hpp—q)x[d+1,2d), Tn = 160\0/5 and R :=
239063-

To understand the numerology in Theorem 7.1, notice that if we only consider
the “soft” constraints on the singular values (without the constraints imposed by
X) we would expect something like

(72) Py (02a—k+1(H) < 027 *v/n) =~ ",

for some absolute ¢ € (0, 1), which depends on the value of ¢y. Here we are using,
crucially, that H is a rectangular matrix with aspect ratio bounded away from 1.
Indeed, if H were a square matrix then oy, (H) ~ n~'/2, with high probability.®
On the other hand, the inverse Littlewood-Offord theorem of Rudelson and Ver-
shynin [33] (with a bit of extra work) tells us that if X is such that |X;| ~ N for
all i € [d], and
R

2n—2d
P X mX <0) > ()

then D,(n~Y/2X) = O(1). Thus Theorem 7.1 is telling us that we maintain an
inverse Littlewood-Offord type theorem even in the presence of many additional
constraints imposed by the condition on the least singular values.

"For convenience, we define o;(H) = 0 for j > rk(H).

8While we can refer the reader to [34,35] for more on the singular values of rectangular random
matrices, we were not able to find any result such as (72) in the literature. However, it is not so
hard to deduce (72) from the Hanson-Wright inequality [36] along with a “random rounding” step
similar to that in Appendix E in [7].
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7.1. A tensorization step. We need the following basic fact.
Fact 7.2. If » >t > 0 and X is a random variable taking values in R¥*2 then
L(X,t) < L(X,r) < (1+2r/)F2L(X,1).

Proof. The lower bound is trivial. The upper bound follows from the fact that a
ball of radius r in R¥*2 can be covered by (1 + 2r/t)**+2 balls of radius ¢. O

We now prove a “tensorization” lemma which shows that anti-concentration of
a single row in a random matrix H (with iid rows) implies the anti-concentration
of matrix products involving H.

Lemma 7.3. Ford <n and k >0, let W be a 2d x (k + 2) matriz and let H be a
(n — d) x 2d random matriz with i.i.d. rows. Let T € R?¢ be a random vector with
the same distribution as the rows of H. If g € (0,1/8) then

Py (|HW |lus < B2/ (k+1)(n—d)) < (25e2ﬂ2k£(WT7, BVE + 1))n_d

Proof. Apply Markov’s inequality to see that

(73)
P(|[HW ||lus < 2v/(k + D) (n—d)) < exp (28%(k + 1)(n — d)) Egre~21HWlis/5%,
Letting 7, ..., 7,_q denote the i.i.d. rows of H, we may rewrite

n—d 3
(74) IEHe—ZHHWH%s/B2 _ H ]ET.e_Z”WTTi”z/ﬁz _ (]ETe_QHWTT‘P/,Bz)n d.
i=1
Observe now that

E 2w /6 :/ P (672HWTT||2/ﬁ2 < u) du
0

:/ 4ue_2“2P(|\WTT||2/,B < u) du.
0
Splitting the integral on the right-hand side gives

E_e-2IWrl?/5

Vk+1 R oo 5
= / 4ue= 2" P(HWTTHQ < Bu) —|—/ 4ue 2" P(HWTTHQ < Bu).
0 VEFL

We then appeal to Fact 7.2 to write
ET(;?HWTTHQ/ﬁ2

VE+L e 2u k2 2
E(WTT,ﬁ\/k—i—l) / 4y~ 2 du+/ (1—|— ) due™ 2 du | .
0

VR VEk+1

Here the first integral is < 1, while the second integral is < 8 and thus
(75) E7672”WTT”2/52 < 9,C(WT7' B /I + 1).
Combining lines (75) with (74) and (73) gives
n—d
Py (|HW ||lus < B2/ (k+1)(n —d) (Qexp (26%( k+1))E(WTT,B\/k:—|—1)> ,

and the result follows. O
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7.2. Approximating matrices W with nets. Note that in Theorem 7.1, the
least singular values of the matrix H could, a priori, correspond to any of a huge
number of possible directions. To limit the number of directions we need to consider,
we build nets for k-tuples of these directions. Luckily, the construction of these nets
is rendered relatively simple (unlike the nets A;) by appealing to a randomized-
rounding technique pioneered in the context of random matrices by Livshyts [27]
(also see Section 3 of [28]).

With this in mind, let Usq ;; be the set of all 2d x k matrices with orthonormal
columns. The following theorem provides a net for Usq 1, when viewed as a subset
of RPU*F A proof can be found in Appendix E of [7], the arXiv version of this

paper.
Lemma 7.4. For k < d and § € (0,1/2), there exists W = Wag  C REIXEL yith
IW| < (25/6)2% so that for any U € Usqay, any r € N and r x 2d matriz A there
exists W € W so that

(1) |AW = U)|lus < 0(k/2d)'/?|| Al us,

(2) [IW = Ullas < 6Vk and

(3) |[W-U| < 86.

Recall, for a 2d x k matrix W and Y € R?, we defined (at (28)) the augmented

matrix Wy = {W B/{l] ’ BZH '

7.3. Proof of Theorem 7.1. We recall a standard fact from linear algebra, re-
worded to suit our context.

Fact 7.5. For 3d < n, let H be a (n — d) x 2d matrix. If o94_g+1(H) < 2 then
there exist k orthogonal unit vectors wy, ..., wy € R?? so that |[Hw;|ls < x. In
particular, there exists W € Uaq  so that ||[HW ||lgs < zvk.

We also note that if H is a (n — d) x 2d matrix with entries in {—1,0,1} then
we immediately have |H||gs < v/2d(n — d).

