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Abstract
The rapid advancement of drone technology and digital twin systems has significantly
transformed environmental monitoring, particularly in the field of water quality assess-
ment. This paper systematically reviews the current state of research on the application of
drones, digital twins, and their integration for water quality monitoring and management.
It highlights key themes, insights, research trends, commonly used methodologies, and
future directions from existing studies, aiming to provide a foundational reference for
further research to harness the promising potential of these technologies for effective,
scalable solutions in water resource management, addressing both immediate and long‐
term environmental challenges. The systematic review followed PRISMA guidelines,
rigorously analysing hundreds of relevant papers. Key findings emphasise the effective-
ness of drones in capturing real‐time, high‐resolution spatial and temporal data, as well as
the value of digital twins for predictive and simulation‐based analysis. Most importantly,
the review demonstrates the potential of integrating these technologies to enhance sus-
tainable water management practices. However, it also identifies a significant research gap
in fully integrating drones with digital twins for comprehensive water quality manage-
ment. In response, the review outlines future research directions, including improvements
in data integration techniques, predictive models, and interdisciplinary collaboration.
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1 | INTRODUCTION

Water quality monitoring is a critical component of environ-
mental management, which influences public health, ecosystem
stability, and resource sustainability. Effective water quality
management is essential for preventing pollution, mitigating
the impacts of human activities, and preserving biodiversity.
Traditional methods of water quality assessment, such as in‐
situ sampling and laboratory analysis, while reliable, are often
labour‐intensive, time‐consuming, and geographically limited.
These methods typically lack the ability to provide real‐time
insights across large or remote water bodies, leading to gaps
in data coverage and delayed responses.1 To overcome these
limitations, there is a growing need for innovative technologies

that can enable more comprehensive and efficient water quality
monitoring.

Drones, also known as Unmanned aerial vehicles (UAVs),
have emerged as a transformative technology in environmental
monitoring, including water quality assessment. Unmanned
aerial vehicles provide a versatile platform for accessing remote
or hazardous areas that are difficult to reach with conventional
methods. Equipped with an array of sensors, drones can collect
high‐resolution spatial and temporal data on various water
quality parameters, such as temperature, turbidity, pH, and
pollutant concentrations. By enabling the collection of real‐
time data across large and often inaccessible water bodies,
drones significantly enhance the precision and scope of water
quality monitoring efforts. Additionally, the ability to equip
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drones with different sensor payloads makes them adaptable to
a wide range of environmental monitoring tasks.

Another promising technology that has gained traction
across multiple industries, including environmental manage-
ment, is the digital twin. A digital twin is a dynamic digital
replica of a physical system that can simulate, predict, and
optimise the performance of the system in real time.1 Digital
twins have already been successfully applied in sectors like
manufacturing,2 healthcare,3 and urban planning,4 where they
enable real‐time decision‐making and predictive analytics. In
the context of water quality monitoring, digital twins offer a
continuous and dynamic representation of water bodies. It
allows early detection of pollution events, real‐time assessment
of intervention strategies, and the optimisation of water
management practices.1

The integration of drones with digital twins creates a
powerful synergy that can revolutionise water quality moni-
toring and management. Drones collect real‐time, high‐
resolution data from aquatic environments, which is then
fed into digital twins—advanced models capable of simulating
and predicting environmental conditions. This combination
provides continuous monitoring of water quality and gives
water managers the ability to track current conditions while
also anticipating future changes. With this deeper under-
standing of water systems, managers can make informed
decisions based on accurate, up‐to‐date data.5 This integration
improves both immediate interventions and long‐term envi-
ronmental planning, as the digital twin models become more
precise and responsive through real‐time drone data. As a
result, the management of water resources becomes more
proactive and adaptive to the complex dynamics of aquatic
ecosystems.

However, despite the clear advantages of combining these
technologies, research in this area remains limited. There is a
pressing need for standardised methodologies and frameworks
that can effectively integrate drone data into digital twin plat-
forms for water quality monitoring and management.

