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1. Introduction

Let B be a random n × n matrix whose entries are chosen independently and
uniformly from {−1, 1}. It is an old problem, likely stemming from multiple origins,
to determine the probability that B is singular. While a moment’s thought reveals
the lower bound of (1+ o(1))2n22−n, the probability that two rows or columns are
equal up to sign, establishing the corresponding upper bound remains an extremely
challenging open problem. Indeed, it is widely believed that

(1) P(det(B) = 0) = (1 + o(1))2n22−n.

While this precise asymptotic has so far eluded researchers, a huge amount is now
known about this fascinating problem. The first advances were made by Komlós
[22] in the 1960s, who showed that the singularity probability is O(n−1/2) (see also
[23] and [3]).

Nearly 30 years later Kahn, Komlós and Szemerédi [19], in a remarkable paper,
showed that the singularity probability is exponentially small. At the heart of their
paper is an ingenious argument with the Fourier transform that allows them to give
vastly more efficient descriptions of “structured” subspaces of Rn that are spanned
by {−1, 1}-vectors. Their method was then developed by Tao and Vu [45, 46] who
showed a bound of (3/4 + o(1))n, by proving an interesting link between the ideas
of [19] and the structure of set addition and, in particular, Freiman’s theorem. This
trajectory was then developed further by Bourgain, Vu and Wood [5], who proved a
bound of (2−1/2 + o(1))n, and by Tao and Vu [50], who pioneered the development
of “inverse Littlewood-Offord theory”, now an integral aspect of random matrix
theory (see Section 1.1).

In 2007, Rudelson and Vershynin, in an important and influential paper [33],
gave a different proof of the exponential upper bound on the singularity probability
of B. The key idea was to construct efficient ε-nets for points on the sphere that
have special anti-concentration properties and are thus more likely to be in the
kernel of B. This then led them to prove an elegant inverse Littlewood-Offord type
result, inspired by [50], in a geometric setting.
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This perspective was then developed further in the 2018 breakthrough work of
Tikhomirov [51], who proved

P(det(B) = 0) = (1/2 + o(1))n,

thereby essentially proving the conjectured upper bound. One of the key inno-
vations in [51] was to adopt a probabilistic viewpoint of the (discretized) sphere:
instead of directly proving that efficient nets exist by latching onto some sort of
structure, he shows that the probability of randomly selecting a “structured” point
on the discrete sphere is incredibly unlikely. While this change in perspective may
not immediately sound useful, Tikhomirov’s “inversion of randomness” gives him
access to a whole host of probabilistic tools.

Another advance on the problem was made recently by Jain, Sah and Sawhney
[17], who (building on the recent work of Litvak and Tikhomirov [26]), proved the
natural analogue of (1) for random matrices with independent entries chosen from a
finite set S, for any non-uniform distribution on S. For the case of {−1, 1}-matrices,
however, they do not improve on the bound of Tikhomirov.

While the problem for matrices B with all entries independent is now very well
understood, the situation for symmetric random matrices remains somewhat more
mysterious. Indeed all of the previously mentioned works on random matrices
depend deeply on the fact that the entries of B are independent, and often treat B
as n independent copies of a row, thus allowing for an essentially “one-dimensional”
treatment of the problem. In the symmetric case, no such perspective is available.

Let A be a random n×n symmetric matrix, uniformly drawn from all symmetric
matrices with entries in {−1, 1}. Again, it is generally believed that P(detA = 0) =
Θ(n22−n) (see, e.g. [9, 53, 54]) but progress has come more slowly. The problem
of showing that A is almost surely non-singular goes back, at least, to Weiss in
the early 1990s but was not resolved until 2005 by Costello, Tao and Vu [9], who
obtained the bound

(2) P(det(A) = 0) � n−1/8+o(1).

The first super-polynomial bounds were obtained by Nguyen [31] and, simulta-
neously, Vershynin [52], the latter obtaining a bound of the form exp(−nc). Nguyen
[31] developed the quadratic Littlewood-Offord theory introduced in [9], while Ver-
shynin [52] worked in the geometric framework pioneered in his work with Rudelson
[33–35].

In 2019, a more combinatorial perspective for inversion of random discrete ma-
trices was introduced by Ferber, Jain, Luh and Samotij [12] and applied by Ferber
and Jain [11] to show

P(det(A) = 0) � exp(−cn1/4(log n)1/2).

In a similar spirit, Campos, Mattos, Morris and Morrison [8] then improved this
bound to

(3) P(det(A) = 0) � exp(−c
√
n),

by proving a“rough” inverse Littlewood-Offord theorem, inspired by the theory of
hypergraph containers (see [2,41]). This bound was then improved by Jain, Sah and

Sawhney [18], who improved the exponent to −cn1/2 log1/4 n, and, simultaneously,
by the authors of this paper [6] who improved the exponent to −c

√
n log n.
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The convergence of these results onto the exponent of −c
√
n log n is no coinci-

dence and in fact represents a natural barrier in the problem. Indeed, all of the
results up to now have treated “structured” vectors by only using the top-half of
the matrix (i.e. the half above the diagonal), which conveniently consists of inde-
pendent entries. However, as pointed out in [8], if one is restricted to working in the
top-half of A one cannot obtain an exponent better than −c

√
n log n. Thus to get

beyond this obstruction, somehow the randomness of the matrix must “reused”.
In this paper we prove an exponential upper bound on the singularity probability

of a random symmetric matrix, thereby breaking though this barrier and giving the
optimal bound, up to the constant in the exponent.

Theorem 1.1. Let A be uniformly drawn from all n× n symmetric matrices with
entries in {−1, 1}. Then

(4) P(det(A) = 0) � e−cn,

where c > 0 is an absolute constant.

The main technical innovations of this paper are a new inverse Littlewood-Offord
type theorem for “conditioned” random walks and a new “inversion of randomness”
technique that allows us to “reuse” the randomness of our matrix by pushing some
of the randomness onto the random selection of a vector from our discretized sphere.
In fact, there is a delicate tradeoff between these two ingredients; a loss in the second
ingredient allows for an improvement in the first, unless some specific “arithmetic”
structure arises (see Section 2).

1.1. Inverse Littlewood-Offord theory. For v ∈ Rn andX uniform in {−1, 1}n,
we define the concentration function (one of several to come) as

ρ(v) = max
b∈R

P
(
〈v,X〉 = b

)
.(5)

The study of ρ(v) goes back at least to the classical work of Littlewood and Of-
ford [24,25] on the zeros of random polynomials, but perhaps begins in earnest with
the beautiful 1945 result of Erdős [10]: if v ∈ Rn has all non-zero coordinates then

ρ(v) � ρ((1, . . . , 1)) = O(n−1/2).

This was then developed by Sárközy and Szemerédi [40], who showed that if all
of the vi are distinct then one can obtain the much stronger bound of O(n−3/2),
and by Stanley [42] who determined the exact maximum in this case. A higher-
dimensional version of this problem also received considerable attention and was
studied by several authors [15, 20, 21, 39] before it was ultimately resolved in the
work of Frankl and Füredi [14] (see also [48]).

Of these early results, the most important for us here is the work of Halász [16]
who made an important connection with the Fourier transform to prove (among
other things) the following beautiful result: if there are Nk solutions to x1 + · · ·+
xk = xk+1 + · · ·+ x2k among the entries of v, then ρ(v) = O(n−2k−1/2Nk).

More recently the question has been turned on its head by Tao and Vu [50], who
pioneered the study of “inverse” Littlewood-Offord theory. They suggested that
if ρ(v) is “large” then v must exhibit some particular arithmetic structure. For
example, Tao and Vu [47, 50], and Nguyen and Vu [30, 32] proved that if v is such
that ρ(v) > n−C then all but O(n1−ε) of the elements vi of v can be efficiently
covered with a generalized arithmetic progression of rank r = Oε,C(1).
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While these results provide a very detailed picture in the range ρ(v) > n−C ,
they begin to break down1 if ρ(v) = n−ω(1) and therefore are of limited direct use
in showing that the singularity probability is exponentially small. Inverse results
which work for smaller ρ bring us to the “counting” Littlewood-Offord theorem
of Ferber, Jain, Luh and Samotij [12], and the “weak” inverse Littlewood-Offord
theorems of Campos, Mattos, Morris and Morrison [8] and of the present authors
in [6], which are useful for ρ(v) as small as exp(−c(n logn)1/2), but afford less
structure.

Our novel inverse Littlewood-Offord theorem in this paper is most similar to that
of Rudelson and Vershynin [33, 34, 52], who showed that if ρ(v) � e−cn then there
exists φ > 0 with |φ| = O(1/ρ(v)) for which the dilated vector φv is exceptionally
close to the integer lattice Z

n. In particular, Rudelson and Vershynin define the
following important notion. For α ∈ (0, 1), define the least common denominator of

a vector v ∈ R
d to be the smallest φ > 0 for which φv is within

√
αd of a non-zero

integer point. That is,

Dα(v) = inf
{
φ > 0 : d(φv,Zd \ {0}) �

√
αd
}
,

where d(x, S) denotes infs∈S{‖x− s‖2} (not to be confused with the dimension d).
Note here that we have excluded the origin from Zd in the definition since φv ≈ 0
does not tell us anything interesting about v. Indeed, given any v ∈ Sd−1, one
could always set φ <

√
αd and obtain d(φv,Zd) � d(φv, 0) �

√
αd, and so this

degenerate case needs to be excluded somehow. In fact, in the course of the paper,
we will work with a slightly different non-degeneracy condition (see (29)). Here we
state the theorem of Rudelson and Vershynin in a slightly less general form than
they prove.

Theorem 1.2. For d ∈ N, α ∈ (0, 1) and t > 0, let v ∈ Sd−1 satisfy Dα(v) > 16/t.
If X ∼ {−1, 1}d is uniform then

P
(
|〈X, v〉| � t

)
� Ct+ 2e−cαd.

Here C, c > 0 are absolute constants.

Thus we can think of Dα(v) as a measure of the arithmetic structure of v; a
small value of Dα(v) corresponds to more structure, a large value of Dα(v) to less.

Our Littlewood-Offord theorem shows that a similar conclusion can be obtained
in the presence of a large number (k ≈ n) of additional “soft” constraints on the
random walk. We prove the following result, which is in fact weaker than what we
really need (see Lemma 4.1), but captures its essence.

Theorem 1.3. For d ∈ N, α ∈ (0, 1) and t > 0, let v ∈ S
d−1 satisfy Dα(v) > 16/t.

For 0 � k � d, let W be a k× d matrix with orthonormal rows. If X ∼ {−1, 1}d is
uniform then

(6) PX

(
|〈X, v〉| � t and ‖WX‖2 � c

√
k
)
� Cte−ck + 2e−cαd,

where C, c > 0 are absolute constants.

Note that if k = 0 then our theorem reduces to Rudelson and Vershynin’s the-
orem, stated above. Here we interpret ‖WX‖2 � c

√
k as encoding the k “soft”

constraints and |〈X, v〉| � t as the “hard” constraint. It is also useful to think of

1Technically these results break down if ρ(v) < n− log log n.
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SINGULARITY OF RANDOM SYMMETRIC MATRICES 183

t ≈ ρ(v), although we actually apply this theorem with t chosen with respect to a
related notion, tailored specifically to our application.

To understand the numerology of this theorem, it is perhaps best to think of it as
a result that allows us to “decouple” the hard constraint from the k soft constraints.
It says something to the effect of, if Dα(v) > 16/t then

(7) P

(
|〈X, v〉| � t and ‖WX‖2 � c

√
k
)
� C ·P

(
|〈X, v〉| � t

)
·P
(
‖WX‖2 � c

√
k
)
.

Given this, we see that Rudelson and Vershynin’s theorem and the Hanson-Wright
inequality allow us to deal with these two quantities in isolation. These say that

(8) P
(
|〈X, v〉| � t

)
� Ct+ e−cαd and P

(
‖WX‖2 � c

√
k
)
� e−ck,

thus explaining the form of the conclusion of Theorem 1.3.
While we don’t prove exactly (7), the main difficulty for us lies in decoupling the

soft and hard constraints, which is ultimately achieved by a somewhat complicated
geometric argument on the Fourier side and will consume our focus in Sections 4,
5 and 6.

It is useful to compare our Theorem 1.3 to a mutlidimensional version of The-
orem 1.2 proved by Rudelson and Vershynin Theorem 7.5 in [38]. Using their
theorem, one could prove a version of our Theorem 1.3 if one added the additional
assumption that Dα(u) is large for all unit vectors u that are obtained as certain2

linear combinations of v with the rows of W . This is insufficient for us as Theo-
rem 1.3 assumes no information about the the structure of the space spanned by
the rows of W .

2. Proof sketch and our novel “inversion of randomness” technique

Here we sketch the proof of Theorem 1.1, assuming our Littlewood-Offord theo-
rem (Theorem 1.3) and show how it fits into our novel “inversion of randomness”
technique, which allows us to overcome the barrier encountered in previous works.
We highlight this main new idea in Section 2.3 after warming-up with some more
general discussion of our approach.

Throughout this section we keep our discussion loose and impressionistic and
only take up our careful study in the following sections.

2.1. Setup. A matrix is singular if and only if there exists v ∈ Sn−1 such that
Av = 0. A central challenge in studying the singularity probability of discrete
random matrices lies in the fact that different v have vastly different probabilities
of being in the kernel of A. For example, it is easy to see that if

(9) v = 2−1/2(1, 1, 0, . . . , 0) then P(Av = 0) = 2−n.

If v = n−1/2(1, . . . , 1) it is significantly harder to determine the corresponding
probability, but one’s first guess actually resembles the truth; the probability that
the first entry of Av is 0 is Θ(n−1/2), the probability a simple random walk returns
to 0 after n steps. Thus, boldly assuming the approximate independence of the
rows, we expect that if

(10) v = n−1/2(1, . . . , 1) then P(Av = 0) ≈ (Cn)−n/2,

2Specifically, if we let wi be the rows of W , we are interested in all linear combinations of the

form θ0v +
∑k

i=1 θiwi, where |θ0| � C/ε and |θi| < C, for i = 1, . . . , k
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a very different result from (9). But these are both very structured and special
examples. The opposite extreme comes from a random vector v ∼ Sn−1 on the
unit sphere. Here we have to be a bit careful since there are only a finite number
of possible kernel vectors of a discrete random matrix and thus it is natural to
instead consider the probability that a random vector is ε-far from the kernel, for
some well-chosen ε > 0. Again this case is not easy to establish rigorously, but in
a similar way to the above, for ε > e−cn, we expect if

(11) v ∼ S
n−1 is random then P

(
‖Av‖2 � ε

√
n
)
≈ (Cε)n,

with high probability, where C > 0 represents a constant that is unimportant for
us.

Thus we see that there is a great variety in how different directions contribute
to the singularity probability. For us the key task is to understand how “many” of
each of these different directions there are. For example there are about n2 different
vectors v of type (9), and this multiplied by the probability that one of these vectors
is in the kernel represents the conjectured asymptotic for the singularity probability.
On the other hand, there are about 2n vectors of the type (10), thus the expected
contribution of these vectors to the singulairty probability is significantly less than
(9).

The crux comes with estimating the quantity of vectors that fail to be of type
(11), for each ε > e−cn: we would like to say that extremely few v deviate from
this heuristic, at any given scale ε > 0. Here it does not quite make sense to count
the number of such offending vectors, since there are infinitely many; rather, we
“capture” these vectors by building efficient ε-nets for them. From this point of
view, this is the main technical content of this paper.

2.2. Definition of the ε-nets. To define our ε-nets we would like to associate
each vector v ∈ Sn−1 with a scale ε = ε(v). Essentially, though we define things
a bit differently in the proof, we define the scale of a vector v to be the maximum
ε ∈ (0, 1) for which

(12) P
(
‖Av‖2 � ε

√
n
)
� (Lε)n,

where L is a large constant L � C. Intuitively speaking, the scale of the vector v is
the largest granularity at which our heuristic (11) fails. Importantly, we can prove
that at this scale we also have the reverse inequality P

(
‖Av‖2 � ε

√
n
)
� (CLε)n.