Proof of Theorem 7.1. Write Y :=
left-hand-side of (71) as

P(02d-k+1(H) < 2™ v/n and [[H1X |2, [|[Ha X [l2 < )
SP(HU EZ/{Qd’k HHUYHHS 3cov/n k-i—l /16

Set 0 := ¢/16, and let W be the net for Usq k, given by Lemma 7.4.
We fix a matrix H for a moment. If there exists a matrix U € Usq  so that

|HUy |lus < 3coy/n(k 4+ 1)/16, apply Lemma 7.4 to find W € W so that

IHWy [lus < [|H(Wy —Uy)llus+ || HUy |lus < 8(k/2d)"/?||H||us+3co/n(k +1)/16
which is at most co/n(k + 1)/4, since | H|lus < v2nd. Thus

16\/— - X. We use Fact 7.5 to upper bound the

P (U € Uaan : [HUy s < 22 v/nlk+1))

IP’(EIWGW [ HWy ||us < 4 (k+1))
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So by the union bound, we have
P(3W eW: [HWy|us < (co/4)v/n(k+1))

< 3 P(1HWy s < (co/H)y/n(k+1))

wew
Now, by Lemma 7.4,

W] < (2°/6)%% < exp(32dklogcy ) < exp(cok(n — d)/4),

where the last inequality holds since d < ¢3n, and so

(76) > P (I HWy|us < 2 n(k+1))

wew
< kDIt max (11w s < S V/nlk+ 0).

Let W € W be such that the maximum in (76) is attained, apply Lemma 7.3 with
B := \/co/2 to obtain
n—d

(TT) B(HWy s < (cof v/n(F+ 1)) < (Peob/2L (Wi, e} *VEFT))

We now look to apply Lemma 4.1. We define ¢ := 16/(coN) > exp(—2~%ad) and
Ro:=2""coR = 277¢((2%%¢; ) = 232¢; 2 so that we have

||YH2 = C()||X||2/(161’L1/2) > 2_146(2)]\7 = 2_1OCQ/t.

By the construction of W in Lemma 7.4 we have |[W|| < 2 and ||[W|us > Vk/2.

We also have k < 271%ad and D, ( 160\0/5 ) = Do(Y) > 16, therefore we may apply

Lemma 4.1 to see that
R\?2
LW, cé/zx/k +1) < (Rot)? exp(—cok) < <W) exp(—cok).

Substituting this bound in (77) we get

R 2n—2d
s PV o < (/AT D) < () explocak(n - a)/2)
and finally combining it with the previous bounds gives
P(O’Qd_k+1(H) < CQ\/’E/lG and ||H1X||2, HH2X||2 g n)

R

< (N>2“d exp(—cok(n — d) /4).

This completes the proof of Theorem 7.1. |

8. NETS FOR STRUCTURED VECTORS: SIZE OF THE NET

In this section we take a important step towards Theorem 1.1 by bounding the
size of our net

Nei={v €A (Le)” < P(|Mvl|2 < 4ev/n) and L4 op(v,ev/n) < (2°Le)"},
where we recall that
Ac = B,(0,2) N (4en™122") N T'([d)).

In particular, our main goal of this section will be to prove Theorem 8.1 on |AN;|.
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Theorem 8.1. For L > 2 and 0 < cog < 2724, let n > L64/Cg, let d € [cgn/él,cgn]
and let € > 0 be such that loge™! < nL=32/< . Then

C n
< -
el < (chQE) ’

where C > 0 is an absolute constant.

As the geometry of the set A. is a bit complicated, we follow an idea of
Tikhomirov [51], by working with the intersection of N with a selection of “boxes”
which cover (an appropriately re-scaled) A..

Definition 8.2. For d,n, N € N with d < n and k > 1, define a (N, k, d)-boz
to be a set of the form B = By x ... x B, C Z™ where |B;| > N for all i > 1;
B; = [-kN,—N]U[N,kN], for i € [d]; and |B| < (kN)".

The advantage of working with these boxes is that they lend themselves natu-
rally to a probabilistic interpretation, which we now adopt. We ask “what is the
probability that

L n
Paulixle <> ()
where X is chosen uniformly at random from B?”. This interpretation was used
to ingenious effect in the work of Tikhomirov, who called this the “inversion of
randomness”. While we do take this vantage point, our path forward is considerably
different from that of Tikhomirov.

We now state our key “box” version of Theorem 8.1, in this probabilistic frame-
work. Indeed, almost all of the work in proving Theorem 8.1 goes into proving the
following variant for boxes.

Lemma 8.3. For L > 2 and 0 < ¢y < 2*24, letn > LS4 and let icgn <d < cgn,
For N > 2, satisfying log N < coL=3"/%d, and r > 2, let B be a (N, r,d)-box and
let X be chosen uniformly at random from B. Then

px (utvx <> (£) ) < (£)7)

where R := Ccy® and C > 0 is an absolute constant.

8.1. Counting with the least common denominator. In this subsection, we
prove the following simple lemma, which says that the probability of choosing X € B
with “large” least common denominator is super-exponentially small. This will
ultimately allow us to apply Theorem 7.1, which requires an upper bound on the
D, (X) for application.

We point out that in Lemma 8.4, we rescale by a factor of r,, = ¢p27*n
despite the fact we are working in d < n dimensions. This is just a trace of the fact
that R™ is our true point of reference. Additionally we will only need Lemma 8.4
when K = 16.

—1/2
)

Lemma 8.4. Fora € (0,1),K >1and x> 2, letn >d > K?/a and let N > 2 be
so that KN < 2. Let B = ([-xN,—N] U [N, kN))* and let X be chosen uniformly
at random from B. Then

(78) Px (Da(raX) < K) < (2%%)%4,

where we have set ry, ‘= co2 4n~"1/2,
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Proof. If D, (rnX) < K then let ¢ € (0, K] be the minimum? in the definition of
least common denominator. Set ¢ := 1,1 and observe that ¢ satisfies
(79) lpX |t < Vad and ¢ € [(26N)" 1, r, K].
To see the bound ¢ > (26N)~!, note that if ¢ < (26N)~! then each coordinate of
¢X lies in (—1/2,1/2) which would imply ||¢X|lT = ||¢X]|2 = ¢||X||2- Using the
non-triviality condition in the definition of least common denominator (29), this
would imply
PN Xl2 = l[oX|lr = [[(rn X)lIr < Pl X|l2/2 = 61| X|[2/2,

which is a contradiction. Thus the bounds in (79) hold.