This systematic review surveys the literature, analyses
emerging trends, identifies common themes, outlines
commonly used methodologies, and highlights future di-
rections in the field. It provides researchers with an up‐to‐
date assessment of the field, serving as a foundation for
further research in the development of effective, real‐time,
and scalable solutions for water quality management. More-
over, the review emphasises opportunities for innovation,
motivating further advancements in water quality monitoring
systems. Specifically, the study makes a notable contribution
to the scientific community by (a) Identifying research gaps:
Despite increasing interest in digital twins and drones, there
remains a lack of standardised methodologies and frameworks
for integrating these technologies into water quality manage-
ment. The review highlights the need for more research
focused on combining UAV data with digital twin platforms.
(b) Highlighting the potential for interdisciplinary collabo-
ration: The integration of these technologies spans diverse
fields, including environmental science, data science, and

engineering. The review underscores the importance of cross‐
disciplinary cooperation to fully realise the potential of these
tools for water quality management. (c) Proposing future
research directions: Several key areas are identified for further
research, such as enhancing data integration techniques,
developing AI‐based predictive models, and improving the
scalability of digital twin platforms. These advancements are
vital for addressing current technological limitations and
unlocking the full potential of drone‐based digital twin
systems.

The rest of the paper is organised as follows: Section 2
provides a detailed description of the systematic review
methodology and process. Section 3 analyses and discusses the
collected literature. Section 4 outlines future directions. Finally,
Section 5 concludes the review.

2 | SYSTEMATIC LITERATURE REVIEW

2.1 | Scope

In this section, we present a systematic review of drone‐based
digital twins for water management in various water bodies,
including dams, reservoirs, rivers, watersheds, and lakes. Water
management encompasses water monitoring, assessment,
control, and any actions aimed at managing or controlling
water in these natural environments. While the primary focus is
on the utilisation of drone‐based digital twins for water quality
management, the study systematically covers three closely
related research areas to provide a broader perspective. First,
the review addresses the use of drones and digital twin tech-
nologies in water quality applications independently. Then, the
review focuses on literature that integrates drones and digital
twin technologies in water quality management. Thus, the
systematic review of relevant literature includes the following
aspects:

1. Digital twins for water quality: Exploring the literature of
using digital twin technology for simulating, monitoring,
and predicting water quality parameters in various water
bodies (e.g. lakes, rivers, dams, watersheds, and reservoirs).

2. Application of drones for water quality: Understanding the
state‐of‐the‐art research perspectives and use cases
regarding the use of UAVs or drones in managing or con-
trolling water quality through literature.

3. Combining drones and digital twins for water quality
management: Highlighting research utilised drone‐based
digital twin for water quality management in water bodies;
lakes, rivers, dams, watersheds, and reservoirs.

Figure 1 illustrates the intersection of main topic with these
three related domains. Understanding the emergence and trend
of research in these three areas highlights the significance of
their integration and underscores the potential for future
studies to leverage the strengths of each field for innovative
and enhanced water management solutions.
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2.2 | Methodology

A PRISMA‐based systematic review methodology is followed
to ensure transparency and reproducibility of outcomes.6 The
methodology entails six phases, shown in Figure 2, to
comprehensively compile, process, and analyse the relevant
literature.

Study Scope: A rigorous definition of the study scope is
essential to establish the inclusion and exclusion criteria. The
study scope is divided into three key topics as specified in the
review scope. The primary focus is on research integrating
digital twins with drones for water quality management in
water bodies such as lakes, rivers, dams, watersheds, and res-
ervoirs. In this context, water management encompasses de-
cisions related to water quality monitoring, assessment,
purification, filtration, and more. Additionally, we aim to un-
derstand how each of these intersecting topics—digital twins
and drones—is utilised in the literature for water quality
management, specifically focussing on how the research liter-
ature emphasises the use of digital twins for water quality ap-
plications and how drones are utilised for water quality
monitoring or control. Studies utilising digital twins or drones
for purposes outside water quality management are excluded.
Also, studies employing these technologies in applications not

related to water bodies, such as water distribution networks or
underground water, are outside the scope of this study. This
precise focus on the study scope drives the outcome insights
towards the specific topic of interest.

Article Source Identification: To gather relevant articles,
we utilised three esteemed academic search engines: Web of
Science (WOS), ScienceDirect, and IEEE Xplore. These
search engines are known for their exclusive inclusion of high‐
quality, peer‐reviewed journals, ensuring the credibility and
reliability of the literature sources. Additionally, these platforms
enable precise, targeted, and reproducible searches, which are
essential for conducting a robust systematic review. Therefore,
their comprehensive coverage and advanced search capabilities
collectively contribute to high‐quality literature review
outcomes.

Developing Search Strings: Search strings for each defined
subject are carefully developed to capture all relevant studies
while excluding unrelated ones. Each search string consists of
multiple terms used by search engines to fetch articles based on
matches found in titles, abstracts, and keywords. Table 1 out-
lines the logical structure of the search strings for each sub‐
scope of the literature review. Logical operators such as OR
and AND are employed to combine search terms building a
search string.