Vectors that have scales that are smaller than e−cn can be dealt with using now-
standard ideas dating back to Costello, Tao and Vu [9]. As such, our focus will
be on eliminating vectors with scales ε > e−cn. It will also be easy, in light of
previous work, to ignore “compressible” vectors, that is, vectors that have almost
all of their �2-mass on o(n) coordinates. Thus we can restrict to vectors which have
at least Ω(n) coordinates of magnitude Θ(n−1/2). Let S

n−1
0 denote this subset of

the sphere; without loss of generality, we can assume that these coordinates are the
first d and that d/n = Θ(1), but chosen to be sufficiently small.

For each ε > e−cn, we would like to build an ε-net for all v ∈ S
n−1
0 at scale ε.

Our first move is to start with a decent ε-net for all of S
n−1
0 , which we will call

Λε, and then define a subset Nε ⊂ Λε, which will serve as our desired ε-net. We
note that the most efficient ε-nets for the whole of Sn−1

0 are of size (C/ε)n, which is
vastly too large for us and thus Nε must be substantially smaller than Λε. Indeed,
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we need something like

(13) |Nε| � L−2n|Λε| �
(

C

L2ε

)n

,

since we will be taking a union bound over |Nε| events of the form ‖Av‖2 � ε
√
n,

each with has probability at most (CLε)n, from the remark below (12).
We now prepare for the definition of Nε. For this we first introduce a different

model of a random symmetric matrix, that is slightly cleaner to work with, and
which we will be able to “swap” for A, in the proof. We define the random matrix

M =

[
0[d]×[d] HT

H 0[d+1,n]×[d+1,n]

]
,(14)

where H is a (n− d)× d random matrix with iid entries that are 1/4-lazy, meaning
that Hi,j = 0 with probability 3/4 and Hi,j = ±1 with probability 1/8. The key
property that we have here is that for all v,

P
(
‖Av‖2 � ε

√
n
)
� Cn · P

(
‖Mv‖2 � ε

√
n
)
,

which we establish on the Fourier side, akin to [19]. We now crucially define3 our
ε-net

(15) Nε =
{
v ∈ Λε : P

(
‖Mv‖2 � ε

√
n
)
� (Lε)n

}
.

It turns out that it is not too hard to show that this is an ε-net; to do so, we
simply adapt some now-standard random rounding techniques [27] to this higher
dimensional setting. The real challenge lies in estimating the size of Nε. For this
we take a probabilistic vantage point (inspired by [51]) and it is this new source
of randomness that helps us “recover” some of the randomness lost due to the
symmetry of A. To prove (13), it is enough to show, for v ∈ Λε chosen uniformly
at random, that

Pv∈Λε

(
v ∈ Nε

)
= Pv∈Λε

(
PM

(
‖Mv‖2 � ε

√
n
)
� (Lε)n

)
� (C/L2)n.(16)

(see Lemma 8.3 for the precise statement.) To get a feel for how we tackle this, let
us consider the event ‖Mv‖2 � ε

√
n. Indeed recalling the definition (14) of M , we

have that

Mv =

[
HT v[d+1,n]

Hv[d]

]
and so to control the event ‖Mv‖2 � ε

√
n, it is enough to control the intersection

of events

(17) ‖Hv[d]‖2 � ε
√
n and ‖HT v[d+1,n]‖2 � ε

√
n.

Note that if we simply ignore the second event and bound

PM

(
‖Mv‖2 � ε

√
n
)
� PH

(
‖Hv[d]‖2 � ε

√
n
)
,

we land in a situation very similar to previous works; where half of the matrix is
neglected entirely. We are thus limited by the (n logn)1/2 obstruction, mentioned
in the introduction. So to overcome this barrier, we need to control these two events
simultaneously.

To prove (16) we use a second moment argument. For now, however, we will
limit ourselves to a discussion of the first moment and then comment on the extra

3We actually use a slightly smaller net, see (27) for the formal definition.

Licensed to Univ of Illinois at Chicago. Prepared on Thu Dec 26 10:00:33 EST 2024 for download from IP 128.248.156.45.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



186 M. CAMPOS, M. JENSSEN, M. MICHELEN, AND J. SAHASRABUDHE

complications in working with the second moment. In particular, we outline a proof
of the inequality

(18) Ev∈Λε
PM

(
‖Mv‖2 � ε

√
n
)
� (Cε)n,

which implies that |Nε| � (C/L)n|Λε| � (C/εL)n, by Markov’s inequality:

|Nε|
|Λε|

= Pv∈Λε

(
v ∈ Nε

)
= Pv∈Λε

(
PM

(
‖Mv‖2 � ε

√
n
)
� (Lε)n

)
�
(
C

L

)n

.

This falls short of (13), for which we will need to control the second moment, but
is a good starting point.

2.3. Rank splitting and inversion of randomness. In understanding (18) we
come to our novel “inversion of randomness” technique that allows us to weave the
randomness of v into our arguments. The idea is to use the randomness in H to
control the first event at (17) and to use the randomness in v ∈ Λε to control the
second. To get this to work, we crucially partition the outcomes of H, based on
a robust notion of rank. Indeed, let Ek be the event that all but k of the singular
values of H are “healthy”

Ek =
{
H : σd−k(H) � c

√
n and σd−k+1(H) < c

√
n
}
,

where σ1(H) � · · · � σd(H) denote the singular values of H. The point of this
definition is that it allows us to get some mileage out of the second event at (17).
At this point it is useful to point out that we may assume that the coordinates of
v ∼ Λε are iid random variables, which follows from an easy covering argument of
Λε with product sets, as in [51]. Now, if H ∈ Ek is a fixed matrix, we prove, using
only the randomness in v[d+1,n], that

(19) Pv[d+1,n]

(
‖HT v[d+1,n]‖2 � ε

√
n
)
� (Cε)d−k.

We prove (19) by adapting the main result of [37]. On the other hand, using only
the randomness in H, we bound PM (‖Mv‖2 � ε

√
n) from above by

(20)
d∑

k=0

PH

(
‖HT v[d+1,n]‖2�ε

√
n |
{
‖Hv[d]‖2�ε

√
n
}
∩Ek

)
PH

({
‖Hv[d]‖2�ε

√
n
}
∩Ek

)
.

So to prove (18), we average (20) over all v ∈ Λε and use (19) to bound the first
term in each summand to obtain
(21)

Ev∈Λε
PM

(
‖Mv‖2 � ε

√
n
)
� (Cε)d ·

d∑
k=0

(Cε)−k ·Ev∈Λε
PH

({
‖Hv[d]‖2 � ε

√
n
}
∩Ek
)
,

where we have used the independence of v[d] from v[d+1,n].
In dealing with the remaining probabilities in the sum at (21) we use our new

inverse Littlewood-Offord theorem, Theorem 1.3. We first note that
(22)

PH

({
‖Hv[d]‖2 � ε

√
n
}
∩ Ek

)
� PH

({
‖Hv[d]‖2 � ε

√
n
}
∩
{
σd−k+1(H) < c

√
n
})

,
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and then observe that since the rows of H are independent, the probability on
the right-hand side of (22) should approximately factor as the product of “one-
dimensional” events, corresponding to each row. In particular, we show the right-
hand side of (22) is at most
(23)

Cn−d · max
u1,...,uk

(
PX

(
|〈X, v[d]〉| � ε|〈X, u1〉| � cn−1/2, . . . , |〈X, uk〉| � cn−1/2

))n−d

,

using a (considerably easier) ε-net argument along with a tensorization argument.
Here X ∼ {−1, 0, 1}d is distributed as a row of H and the maximum is taken over
all orthonormal k-tuples u1, . . . , uk ∈ Rd which correspond to the k orthonormal
singular directions of H that witness the event σd−k+1(H) < c

√
n.

We now observe that the probability in (23) is exactly the sort of quantity that
we can bound with our Littlewood-Offord theorem. There is a slight wrinkle here
in that we need to ensure Dα(v[d]) > 16/ε, but this is a technicality we can deal
with earlier in the proof by directly bounding the probability a random v ∈ Λε has
Dα(v[d]) � 16/ε. Thus we can apply Theorem 1.3 to bound (23) and hence obtain

(24) PH

(
{‖Hv[d]‖2 � ε

√
n} ∩ {σd−k+1(H) � c

√
n}
)
� (Cεe−ck)n−d.

We then apply this bound to each term in (21), by way of (22), to see that

Ev∈Λε
PM

(
‖Mv‖2 � ε

√
n
)
� (Cε)n,

where we have used that k � d � n, d/n is small compared to 1/C and c and that
ε > e−cn. This proves (18), as desired.

As we discussed above, this gives a bound in the direction of (16) but falls short
of our desired bound of (C/L2)n. For this, we instead study the second moment,

(25) Ev

[
PM

(
‖Mv‖2 � ε

√
n
)]2

.

Here, we decompose this quantity analogously to the above, to show that (25) is
bounded above by a quantity of the form

Ev∈Λε
EH1

PH2

(
‖H1v[d]‖2 � ε

√
n, ‖H2v[d]‖2 � ε

√
n, and ‖HT

3 v[d+1,n]‖2 � 2ε
√
n

)
,

where H1, H2 are independent copies of H and H3 := [H1, H2] is the concatenation
of these two matrices. We then proceed in much the same way as above, treating
H3 in place of H. We shall also require a more complicated form of our Littlewood-
Offord theorem, where we allow two “hard” constrains corresponding to the first
two events in (25). Ultimately, we arrive at the bound

Ev∈Λε

[
PM

(
‖Mv‖2 � ε

√
n
)]2

� (Cε)2n,

which implies the desired conclusion at (16).

2.4. Outline of the paper. In the next section we formally introduce the cen-
tral definitions and notions that will be used throughout this paper. The remain-
der of the paper is then roughly divided into three parts. The first part consists
of Sections 4–7. Sections 4–6 are dedicated to proving our conditioned inverse
Littlewood-Offord result, Lemma 4.1, which is the “real” version of Theorem 1.3.
This theorem is properly introduced in Section 4 where we go on to set up the
problem on the Fourier side. In Section 5, we establish the key geometric results
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we need for navigating the Fourier side of the problem, before completing the proof
of Lemma 4.1 in Section 6.

In Section 7, the final section of this first part, we set ourselves up for the next
part of the paper by using Lemma 4.1 to establish the crucial inequality described
at (24), the formal statement of which takes the form of Theorem 7.1. Theorem 7.1
is the only result we carry forward into later sections.

The second part of the paper consists of Sections 8 and 9. In Section 8, we
obtain our crucial bound on the size of our net Nε by carrying out our “inversion of
randomness” scheme, as outlined in Section 2.3. Section 9 contains the less exciting
proof that Nε is in fact a net for Σε.

In the final section, Section 10, we pull together the various elements of this
proof, state the reductions we use from previous work and complete the proof of
Theorem 1.1.

In most cases, we have highlighted the main results of each section at the start.
So if the reader does not want to delve into the details of a particular element of
the proof, she can simply inspect the top of the section to glean what is needed for
going forward.

3. Central definitions

We now turn to give a proper treatment of the proof, by laying out the key
definitions that will concern us in this paper. We begin by partitioning the sphere
Sn−1 into “structured” and “unstructured” vectors. Formally, we set γ = e−cn, for
sufficiently small c > 0, and then define the “structured” vectors as

Σ :=
{
v ∈ S

n−1 : ρ(v) � γ
}
,

where ρ(v) is as defined at (5). The invertibility of a random symmetric matrix on
the set of “unstructured” vectors v ∈ Sn−1 \ Σ is already well understood and so
we can restrict our attention to this set of structured vectors. We refer the reader
to Section 10 for the details.

Following Rudelson and Vershynin [33], we make a further reduction to working
with vectors that are reasonably “flat” on a large part of their support. For D ⊆ [n],
|D| = d, define
(26)

I(D) :=
{
v ∈ S

n−1 : (κ0 + κ0/2)n
−1/2 � |vi| � (κ1 − κ0/2)n

−1/2 for all i ∈ D
}
,

where 0 < κ0 < 1 < κ1 are absolute constants, fixed throughout the paper and de-
fined in Section 3.1. We will set d := c20n/2, where c0 is defined below in Section 3.1.
Now set

I :=
⋃
D

I(D),

where the union is over all D ⊆ [n], |D| = d. The case of non-flat v is already taken
care of in the work of Vershynin [52] (see Section 10) and so it is enough to work
with I ∩Σ. Since we will ultimately union bound over D, it is enough to work with
I(D) ∩ Σ, for some fixed set D, and so, by symmetry it is enough to restrict our
attention to vectors v ∈ I([d]) ∩ Σ.

Now, with this in mind, we further partition the set I([d]) ∩ Σ ⊆ Sn−1, but for
this we need to introduce another distribution on symmetric matrices. Define the
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probability space Mn(μ) by defining M ∼ Mn(μ) to be the random matrix

M =

[
0[d]×[d] HT

1

H1 0[d+1,n]×[d+1,n]

]
,

where H1 is a (n− d)× d random matrix with i.i.d. entries that are μ-lazy (that is,
(H1)i,j = 0 with probability 1− μ and (H1)i,j = ±1 with probability μ/2).

Now, given v ∈ I([d]) and L > 0, we define the scale of v as

TL(v) = sup
{
t ∈ [0, 1] : P(‖Mv‖2 � t

√
n) � (4Lt)n

}
,

in the style of [51] (where it is called the threshold). Note we are defining TL relative
to the matrix M , rather than our original distribution A. Now define our partition
of I([d]) ∩ Σ. For ε ∈ (0, 1), let

Σε :=
{
v ∈ I([d]) : TL(v) ∈ [ε, 2ε]

}
.

We shall show (as it is not obvious) that indeed

Σ ∩ I([d]) ⊆
⋃

ε>γ4/(212L)

Σε.

With the definition of Σε in hand, we are able to define Nε which will be an efficient
net for Σε at scale ε. It turns out that defining this net is not hard, although showing
that it satisfies the desired properties will be the main challenge of this paper. For
this, we first define the trivial net at scale ε to be4

Λε := Bn(0, 2) ∩
(
4εn−1/2 · Zn

)
∩ I ′([d]),

which is a natural net for I([d]). Here I ′(D) is similar to I(D) but with slightly
looser constraints:

I ′(D) :=
{
v ∈ R

n : κ0n
−1/2 � |vi| � κ1n

−1/2 for all i ∈ D
}
.

Since we are only interested in approximating vectors in Σε, we can get away
with a significantly more efficient net. For this we introduce two more concentration
functions. First, we define the Lévy concentration function: if X is a random vector
taking values in R

n, define

L(X, t) := max
w∈Rn

P (‖X − w‖2 � t) .

Second, we define a variant of this concentration function for the uniform distribu-
tion on random symmetric matrices with bounded operator norm. For a matrix A,
we use the notation ‖A‖ := maxx:‖x‖2=1 ‖A‖2 to denote the usual 2 → 2 operator
norm and define

LA,op(v, t) := max
w∈Rn

P
(
{‖Av − w‖2 � t} ∩ {‖A‖ � 4

√
n}
)
.

Here we are just cutting out the slightly irritating event that A has large operator
norm. Intuitively this is an acceptable move as the probability that ‖A‖ � 4

√
n

is exponentially small (see Lemma 10.5), however some care is needed as we are
mostly concerned with far less likely events.

We now introduce our nets Nε,

(27) Nε :=
{
v ∈ Λε : P(‖Mv‖2 � 4ε

√
n) � (Lε)n and LA,op(v, ε

√
n) � (28Lε)n

}
.

The reader should view the lower bound P(‖Mv‖2 � 4ε
√
n) � (Lε)n as the real

core of this definition, while the upper bound for LA,op is less important. The

4Here and throughout, Bn(x, r) is the �2 ball centered at x with radius r.
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two main tasks of this paper will be to show that Nε is indeed a net for Σε (an
easier task) and secondly that |Nε|/|Λε| is smaller than ≈ L−2n, where L is a large
constant.