Now to calculate the probability in (78), we discretize the range of possible ¢.
For each integer i € [1/a, 2K N/a] =: I we define ¢; := ia/(2kN) and note that if
X, ¢ satisfy (79) then there exists ¢; for which

| X | < 2Vad and  ¢; € [(26N) "1, r, K],
by simply choosing ¢; for which |¢; — ¢| < a/(kN) and using triangle inequality

(80)  ll¢iXllr < 16Xz + ll(ds — @) X|2 < Vad +|¢; — ¢| - Vd(kN) < 2Vad.
Thus we have that
(81) Px(Da(rnX) < K) <> Px ([6:X e < 2Vad) .
iel
To bound the terms on the rlght hand side, note that if ||¢; X ||t < 2V ad then

1
y Z s X513 < da
j=1

By averaging, there is a set S(X,¢) C [d] with |S(X, )| > d/2 for which ||¢; X, ||t <
4y/a for all j € S(X,4). Union bounding over all sets S C [d] and using the
independence of the coordinates X; we have

d/2

(82) Px(Da(raX) < K) <23 T Px, (Il¢:X;llr <4Va).

i€l j=1
We now claim that
(83) x, (16 X;llr < 4V ) 32V

For this, note that if ||¢1X T < 4y/c, then |¢; X; —p| < 4y/a, where p € Z satisfies
Ip| < |¢2X |+1<¢;kN+1=:T;. And so

T;
Py, (lo:X;llr < 4va) < Y PBx, (1X; — po; | < 4vao; )
p=—T;

_ 2L+ 1)(8a e +1)

= 2(k — 1)N ’
where we have used that X; is uniform on [-kN,—N] U [N,xN] and the lower
bound kN¢; > 1/2 from (80) along with the assumption x > 2. Also note that
8041/2@_1 > 1 since ¢ < r, K < d~'/?K, allowing us to conclude (83).

9Technically the least common denominator is defined in terms of an infimum, however the
minimum is always attained for non-zero vectors.
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Now, plugging (83) into (82) and bounding || < (2KN/a + 1) < 3% completes
the proof of Lemma 8.4. O

8.2. Anti-concentration for linear projections of random vectors. In this
subsection we prove the following anti-concentration result for random variables
HX, where H is a fired matrix and X is a random vector with independent entries.
One small remark regarding notation: H as stated in Lemma 8.5 will actually be
HT in Section 8.3.

Lemma 8.5. Let N € N, n,d, k € N be such that n—d > 2d > 2k, H be a 2dx (n—d)

matriz with ooq—(H) = co\/n/16 and By, ..., By_q C Z with |B;| > N. If X is
taken uniformly at random from B := By X ... X Byp_g4, then
COn \24°F
Px(|HX]|2 <n) < ,
*(x] <n) < (5o )

where C > 0 is an absolute constant.

We derive this from the following anti-concentration result of Rudelson and Ver-
shynin. This is essentially Corollary 1.4 along with Remark 2.3 in their paper [37],
but we have restated their result slightly to better suit our context.

Theorem 8.6. Let N € N and let n,d, k € N be such that n —d > 2d > k. Let P
be an orthogonal projection of R"~% onto a (2d — k)-dimensional subspace and let
X =(Xy,...,Xn_q) be a random vector with independent entries for which

L£(X;,1/2) <N
for alli € [n—d]. Then, for all K > 1,

CK 2d—k
max IP’X(HPX —ylla < Kv2d — k;) < (—) ,
yERn—d N

where C > 0 is a absolute constant.

We can now deduce Lemma 8.5.

Proof of Lemma 8.5. Since HT H is a symmetric (n — d) x (n — d) matrix with

tk(H) < 2d, by the spectral theorem we have HT H = Zfﬁl oi(H)?*v;vl, where
V1, ..., Vaqg € R? % are orthonormal. Define the orthogonal projection P :=
Zfi;k v;vl. Then we have

|HX|3 = (X,H"HX)

2d
= o (H)*(X,v;)°
=1

24—k
> o0a-k(H)? Y (X, v;)?

=1
> 2_80(2)n\|PXH§.
Therefore
(84) Px(|HX |2 < n) < Px(|[PX|2 < 16¢5 'v/n).
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We now apply Theorem 8.6 to the orthogonal projection P, with K =
16¢5 ' /n/(2d — k),

C 2d—k
(85) Px(|PX > < KvV2d— k) < (5 :
dCQN
which together with (84) completes the proof of Lemma 8.5. O

8.3. Proof of Lemma 8.3. We take a moment to prepare the ground for the
proof of Lemma 8.3. We express our random matrix M, as in the statement of

Lemma 8.3, as
M= {O[d]x[d] af ]
Hi  Op—gxp—a]’
where H; is a (n — d) x d random matrix with iid 1/4-lazy entries in {—1,0,1}. We
shall also let Hy be an independent copy of Hy and define H to be the (n —d) x 2d
matrix

H = [Hl HQ] .
For a vector X € R", we define the event 4; = A4;(X) by
A = {H CH1 X g2 < noand [[Ha X (g2 < n}

and let Ay = Ay(X) be the event

./42 = {H : ||HTX[d+1’n]||2 < 2?’7,}.

We now note a simple inequality linking H, A; and A3 with the event {||M X |2 <
Fact 8.7. For X € R", let A1 = A;(X), Ay = A3(X) be as above. We have
Par(IMX |2 < n))* < Prr(Ar N Ay).