F I G U R E 1 Relevant research topics.

F I G U R E 2 Review methodology.
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Materials Collection: In this phase, articles were gathered
from several academic databases, including WOS, Science-
Direct, and IEEE Xplore. After the initial collection,
duplicate records were identified and removed, leading to a
more refined set of unique articles. The remaining records
were then screened based on their titles, keywords, and ab-
stracts to assess their relevance and suitability for the review.
Figures 3–5 illustrate flowcharts detailing the step‐by‐step
process of screening, filtering, and selecting studies for
each of the three topics, including the outcomes at each

stage. The final refined set of articles selected for further
processing includes.

⁃ 8 records on Digital twins for water quality management
in natural water bodies.1,7–13

⁃ 217 records on Drones for water quality management in
natural water bodies,1,12–50,51–80,81–100,101–125,126–150,151–
175,176–200,201–227 In this case, due to the large number of
papers, 65 conference papers and non‐English articles were
excluded from the initial screening result of 282.

T A B L E 1 Logical structure of search strings for the literature review.

Literature Review Sub‐Scope Logical Search String Structure

Digital Twins for Water Quality Management in Natural Water Bodies “water” AND “digital twin” AND (“river” OR “lake” OR “watershed” OR
“dam” OR “reservoir” OR “stream”) AND (“purity” OR “clarity” OR “quality”
OR “condition” OR “health” OR “pollution” OR “contamination” OR
“standard” OR “degradation” OR “tainting” OR “spoilage” OR “defilement”
OR “corruption” OR “Impurity” OR “poisoning” OR “adulteration” OR
“fouling” OR “filth” OR “dirt” OR “environmental damage”)

Drones for Water Quality Management in Natural Water Bodies “water” AND (“drone” OR “unmanned aerial vehicle” OR “UAV”) AND
(“river” OR “lake” OR “watershed” OR “dam” OR “reservoir” OR “stream”)
AND (“purity” OR “clarity” OR “quality” OR “condition” OR “health” OR
“pollution” OR “contamination” OR “standard” OR “degradation” OR
“tainting” OR “spoilage” OR “defilement” OR “corruption” OR “Impurity” OR
“poisoning” OR “adulteration” OR “fouling” OR “filth” OR “dirt” OR
“environmental damage”)

Drone‐Integrated Digital Twin for Water Quality Management in Natural
Water Bodies

“water” AND (“drone” OR “unmanned aerial vehicle” OR “UAV”) AND
“digital twin” AND (“river” OR “lake” OR “watershed” OR “dam” OR
“reservoir” OR “stream”)

F I G U R E 3 Material collection: DT for water quality management in natural water bodies.
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F I G U R E 4 Material collection: Drones for water quality management in natural water bodies.

F I G U R E 5 Material collection: Drone‐based DTs for water quality management in natural water bodies.
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⁃ 4 records on Drone‐integrated digital twin for water
quality management in natural water bodies.1,228–230

Information Extraction: In this stage of the PRISMA
approach, important insights, themes, findings, results, chal-
lenges, and research gaps are extracted. This structured orga-
nisation sets the foundation for the next stage, where each
subarea is analysed separately.

Information Analysis and Discussion: Information Anal-
ysis: At this stage of the PRISMA‐based systematic review, the
extracted data is systematically synthesised to draw meaningful
conclusions and highlight key bibliographical and thematic
insights. To ensure effective communication with the reader, a
variety of visualisation tools are employed, including author-
ship networks, trend charts, methodology maps, summary ta-
bles, and detailed charts.

3 | ANALYSIS AND DISCUSSION

To extract key insights and provide a comprehensive overview
of the current research landscape, the collected studies are
analysed both bibliographically and thematically in the
following subsections. The analysis is organised into three
categories based on the previously outlined research scope.
This structured approach aims to offer a holistic understanding
of the field's state of the art, uncover significant trends through
bibliographic exploration, highlight key themes and insights,
and identify areas in need of further research. The first section
synthesises the role of digital twins in water quality manage-
ment for natural water bodies, followed by an analysis of the
use of drones in this context. Lastly, the analysis explores the
integration of these technologies, focussing on their combined
potential to advance water quality management for natural
water bodies.