3.1. Discussion of constants and parameters. We will treat the constants
κ0, κ1 (seen at (26)) as absolute throughout the paper, and we allow other absolute
constants C, C ′, . . . to depend on these exact quantities. In particular, we set
κ0 = ρ/3 and κ1 = δ−1/2+ ρ/6, where δ, ρ are as in Lemma 10.2 (which is a lemma
from [52]). While we have not computed these constants, it would not be too much
work to do so.

We also note our treatment of c0, which, for most of the paper, will be presented
as a parameter and dependencies involving c0 will be explicitly noted. However, we
will ultimately fix c0 = min{2−24, ρδ1/2/2} where, again, δ, ρ are as in Lemma 10.2.
Thus it is no harm for the reader to view c0 as an absolute constant which is fixed
throughout the paper. The reason for the extra care with c0 comes from its delicate
relationship to d/n. Indeed, we will ultimately set d := �c20n/2�.

Another point to note is our use of R, which represents related, but different con-
stants throughout the paper. Roughly speaking, these related values of R increase
as we get deeper into the proof.

4. Inverse Littlewood-Offord for conditioned random walks I:

Statement of result and setting up the proof

This section is the first of three sections where we lay out and prove our main
Littlewood-Offord type theorem, Lemma 4.1, which works in the presence of a
large number (k ≈ n) of relatively soft constraints on our random walk. As we will
see, the proof of Lemma 4.1 is rather involved and consists mainly of a geometric
argument on the Fourier side to “decouple” the many soft constraints from the few
hard constraints.

Given a 2d× � matrix W (which encodes these soft constraints on our walk, as
in Theorem 1.3) and a vector Y ∈ R

d, we define the Y -augmented matrix WY as

(28) WY =

[
W,

[
0d

Y

]
,

[
Y
0d

]]
.

Here Y ≈ v/t will be a re-scaled version of v from Theorem 1.3. We define, for
α ∈ (0, 1), the least common denominator of a vector v ∈ Rd to be

(29) Dα(v) := inf
{
φ > 0 : ‖φ · v‖T � min

{
φ‖v‖2/2,

√
αd
}}

,

where ‖x‖T := inf{‖x − y‖2 : y ∈ Zd}, for x ∈ Rd, denotes the minimum distance
to an integer point. Note the definition at (29) is a bit different from the definition
presented in the introduction, in that the “non-degeneracy condition” is now ‖φ ·
v‖T � φ‖v‖2/2. We will stick with this definition throughout the paper.

We let ‖A‖HS denote the Hilbert-Schmidt norm of a matrix A, that is, ‖A‖2HS :=∑
i,j |Ai,j |2 and for μ ∈ (0, 1), m ∈ N, define the m-dimensional μ-lazy random

vector τ ∼ Q(m,μ) to be the vector with independent entries (τi)
m
i=1, satisfying

P(τi = −1) = P(τi = +1) = μ/2 and P(τi = 0) = 1− μ.

We now state our main Littlewood-Offord type theorem, which is our “real” (and
strengthened) version of Theorem 1.3, from Section 1.1.
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Lemma 4.1. For d∈N and α, μ∈(0, 1], let 0�k�2−10αd and t�exp(−2−8μαd).
For 0 < c0 � 2−22μ, let Y ∈ Rd satisfy ‖Y ‖2 � 2−10c0/t, let W be a 2d× k matrix

with ‖W‖ � 2 and ‖W‖HS �
√
k/2.

If τ ∼ Q(2d, μ) and Dα(Y ) > 16 then

(30) L
(
W T

Y τ, c
1/2
0

√
k + 1

)
� (Rt)2 exp(−c0k),

where R = 233c−2
0 μ−1/2.

Before we start working towards the proof of Lemma 4.1, we make a few informal
remarks on its statement and its connection to Theorem 1.3. The main difference
to note is that there are now two “hard” constraints encoded in the left-hand side
of (30); these are, in the notation of Theorem 1.3,

|〈(v, 0[d]), τ 〉| < t and |〈(0[d], v), τ 〉| < t.

The “soft” constraints are, as above, encoded as the columns w1, . . . , wk of W .
To combine the “hard” and “soft” constraints into a single matrix inequality, we

rescale v, thinking of |〈(v, 0[d]), τ 〉| < t as |〈c1/20 t−1(v, 0[d]), τ 〉| < c
1/2
0 . This explains

the scaling on Y , which is unusually written as ‖Y ‖2 � 2−10c0/t, where t should
be thought of a very small number ≈ e−cn.

The scaling of Dα(Y ) in Lemma 4.1, in contrast with the statement of The-
orem 1.3, is explained in a similar way. If φ · Y ∼ Zd, where φ = O(1) then
(φ/t) = O(1/t) satisfies (φ/t) · v ∼ Zd, as we think of Y ≈ v/t.

This also makes the numerology of Lemma 4.1 a little more transparent. If Y is
a random vector with ‖Y ‖2 ≈ 1/t, we have |Yi| ≈ t−1n−1/2 and thus we expect the
one dimensional random walk 〈Y, τ 〉 to have

L
(
〈Y, τ 〉, c1/20

)
≈ t.

Thus we expect Y to have some special structure if L
(
〈Y, τ 〉, c1/20

)
� t. On the

other hand, for each wi we expect that |〈wi, τ 〉| ≈ 1 and, since the wi must be
“approximately orthogonal” (due to the assumption ‖W‖ � 2), we should expect

L
(
Wτ, c

1/2
0

√
k
)
≈ e−ck,

being somewhat vague about this constant c > 0.
As a warm-up for the reader, we show how Lemma 4.1 easily implies Theorem 1.3.

Proof of Theorem 1.3. Let α, t ∈ (0, 1), v ∈ Sd−1 with Dα(v) > 16/t and W be
a k × d matrix with orthonormal rows. Let Y = (2−23/t)v and note we have
‖Y ‖2 = 2−22t−1 and Dα(Y ) > 16. Now let X,X ′ ∼ {−1, 1}d be iid uniform
random variables and let τ = (X,X ′). We bound the square of quantity at (6)
above by

P

(
|〈Y,X〉| � c0/2, ‖WX‖ �

√
c0k/2

)2
� P
(
〈Y,X〉2 + 〈Y,X ′〉2 + ‖Wτ‖22

� c0(k + 1)
)
.

We now define W ′ to be the k × 2d matrix formed by of concatenating two copies
of W . We note that ‖W ′‖ =

√
2 and ‖W ′‖HS =

√
2k. We then easily see that

P
(
〈Y,X〉2 + 〈Y,X ′〉2 + ‖Wτ‖22 � c0(k + 1)

)
� L

(
W ′

Y τ, c
1/2
0

√
k + 1

)
.
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We now apply Lemma 4.1 with t′ = t+ exp(2−8αd), μ = 1 and c0 = 2−22 to see

L
(
W ′

Y τ, c
1/2
0

√
k + 1

)
� (Rt′)

2
exp(−c0k).

Now using that Y = (c0/2t)v and letting C = R = 277 and c = c0/2 = 2−23 we
obtain

PX

(
|〈X, v〉| � t and ‖WX‖2 � c

√
k
)
� Cte−ck + 2e−cαd,

as desired. �

For the remainder of this section, we take some first steps towards the proof
of Lemma 4.1. We first pass to the Fourier side and set up our problem there,
describing our goal in terms of a certain “level set”. We then make a first reduction,
by getting some basic control on the fibers of this level set. In the following section,
Section 5, we make a more significant reduction about the geometry of our level set.
In Section 6 we prove the key Lemma 6.1, the statement of which is very similar to
that of Lemma 4.1, but with a more complicated quantity replacing the right-hand
side of (30). Finally, with one further step, we conclude Section 6, with the proof
of Lemma 4.1.

4.1. Passing to the Fourier side. To prove Lemma 4.1 we will prove the contra-
positive; assume (30) fails and then obtain an upper bound on the least common de-

nominator by finding a non-trivial φ > 0 that satisfies φ = O(1) and ‖φ·Y ‖T �
√
αd.

Our first step in proving Lemma 4.1 is to use the lower bound in the negation of
(30) to obtain a lower bound on a level set of an appropriate Fourier transform.
This manoeuvre was pioneered by Halász [16] and has been a key step in all of the
Fourier approaches to inverse Littlewood-Offord theory.

For a 2d× � matrix W , we define the W -level set, for t � 0, to be

SW (t) :=
{
θ ∈ R

� : ‖Wθ‖T �
√
t
}

and we define γ� to be the � dimensional Gaussian measure defined by γ�(S) =
P(g ∈ S), where g ∼ N (0, (2π)−1I�) and I� denotes the �× � identity matrix.

The following Esseen-type lemma allows us relate the quantity seen at the left-
hand side of (30) with the Gaussian volume of a level set.

Lemma 4.2. Let β > 0, ν ∈ (0, 1], let W be a 2d× � matrix and let τ ∼ Q(2d, ν).
Then there exists m > 0 so that

L(W T τ, β
√
�) � 2 exp

(
2β2�− νm/2

)
γ�(SW (m)).

The proof of this lemma is a straightforward exercise with the characteristic
function of WT τ and is postponed to Appendix A.

We can now describe how our least common denominator can be spotted in
Fourier space. From Lemma 4.2 along with the negation of (30), we obtain m > 0
and a set SWY

(m) ⊆ Rk+2 with Gaussian volume bounded below by (Rt)2 exp(c1m−
c2k). Now, for reasons that we will not explain here (since it is just a consequence
of the Fourier transform), the first k-coordinates of the space correspond to the
k “soft” constraints while the final two coordinates correspond to the two “hard”
constraints.

With this in mind, the idea is to find an element ψ ∈ SWY
(m) for which ‖ψ[k]‖2 =

O(
√
k), and one of ψk+1, ψk+2 is O(1) and “non-trivial”. It will turn out that one

of ψk+1, ψk+2 is a good candidate for our desired least common denominator. The
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condition on the ψ[k] should be thought of as just getting these coordinates “out of
the way”.

To find this desired ψ ∈ SWY
(m), for r, s > 0, we define the cylinder

(31) Γr,s :=
{
θ ∈ R

k+2 :
∥∥θ[k]∥∥2 � r, |θk+1| � s and |θk+2| � s

}
.

We now restate our condition on ψ in terms of Γr,s: we want to show that there
exists an x ∈ SWY

(m) for which

(32) (Γ2
√
k,16 \ Γ2

√
k,s + x) ∩ SWY

(m) �= ∅,
where s is chosen depending on the non-triviality condition we need. We shall then
ultimately see that if y ∈ (Γ2

√
k,16 \ Γ2

√
k,s + x), where x ∈ SWY

(m), then (x− y)

is a good candidate for ψ (see Claims 6.4–6.6). In what remains in this section, we
warm up by making a first easy reduction on the structure of SWY

(m) under the
assumption that (32) fails.

4.2. A first reduction: controlling the density on fibers. For our first re-
duction, we first record the following easy fact.

Fact 4.3. For s > 0, let S ⊆ R2 be such that γ2(S) � 8s2, then there exists
x, y ∈ S so that s < ‖x− y‖∞ � 16.

Proof. First note that if 8s2 > 1 then the statement holds trivially and so we may
assume 8s2 � 1. We prove the contrapositive and assume there is no pair x, y ∈ S
with s < ‖x−y‖∞ � 16. We cover R2 =

⋃
p∈16·Z2 Qp where Qp := p+[−8, 8]2. Thus

γ2(S) �
∑

p∈16·Z2 γ2(S∩Qp). Since there is no x, y ∈ S so that s < ‖x−y‖∞ � 16,

then for each Qp there is x = x(p) ∈ Qp so that

γ2(S ∩Qp) = γ2(S ∩Qp ∩ (x(p) + [−s, s]2)) � γ2(x(p) + [−s, s]2).

Letting g ∼ N (0, (2π)−1), we have

γ2(x+ [−s, s]2) � P
(
x1 − s � g � x1 + s

)
P
(
x2 − s � g � x2 + s

)
� 4s2 exp(−π‖p‖22/16),

where we have used that (xi − s)2 � p2i /8, which holds since s < 1. Now we may
bound

γ2(S) �
∑

p∈16·Z2

γ2(S ∩Qp) � 4s2
∑

p∈16·Z2

exp(−π‖p‖22/16) < 8s2,

which completes the proof. �

Now for S ⊆ R
k+2, and θ[k] ∈ R

k, we define the “vertical fiber”

(33) S(θ[k]) :=
{
(θk+1, θk+2) ∈ R

2 : (θ[k], θk+1, θk+2) ∈ S
}
.

Lemma 4.4 tells us that if we are unable to find a point in our desired intersection
(Γr,16 \ Γr,s + x) ∩ S, for all x ∈ S, we can obtain good control on the measure of
the vertical fibers of S.

Lemma 4.4. For k ∈ N, r > 0 and s > 0, let S ⊂ R
k+2 be such that for all x ∈ S

we have
(Γr,16 \ Γr,s + x) ∩ S = ∅.

Then
max

θ[k]∈Rk
γ2(S(θ[k])) � 8s2.
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Proof. We prove the contrapositive; let ψ[k] be such that γ2
(
S(ψ[k])

)
> 8s2. This

implies (Fact 4.3) that there exists (θk+1, θk+2), (θ
′
k+1, θ

′
k+2) ∈ S(ψ[k]) with

s � max{|θk+1 − θ′k+1|, |θk+2 − θ′k+2|} � 16.

Unpacking what this means in the full space R
k+2: we have θ, θ′ ∈ S so that

θ[k], θ
′
[k] = ψ[k], and s � max{|θk+1 − θ′k+1|, |θk+2 − θ′k+2|} � 16. Thus

θ ∈ (θ′ + Γr,16 \ Γr,s),

as desired. �

In the next section we go on to obtain a more complicated reduction of this form,
that will ultimately be key in proving Lemma 4.1.

5. Inverse Littlewood-Offord II: A geometric inequality

We now turn to make a more intricate and subtle reduction from that seen in
Section 4.2, that will be key in finding our least common denominator. The lemma
we prove here is purely geometric, but one should always think of it as being applied
to an appropriate level set S = SWY

(m), as seen in Lemma 4.2.
Given a set S ⊂ Rk+2 and y ∈ Rk+2, define the “translated horizontal fiber”,

Fy(S; a, b) := {θ[k] = (θ1, . . . , θk) ∈ R
k : (θ1, . . . , θk, a, b) ∈ S − y}.

Our main goal of this section tells us that under the assumption

(Γ2
√
k,16 \ Γ2

√
k,s + x) ∩ S = ∅,

for all x ∈ S, the total measure of S can be controlled by the measure of the k-
dimensional fibers Fy(S; a, b). We state it in the contrapositive form to make the
application (in Section 6) a little easier to spot. Given sets A,B ⊆ R

k, we let
A−B = {a− b : a ∈ A, b ∈ B} and define A+B similarly.

Lemma 5.1. For k ∈ N and s > 0, let S ⊂ R
k+2 be a measurable set which satisfies

(34) 8s2e−k/8 + 64s2 max
a,b,y

(
γk(Fy(S; a, b)− Fy(S; a, b))

)1/4
< γk+2(S).

Then there is an x ∈ S so that5

(35) (Γ2
√
k,16 \ Γ2

√
k,s + x) ∩ S �= ∅.

To prove this lemma, we will need a few facts about Gaussian space, which we
collect in Sections 5.1 and 5.2, before moving on to prove Lemma 5.1 in Section 5.3.

5.1. A few facts about Gaussian space. Recall that for � ∈ N, γ� is the � dimen-
sional Gaussian measure defined by γ�(S) = P(g ∈ S), where g ∼ N (0, (2π)−1I�).

Lemma 5.2. Let k � 0, r > 0 and S ⊂ Rk+2 be measurable. Then there exists
x ∈ S, and h ∈ Γr,8 so that

γk+2(S ∩B) � 8γk+2((S − x) ∩ Γ2r,16 + h),

where B := {θ ∈ Rk+2 : ‖θ[k]‖2 � r}.

5Note, in particular, that Lemma 5.1 says that if (34) is satisfied then we must have s < 16.
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Proof. Consider translates Γr,8 + y where yk+1, yk+2 ∈ 16Z2 to write

(36) γk+2(S ∩B) =
∑

y∈{0}k×16Z2

γk+2(S ∩ (Γr,8 + y)).