Proof. Let M’ be an independent copy of M. Expand 1(||MX||2 < n) as a sum of
indicators, apply Ej; and square to see

Par([MXl2 <n)* = > P(M)P(M)L(|MX |2, [|M'X |2 < n),
M, M’
which is at most

> P(H)P(Hy) 1 (|| Hi X(gll2 < n, [ HaXgl2 < 1 oand [|[H" X(gg10]2 < 2n),

Hy Ho
which is exactly Py (A; N As). O
We shall also need a “robust” notion of the rank of the matrix H: Define & to
be
&= {H : 02q-1(H) > cov/n/16 and o24_p41(H) < cov/n/16}
and note that always exactly one of the events &, ..., E4 holds. We now set
(86) a =218/

and, given a box B, we define the set of typical vectors T'(B) C B to be

(87) T =T(8B) = {X € B: Dolco2 n " 2X ) > 16} .
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Now set K := 16 and note that Lemma 8.4 implies that if X is chosen uniformly
from B and n > L6/ > 28 /a we have

) d/4 2n
(88) Px (X ¢ T) = Px (Dalco2 *n *?X|g) < 16) < (233L*8"/d) < (%) .

Proof of Lemma 8.3. Let M, Hy,Ho, H, Ay, As, &, a and T := T(B) be as above.

We denote
&= {X € B:Pu(IMX]|; <n) > (L/N)"}
and write
Px (&) <Px(EN{X eT})+Px(X &T).
Now define

f(X) =Py (|MX]l2 <n)1(X €T)
and apply (88), the bound on Px (X ¢ T'), to obtain
(89) Px(E) < Px (f(X) > (L/N)") + (2/L)*" < (N/L)*"Ex f(X)? + (2/L)*",

where the last inequality follows from Markov’s inequality. So to prove Lemma 8.3,
it is enough to prove Ex f(X)? < 2(R/N)?".
From Fact 8.7 we may write

d
(90)  Pu(IMX[l2 < n)* < Pu(ArNAz) = > Py (Azl A N E)PH (A N E)
k=0
and so
d
(91) f(X)?< ZPH(Az\-Al NENPr(AINE)L(X €T).
k=0

We now look to apply Lemma 7.1 to obtain upper bounds for the quantities Pg (AN
&), when X € T. For this, note that d < cZn, N < exp(L~8"%d) < exp(2~%an)
and set Ry := 2%°c;® (This is the “R” in Theorem 7.1). Also note that, by the
definition of a (N, ,d)-box and the fact that d > {c3n, we have that || X2 >

d2N > ¢o271%/nN. Now set o/ := 2710 to see that for X € T and 0 < k < o/d,

R 2n—2d
Py (A NEL) < exp(—conk/4) (ﬁ) .

Moreover by Theorem 7.1,
Z ]PH(Al N gk) < ]PH ({Jgd,a/d(H) g CO\/H/].G} N .A1) < exp(—coo/dn/4).
k>a'd

Thus, for all X € B, we have

o’d 2n—2d
(92) J0X? < 3 Pulds | g expl-cank/a) (52 +exp(-coa'dn/a)
k=0

We now consider the quantities gx(X) := Py (As | A; N &) appearing in (92).
Indeed,

Ex[gr(X)] = ExEpn [As | A1 N &) = Ex, Ex [Ex,,,, , 1[A2] | A NE].
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We now consider a fixed H € A; N & for k < o’d. Each such H has o9q_x(H) >
cpy/n/16 and thus we may apply Lemma 8.5 to see that

O, \ 24 407\ 24—
Ex g1 A2l = Pxyyyy (IH" X{ag1,mll2 < n) < (codN) < (cg—N) ;

for an absolute constant C’ > 0, using that d > icgn. And so for each 0 < k < d/d,
taking R := max{8C’cy?, 2Ry}, we have

2N
We apply Ex to (92) and then use (93) to obtain

(93) Exlo()] < (55 )

2n o'd k
Exf(X)? < <%> Z <%) exp(—conk/4) + exp(—coa’dn/4).
k=0

Using that N < exp(con/4) and N < exp(coL=3"/?d) = exp(coa’d/8) gives

R 2n
2
< — .
oy Ex (X <25y
Combining (94) with (89) completes the proof of Lemma 8.3. O

8.4. Proof of Theorem 8.1. The main work of this section is now complete with
the proof of Lemma 8.3. We now just need to go from X in a “box” to X in
a “sphere” A.. To accomplish this step, we simply cover the sphere with boxes.
Recall that

Z'([d)]) := {v ER™: kon Y2 < || < kn Y2 for all i € [d]},
A. = B,(0,2) N (den 22" N T'([d)),
and that 0 < kg < 1 < k7 are absolute constants defined in Section 3.

Lemma 8.8. For all e € [0,1], & > max{ki/ko, 25Ky}, there exists a family F of
(N, K, d)-bozes with |F| < k™ so that

(95) Ae € | (4en™1%)B,
BeF

where N = ko/(4¢).

Proof. For £>1 define the interval of integers I, := [—24N7 25N] \ [—24_1N, 25_1N}
and Io := [-N, N|. Also take J := [-kN,kN|\[-N, N]. For (lay1,...,0n) € Z%,
we define the box B({gy1,...,0n) == J¢ x H?:d.u I;; and the family of boxes

Fi=S Bllas1,. ... ln): Y 2% <8n/kj
j:€j>0

We claim that F is the desired family. For this, we first show the inclusion at
(95). Let v € A.. Since v € 4en™ /27", X := vn'/?/(4e) € Z™. Fori € [d+ 1,n],
define ¢; so that X; € I(¢;). We claim X € B(¢441,...,¢,). For this, observe that
X; € J for i € [d): since v € T'([d]), we have kg < |v;|n'/? < Ky, for i € [d].
So ko/(4e) < |X;| < k1/(4e), for i € [d]. Thus X; € J since N = ko/(4e) and
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k = K1/ko. Thus X € B(lgq1,...,4,). We now observe that B({g11,...,4,) € F,

since
n

Z 22(6;—1) N2<2:X]2 n/(4¢)? (va) < 4nN?/k2.
;>0 i
Thus we have (95).