3.1 | Digital twin applications in water
quality management of natural water bodies

Bibliographical Analysis: As shown in Figure 6, the literature
reveals an increase in research activity related to digital twin
technology for water quality management in water bodies in
recent years. Notably, 2023 shows the highest number of
publications, underscoring several key points. First, this is
clearly an emerging field, with all relevant publications
appearing within the last 3 years, starting from 2021. Second,
the growing number of publications reflects a rising interest
in this area, as researchers increasingly recognise the
importance of applying digital twin technology to address
environmental challenges. This trend is driven by techno-
logical advancements and heightened awareness of global
environmental issues. Finally, despite the recent surge in in-
terest, the overall number of studies remains limited. This
limit number of literature research indicates the need for
more work to bridge the research gaps, particularly, in
addressing the challenges, applications, limitations, and se-
curity concerns of digital twin technology, both theoretically
and technically.

The co‐authorship network graph, shown in Figure 7,
highlights the collaborative nature of research in this field. The
connections between authors suggest active collaboration
across various groups, institutions, and even countries. Such
collaborations are crucial for advancing complex, interdisci-
plinary research topics like digital twin technology applications
for water management in water bodies. Additionally, the di-
versity of the authors involved, spanning disciplines such as
environmental science, engineering, and data science, un-
derscores the inherently interdisciplinary nature of this
research area.

Thematic Analysis: Figure 8 highlights the key themes and
the distribution of articles across the following themes.

F I G U R E 6 Growth of digital twin research in water quality management.
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◦ Digital Twin Technology: All articles,1,7–13 are centred on the
application of digital twin technology, particularly for envi-
ronmental monitoring and water quality management. This
theme includes the integration of IoT, real‐time data, and
advanced modelling to replicate and monitor natural systems.

◦ Water Quality Monitoring: Several papers,1,8,9,11–13 focus
on innovative approaches to water quality monitoring using
digital twins. This includes the development of low‐cost
sensors, integration with IoT devices, and real‐time data
analysis.

◦ Environmental Resilience and Management: The use of
digital twins in enhancing environmental resilience, espe-
cially in coastal areas and vulnerable ecosystems, is a recur-
ring theme in multiple research papers.1,7,8,11,10 The studies
highlight how digital twins can aid in flood prediction,
management of water bodies, and broader environmental
protection.

◦ Interdisciplinary Collaboration: A theme that runs across
the papers is the collaboration between different disciplines
—such as environmental science, engineering, and data
science—to achieve the goals of the projects. This inter-
disciplinary collaboration appears clearly in refs.1,7,8,11

Key Insights: Table 2 maps the insights into the identified
themes within the literature.

◦ Technological Integration: The studies demonstrate the
successful integration of various technologies, such as IoT
sensors, satellite data, and advanced modelling tools, into
digital twin systems. For instance, a study discusses the
integration of flood models, IoT sensors, and observational
data to create a comprehensive DT for managing coastal
resilience.1 Similarly, another study employs artificial neural
networks to predict water quality issues, combining sensory
data and IoT monitoring.13 The use of IoT‐enabled buoy
technology to track water quality metrics in rivers like the
Ganges is discussed in ref. 12. Moreover, a study in-
corporates satellite and in‐situ observational data to model
lake thermal dynamics, showcasing the role of integrated
technologies in adapting to climate change.11

◦ Cost‐Effectiveness: One of the significant insights is the
development of cost‐effective solutions for environmental
monitoring. One study introduces a 190 EUR IoT‐based
device for water quality monitoring campaigns, designed
for non‐experts and encouraging citizen science.9 Another

F I G U R E 7 Authorship network map for digital twin research in water quality management.
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study offers a cost‐effective predictive tool by using pre‐
existing water quality data to reduce the need for expen-
sive field surveys.13 Furthermore, a study emphasises the
development of modular hydropower systems and afford-
able digital twins for optimising water and energy
resources.17

◦ Real‐Time Monitoring: Real‐time data collection and analysis
is a critical component across all studies. For instance, one
research uses real‐time hydrodynamic simulations to optimise
stormwater and floodmanagement in urban areas.8 Real‐time,
satellite and in‐situ data are utilised to predict lake temperature
changes, helping mitigate the effects of climate change.11 A
study demonstrates how real‐time flood and sensor data
integration improves response strategies for coastal emer-
gencies.1 Finally, a study showcases real‐time IoT‐based data
collection for continuous water quality analysis.12

3.2 | Drone‐based water quality
management in natural water bodies

Bibliographical Analysis: Figure 9 demonstrates a clear up-
ward trend in research activity related to drone‐based water
quality management. It shows a steady increase in the number
of published articles from 2014 to 2023. This research topic
first began to gain interest around 2014, and the number of
publications has increased steadily each year, with a particularly
sharp rise in the last few years. This surge reflects the growing
recognition of drones as valuable tools for monitoring and
improving water quality in natural water bodies, indicating that
the field has gained significant momentum recently. The data
for 2024 indicates a decline; however, this is due to many
published papers for the year not yet being available at the time
this systematic review was conducted.