We express γk+2(S ∩ (Γr,8 + y)) as
(37)∫
Rk+2

�[θ ∈ S∩(Γr,8+y)
]
e−π‖θ‖2

2/2 dθ =

∫
Rk+2

�[φ ∈ (S−y)∩Γr,8

]
e−π‖φ+y‖2

2/2 dφ.

Rewriting the exponent in the integrand at (37)

−‖φ+ y‖22 = −‖φ‖22 − 2φk+1yk+1 − 2φk+2yk+2 − y2k+1 − y2k+2,

we use that |φk+1|, |φk+2| � 8 whenever �[φ ∈ (S − y) ∩ Γr,8] �= 0, to see

(38) γk+2(S ∩ (Γr,8 + y))

� exp
(
−π

2
y2k+1 −

π

2
y2k+2 + 8π|yk+1|+ 8π|yk+2|

)
γk+2((S − y) ∩ Γr,8).

So, apply (38) to (36) to get

γk+2(S ∩B)

�
∑

y∈{0}k×16Z2

γk+2((S − y) ∩ Γr,8)e
−π

2 y2
k+1−π

2 y
2
k+2+8π|yk+1|+8π|yk+2|

� max
y

γk+2((S − y) ∩ Γr,8)
∑

yk+1,yk+2∈16Z

e−
π
2 y

2
k+1−π

2 y2
k+2+8π|yk+1|+8π|yk+2|

� 16max
y

γk+2((S − y) ∩ Γr,8).

Let y be a vector at which the above maximum is attained. Now observe that if
S ∩ (Γr,8 + y) = ∅ then (S − y) ∩ Γr,8 = ∅ and thus γk+2(S ∩ B) = 0; so there is
nothing to prove. Thus we may assume S∩ (Γr,8+y) �= ∅ and let x ∈ S∩ (Γ8,r+y).
Define h := x− y ∈ Γr,8 and notice that

(S − y) ∩ Γr,8 − h = (S − y − h) ∩ (Γr,8 − h) ⊆ (S − x) ∩ Γ2r,16,

where the inclusion holds since h ∈ Γr,8. Therefore (S−y)∩Γr,8 ⊆ (S−x)∩Γ2r,16+h,
allowing us to conclude that

γk+2(S ∩B) � 16γk+2((S − y) ∩ Γr,8) � 16γk+2((S − x) ∩ Γ2r,16 + h),

as desired. �

We also need the following standard tail estimate on a k-dimensional Gaussian.

Fact 5.3. γk
(
{x ∈ Rk : ‖x‖22 � k}

)
� exp(−k/8).

Proof. For any ε ∈ (0, 1) the standard Gaussian measure of the set {x ∈ Rk :
‖x‖22 � k/(1−ε)} is at most exp(−ε2k/4). Recalling that γk has standard deviation
(2π)−1/2 and taking ε = 1− (2π)−1 gives the desired bound. �
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5.2. A Gaussian Brunn-Minkowski type theorem. We now lay out a useful
tool which gives us some control of the Gaussian measure of the sum set A + B,
relative to the Gaussian measures of A and B. Indeed, the following theorem due
to Borell [4] can be viewed as a Brunn-Minkowski-type theorem for Gaussian space.

For this, let Φ(x) be the cumulative probability function Φ(x) := P(Z � x),
for the standard one dimensional Gaussian Z ∼ N (0, 1), while γk is (still) the
k-dimensional Gaussian with covariance matrix (2π)−1Ik.

Theorem 5.4 (Borell). Let A,B ⊆ R
k be Borel sets. Then

γk(A+B) � Φ

(
Φ−1(γk(A)) + Φ−1(γk(B))

)
.

Proof. In [4] Theorem 5.4 is proved for the standard Gaussian measure rather than
γk. However we can change the standard deviation of the measure by taking dilates
of the sets A and B. �

We will use the following simple consequence of Theorem 5.4.

Lemma 5.5. Let A ⊆ Rk be Borel sets. Then

γk(A−A) � γk(A)4.

Proof. By Theorem 5.4, we have

(39) γk(A−A) � Φ(2Φ−1(γk(A))) = Φ(2x),

where we have set x = Φ−1(γk(A)). Note that

(40) Φ(2x) = P(Z � 2x) = P (Z1 + Z2 + Z3 + Z4 � 4x) � P(Z � x)4 = Φ(x)4,

where Zj are i.i.d. copies of Z ∼ N (0, 1). Combining (39) and (40) completes the
proof. �

5.3. Proof of Lemma 5.1. With these pieces now in place, we can move on to
prove Lemma 5.1, our key geometric lemma on the Fourier side.

Proof of Lemma 5.1. Write r =
√
k for simplicity. We prove the contrapositive and

assume for every x ∈ S we have

(41) (Γ2r,16 \ Γ2r,s + x) ∩ S = ∅.
We recall that

B = {θ ∈ R
k+2 : ‖θ[k]‖2 � r},

and proceed to bound γk+2(S) from above by first bounding γk+2(S \B) and then
bounding γk+2(S ∩B).

Step 1 (Upper bound for γk+2(S \ B)). For θ[k] ∈ Rk, let S(θ[k]) be as defined at
(33):

S(θ[k]) =
{
(θk+1, θk+2) ∈ R

2 : (θ[k], θk+1, θk+2) ∈ S
}
.

We may write

(42) γk+2(S \B) =

∫
‖θ[k]‖2�r

γ2
(
S(θ[k])

)
dγk

and thus

(43) γk+2(S \B) �
(

max
θ[k]∈Rk

γ2
(
S(θ[k])

))
γk
(
{‖θ[k]‖2 � r}

)
.
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Lemma 4.4 and (41) show that

(44) max
θ[k]∈Rk

γ2
(
S(θ[k])

)
� 8s2.

Fact 5.3 bounds

(45) γk
(
{‖θ[k]‖2 � r}

)
� exp(−k/8)

and so from (43), (44) and (45) we learn

(46) γk+2(S \B) � 8s2e−k/8.

Step 2 (Upper bound for γk+2(S ∩ B)). By Lemma 5.2, there exists x ∈ S and
h ∈ Γr,8 such that

(47) γk+2(S ∩B) � 16γk+2((S − x) ∩ Γ2r,16 + h).

Now since x ∈ S, we use (41) to deduce that

(48) (S − x) ∩ Γ2r,16 ⊆ (S − x) ∩ Γ2r,s

and so letting y = x− h, we see

(49) (S − x) ∩ Γ2r,s + h = (S − x+ h) ∩ (Γ2r,s + h) = (S − y) ∩ (Γ2r,s + h).

Thus by (47), (48) and (49), we have

γk+2(S ∩B) � 16γk+2((S − y) ∩ (Γ2r,s + h)).(50)

Bound

(51) γk+2((S − y) ∩ (Γ2r,s + h)) �
∫
|a−hk+1|,|b−hk+2|�s

γk
(
Fy(S; a, b)

)
dγ2

and apply Lemma 5.5 to obtain

(52) γk+2((S − y) ∩ (Γ2r,s + h)) � 4s2 max
a,b,y

(γk(Fy(S; a, b)− Fy(S; a, b)))
1/4.

Combining (50) and (52) gives

(53) γk+2(S ∩B) � 64s2 max
a,b,y

(
γk (Fy(S; a, b)− Fy(S; a, b))

)1/4
.

Putting Step 1 and Step 2 together: (53) together with (46) implies

γk+2(S) � 8s2e−k/8 + 64s2 max
a,b,y

(γk(Fy(S; a, b)− Fy(S; a, b)))
1/4,

completing the proof of the contrapositive. �

6. Inverse Littlewood-Offord III: Comparison to a lazier walk and

the proof of Lemma 4.1

In Section 5 we proved our key geometric ingredient, Lemma 5.1, to deal with
the geometry of our level set (as seen in Section 4.1). We now use this lemma to
take the following big step towards Lemma 4.1.

Lemma 6.1. For d∈N and α, μ∈(0, 1], let 0 � k � 2−8αd and t � exp(−2−8μαd).
For 0 < c0 � 2−22μ, let Y ∈ R

d satisfy ‖Y ‖ � 2−10c0/t and let W be a 2d×k matrix
with ‖W‖ � 2. Also let τ ∼ Q(2d, μ) and τ ′ ∼ Q(2d, 2−7μ) and β ∈ [c0/2

10,
√
c0],

β′ ∈ (0,
√
c0).
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If
(54)

L(WT
Y τ, β

√
k + 1) � (Rt)

2
exp(4β2k)

(
P(‖WT τ ′‖2 � β′√k) + exp(−β′2k)

)1/4
then Dα(Y ) � 16. Here we have set R = 232c−2

0 μ−1/2.

Of course, Lemma 6.1 looks quite a bit like Lemma 4.1 save for quantity

(55) P(‖WT τ ′‖2 � β′√k) + exp(−β′2k),

on the right-hand side of (54). One should view this quantity as an approximation
of the contribution that the “soft” constraints make. Indeed, if one reads this
lemma in the contrapositive, it says that we can successfully “decouple” the “soft”
constraints from the “hard” constraints, provided Y is sufficiently “unstructured”,
meaning Dα(Y ) > 16. Of course, this story is not quite an honest one; we have to
use the lazier vector τ ′, rather than τ , to get things to work out, and we also take
a loss in the exponent of 1/4. The key here is that we obtain the correct power of t
in our bound, which is deeply important for our application. We also note that our
use of “decoupling” should not be confused with the “decoupling” step in Costello,
Tao and Vu [9], which is used to deal with very unstructured vectors.

We prove this lemma in Section 6.2 after laying out a few facts on level sets
in Section 6.1. We will then conclude this section in Section 6.3 with a proof of
Lemma 4.1, by combining Lemma 6.1 with one further ingredient to bound (55).

6.1. Working with level sets. To prepare for the proof of Lemma 6.1, we record
two basic facts about level sets. First off, we note a sort of converse to the Esseen-
type inequality that we saw in Section 4, Lemma 4.2. Again, we will postpone the
straightforward proof of this lemma to Appendix A. Recall that we defined, for a
2d× � matrix W , the W -level set, for t � 0, to be

SW (t) :=
{
θ ∈ R

� : ‖Wθ‖T �
√
t
}
.

Lemma 6.2. Let β > 0, ν ∈ (0, 1/4], let W be a 2d×� matrix, and let τ ∼ Q(2d, ν).
Then for all t � 0, we have

γ�(SW (t))e−32νt � Pτ

(
‖WT τ‖2 � β

√
�
)
+ exp

(
−β2�

)
.

We remark that we impose laziness ν ∈ (0, 1/4] here to make the characteristic
function of WT τ non-negative.

We need also need the following basic fact about level sets. Recall that, for a set
S ⊂ Rk+2 and y ∈ Rk+2, we defined the “translated horizontal fiber”,

Fy(S; a, b) := {θ[k] = (θ1, . . . , θk) ∈ R
k : (θ1, . . . , θk, a, b) ∈ S − y}.

Fact 6.3. For any 2d× (k + 2) matrix W . If m > 0 we have

SW (m)− SW (m) ⊆ SW (4m).

Similarly, for any y ∈ Rk+2 and a, b ∈ R we have

(56) Fy(SW (m); a, b)− Fy(SW (m); a, b) ⊆ F0(SW (4m); 0, 0).

Proof. Notice that if x, y ∈ SW (m) then by definition ‖Wx‖T, ‖Wy‖T � √
m. Thus,

by the triangle inequality,

‖W (x− y)‖T � ‖Wx‖T + ‖Wy‖T � 2
√
m.
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For (56), let θ[k], θ
′
[k] ∈ Fy(S; a, b). We have that

(θ1, . . . , θk, a, b), (θ
′
1, . . . , θ

′
k, a, b) ∈ SW (m)− y

and so θ′′ :=(θ1−θ′1, . . . , θk−θ′k, 0, 0)∈SW (4m). Thus θ[k]−θ′[k]∈F0(SW (4m); 0, 0),

implying (56). �

6.2. Proof of Lemma 6.1. We may now turn to proving Lemma 6.1, our big step
towards Lemma 4.1.

Proof of Lemma 6.1. Apply Lemma 4.2, with parameter μ, to find m > 0 such that
the level set

S := SWY
(m) = {θ ∈ R

k+2 : ‖WY θ‖T �
√
m}

satisfies

(57) e−
μm
2 +2β2kγk+2(S) � L(WT

Y τ, β
√
k + 1).

Thus (57) together with our hypothesis (54) gives a lower bound

(58) γk+2(S) �
1

4
e

μm
2 +2β2k (Rt)2 T 1/4,

where we have set

T := P(‖WT τ ′‖2 � β′√k) + exp(−β′2k),

where we recall that τ ′ ∼ Q(2d, 2−7μ). We now make the following important
designations,

(59) r0 :=
√
k and s0 := 216c−1

0 (
√
m+

√
k)t.

Recall from (31) that for r, s > 0 we defined the cylinder

Γr,s :=
{
θ ∈ R

k+2 :
∥∥θ[k]∥∥2 � r and |θk+1| � s, |θk+2| � s

}
.

Claim 6.4. There exists x ∈ S ⊆ R
k+2 so that6

(60)
(
Γ2r0,16 \ Γ2r0,s0 + x

)
∩ S �= ∅.

Proof of Claim 6.4. We look to apply Lemma 5.1 with s = s0. For this, we bound

M := max
a,b,y

{
γk

(
Fy(S; a, b)− Fy(S; a, b)

)}
,

above by eμmT , thus giving a lower bound on γk+2(S) and allowing us to apply
Lemma 5.1. Use Fact 6.3 to see that for any y, a, b, we have

(61) Fy(S; a, b)− Fy(S; a, b) ⊆ F0(SWY
(4m); 0, 0).

Now carefully observe that

F0(SWY
(4m); 0, 0) =

{
θ[k] ∈ R

k : ‖Wθ[k]‖T �
√
4m
}
= SW (4m),

which is a level set corresponding to the (“decoupled”) event Pτ ′(‖WT τ ′‖2 � β′√k),
where τ ′ ∼ Q(2d, 2−7μ) and β′ ∈ (0, 1/2) is as in the hypothesis. Thus we may
apply Lemma 6.2 (with ν = 2−7μ and t = 4m) along with (61) to obtain

M � γk(F0(SWY
(4m), 0, 0)) = γk(SW (4m)) � eμmT.

6Note that this claim shows, in particular, that s0 < 16.
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We may combine this with the fact that T � exp(−β′2k) � e−k/4, since β′ � 1/2,
to get

(62) T 1/4 � 1

2
e−μm/4(e−k/16 +M1/4).

So combining (62) with (58) gives

(63) γk+2(S) � (1/8)eμm/4+2β2k(Rt)2(e−k/16 +M1/4) > 64s20(e
−k/16 +M1/4),

allowing us to apply Lemma 5.1 and complete the proof of the claim. The last
inequality at (63) follows from a simple check. First note that

(64) s20 = 232c−2
0 (

√
m+

√
k)2t2 < 233(k +m)(t/c0)

2.

Now use (64) and the facts that R = μ−1/2c−2
0 232 and β � 2−10c0 to bound

64s20 � 239t2c−2
0 (220c−2

0 β2k + 4μ−1(μm/4)) � 1

8
(Rt)2eμm/4+2β2k

thus showing the second inequality at (63) and finishing the proof of the claim. �

We now observe the simple consequence of Claim 6.4.

Claim 6.5. We have that SWY
(4m) ∩ (Γ2r0,16 \ Γ2r0,s0) �= ∅.

Proof of Claim 6.5. By Claim 6.4, there exists x, y ∈ S = SWY
(m) so that y ∈

(Γ2r0,16 \Γ2r0,s0 +x
)
∩S. Set φ := y−x and observe that φ ∈ SWY

(4m)∩ (Γ2r0,16 \
Γ2r0,s0), by Fact 6.3. �

We now conclude the proof of Lemma 6.1 with Claim 6.6.

Claim 6.6. If ψ ∈ SWY
(4m)∩ (Γ2r0,16 \ Γ2r0,s0) then there exists i ∈ {k+ 1, k+ 2}

so that

‖ψiY ‖T < min{ψi‖Y ‖2/2,
√
αd}.