We now show |F| < k™. For this we only need to count the number of sequences
(a+1, - - -, L) of non-negative integers for which >, _, 4% < 8n/K?. For each t > 0
there are at most max{8n/(4'x%),n} values of i € [d+ 1,n] for which ¢; = t. There
are therefore at most

8n/(k24%)

0 24t 8n/(k34")
(n) < (6504 ) ’ < eSn/(fiST)
. J 8
Jj=0

choices for these values of i if 8/(k32¢) < 1 and at most 2" choices otherwise. Hence,
there are at most

2n10g2(8/ng) . H 68n/(/€§2t) < (S/H(Q))n ce2n < K"
t>log, (8/r3)

such sequences (€g41,...,4n).
It only remains to show an upper bound on the size of B({4y1,...,4,) € F. We
have
[B(lagas o bn)| < N™R127F255 < w(16/k3)" N™ < (kN)"

where the second inequality holds due to the fact [ ]; 24 < (; > 2%7) < (8/KE)"
and the last inequality holds due to the choice of k.

We may now use our covering Lemma 8.8 to apply Lemma 8.3 to deduce Theo-
rem 8.1, the main result of this section.

Proof of Theorem 8.1. Apply Lemma 8.8 with k = max{k1/ko, 281164} and use the
fact that M. C A, to write

N, C U (4En_1/2 )ﬂ/\/;
BeF
and so
| < 4en Y2BY NN < | F - 4en~V2B) NN
< 3 den™%B) 1G] < 7]y | (™),
By rescaling by 1/n/(4¢) and applying Lemma 8.3, we have

2n
(4en=2B) N NL| < HX €B:Py(|MX|s<n) > (Le)"}‘ < (%) 1B|.

Here the application of Lemma 8.3 is justified as 0 < co < 2724, ¢2n/2 < d < é2n;
> 2; we have log1/e < n/L32/cO and therefore

log N = log r0/(4€) < n/L32/C§ < oL/,

as specified in Lemma 8.3, since kg < 1, d > L=%n, ¢y > L~Y/% and 8n/d <
16/c3. So, using that |F| < x™ and |B| < (/{N) for each B € .7-", we have

R 2n R 2n C n
<K = <K' = "< ——
e (8) e (8 o< ()
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where C = k2R%c§, thus completing the proof of Theorem 8.1. (]

9. NETS FOR STRUCTURED VECTORS: APPROXIMATING WITH THE NET

While we have spent considerable energy up to this point showing that A is
small, we have so far not shown that it is in fact a net. We now show just this, by
showing that vectors in X, are approximated by elements of A;. As we will see,
this is considerably easier and is taken care of in Lemma 9.2, which, in a similar
spirit to Lemma 7.4, is based on randomized rounding. For this, we recall that we
defined

(96) Se ={v € Z([d) : To(v) € [e,2¢]} € S,

where 77 (v) = sup{t € [0,1] : P(| Moz < ty/n) = (4Lt)"}, and d = c3n < 2732n.
Also recall the definition of our net

N = {v e A : P(||Mvl||s < 4dev/n) > (Le)™ and L4 0p(v,ev/n) < (2°Le)"} .

We also make the basic observation that if 7;,(v) = s, then
(2sL)" < P(||Mv||2 < sv/n) < (8sL)".

Until now, we have almost entirely been working with the matrix M. Lemma
9.1 allows us to make a comparison between M and our central object of study: A,
a uniform n X n symmetric matrix with entries in {—1,1}. The proof of the lemma
is based on a comparison of Fourier transforms and is deferred to Appendix B. We
note that the proof makes use of the fact that for fixed v € R™, the characteristic
function of Mv is non-negative since the entries of M are sufficiently lazy. This is
similar to the replacement step in the work of Kahn Komlés and Szemerédi [19]
and subsequent works [5,46]. However, here we only need to “break even”, whereas
they are looking for a substantial gain at this step.

Lemma 9.1. Forv € R" and t > Tr(v) we have
L(Av,t\/n) < (50Lt)™.
We now prove Lemma 9.2 which tells us that N; is a net for X..

Lemma 9.2. Let € € (0,r0/8), d < n/32. If v € X, then there is u € N with
u —v|oo < 4en=1/2,

Proof. Given v € ¥, we define a random variable r = (rq1,...,r,) where the r; are
independent, Er; = 0, |r;| < 4en~/? and such that v — r € 4en~'/2Z", for all r.
We then define the random variable u := v — r. We will show that with positive
probability there is a choice of u € M.

Note that ||7]|ee = ||t — v||eo < 4en~1/2 for all u. Also, u € Z’([d]) for all u, since
v € Z([d]) and ||u — v||eo < 4e/v/n < Ko/ (24/n). So, from the definition of N, we
need only show that there exists such a u satisfying

(97) P(||[Mulls < 4ey/n) > (Le)™ and La op(u,ev/n) < (2°Le)™.
We first show that all u satisfy the upper bound at (97). To see this, write & =
{J|4]]| € 4v/n} and let w(u) € R™, be such that

Laop(u,ev/n) =P (|Av — Ar — w(u)|| < ev/n and €)
< P (| 4v — w(u)]| < 5ev/iT and )
< La.op(v,5ev/n) < L(Av, 5ey/n).
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Since v € 3., Lemma 9.1 bounds
(98) L(Av,5eyv/n) < (28Le)".
We now show that

(99)  BuPy([[Mullz < 4ev/n) > (1/2)Py([[Mvll2 < 26v/n) > (1/2)(2¢L)",
where the last inequality holds by the fact v € X.. From (99), it follows that there
exists u € A, satisfying (97).

So to prove the first inequality in (97), we define the event £ := {M : || Mv]|2 <
2e/n}. For all u, we have
Pr(|Mull2 < 4ev/n) = Pp(||Mv — Mr||2 < 4ey/n) = Py (||Mr||2 < 2ey/n and E).

Thus

Py ([[Mullz < dev/n) = Py ([[Mr]l2 < 25v/n | E)P(E)

>

> (1= Pu([Mrl2 > 2ev/n | €)) Par(|Mo]]2 < 25v/n).
Taking expectations with respect to u gives

(100)

EuPu([Mull2 < 4evn) > (1 = EuPar (| Mrll2 > 2ev/n | €))Pas([|Mv]|2 < 26v/n)

and exchanging the expectations reveals that it is enough to show
En [P (|| Mr]l2 > 2ev/n) | €] < 1/2.
We will show that P,.(|[Mr||s > 2ey/n) < 1/4 for all M € &, by Markov’s inequality.
For this, fix a n x n matrix M with entries |M; ;| < 1 and M;; = 0, if (¢,j) €
[d+ 1,n] x [d+ 1,n], and note that
E || Mr3 =Y E (M ) =Y Er?d M2, <32%d < en
4,3 i J

where, for the second equality, we have used that the r; are mutually independent
and Er; = 0, for the third inequality, we used |7l < 4¢/4/n and for the final
inequality we used d < n/32. Thus by Markov, we have

(101) P (| Mrlla > 26v/m) < (2ev/) 2, | Mr]3 < 1/4
Putting (101) together with (100) proves (99), completing the proof of (97). O

10. PROOF OF THEOREM 1.1

In this section we put together our results to prove Theorem 1.1. But before we
get to this, we note a few reductions afforded by previous work. Let us define

(102) ¢n(7) = max P4(3v € R" \ {0} : Av =w, p(v) > 7),

where

p(v) IggﬁgP (Z g = w)

and €1, ..., e, € {—1,1} are i.i.d. and uniform. One slightly irritating aspect of the
definition (102) is that the existential quantifies over all non-zero v € R", rather
than all v € S*~1, as we have been working with. So, as we will shortly see, we will
need to approximate this extra dimension of freedom with a net.

These small issues aside, we will use the following inequality, which effectively
allows us to remove very unstructured vectors from consideration.
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Lemma 10.1. Let A be a random n x n symmetric {—1, 1}-matriz. For all v > 0

we have
2n—2

P(det(A) = 0) < 16n Z ( 1/8 4 m)

gl

We record the details of this lemma in Appendix C of the arXiv version of this
paper [7], although an almost identical lemma can be found in [8], which collected
elements from [9,11,31].

10.1. Non-flat vectors. Here we note a lemma due to Vershynin [52] which tells
us that it is enough for us to consider vectors v € Z. For this, we reiterate the
important notion of compressible vectors, introduced by Rudelson and Vershynin
[33]. Say a vector in S"~! is (4, p)-compressible if it has distance < p from a
vector with support < dn. Let Comp(d, p) denote the set of such compressible
vectors. In [52, Proposition 4.2], Vershynin provides Lemma 10.2 which allows us
to disregard all compressible vectors.

Lemma 10.2. There exist 0, p,c € (0,1) so that for alln € N,

max Py U {IlAv — w2 < ev/n} | <2e°,

weR™
veS™—1\Comp(d,p)
where A is a random n X n symmetric {—1, 1}-matriz.

Lemma 10.3 of Rudelson and Vershynin [33, Lemma 3.4] tells us that incom-
pressible vectors are “flat” for a constant proportion of coordinates.

Lemma 10.3. For §,p € (0,1), let v € Incomp(d, p). Then
(p/2)n 2 < |oi] < 6~ Y/2n 1/
for at least p*0n /2 values of i € [n].
Now recall that we defined
(D) = {v € S" 11 (ko + Ko /2)n Y2 < ui| < (k1 — Ko /2)n Y2 for all i € D}
and Z = Upc (), ip|=a Z(D). Here we fix ko = p/3 and r; = 612 4 p/6, where 6, p

are as in Lemma 10.2. We also fix ¢ = min{2724, p'/2/2}.
Lemma 10.4 is what we will apply in the proof of Theorem 1.1.

Lemma 10.4. Forn € N, let d < c2n. Then

max Py U {Av € {tw}iso, Al <4Vn} | <16c e .

weR™
veST—I\T

Proof. Apply Lemma 10.3 along with the definitions of x1, £2 and Z to see S*"1\Z C
Comp(d, p). Clearly we may assume that ||w|l2 = 1 or w = 0. Now take a cy/n-net
X for {tw}oci<am Of size at most 8¢, Then

{A: Av € {tw}iso, [|Al <4Vn} C U {A:]|Av—w'|2 < ev/n}.

Union bounding over X and applying Lemma 10.2 completes the lemma. (Il
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10.2. Proof of Theorem 1.1. As we noted in Section 3, matrices A with ||A| >
4./n will be a slight nuisance for us. The following concentration inequality for the
operator norm of a random matrix will allow us to remove all such matrices A from
consideration.

Lemma 10.5. Let A be uniformly drawn from all n x n symmetric matrices with
entries in {—1,1}. Then for n sufficiently large,

P (||A] > 4v/n) < de™/%2,

This follows from a classical result of Bai and Yin [1] (see also [44, Theorem
2.3.23]) which implies that the median of ||A|| is equal to (2 + o(1))y/n, com-
bined with a concentration inequality due to Meckes [29, Theorem 2]. A version of
Lemma 10.5 without explicit constants is well-known and straightforward, though
we have included a version with explicit constants for concreteness.

We will also need the following, rather weak, relationship between the threshold
TL, defined in terms of the matrix M, and p(v), the “one-dimensional” concentra-
tion function of v. For this we define one more bit of (standard) notation

pe(v) == EQ%%P <Z vig; € (b— 5,b—|—5)> .

K2

Lemma 10.6. Let v € S"! and e = T1,(v). Then p-(v)* < 22 Le.

We postpone the proof of this lemma to Appendix B and move on to the proof
of Theorem 1.1.

Proof of Theorem 1.1. It is not hard to see that P(det(A) = 0) < 1 for all n, and
therefore it is enough to prove Theorem 1.1 for all sufficiently large n.