Proof of Claim 6.6. Note that since ψ ∈ SWY
(4m) there is a p ∈ Z

2d so that
WY ψ ∈ B2d(p, 2

√
m). So if we express

WY ψ = Wψ[k] + ψk+1

[
Y
0d

]
+ ψk+2

[
0d

Y

]
,

we have that

(65) ψk+1

[
Y
0d

]
+ ψk+2

[
0d

Y

]
∈ B2d(p, 2

√
m)−Wψ[k] ⊆ B2d(p, 2

√
m+ 4

√
k),

where the last inclusion holds because ψ ∈ Γ2r0,16 and so ‖ψ[k]‖2 � 2r0 � 2
√
k and

‖W‖ � 2.
Since ψ �∈ Γ2r0,s0 we have that at least one of |ψk+1|, |ψk+2| are > s0. So, assume

without loss that |ψk+1| > s0 and that ψk+1 > 0 (otherwise replace ψ with −ψ).
Now project (65) onto the first d coordinates, to obtain

(66) ψk+1Y ∈ Bd(p[d], 2
√
m+ 4

√
k).

We now observe that ‖ψk+1Y ‖T < ψk+1‖Y ‖2

2 . Indeed,

(67)
ψk+1‖Y ‖2

2
>

s0‖Y ‖2
2

�
(
215(

√
m+

√
k)t

c0

)(
2−10 c0

t

)
> (2

√
m+ 4

√
k),

where we have used the definition of s0 and that ‖Y ‖2 > 2−10c0/t.
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Finally, we note that m � 2−4αd. To see this, we use (58), the bounds γk+2(S) �
1, T � e−β′2k and our assumption t � exp(−2−8μαd) to see that

e−μm/2 � γk+2(S)e
−μm/2 � 1

4
(Rt)2e2β

2k−β′2k/4 � exp(−2−5μαd),

where we have used R2 � 4, k � 2−7αd and β′ � √
c0 for the last inequality. It

follows that m � 2−4αd and so by (66) and (67) we have

‖ψk+1Y ‖T � 2
√
m+ 4

√
k �

√
αd,

as desired. This completes the proof of the Claim 6.6. �

Let ψ and i ∈ {k+1, k+2} be as guaranteed by Claim 6.6. Then ψi � 16, since
ψ ∈ Γ2r0,16, and

‖ψiY ‖T < min{‖ψiY ‖2/2,
√
αd},

and so Dα(Y ) � 16 thus completing the proof of Lemma 6.1. �

6.3. Proof of Lemma 4.1. Before turning to prove Lemma 4.1, we require one
further result which tells us that ‖Wσ‖2 is anti-concentrated when σ is a random
vector and W is a fixed matrix. While there are several interesting results of this
type in the literature [13,16,36] (and we will encounter another in Subsection 8.2),
we state here a variant of the Hanson-Wright inequality with an explicit constant.
A proof can be found in Appendix D of [7], the arXiv version of this paper, and is
a consequence of a classical concentration inequality due to Talagrand [43].

Lemma 6.7. For d ∈ N, ν ∈ (0, 1), let δ ∈ (0,
√
ν/16), let σ ∼ Q(2d, ν), and let

W be a 2d× k matrix satisfying ‖W‖HS �
√
k/2 and ‖W‖ � 2. Then

P(‖WTσ‖2 � δ
√
k) � 4 exp(−2−12νk).(68)

We now turn to prove Lemma 4.1.

Proof of Lemma 4.1. Setting β′ := 4
√
c0, we look to apply Lemma 6.1. For this,

note that the hypotheses in Lemma 4.1 imply the hypotheses in Lemma 6.1 with
respect to c0, d, α, k, Y,W and τ (and we have the extra condition on ‖W‖HS). So
if we additionally assume Dα(Y ) > 16, we may apply Lemma 6.1 (in the contra-
positive) to obtain
(69)

L
(
WT

Y τ, β
√
k + 1

)
� (232c−2

0 μ−1/2t/2)2e4β
2k
(
P(‖WT τ ′‖2 � β′√k) + e−β′2k

)1/4
.

To deal with the right-hand side, we apply Lemma 6.7 to take care of the quantity
involving τ ′ ∈ {−1, 0, 1}2d, our ν = 2−7μ lazy random vector. Note that 4

√
c0 �

2−9√μ � √
ν/16, and that our given W satisfies ‖W‖HS �

√
k/2 and ‖W‖ � 2.

Thus we may apply Lemma 6.7, with δ = β′ and σ = τ ′, to see

(70) P(‖WT τ ′‖2 � β′√k) � 4 exp(−2−12νk).

Plugging this into the right-hand side of (69) yields

exp(4β2k)
(
P(‖WT τ ′‖2 � β′√k) + exp(−β′2k)

)1/4
� 2 exp(4c0k − 2−14νk) + 2 exp(2c0k − 4c0k)

� 4 exp(−c0k).
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Putting this together with (69), yields

L
(
WT

Y τ, β
√
k + 1

)
� (Rt)2 exp(−c0k),

as desired. �

7. Inverse Littlewood-Offord for conditioned random matrices

In this section we lift the main result of the previous sections (Lemma 4.1) to
study the concentration of the vectorH1X, whereH1 is a random (n−d)×dmatrix,
conditioned on having k singular values which are much smaller than “typical” and
X is a fixed vector for which |Xi| ≈ N for each i.

Here N should be thought of as ≈ 1/ε, in the context of the proof (see Section 2)
and H1 comes from its appearance in our matrix M ,

M =

[
0[d]×[d] HT

1

H1 0[d+1,n]×[d+1,n]

]
.

The main result of this section is Theorem 7.1.7

Theorem 7.1. For n ∈ N and 0 < c0 � 2−24, let d � c20n, and for α ∈ (0, 1), let
0 � k � 2−10αd and N � exp(2−10αd). Let X ∈ Rd satisfy ‖X‖2 � c02

−10n1/2N ,
and let H be a random (n−d)×2d matrix with i.i.d. (1/4)-lazy entries in {−1, 0, 1}.

If Dα(rnX) > 16 then
(71)

PH

(
σ2d−k+1(H) � c02

−4
√
n and ‖H1X‖2, ‖H2X‖2 � n

)
� e−c0nk/4

(
R

N

)2n−2d

,

where we have set H1 := H[n−d]×[d], H2 := H[n−d]×[d+1,2d], rn := c0
16

√
n

and R :=

239c−3
0 .

To understand the numerology in Theorem 7.1, notice that if we only consider
the “soft” constraints on the singular values (without the constraints imposed by
X) we would expect something like

(72) PH

(
σ2d−k+1(H) � c02

−4
√
n
)
≈ cnk,

for some absolute c ∈ (0, 1), which depends on the value of c0. Here we are using,
crucially, that H is a rectangular matrix with aspect ratio bounded away from 1.
Indeed, if H were a square matrix then σmin(H) ≈ n−1/2, with high probability.8

On the other hand, the inverse Littlewood-Offord theorem of Rudelson and Ver-
shynin [33] (with a bit of extra work) tells us that if X is such that |Xi| ≈ N for
all i ∈ [d], and

P
(
‖H1X‖2, ‖H2X‖2 � n

)
�
(
R

N

)2n−2d

,

then Dα(n
−1/2X) = O(1). Thus Theorem 7.1 is telling us that we maintain an

inverse Littlewood-Offord type theorem even in the presence of many additional
constraints imposed by the condition on the least singular values.

7For convenience, we define σj(H) = 0 for j > rk(H).
8While we can refer the reader to [34,35] for more on the singular values of rectangular random

matrices, we were not able to find any result such as (72) in the literature. However, it is not so
hard to deduce (72) from the Hanson-Wright inequality [36] along with a “random rounding” step
similar to that in Appendix E in [7].
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7.1. A tensorization step. We need the following basic fact.

Fact 7.2. If r � t > 0 and X is a random variable taking values in R
k+2, then

L(X, t) � L(X, r) � (1 + 2r/t)k+2L(X, t).

Proof. The lower bound is trivial. The upper bound follows from the fact that a
ball of radius r in Rk+2 can be covered by (1 + 2r/t)k+2 balls of radius t. �

We now prove a “tensorization” lemma which shows that anti-concentration of
a single row in a random matrix H (with iid rows) implies the anti-concentration
of matrix products involving H.

Lemma 7.3. For d < n and k � 0, let W be a 2d× (k+ 2) matrix and let H be a
(n− d)× 2d random matrix with i.i.d. rows. Let τ ∈ R2d be a random vector with
the same distribution as the rows of H. If β ∈ (0, 1/8) then

PH

(
‖HW‖HS � β2

√
(k + 1)(n− d)

)
�
(
25e2β

2kL
(
WT τ, β

√
k + 1

))n−d

.

Proof. Apply Markov’s inequality to see that
(73)

P
(
‖HW‖HS � β2

√
(k + 1)(n− d)

)
� exp

(
2β2(k + 1)(n− d)

)
EHe−2‖HW‖2

HS/β
2

.

Letting τ1, . . . , τn−d denote the i.i.d. rows of H, we may rewrite

(74) EHe−2‖HW‖2
HS/β

2

=

n−d∏
i=1

Eτie
−2‖WT τi‖2/β2

=
(
Eτe

−2‖WT τ‖2/β2
)n−d

.

Observe now that

Eτe
−2‖WT τ‖2/β2

=

∫ ∞

0

P

(
e−2‖WT τ‖2/β2

> u
)
du

=

∫ ∞

0

4ue−2u2

P
(
‖WT τ‖2/β � u

)
du.

Splitting the integral on the right-hand side gives

Eτe
−2‖WT τ‖2/β2

=

∫ √
k+1

0

4ue−2u2

P
(
‖WT τ‖2 � βu

)
+

∫ ∞

√
k+1

4ue−2u2

P
(
‖WT τ‖2 � βu

)
.

We then appeal to Fact 7.2 to write

Eτe
−2‖WT τ‖2/β2

� L
(
WT τ, β

√
k+1

)(∫ √
k+1

0

4ue−2u2

du+

∫ ∞

√
k+1

(
1+

2u√
k + 1

)k+2

4ue−2u2

du

)
.

Here the first integral is � 1, while the second integral is � 8 and thus

(75) Eτe
−2‖WT τ‖2/β2 � 9L

(
WT τ, β

√
k + 1

)
.

Combining lines (75) with (74) and (73) gives

PH(‖HW‖HS � β2
√
(k + 1)(n− d)) �

(
9 exp(2β2(k+ 1))L

(
WT τ, β

√
k + 1

))n−d

,

and the result follows. �
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7.2. Approximating matrices W with nets. Note that in Theorem 7.1, the
least singular values of the matrix H could, a priori, correspond to any of a huge
number of possible directions. To limit the number of directions we need to consider,
we build nets for k-tuples of these directions. Luckily, the construction of these nets
is rendered relatively simple (unlike the nets Nε) by appealing to a randomized-
rounding technique pioneered in the context of random matrices by Livshyts [27]
(also see Section 3 of [28]).

With this in mind, let U2d,k be the set of all 2d× k matrices with orthonormal
columns. The following theorem provides a net for U2d,k, when viewed as a subset

of R[2d]×[k]. A proof can be found in Appendix E of [7], the arXiv version of this
paper.

Lemma 7.4. For k � d and δ ∈ (0, 1/2), there exists W = W2d,k ⊂ R[2d]×[k] with
|W| � (26/δ)2dk so that for any U ∈ U2d,k, any r ∈ N and r × 2d matrix A there
exists W ∈ W so that

(1) ‖A(W − U)‖HS � δ(k/2d)1/2‖A‖HS,

(2) ‖W − U‖HS � δ
√
k and

(3) ‖W − U‖ � 8δ.

Recall, for a 2d× k matrix W and Y ∈ Rd, we defined (at (28)) the augmented
matrix

WY =

[
W,

[
0d

Y

]
,

[
Y
0d

]]
.

7.3. Proof of Theorem 7.1. We recall a standard fact from linear algebra, re-
worded to suit our context.

Fact 7.5. For 3d < n, let H be a (n − d) × 2d matrix. If σ2d−k+1(H) � x then
there exist k orthogonal unit vectors w1, . . . , wk ∈ R2d so that ‖Hwi‖2 � x. In

particular, there exists W ∈ U2d,k so that ‖HW‖HS � x
√
k.

We also note that if H is a (n − d) × 2d matrix with entries in {−1, 0, 1} then

we immediately have ‖H‖HS �
√
2d(n− d).

Proof of Theorem 7.1. Write Y := c0
16

√
n
·X. We use Fact 7.5 to upper bound the

left-hand-side of (71) as

P(σ2d−k+1(H) � c02
−4

√
n and ‖H1X‖2, ‖H2X‖2 � n)

� P(∃U ∈ U2d,k : ‖HUY ‖HS � 3c0
√
n(k + 1)/16).

Set δ := c0/16, and let W be the net for U2d,k, given by Lemma 7.4.
We fix a matrix H for a moment. If there exists a matrix U ∈ U2d,k so that

‖HUY ‖HS � 3c0
√
n(k + 1)/16, apply Lemma 7.4 to find W ∈ W so that

‖HWY ‖HS � ‖H(WY −UY )‖HS+‖HUY ‖HS � δ(k/2d)1/2‖H‖HS+3c0
√
n(k + 1)/16

which is at most c0
√
n(k + 1)/4, since ‖H‖HS �

√
2nd. Thus

P

(
∃U ∈ U2d,k : ‖HUY ‖HS � c0

16

√
n(k + 1)

)
� P

(
∃W ∈ W : ‖HWY ‖HS � c0

4

√
n(k + 1)

)
.
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So by the union bound, we have

P

(
∃W ∈ W : ‖HWY ‖HS � (c0/4)

√
n(k + 1)

)
�
∑

W∈W
P

(
‖HWY ‖HS � (c0/4)

√
n(k + 1)

)
.

Now, by Lemma 7.4,

|W| � (26/δ)2dk � exp(32dk log c−1
0 ) � exp(c0k(n− d)/4),

where the last inequality holds since d � c20n, and so

(76)
∑

W∈W
P

(
‖HWY ‖HS � c0

4

√
n(k + 1)

)

� ec0k(n−d)/4 max
W∈W

P

(
‖HWY ‖HS � c0

4

√
n(k + 1)

)
.

Let W ∈ W be such that the maximum in (76) is attained, apply Lemma 7.3 with
β :=

√
c0/2 to obtain

(77) P(‖HWY ‖HS � (c0/4)
√
n(k + 1)) �

(
25ec0k/2L

(
WT

Y τ, c
1/2
0

√
k + 1

))n−d

.

We now look to apply Lemma 4.1. We define t := 16/(c0N) � exp(−2−9αd) and
R0 := 2−7c0R = 2−7c0(2

39c−3
0 ) = 232c−2

0 so that we have

‖Y ‖2 = c0‖X‖2/(16n1/2) � 2−14c20N = 2−10c0/t.

By the construction of W in Lemma 7.4 we have ‖W‖ � 2 and ‖W‖HS �
√
k/2.

We also have k � 2−10αd and Dα(
c0

16
√
n
X) = Dα(Y ) > 16, therefore we may apply

Lemma 4.1 to see that

L
(
WT

Y τ, c
1/2
0

√
k + 1

)
� (R0t)

2 exp(−c0k) �
(

R

8N

)2

exp(−c0k).

Substituting this bound in (77) we get

max
W∈W

PH(‖HWY ‖2 � (c0/4)
√
n(k + 1)) �

(
R

N

)2n−2d

exp(−c0k(n− d)/2)

and finally combining it with the previous bounds gives

P
(
σ2d−k+1(H) � c0

√
n/16 and ‖H1X‖2, ‖H2X‖2 � n

)
�
(
R

N

)2n−2d

exp(−c0k(n− d)/4).

This completes the proof of Theorem 7.1. �

8. Nets for structured vectors: size of the net

In this section we take a important step towards Theorem 1.1 by bounding the
size of our net

Nε :=
{
v ∈ Λε : (Lε)

n � P(‖Mv‖2 � 4ε
√
n) and LA,op(v, ε

√
n) � (28Lε)n

}
,

where we recall that

Λε := Bn(0, 2) ∩
(
4εn−1/2

Z
n
)
∩ I ′([d]).