Now, as in Section 3, we set v = e~ ", where we now define, ¢ := L_32/°g/8, L:=
max{226C},16/ko}, where C; = C/c§ is the constant appearing in Theorem 8.1.
By possibly decreasing ¢ we may also assume that it is at most half the constant
from Lemma 10.4 (which we note depends only on cp). We also let ¢y > 0 be as
defined above and d := [c3n/2].

From Lemma 10.1 we have

2n—2

P(det(A) = 0) < 16n Z (71/8 + M)
m=n /y
and so it is enough to bound ¢, (7) for all large n. Let ¥ = {v € S"~1: p(v) > v},
as defined in Section 3, and note that
{A:FveR™ Av=w, p(v) 2y} C{A: v eX, Av e {twho}.
Since d = [¢2n/2], by Lemma 10.4 and Lemma 10.5, we have
(103)
gn(7y) < max Ps({3veZINS: Ave {twho} N{||All < 4v/n}) + 64c e >

and so it is enough to show the first term on the right-hand side is < 27". Using
that Z = |J, Z(D), we have the first term of (103) is

(104) <2m m[a]>(<d) max Py ({FveZ(D)NT: Av € {twhso} N{[|A]| < 4v/n})
De[n](d) weR™

(105) =2" max Py ({Jo € Z([d) NE: Av € {twhio} N { Al < 4v/n}),
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where the last line holds by symmetry of the coordinates. Thus it is enough to
show that the maximum at (105) is at most 47 ".
Now, for v € ¥ we have p(v) > v and so, by Lemma 10.6, we have that

v < p(v)* < pry oy (0)* < 2P LTL(v).

Define 7 := 7*/(2'2L) < T1(v). Also note that by definition, 77 (v) < 1/L < ko/8.
Now, recalling definition (96) of . = X.([d]) from Section 3, we may write

log, (ko /167m)

z(d)ynsc|J{veZ: Twwy e @2}t = | Sy

i=1 j=0
and so by the union bound, it is enough to show
max Pa ({FveDc: Ave {twhso} N{||A| <4vn}) <877,
wekr
for all € € [n, ko/16]. Fix an ey/n-net X' for {tw}oci<a,/m Of size 8/c < 2" to get
{A: Av € {twhiso, Al <4V} C [J {A: [[Av—w/lla < v/, Al < 4v/n}.

w'eX

So by taking the union bound over X it is enough to prove that
(106) Q. := max Py ({EIU €Y. ||JAv —wl|l2 < evn}n{|4| < 4\/_}) <274,

Let w € R™ be such that the maximum at (106) is attained. Now, since € < k¢/8
for v € X, we apply Lemma 9.2, to find a u € N; = N:([d]) so that ||[v — ul|2 < 4e.
So if |A|| < 44/n and ||Av — w|| < ev/n, we see that

[Au — w2 < [|[Av — w|]2 + [[A(v — u)[l2 < [[Av — w]l2 + [[A]||(v — w)[l2 < 32ev/n
and thus

{A: e : ||Av—w| <evn}n{||A| < 4vn}
C{A:TueN:: ||Au—w| < 32ev/n, || A]| < 4v/n}.
So, by union bounding over our net N, we see that
Qe <PA(Fu e N : ||Au — w|| < 32ey/n and ||A]| < 4v/n)
< Y Laop (u,32e/n) .
UENE

Now note that if u € N, then L4 op(u,ev/n) < (28Le)™ and so by Fact 7.2 we have
that £4,p (u,32e/n) < (216Le)™. As a result,

C

<INl L < (7o

> (216L€)n < 274n7

where the second to last inequality follows from our Theorem 8.1 and the last in-
equality holds for our choice of L = max{2?°C},16/k¢}. To see that the application
of Theorem 8.1 is valid, note that

log1/e <log1/n =log 2L /y* < nL‘32/Cg/2 +1og2"%L < nL_?’Q/Cg,

where the last inequality hold for all sufficiently large n. This completes the proof.
|
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APPENDIX A. THE PROOFS OF TWO ESSEEN-TYPE LEMMAS

In this section we prove our two Esseen-type lemmas, Lemma 4.2 and Lemma 6.2,
for random variables of the form W77, where 7 is a p-lazy random vector in
{-1,0,1}2? and W is a (fixed) 2d x £ matrix for some ¢ € N. Recall that for
a vector u € RY, we let |jul|p denote the Euclidean distance from u to the integer
lattice Z°.

A.1. Basics of Fourier representation. As above, we let 7 be a p-lazy random
vector in {—1,0,1}2% and let W be a 2d x ¢ matrix. Recall the characteristic
function ¢ x of a vector valued random variable X is defined as

px(0) = Eexp(2mi(X, 0)),

and so we may express characteristic function of W7t as

2d
©(0) = Eexp(2mi({T, WH)) = H (1 = p) + peos(2m(W);)).

j=1
We note the elementary fact that for u € [0,1/4] we have
(107) ~log (1 — i+ peos(2mr)) < 32ulz 3,
and for p € [0, 1]
(108) ~log |1 — p+ peos(2nz)]| > w2
from which we deduce that for p € [0,1/4]

(109) 2(6) > exp (=321 |[WO)12) ,

and for p € [0,1]

(110) #(0)] < exp (= WOl

We now note a standard fact regarding Fourier inversion (see [49] p.290).

Fact A.1 (Fourier inversion). Let X be a random vector in R?, then for w € R’
we have

X — wl3 :
Eexp CM) _ /l e~ lOIE . o=27i(w.8) 5 (0 g,
R

In particular, letting g ~ N(0, (2m)~11;), we have

w2 A
Eexp <_M> = E, (e 29y (g)).

A.2. Proof of Lemma 4.2 and Lemma 6.2. Recall that for £ € N, v, denotes
the ¢ dimensional Gaussian measure defined by ~,(S) = P(g € S), where g ~
N(0, (27)~11,). We begin with the proof of Lemma 4.2.