In particular, our main goal of this section will be to prove Theorem 8.1 on |Nε|.

Licensed to Univ of Illinois at Chicago. Prepared on Thu Dec 26 10:00:33 EST 2024 for download from IP 128.248.156.45.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



206 M. CAMPOS, M. JENSSEN, M. MICHELEN, AND J. SAHASRABUDHE

Theorem 8.1. For L � 2 and 0 < c0 � 2−24, let n � L64/c20 , let d ∈ [c20n/4, c
2
0n]

and let ε > 0 be such that log ε−1 � nL−32/c20 . Then

|Nε| �
(

C

c60L
2ε

)n

,

where C > 0 is an absolute constant.

As the geometry of the set Λε is a bit complicated, we follow an idea of
Tikhomirov [51], by working with the intersection of Nε with a selection of “boxes”
which cover (an appropriately re-scaled) Λε.

Definition 8.2. For d, n,N ∈ N with d � n and κ > 1, define a (N, κ, d)-box
to be a set of the form B = B1 × . . . × Bn ⊂ Zn where |Bi| � N for all i � 1;
Bi = [−κN,−N ] ∪ [N, κN ], for i ∈ [d]; and |B| � (κN)n.

The advantage of working with these boxes is that they lend themselves natu-
rally to a probabilistic interpretation, which we now adopt. We ask “what is the
probability that

PM (‖MX‖2 � n) �
(
L

N

)n

,

where X is chosen uniformly at random from B?”. This interpretation was used
to ingenious effect in the work of Tikhomirov, who called this the “inversion of
randomness”. While we do take this vantage point, our path forward is considerably
different from that of Tikhomirov.

We now state our key “box” version of Theorem 8.1, in this probabilistic frame-
work. Indeed, almost all of the work in proving Theorem 8.1 goes into proving the
following variant for boxes.

Lemma 8.3. For L � 2 and 0 < c0 � 2−24, let n > L64/c20 and let 1
4c

2
0n � d � c20n.

For N � 2, satisfying logN � c0L
−8n/dd, and κ � 2, let B be a (N, κ, d)-box and

let X be chosen uniformly at random from B. Then

PX

(
PM (‖MX‖2 � n) �

(
L

N

)n)
�
(
R

L

)2n

,

where R := Cc−3
0 and C > 0 is an absolute constant.

8.1. Counting with the least common denominator. In this subsection, we
prove the following simple lemma, which says that the probability of choosingX ∈ B
with “large” least common denominator is super-exponentially small. This will
ultimately allow us to apply Theorem 7.1, which requires an upper bound on the
Dα(X) for application.

We point out that in Lemma 8.4, we rescale by a factor of rn = c02
−4n−1/2,

despite the fact we are working in d < n dimensions. This is just a trace of the fact
that Rn is our true point of reference. Additionally we will only need Lemma 8.4
when K = 16.

Lemma 8.4. For α ∈ (0, 1),K � 1 and κ � 2, let n � d � K2/α and let N � 2 be

so that KN < 2d. Let B = ([−κN,−N ] ∪ [N, κN ])
d
and let X be chosen uniformly

at random from B. Then

(78) PX

(
Dα

(
rnX

)
� K

)
� (220α)d/4,

where we have set rn := c02
−4n−1/2.
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Proof. If Dα

(
rnX

)
� K then let ψ ∈ (0,K] be the minimum9 in the definition of

least common denominator. Set φ := rnψ and observe that φ satisfies

(79) ‖φX‖T �
√
αd and φ ∈ [(2κN)−1, rnK].

To see the bound φ � (2κN)−1, note that if φ < (2κN)−1 then each coordinate of
φX lies in (−1/2, 1/2) which would imply ‖φX‖T = ‖φX‖2 = φ‖X‖2. Using the
non-triviality condition in the definition of least common denominator (29), this
would imply

φ‖X‖2 = ‖φX‖T = ‖ψ(rnX)‖T � ψ‖rnX‖2/2 = φ‖X‖2/2,
which is a contradiction. Thus the bounds in (79) hold.

Now to calculate the probability in (78), we discretize the range of possible φ.
For each integer i ∈ [1/α, 2KN/α] =: I we define φi := iα/(2κN) and note that if
X,φ satisfy (79) then there exists φi for which

‖φiX‖T � 2
√
αd and φi ∈ [(2κN)−1, rnK],

by simply choosing φi for which |φi − φ| � α/(κN) and using triangle inequality

(80) ‖φiX‖T � ‖φX‖T + ‖(φi − φ)X‖2 �
√
αd+ |φi − φ| ·

√
d(κN) � 2

√
αd.

Thus we have that

(81) PX(Dα(rnX) � K) �
∑
i∈I

PX

(
‖φiX‖T � 2

√
αd
)
.

To bound the terms on the right-hand side, note that if ‖φiX‖T � 2
√
αd then

1

d

d∑
j=1

‖φiXj‖2T � 4α.

By averaging, there is a set S(X, i) ⊂ [d] with |S(X, i)| � d/2 for which ‖φiXj‖T �
4
√
α for all j ∈ S(X, i). Union bounding over all sets S ⊆ [d] and using the

independence of the coordinates Xj we have

(82) PX(Dα(rnX) � K) � 2d
∑
i∈I

d/2∏
j=1

PXj

(
‖φiXj‖T � 4

√
α
)
.

We now claim that

(83) PXj

(
‖φiXj‖T � 4

√
α
)
� 32

√
α.

For this, note that if ‖φiXj‖T � 4
√
α, then |φiXj −p| � 4

√
α, where p ∈ Z satisfies

|p| � |φiXj |+ 1 � φiκN + 1 =: Ti. And so

PXj

(
‖φiXj‖T � 4

√
α
)
�

Ti∑
p=−Ti

PXj

(
|Xj − pφ−1

i | � 4
√
αφ−1

i

)

� (2Ti + 1)(8α1/2φ−1
i + 1)

2(κ− 1)N
,

where we have used that Xj is uniform on [−κN,−N ] ∪ [N, κN ] and the lower
bound κNφi � 1/2 from (80) along with the assumption κ � 2. Also note that
8α1/2φ−1

i � 1 since φ � rnK � d−1/2K, allowing us to conclude (83).

9Technically the least common denominator is defined in terms of an infimum, however the
minimum is always attained for non-zero vectors.
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Now, plugging (83) into (82) and bounding |I| � (2KN/α + 1) � 3d completes
the proof of Lemma 8.4. �

8.2. Anti-concentration for linear projections of random vectors. In this
subsection we prove the following anti-concentration result for random variables
HX, where H is a fixed matrix and X is a random vector with independent entries.
One small remark regarding notation: H as stated in Lemma 8.5 will actually be
HT in Section 8.3.

Lemma 8.5. Let N ∈ N, n, d, k ∈ N be such that n−d � 2d > 2k, H be a 2d×(n−d)
matrix with σ2d−k(H) � c0

√
n/16 and B1, . . . , Bn−d ⊂ Z with |Bi| � N . If X is

taken uniformly at random from B := B1 × . . .×Bn−d, then

PX

(
‖HX‖2 � n

)
�
(

Cn

dc0N

)2d−k

,

where C > 0 is an absolute constant.

We derive this from the following anti-concentration result of Rudelson and Ver-
shynin. This is essentially Corollary 1.4 along with Remark 2.3 in their paper [37],
but we have restated their result slightly to better suit our context.

Theorem 8.6. Let N ∈ N and let n, d, k ∈ N be such that n− d � 2d > k. Let P
be an orthogonal projection of Rn−d onto a (2d − k)-dimensional subspace and let
X = (X1, . . . , Xn−d) be a random vector with independent entries for which

L
(
Xi, 1/2

)
� N−1,

for all i ∈ [n− d]. Then, for all K � 1,

max
y∈Rn−d

PX

(
‖PX − y‖2 � K

√
2d− k

)
�
(
CK

N

)2d−k

,

where C > 0 is a absolute constant.

We can now deduce Lemma 8.5.

Proof of Lemma 8.5. Since HTH is a symmetric (n − d) × (n − d) matrix with

rk(H) � 2d, by the spectral theorem we have HTH =
∑2d

i=1 σi(H)2viv
T
i , where

v1, . . . , v2d ∈ Rn−d are orthonormal. Define the orthogonal projection P :=∑2d−k
i=1 viv

T
i . Then we have

‖HX‖22 = 〈X,HTHX〉

=

2d∑
j=1

σj(H)2〈X, vj〉2

� σ2d−k(H)2
2d−k∑
j=1

〈X, vj〉2

� 2−8c20n‖PX‖22.

Therefore

(84) PX(‖HX‖2 � n) � PX(‖PX‖2 � 16c−1
0

√
n).
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We now apply Theorem 8.6 to the orthogonal projection P , with K =
16c−1

0

√
n/(2d− k),

(85) PX(‖PX‖2 � K
√
2d− k) �

(
Cn

dc0N

)2d−k

,

which together with (84) completes the proof of Lemma 8.5. �

8.3. Proof of Lemma 8.3. We take a moment to prepare the ground for the
proof of Lemma 8.3. We express our random matrix M , as in the statement of
Lemma 8.3, as

M =

[
0[d]×[d] HT

1

H1 0[n−d]×[n−d]

]
,

where H1 is a (n−d)×d random matrix with iid 1/4-lazy entries in {−1, 0, 1}. We
shall also let H2 be an independent copy of H1 and define H to be the (n− d)× 2d
matrix

H :=
[
H1 H2

]
.

For a vector X ∈ Rn, we define the event A1 = A1(X) by

A1 :=
{
H : ‖H1X[d]‖2 � n and ‖H2X[d]‖2 � n

}
and let A2 = A2(X) be the event

A2 :=
{
H : ‖HTX[d+1,n]‖2 � 2n

}
.

We now note a simple inequality linkingH, A1 andA2 with the event {‖MX‖2 �
n}.

Fact 8.7. For X ∈ Rn, let A1 = A1(X), A2 = A2(X) be as above. We have

(PM (‖MX‖2 � n))
2 � PH(A1 ∩A2).

Proof. Let M ′ be an independent copy of M . Expand �(‖MX‖2 � n) as a sum of
indicators, apply EM and square to see

(PM (‖MX‖2 � n))2 =
∑
M,M ′

P(M ′)P(M)�(‖MX‖2, ‖M ′X‖2 � n),

which is at most∑
H1,H2

P(H1)P(H2)�(‖H1X[d]‖2 � n, ‖H2X[d]‖2 � n and ‖HTX[d+1,n]‖2 � 2n
)
,

which is exactly PH(A1 ∩ A2). �

We shall also need a “robust” notion of the rank of the matrix H: Define Ek to
be

Ek :=
{
H : σ2d−k(H) � c0

√
n/16 and σ2d−k+1(H) < c0

√
n/16

}
and note that always exactly one of the events E0, . . . , E2d holds. We now set

(86) α := 213L−8n/d,

and, given a box B, we define the set of typical vectors T (B) ⊆ B to be

(87) T = T (B) :=
{
X ∈ B : Dα(c02

−4n−1/2X[d]) > 16
}
.
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Now set K := 16 and note that Lemma 8.4 implies that if X is chosen uniformly

from B and n � L64/c20 � 28/α we have

PX(X �∈ T ) = PX

(
Dα(c02

−4n−1/2X[d]) � 16
)
�
(
233L−8n/d

)d/4
�
(
2

L

)2n

.(88)

Proof of Lemma 8.3. Let M , H1, H2, H, A1,A2, Ek, α and T := T (B) be as above.
We denote

E :=
{
X ∈ B : PM (‖MX‖2 � n) � (L/N)n

}
and write

PX(E) � PX(E ∩ {X ∈ T}) + PX(X �∈ T ).

Now define

f(X) := PM (‖MX‖2 � n)�(X ∈ T )

and apply (88), the bound on PX(X �∈ T ), to obtain

(89) PX(E) � PX (f(X) � (L/N)n) + (2/L)2n � (N/L)2nEXf(X)2 + (2/L)2n,

where the last inequality follows from Markov’s inequality. So to prove Lemma 8.3,
it is enough to prove EXf(X)2 � 2(R/N)2n.

From Fact 8.7 we may write

(90) PM (‖MX‖2 � n)2 � PH(A1 ∩A2) =

d∑
k=0

PH(A2|A1 ∩ Ek)PH(A1 ∩ Ek)

and so

(91) f(X)2 �
d∑

k=0

PH(A2|A1 ∩ Ek)PH(A1 ∩ Ek)�(X ∈ T ).

We now look to apply Lemma 7.1 to obtain upper bounds for the quantities PH(A1∩
Ek), when X ∈ T . For this, note that d � c20n, N � exp(L−8n/dd) � exp(2−10αn)
and set R0 := 239c−3

0 (This is the “R” in Theorem 7.1). Also note that, by the
definition of a (N, κ, d)-box and the fact that d � 1

4c
2
0n, we have that ‖X[d]‖2 �

d1/2N � c02
−10

√
nN . Now set α′ := 2−10α to see that for X ∈ T and 0 � k � α′d,

PH(A1 ∩ Ek) � exp(−c0nk/4)

(
R0

N

)2n−2d

.

Moreover by Theorem 7.1,∑
k�α′d

PH(A1 ∩ Ek) � PH

(
{σ2d−α′d(H) � c0

√
n/16} ∩ A1

)
� exp(−c0α

′dn/4).

Thus, for all X ∈ B, we have

(92) f(X)2 �
α′d∑
k=0

PH(A2 | A1∩Ek) exp(−c0nk/4)

(
R0

N

)2n−2d

+exp(−c0α
′dn/4).

We now consider the quantities gk(X) := PH(A2 | A1 ∩ Ek) appearing in (92).
Indeed,

EX [gk(X)] = EXEH

[
A2 | A1 ∩ Ek

]
= EX[d]

EH

[
EX[d+1,n]

�[A2] | A1 ∩ Ek
]
.
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We now consider a fixed H ∈ A1 ∩ Ek for k � α′d. Each such H has σ2d−k(H) �
c0
√
n/16 and thus we may apply Lemma 8.5 to see that

EX[d+1,n]
�[A2] = PX[d+1,n]

(
‖HTX[d+1,n]‖2 � n

)
�
(

C ′n

c0dN

)2d−k

�
(
4C ′

c30N

)2d−k

,

for an absolute constant C ′ > 0, using that d � 1
4c

2
0n. And so for each 0 � k � α′d,

taking R := max{8C ′c−3
0 , 2R0}, we have

(93) EX [gk(X)] �
(

R

2N

)2d−k

.

We apply EX to (92) and then use (93) to obtain

EXf(X)2 �
(

R

2N

)2n α′d∑
k=0

(
2N

R

)k

exp(−c0nk/4) + exp(−c0α
′dn/4).

Using that N � exp(c0n/4) and N � exp(c0L
−8n/dd) = exp(c0α

′d/8) gives

(94) EXf(X)2 � 2

(
R

2N

)2n

.

Combining (94) with (89) completes the proof of Lemma 8.3. �

8.4. Proof of Theorem 8.1. The main work of this section is now complete with
the proof of Lemma 8.3. We now just need to go from X in a “box” to X in
a “sphere” Λε. To accomplish this step, we simply cover the sphere with boxes.
Recall that

I ′([d]) :=
{
v ∈ R

n : κ0n
−1/2 � |vi| � κ1n

−1/2 for all i ∈ [d]
}
,

Λε := Bn(0, 2) ∩
(
4εn−1/2

Z
n
)
∩ I ′([d]),

and that 0 < κ0 < 1 < κ1 are absolute constants defined in Section 3.

Lemma 8.8. For all ε ∈ [0, 1], κ � max{κ1/κ0, 2
8κ−4

0 }, there exists a family F of
(N, κ, d)-boxes with |F| � κn so that

(95) Λε ⊆
⋃
B∈F

(4εn−1/2)B,

where N = κ0/(4ε).