Proof of Lemma 4.2. Let w € RY. We apply Markov’s inequality to obtain

Wt —w|§)

P (|WTr — w2 < BVE) < exp (gﬂzf) Erexp< 5
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As above, let ¢ be the characteristic function of W7r. We apply Fact A.1 and
(110) to obtain

W — wlf3

E. exp < 2

) = o9 ()] < Eqlexp(—v|[Wol2)].

The right-hand side of the above may be rewritten as

o

1
| Pa(exp-vlWolp) > ) dt = [ B, (1Wl} < we ™ du
0 0

= V/OO Ye(Sw(u))e ™" du,
0

where for the first equality we made the change of variable t = e "“.

Choosing m to maximize ~v,(Sy (u))e~*/? (as a function of u), we may bound

o0 o0
I// Ye(Sw(u))e™"du < l/’yg(SW(m))e_”m/Q/ eV 2 dy
0 0
= 2v¢(Sw (m))e ™/,
Putting everything together we obtain
P (|WTr — wlly < 28vE) < 26" 4277 2, (Syy ().

The proof of Lemma 6.2 proceeds in much the same way.
Proof of Lemma 6.2. Let us set X = ||[WTr||y and write
Exe ™2 = Ex1(X < Ve ™2 + Ex1(X > pV)e ™ /2
<Px (X < BVE) + e 002
and therefore, using that exp(—mr32¢/2) < exp(—32(),

—r|[ W3

E. exp ( 5

> <P-(IWTrll2 < BVE) + 7

As before, we let ¢ be the characteristic function of W77, and let g be a standard
(-dimensional Gaussian random variable with standard deviation (27)~/2. By
Fact A.1 and (109) we obtain

W |3

E, exp (— 5

) — E, [p(9)] > E,lexp(=321|Wg|]2)].

Similar to the proof of Lemma 4.2, we write
[ee]
B, [exp(-320 W] =32 [ lSw(w)e " du
0

> sun(Sw(0) [ e du,
¢
where we have used that ~v,(Sw (b)) = v¢(Sw(a)) for all b > a. This completes the

proof of Lemma 6.2. O

Licensed to Univ of lllinois at Chicago. Prepared on Thu Dec 26 10:00:33 EST 2024 for download from IP 128.248.156.45.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



220 M. CAMPOS, M. JENSSEN, M. MICHELEN, AND J. SAHASRABUDHE

APPENDIX B. RELATING A TO THE ZEROED OUT MATRIX M

In this section we prove Lemma 9.1 and Lemma 10.6. To prove these results,
we compare Fourier transforms (that is the characteristic functions) of the random
variables Mv and Awv, for fixed v. We first record the characteristic functions of
these random variables. For £ € R™ we have

hy(€) := Ee”mHA%E) <H cos(2mu&k ) | T cos (2m(&vn + &rvy))

j<k
and
Xo(£) = Be?™Mv8) = H H <_ 1 08 (27 (&5, +§k%))>
j=1k=d+1
Our comparison is based on two main points. First we have that x,(£) > 0. Second,
we have
(111) Yo (§) < x0(26),

which follows from |cos(t)| < 3 + 1 cos(2t) and |cos(t)| < 1.
Fact B.1. For v € R", and ¢ > T (v), we have

E exp(—n||Mvl|3/t?) < (9Lt)"™.
Proof. Now Eexp(—||Mv||%/t?) is at most

° s2n
N Ry (—t—z) B(|Molly < sv/) ds,

and since t > Tr,(v), we have P(|| M|z < sy/n) < (8Ls)™ for all s > ¢, and so we
may bound
2

Vit [ e (<) Bl < sy ds < vasz” [ e (<23 s/

Changing variables u = s/t, the right-hand side is equal to

o0

t_l\/ﬁ(SLt)"/ exp(—u®n)u" du <t~ /n(8Lt)" / exp(—u?/2) du < (9Lt)",
1

as desired. O

Proof of Lemma 9.1. Apply Markov’s inequality to bound
(113) P(||Av — w2 < tv/n) < exp(mn/2)Eexp (—||Av — wl|3/2t%) .

Using the Fourier inversion formula in Fact A.1 we write
(114) E 4 exp (—7T||Av — w||§/2t2) = / el efzﬂflw’@wv(t*lf) dg.

Rescaling, applying (111) and non-negativity of x, yields that the RHS of (114) is
at most

[ el (21716) de < Bag exp(~2| Ml /).
Now use Fact B.1 along with the assumption ¢ > 71 (v) to obtain
Ear exp(—2n] Ml|2/£2) < (OLt)",
as desired. ]
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We prove Lemma 10.6 in a similar manner. Recall

pe(v) = 5161%%}1” (Zvisi e - 5,b+5)> .

Proof of Lemma 10.6. Set € = T, (v) and let B be a n X n matrix uniformly drawn

from all matrices with entries in {£1} and apply Markov’s inequality to bound

(115)

p.(v)" < max B(|Bo — ull2 < ey/) < max exp(en /2B exp (<7 Bo - w[3/2<?)
weRn wekn

Apply Fact A.1 to write

(116)

Eexp (—||Bv — w|3/2?) :/ e~ mlIENE | g—2misT (w,e) H cos(2me ;&) d€

R 1<), k<n
and use Holder’s inequality to bound the RHS of (116)

1/4

3/4
(117) <</ 6_2w||5||§/3d§> /e—zwﬂfl\% T cos(anetoyc0) de

1<g,k<n

Now use [g, e=2mlIElz/3 ge = (%)n/2 and (cos(a) cos(b))* < 3 + 1 cos(2(a + b)), to
see (117) is

3\ (2 €l -1 v
(118) <(5) (2 [ ety (2 5)d5>

27 n/8 2, 2\\1/4
< (Z)" e (-alrulre?) .

Taken together, lines (115), (116), (117), (118) tell us that

(119)  pe(o)" < (3/2)"/S(exp(n/2) VD" (Bexp (~|[Mv]3/%)) 2.

Now apply Fact B.1 to bound Eexp (—n||[Mvl|3/e?) < (9Le)" and so p-(v)" <

(212Le)™/*, as desired. O
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