Proof. For ��1 define the interval of integers I� :=
[
−2�N, 2�N

]
\
[
−2�−1N, 2�−1N

]
and I0 := [−N,N ]. Also take J := [−κN, κN ]\[−N,N ]. For (�d+1, . . . , �n) ∈ Zn

�0

we define the box B(�d+1, . . . , �n) := Jd ×
∏n

j=d+1 I�j and the family of boxes

F :=

⎧⎨
⎩B(�d+1, . . . , �n) :

∑
j:�j>0

22�j � 8n/κ2
0

⎫⎬
⎭ .

We claim that F is the desired family. For this, we first show the inclusion at
(95). Let v ∈ Λε. Since v ∈ 4εn−1/2Zn, X := vn1/2/(4ε) ∈ Zn. For i ∈ [d + 1, n],
define �i so that Xi ∈ I(�i). We claim X ∈ B(�d+1, . . . , �n). For this, observe that
Xi ∈ J for i ∈ [d]: since v ∈ I ′([d]), we have κ0 � |vi|n1/2 � κ1, for i ∈ [d].
So κ0/(4ε) � |Xi| � κ1/(4ε), for i ∈ [d]. Thus Xi ∈ J since N = κ0/(4ε) and
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κ � κ1/κ0. Thus X ∈ B(�d+1, . . . , �n). We now observe that B(�d+1, . . . , �n) ∈ F ,
since ∑

j:�j>0

22(�j−1)N2 �
n∑

j=1

X2
j � n/(4ε)2

(∑
i

v2i

)
� 4nN2/κ2

0.

Thus we have (95).
We now show |F| � κn. For this we only need to count the number of sequences

(�d+1, . . . , �n) of non-negative integers for which
∑

�i>0 4
�i � 8n/κ2

0. For each t � 0

there are at most max{8n/(4tκ2
0), n} values of i ∈ [d+1, n] for which �i = t. There

are therefore at most

8n/(κ2
04

t)∑
j=0

(
n

j

)
�
(
eκ2

04
t

8

)8n/(κ2
04

t)

� e8n/(κ
2
02

t)

choices for these values of i if 8/(κ2
02

t) � 1 and at most 2n choices otherwise. Hence,
there are at most

2n log2(8/κ
2
0) ·

∏
t�log2(8/κ

2
0)

e8n/(κ
2
02

t) � (8/κ2
0)

n · e2n < κn

such sequences (�d+1, . . . , �n).
It only remains to show an upper bound on the size of B(�d+1, . . . , �n) ∈ F . We

have
|B(�d+1, . . . , �n)| � Nnκd2n+

∑
j �j � κd(16/κ2

0)
nNn � (κN)n

where the second inequality holds due to the fact
∏

j 2
�j �

(
1
n

∑
j 2

2�j
)n

� (8/κ2
0)

n

and the last inequality holds due to the choice of κ. �

We may now use our covering Lemma 8.8 to apply Lemma 8.3 to deduce Theo-
rem 8.1, the main result of this section.

Proof of Theorem 8.1. Apply Lemma 8.8 with κ = max{κ1/κ0, 2
8κ−4

0 } and use the
fact that Nε ⊆ Λε to write

Nε ⊆
⋃
B∈F

(
(4εn−1/2)B

)
∩ Nε

and so

|Nε| �
∑
B∈F

| (4εn−1/2B) ∩ Nε| � |F| ·max
B∈F

| (4εn−1/2B) ∩ Nε|.

By rescaling by
√
n/(4ε) and applying Lemma 8.3, we have

|(4εn−1/2B) ∩Nε| �
∣∣∣{X ∈ B : PM

(
‖MX‖2 � n

)
� (Lε)n

}∣∣∣ � (R

L

)2n

|B|.

Here the application of Lemma 8.3 is justified as 0 < c0 � 2−24, c20n/2 � d � c20n;

κ � 2; we have log 1/ε � n/L32/c20 and therefore

logN = log κ0/(4ε) � n/L32/c20 � c0L
−8n/dd,

as specified in Lemma 8.3, since κ0 < 1, d � L−1/c20n, c0 � L−1/c20 and 8n/d �
16/c20. So, using that |F| � κn and |B| � (κN)n for each B ∈ F , we have

|Nε| � κn

(
R

L

)2n

|B| � κn

(
R

L

)2n

(κN)n �
(

C

c60L
2ε

)n

,

Licensed to Univ of Illinois at Chicago. Prepared on Thu Dec 26 10:00:33 EST 2024 for download from IP 128.248.156.45.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SINGULARITY OF RANDOM SYMMETRIC MATRICES 213

where C = κ2R2c60, thus completing the proof of Theorem 8.1. �

9. Nets for structured vectors: approximating with the net

While we have spent considerable energy up to this point showing that Nε is
small, we have so far not shown that it is in fact a net. We now show just this, by
showing that vectors in Σε are approximated by elements of Nε. As we will see,
this is considerably easier and is taken care of in Lemma 9.2, which, in a similar
spirit to Lemma 7.4, is based on randomized rounding. For this, we recall that we
defined

Σε = {v ∈ I([d]) : TL(v) ∈ [ε, 2ε]} ⊂ S
n−1,(96)

where TL(v) = sup{t ∈ [0, 1] : P(‖Mv‖2 � t
√
n) � (4Lt)n}, and d = c20n < 2−32n.

Also recall the definition of our net

Nε =
{
v ∈ Λε : P(‖Mv‖2 � 4ε

√
n) � (Lε)n and LA,op(v, ε

√
n) � (28Lε)n

}
.

We also make the basic observation that if TL(v) = s, then

(2sL)n � P(‖Mv‖2 � s
√
n) � (8sL)n.

Until now, we have almost entirely been working with the matrix M . Lemma
9.1 allows us to make a comparison between M and our central object of study: A,
a uniform n×n symmetric matrix with entries in {−1, 1}. The proof of the lemma
is based on a comparison of Fourier transforms and is deferred to Appendix B. We
note that the proof makes use of the fact that for fixed v ∈ Rn, the characteristic
function of Mv is non-negative since the entries of M are sufficiently lazy. This is
similar to the replacement step in the work of Kahn Komlós and Szemerédi [19]
and subsequent works [5,46]. However, here we only need to “break even”, whereas
they are looking for a substantial gain at this step.

Lemma 9.1. For v ∈ Rn and t � TL(v) we have

L(Av, t
√
n) � (50Lt)n.

We now prove Lemma 9.2 which tells us that Nε is a net for Σε.

Lemma 9.2. Let ε ∈ (0, κ0/8), d � n/32. If v ∈ Σε then there is u ∈ Nε with
‖u− v‖∞ � 4εn−1/2.

Proof. Given v ∈ Σε, we define a random variable r = (r1, . . . , rn) where the ri are
independent, Eri = 0, |ri| � 4εn−1/2 and such that v − r ∈ 4εn−1/2Zn, for all r.
We then define the random variable u := v − r. We will show that with positive
probability there is a choice of u ∈ Nε.

Note that ‖r‖∞ = ‖u−v‖∞ � 4εn−1/2 for all u. Also, u ∈ I ′([d]) for all u, since
v ∈ I([d]) and ‖u − v‖∞ � 4ε/

√
n � κ0/(2

√
n). So, from the definition of Nε, we

need only show that there exists such a u satisfying

(97) P(‖Mu‖2 � 4ε
√
n) � (Lε)n and LA,op(u, ε

√
n) � (28Lε)n.

We first show that all u satisfy the upper bound at (97). To see this, write E =
{‖A‖ � 4

√
n} and let w(u) ∈ Rn, be such that

LA,op(u, ε
√
n) = P

(
‖Av −Ar − w(u)‖ � ε

√
n and E

)
� P

(
‖Av − w(u)‖ � 5ε

√
n and E

)
� LA,op(v, 5ε

√
n) � L(Av, 5ε

√
n).
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Since v ∈ Σε, Lemma 9.1 bounds

L(Av, 5ε
√
n) � (28Lε)n.(98)

We now show that

(99) EuPM (‖Mu‖2 � 4ε
√
n) � (1/2)PM (‖Mv‖2 � 2ε

√
n) � (1/2)(2εL)n,

where the last inequality holds by the fact v ∈ Σε. From (99), it follows that there
exists u ∈ Λε satisfying (97).

So to prove the first inequality in (97), we define the event E := {M : ‖Mv‖2 �
2ε
√
n}. For all u, we have

PM (‖Mu‖2 � 4ε
√
n) = PM (‖Mv −Mr‖2 � 4ε

√
n) � PM (‖Mr‖2 � 2ε

√
n and E).

Thus

PM (‖Mu‖2 � 4ε
√
n) � PM (‖Mr‖2 � 2ε

√
n | E)P(E)

�
(
1− PM (‖Mr‖2 > 2ε

√
n | E)

)
PM (‖Mv‖2 � 2ε

√
n).

Taking expectations with respect to u gives
(100)
EuPM (‖Mu‖2 � 4ε

√
n) �

(
1− EuPM (‖Mr‖2 > 2ε

√
n | E)

)
PM (‖Mv‖2 � 2ε

√
n)

and exchanging the expectations reveals that it is enough to show

EM

[
Pr(‖Mr‖2 > 2ε

√
n) | E

]
� 1/2.

We will show that Pr(‖Mr‖2 > 2ε
√
n) � 1/4 for all M ∈ E , by Markov’s inequality.

For this, fix a n × n matrix M with entries |Mi,j | � 1 and Mi,j = 0, if (i, j) ∈
[d+ 1, n]× [d+ 1, n], and note that

Er‖Mr‖22 =
∑
i,j

E (Mi,jri)
2 =

∑
i

Er2i
∑
j

M2
i,j � 32ε2d � ε2n,

where, for the second equality, we have used that the ri are mutually independent
and Eri = 0, for the third inequality, we used ‖r‖∞ � 4ε/

√
n and for the final

inequality we used d � n/32. Thus by Markov, we have

(101) Pr(‖Mr‖2 � 2ε
√
n) � (2ε

√
n)−2

Er‖Mr‖22 � 1/4.

Putting (101) together with (100) proves (99), completing the proof of (97). �

10. Proof of Theorem 1.1

In this section we put together our results to prove Theorem 1.1. But before we
get to this, we note a few reductions afforded by previous work. Let us define

(102) qn(γ) := max
w∈Rn

PA(∃v ∈ R
n \ {0} : Av = w, ρ(v) � γ),

where

ρ(v) = max
w∈R

P

(
n∑

i=1

εivi = w

)

and ε1, . . . , εn ∈ {−1, 1} are i.i.d. and uniform. One slightly irritating aspect of the
definition (102) is that the existential quantifies over all non-zero v ∈ Rn, rather
than all v ∈ Sn−1, as we have been working with. So, as we will shortly see, we will
need to approximate this extra dimension of freedom with a net.

These small issues aside, we will use the following inequality, which effectively
allows us to remove very unstructured vectors from consideration.
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Lemma 10.1. Let A be a random n× n symmetric {−1, 1}-matrix. For all γ > 0
we have

P(det(A) = 0) � 16n

2n−2∑
m=n

(
γ1/8 +

qm−1(γ)

γ

)
.

We record the details of this lemma in Appendix C of the arXiv version of this
paper [7], although an almost identical lemma can be found in [8], which collected
elements from [9, 11, 31].

10.1. Non-flat vectors. Here we note a lemma due to Vershynin [52] which tells
us that it is enough for us to consider vectors v ∈ I. For this, we reiterate the
important notion of compressible vectors, introduced by Rudelson and Vershynin
[33]. Say a vector in Sn−1 is (δ, ρ)-compressible if it has distance � ρ from a
vector with support � δn. Let Comp(δ, ρ) denote the set of such compressible
vectors. In [52, Proposition 4.2], Vershynin provides Lemma 10.2 which allows us
to disregard all compressible vectors.

Lemma 10.2. There exist δ, ρ, c ∈ (0, 1) so that for all n ∈ N,

max
w∈Rn

PA

⎛
⎝ ⋃

v∈Sn−1\Comp(δ,ρ)

{
‖Av − w‖2 � c

√
n
}⎞⎠ � 2e−cn,

where A is a random n× n symmetric {−1, 1}-matrix.

Lemma 10.3 of Rudelson and Vershynin [33, Lemma 3.4] tells us that incom-
pressible vectors are “flat” for a constant proportion of coordinates.

Lemma 10.3. For δ, ρ ∈ (0, 1), let v ∈ Incomp(δ, ρ). Then

(ρ/2)n−1/2 � |vi| � δ−1/2n−1/2

for at least ρ2δn/2 values of i ∈ [n].

Now recall that we defined

I(D) =
{
v ∈ S

n−1 : (κ0 + κ0/2)n
−1/2 � |vi| � (κ1 − κ0/2)n

−1/2 for all i ∈ D
}

and I =
⋃

D⊆[n],|D|=d I(D). Here we fix κ0 = ρ/3 and κ1 = δ−1/2 + ρ/6, where δ, ρ

are as in Lemma 10.2. We also fix c0 = min{2−24, ρδ1/2/2}.
Lemma 10.4 is what we will apply in the proof of Theorem 1.1.

Lemma 10.4. For n ∈ N, let d < c20n. Then

max
w∈Rn

PA

⎛
⎝ ⋃

v∈Sn−1\I

{
Av ∈ {tw}t>0, ‖A‖ � 4

√
n
}⎞⎠ � 16c−1e−cn.

Proof. Apply Lemma 10.3 along with the definitions of κ1, κ2 and I to see Sn−1\I ⊆
Comp(δ, ρ). Clearly we may assume that ‖w‖2 = 1 or w = 0. Now take a c

√
n-net

X for {tw}0<t�4
√
n of size at most 8c−1. Then{

A : Av ∈ {tw}t>0, ‖A‖ � 4
√
n
}
⊂
⋃

w′∈X

{
A : ‖Av − w′‖2 � c

√
n
}
.

Union bounding over X and applying Lemma 10.2 completes the lemma. �
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10.2. Proof of Theorem 1.1. As we noted in Section 3, matrices A with ‖A‖ �
4
√
n will be a slight nuisance for us. The following concentration inequality for the

operator norm of a random matrix will allow us to remove all such matrices A from
consideration.

Lemma 10.5. Let A be uniformly drawn from all n× n symmetric matrices with
entries in {−1, 1}. Then for n sufficiently large,

P
(
‖A‖ � 4

√
n
)
� 4e−n/32.

This follows from a classical result of Bai and Yin [1] (see also [44, Theorem
2.3.23]) which implies that the median of ‖A‖ is equal to (2 + o(1))

√
n, com-

bined with a concentration inequality due to Meckes [29, Theorem 2]. A version of
Lemma 10.5 without explicit constants is well-known and straightforward, though
we have included a version with explicit constants for concreteness.

We will also need the following, rather weak, relationship between the threshold
TL, defined in terms of the matrix M , and ρ(v), the “one-dimensional” concentra-
tion function of v. For this we define one more bit of (standard) notation

ρε(v) := max
b∈Rn

P

(∑
i

viεi ∈ (b− ε, b+ ε)

)
.

Lemma 10.6. Let v ∈ Sn−1 and ε = TL(v). Then ρε(v)
4 � 212Lε.

We postpone the proof of this lemma to Appendix B and move on to the proof
of Theorem 1.1.

Proof of Theorem 1.1. It is not hard to see that P(det(A) = 0) < 1 for all n, and
therefore it is enough to prove Theorem 1.1 for all sufficiently large n.

Now, as in Section 3, we set γ = e−cn, where we now define, c := L−32/c20/8, L :=
max{226C1, 16/κ0}, where C1 = C/c60 is the constant appearing in Theorem 8.1.
By possibly decreasing c we may also assume that it is at most half the constant
from Lemma 10.4 (which we note depends only on c0). We also let c0 > 0 be as
defined above and d := �c20n/2�.

From Lemma 10.1 we have

P(det(A) = 0) � 16n
2n−2∑
m=n

(
γ1/8 +

qm−1(γ)

γ

)

and so it is enough to bound qn(γ) for all large n. Let Σ = {v ∈ Sn−1 : ρ(v) � γ},
as defined in Section 3, and note that

{A : ∃v ∈ R
n, Av = w, ρ(v) � γ} ⊂ {A : ∃v ∈ Σ, Av ∈ {tw}t>0}.

Since d = �c20n/2�, by Lemma 10.4 and Lemma 10.5, we have
(103)
qn(γ) � max

w∈Rn
PA

(
{∃v ∈ I ∩ Σ : Av ∈ {tw}t>0} ∩ {‖A‖ � 4

√
n}
)
+ 64c−1e−2cn

and so it is enough to show the first term on the right-hand side is � 2−n. Using
that I =

⋃
D I(D), we have the first term of (103) is

� 2n max
D∈[n](d)

max
w∈Rn

PA

(
{∃v ∈ I(D) ∩ Σ : Av ∈ {tw}t>0} ∩ {‖A‖ � 4

√
n}
)

(104)

= 2n max
w∈Rn

PA

(
{∃v ∈ I([d]) ∩ Σ : Av ∈ {tw}t>0} ∩ {‖A‖ � 4

√
n}
)
,(105)
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where the last line holds by symmetry of the coordinates. Thus it is enough to
show that the maximum at (105) is at most 4−n.

Now, for v ∈ Σ we have ρ(v) � γ and so, by Lemma 10.6, we have that

γ4 � ρ(v)4 � ρTL(v)(v)
4 � 212LTL(v).

Define η := γ4/(212L) � TL(v). Also note that by definition, TL(v) � 1/L � κ0/8.
Now, recalling definition (96) of Σε = Σε([d]) from Section 3, we may write

I([d]) ∩ Σ ⊆
n⋃

i=1

{
v ∈ I : TL(v) ∈ [2j−1η, 2jη]

}
=

log2(κ0/16η)⋃
j=0

Σ2jη

and so by the union bound, it is enough to show

max
w∈Rn

PA

(
{∃v ∈ Σε : Av ∈ {tw}t>0} ∩ {‖A‖ � 4

√
n}
)
� 8−n,

for all ε ∈ [η, κ0/16]. Fix an ε
√
n-net X for {tw}0<t�4

√
n of size 8/ε � 2n to get

{A : Av ∈ {tw}t>0, ‖A‖ � 4
√
n} ⊂

⋃
w′∈X

{A : ‖Av − w′‖2 � ε
√
n, ‖A‖ � 4

√
n}.

So by taking the union bound over X it is enough to prove that

(106) Qε := max
w∈Rn

PA

(
{∃v ∈ Σε : ‖Av − w‖2 � ε

√
n} ∩ {‖A‖ � 4

√
n}
)
� 2−4n.

Let w ∈ Rn be such that the maximum at (106) is attained. Now, since ε < κ0/8
for v ∈ Σε, we apply Lemma 9.2, to find a u ∈ Nε = Nε([d]) so that ‖v− u‖2 � 4ε.
So if ‖A‖ � 4

√
n and ‖Av − w‖ � ε

√
n, we see that

‖Au− w‖2 � ‖Av − w‖2 + ‖A(v − u)‖2 � ‖Av − w‖2 + ‖A‖‖(v − u)‖2 � 32ε
√
n

and thus

{A : ∃v ∈ Σε : ‖Av − w‖ � ε
√
n} ∩ {‖A‖ � 4

√
n}

⊆ {A : ∃u ∈ Nε : ‖Au− w‖ � 32ε
√
n, ‖A‖ � 4

√
n}.

So, by union bounding over our net Nε, we see that

Qε � PA

(
∃u ∈ Nε : ‖Au− w‖ � 32ε

√
n and ‖A‖ � 4

√
n
)

�
∑
u∈Nε

LA,op

(
u, 32ε

√
n
)
.

Now note that if u ∈ Nε, then LA,op(u, ε
√
n) � (28Lε)n and so by Fact 7.2 we have

that LA,op (u, 32ε
√
n) � (216Lε)n. As a result,

Qε � |Nε|(216Lε)n �
(

C

L2ε

)n

(216Lε)n � 2−4n,

where the second to last inequality follows from our Theorem 8.1 and the last in-
equality holds for our choice of L = max{226C1, 16/κ0}. To see that the application
of Theorem 8.1 is valid, note that

log 1/ε � log 1/η = log 212L/γ4 � nL−32/c20/2 + log 212L � nL−32/c20 ,

where the last inequality hold for all sufficiently large n. This completes the proof.
�
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Appendix A. The Proofs of two Esseen-type lemmas

In this section we prove our two Esseen-type lemmas, Lemma 4.2 and Lemma 6.2,
for random variables of the form WT τ , where τ is a μ-lazy random vector in
{−1, 0, 1}2d and W is a (fixed) 2d × � matrix for some � ∈ N. Recall that for
a vector u ∈ R�, we let ‖u‖T denote the Euclidean distance from u to the integer
lattice Z�.

A.1. Basics of Fourier representation. As above, we let τ be a μ-lazy random
vector in {−1, 0, 1}2d and let W be a 2d × � matrix. Recall the characteristic
function ϕX of a vector valued random variable X is defined as

ϕX(θ) = E exp(2πi〈X, θ〉),

and so we may express characteristic function of WT τ as

ϕ(θ) = E exp(2πi〈τ,Wθ〉) =
2d∏
j=1

(
(1− μ) + μ cos(2π(Wθ)j)

)
.

We note the elementary fact that for μ ∈ [0, 1/4] we have

(107) − log (1− μ+ μ cos(2πx)) � 32μ‖x‖2T,

and for μ ∈ [0, 1]

(108) − log |1− μ+ μ cos(2πx)| � μ‖x‖2T
from which we deduce that for μ ∈ [0, 1/4]

(109) ϕ(θ) � exp
(
−32μ ‖Wθ‖2

T

)
,

and for μ ∈ [0, 1]

(110) |ϕ(θ)| � exp
(
−μ ‖Wθ‖2

T

)
.

We now note a standard fact regarding Fourier inversion (see [49] p.290).

Fact A.1 (Fourier inversion). Let X be a random vector in R�, then for w ∈ R�

we have

E exp

(
−π‖X − w‖22

2

)
=

∫
R�

e−π‖θ‖2
2 · e−2πi〈w,θ〉ϕX(θ) dθ.

In particular, letting g ∼ N (0, (2π)−1I�), we have

E exp

(
−π‖X − w‖22

2

)
= Eg(e

−2πi〈w,g〉ϕX(g)).

A.2. Proof of Lemma 4.2 and Lemma 6.2. Recall that for � ∈ N, γ� denotes
the � dimensional Gaussian measure defined by γ�(S) = P(g ∈ S), where g ∼
N (0, (2π)−1I�). We begin with the proof of Lemma 4.2.

Proof of Lemma 4.2. Let w ∈ R�. We apply Markov’s inequality to obtain

Pτ

(
‖WT τ − w‖2 � β

√
�
)
� exp

(π
2
β2�
)
Eτ exp

(
−π‖WT τ − w‖22

2

)
.
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As above, let ϕ be the characteristic function of WT τ . We apply Fact A.1 and
(110) to obtain

Eτ exp

(
−π‖WT τ − w‖22

2

)
= Eg[e

−2πi〈w,g〉ϕ(g)] � Eg[exp(−ν‖Wg‖2T)].

The right-hand side of the above may be rewritten as∫ 1

0

Pg

(
exp(−ν‖Wg‖2T) � t

)
dt = ν

∫ ∞

0

Pg

(
‖Wg‖2T � u

)
e−νu du

= ν

∫ ∞

0

γ�(SW (u))e−νu du,

where for the first equality we made the change of variable t = e−νu.
Choosing m to maximize γ�(SW (u))e−νu/2 (as a function of u), we may bound

ν

∫ ∞

0

γ�(SW (u))e−νudu � νγ�(SW (m))e−νm/2

∫ ∞

0

e−νu/2du

= 2γ�(SW (m))e−νm/2.

Putting everything together we obtain

Pτ (‖WT τ − w‖2 � 2β
√
�) � 2eπβ

2�/2e−νm/2γ�(SW (m)).

�

The proof of Lemma 6.2 proceeds in much the same way.

Proof of Lemma 6.2. Let us set X = ‖WT τ‖2 and write

EXe−πX2/2 = EX�(X � β
√
�
)
e−πX2/2 + EX�(X � β

√
�
)
e−πX2/2

� PX

(
X � β

√
�
)
+ e−πβ2�/2

and therefore, using that exp(−πβ2�/2) � exp(−β2�),

Eτ exp

(
−π‖WT τ‖22

2

)
� Pτ (‖WT τ‖2 � β

√
�) + e−β2�.

As before, we let ϕ be the characteristic function of WT τ , and let g be a standard
�-dimensional Gaussian random variable with standard deviation (2π)−1/2. By
Fact A.1 and (109) we obtain

Eτ exp

(
−π‖WT τ‖22

2

)
= Eg[ϕ(g)] � Eg[exp(−32μ‖Wg‖2T)].

Similar to the proof of Lemma 4.2, we write

Eg

[
exp(−32μ‖Wg‖2T)

]
= 32μ

∫ ∞

0

γ�(SW (u))e−32μudu

� 32μγ�(SW (t))

∫ ∞

t

e−32μu du,

where we have used that γ�(SW (b)) � γ�(SW (a)) for all b � a. This completes the
proof of Lemma 6.2. �
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Appendix B. Relating A to the zeroed out matrix M

In this section we prove Lemma 9.1 and Lemma 10.6. To prove these results,
we compare Fourier transforms (that is the characteristic functions) of the random
variables Mv and Av, for fixed v. We first record the characteristic functions of
these random variables. For ξ ∈ Rn we have

ψv(ξ) := Ee2πi〈Av,ξ〉 =

(
n∏

k=1

cos(2πvkξk)

)
·

⎛
⎝∏

j<k

cos
(
2π(ξjvk + ξkvj)

)⎞⎠
and

χv(ξ) := Ee2πi〈Mv,ξ〉 =
d∏

j=1

n∏
k=d+1

(
3

4
+

1

4
cos
(
2π(ξjvk + ξkvj)

))
.

Our comparison is based on two main points. First we have that χv(ξ) � 0. Second,
we have

(111) ψv(ξ) � χv(2ξ),

which follows from | cos(t)| � 3
4 + 1

4 cos(2t) and | cos(t)| � 1.

Fact B.1. For v ∈ R
n, and t � TL(v), we have

E exp(−π‖Mv‖22/t2) � (9Lt)n.

Proof. Now E exp(−π‖Mv‖22/t2) is at most

(112) P(‖Mv‖2 � t
√
n) +

√
n

∫ ∞

t

exp

(
−s2n

t2

)
P(‖Mv‖2 � s

√
n) ds,

and since t � TL(v), we have P(‖Mv‖2 � s
√
n) � (8Ls)n for all s � t, and so we

may bound

√
n

∫ ∞

t

exp

(
−s2n

t2

)
P(‖Mv‖2 � s

√
n) ds �

√
n(8Lt)n

∫ ∞

t

exp

(
−s2n

t2

)
(s/t)n ds.

Changing variables u = s/t, the right-hand side is equal to

t−1
√
n(8Lt)n

∫ ∞

1

exp(−u2n)un du � t−1
√
n(8Lt)n

∫ ∞

1

exp(−u2/2) du � (9Lt)n,

as desired. �

Proof of Lemma 9.1. Apply Markov’s inequality to bound

(113) P(‖Av − w‖2 � t
√
n) � exp(πn/2)E exp

(
−π‖Av − w‖22/2t2

)
.

Using the Fourier inversion formula in Fact A.1 we write

EA exp
(
−π‖Av − w‖22/2t2

)
=

∫
Rn

e−π‖ξ‖2
2 · e−2πit−1〈w,ξ〉ψv(t

−1ξ) dξ.(114)

Rescaling, applying (111) and non-negativity of χv yields that the RHS of (114) is
at most ∫

Rn

e−π‖ξ‖2
2χv(2t

−1ξ) dξ � EM exp(−2π‖Mv‖22/t2).

Now use Fact B.1 along with the assumption t � TL(v) to obtain

EM exp(−2π‖Mv‖22/t2) � (9Lt)n,

as desired. �
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We prove Lemma 10.6 in a similar manner. Recall

ρε(v) = max
b∈Rn

P

(∑
i

viεi ∈ (b− ε, b+ ε)

)
.

Proof of Lemma 10.6. Set ε = TL(v) and let B be a n×n matrix uniformly drawn
from all matrices with entries in {±1} and apply Markov’s inequality to bound
(115)
ρε(v)

n � max
w∈Rn

P(‖Bv − w‖2 � ε
√
n) � max

w∈Rn
exp(πn/2)E exp

(
−π‖Bv − w‖22/2ε2

)
.

Apply Fact A.1 to write

E exp
(
−π‖Bv − w‖22/2ε2

)
=

∫
Rn

e−π‖ξ‖2
2 · e−2πiε−1〈w,ξ〉

∏
1�j,k�n

cos(2πε−1vjξk) dξ

(116)

and use Hölder’s inequality to bound the RHS of (116)

(117) �
(∫

Rn

e−2π‖ξ‖2
2/3 dξ

)3/4
⎛
⎝∫

Rn

e−2π‖ξ‖2
2

∏
1�j,k�n

cos(2πε−1vjξk)
4 dξ

⎞
⎠

1/4

.

Now use
∫
Rn e−2π‖ξ‖2

2/3 dξ =
(
3
2

)n/2
and (cos(a) cos(b))4 � 3

4 + 1
4 cos(2(a + b)), to

see (117) is

�
(
3

2

)3n/8 (
2−n/2

∫
Rn

e−π‖ξ‖2
2χv(

√
2ε−1ξ) dξ

)1/4

(118)

�
(

27

128

)n/8 (
E exp

(
−π‖Mv‖22/ε2

))1/4
.

Taken together, lines (115), (116), (117), (118) tell us that

(119) ρε(v)
n � (3/2)3n/8(exp(π/2)/

√
2)n
(
E exp

(
−π‖Mv‖22/ε2

))1/4
.

Now apply Fact B.1 to bound E exp
(
−π‖Mv‖22/ε2

)
� (9Lε)n and so ρε(v)

n �
(212Lε)n/4, as desired. �
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[3] Béla Bollobás, Random graphs, Springer, 1998.

Licensed to Univ of Illinois at Chicago. Prepared on Thu Dec 26 10:00:33 EST 2024 for download from IP 128.248.156.45.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

https://mathscinet.ams.org/mathscinet-getitem?mr=958213
https://mathscinet.ams.org/mathscinet-getitem?mr=3327533


222 M. CAMPOS, M. JENSSEN, M. MICHELEN, AND J. SAHASRABUDHE

[4] Christer Borell, Inequalities of the Brunn-Minkowski type for Gaussian measures, Probab.
Theory Related Fields 140 (2008), no. 1-2, 195–205, DOI 10.1007/s00440-007-0062-5.
MR2357675

[5] Jean Bourgain, Van H. Vu, and Philip Matchett Wood, On the singularity probabil-
ity of discrete random matrices, J. Funct. Anal. 258 (2010), no. 2, 559–603, DOI
10.1016/j.jfa.2009.04.016. MR2557947

[6] Marcelo Campos, Matthew Jenssen, Marcus Michelen, and Julian Sahasrabudhe, Singularity

of random symmetric matrices revisited, Proc. Amer. Math. Soc. 150 (2022), no. 7, 3147–
3159, DOI 10.1090/proc/15807. MR4428895

[7] Marcelo Campos, Matthew Jenssen, Marcus Michelen, and Julian Sahasrabudhe, The singu-
larity probability of a random symmetric matrix is exponentially small, arXiv:2105.11384
(2021).

[8] Marcelo Campos, Let́ıcia Mattos, Robert Morris, and Natasha Morrison, On the singu-
larity of random symmetric matrices, Duke Math. J. 170 (2021), no. 5, 881–907, DOI
10.1215/00127094-2020-0054. MR4255046

[9] Kevin P. Costello, Terence Tao, and Van Vu, Random symmetric matrices are almost surely
nonsingular, Duke Math. J. 135 (2006), no. 2, 395–413, DOI 10.1215/S0012-7094-06-13527-5.
MR2267289
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