F I G U R E 8 Research articles distribution across key themes.

T A B L E 2 Mapping key insights to the identified themes.

Key Insights
Number of Mapped
Themes

Digital Twin
Technology

Water Quality
Monitoring

Environmental Resilience and
Management

Interdisciplinary
Collaboration

Technological
Integration

3 ✓ ✓ ✓

Cost‐Effectiveness 1 ✓

Real‐Time
Monitoring

3 ✓ ✓ ✓
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Drone‐based water quality management is an important
research topic with growing momentum. The continuing
growth demonstrates that this field remains highly in demand,
with significant potential for further advancements and
broader applications. Such an evolving and dynamic area of
research indicates the opportunity for the development of
innovative solutions, exploration of new technologies, and
adoption of more advanced methods. Figures 10 and 11
illustrate the co‐authorship network for drone applications in
water monitoring as a graph, where nodes represent individual
authors and edges signify co‐authorship relationships.
Different colours indicate distinct clusters or communities of
authors who are more closely interconnected. The visualisation
highlights the extensive scope and diversity of collaborations
within this rapidly expanding field. The analysis identifies
approximately 759 interdisciplinary researchers from around
the world, organised into 132 independent connected sets.
Notably, the largest connected set of co‐authors includes 26
researchers, as shown in Figure 12. While a small number of
researchers work independently, the overall network reflects
the inherently collaborative and multidisciplinary nature of
research in this domain, spanning fields such as environmental
science, engineering, and remote sensing. The co‐authorship
network underscores that the field of drone applications in
water monitoring is highly cooperative, with distinct yet
interconnected research clusters. As this area of research
continues to grow, collaborations between clusters will play an
increasingly critical role in driving innovation, particularly in
advancing integration of UAV technology with environmental
science to address complex global challenges in water moni-
toring and management.

Thematic Analysis: Figure 13 presents an overview of the
key themes identified in the literature on the use of drones for
water quality management in natural water bodies. This figure
also provides a visual distribution of research papers across the
four major themes. The subsequent sections offer a detailed
elaboration on each theme, highlighting the most significant
insights derived from the research. Furthermore, Table 3 maps
these key themes to their corresponding insights.

◦ Water Quality Monitoring and Management: The dominant
theme revolves around water quality, with a strong focus on
monitoring and management. Many studies (e.g. 21,22,54)
highlight the application of advanced technologies like UAVs
and remote sensing to improve the accuracy and effectiveness
of water quality monitoring.

◦ Methodological Development: There is a strong focus on
developing and refining research methodologies in envi-
ronmental science. The large number of papers (e.g. 54,58,80)
suggests that significant effort is being invested in improving
the accuracy, efficiency, and applicability of various scientific
methods. This is crucial in water quality monitoring and
environmental modelling where there is a need for more
sophisticated and accurate research methodologies. The
application of machine learning models is a recurring topic,
often discussed in the context of enhancing environmental
monitoring techniques.

◦ Application of UAVs and Remote Sensing: The use of
UAVs and remote sensing is a critical theme, reflecting the
growing interest in these technologies for environmental
monitoring. These tools are particularly valued for their
ability to gather high‐resolution data over large areas, making

F I G U R E 9 Growth of drone‐based water quality management.
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them indispensable in modern environmental research,
particularly in challenging environments like rivers and large
water bodies (e.g. 60,80,103).

◦ River and Ecosystem: Several studies (e.g. 58,68,103,129)
focus on river ecosystems, indicating a specialised interest
in understanding and managing riverine environments.
These studies often involve the application of methodol-
ogies and technologies to monitor and protect these vital
ecosystems.

Key Methodologies: This section analyses the predominant
methodologies and techniques highlighted across the research
papers. These approaches underscore the interdisciplinary na-
ture of environmental research, where advanced data analysis,
modelling, and monitoring techniques converge to tackle
complex environmental challenges. The growing prominence
of UAVs and remote sensing technologies signifies a shift to-
wards high‐tech, precision‐driven methods in the field. Table 4
provides an overview of these methodologies and associated
techniques, which are further discussed in detail below.

Analysis and Modelling Techniques: Several studies
emphasise the importance of accurate data analysis, particularly
in the context of environmental monitoring and modelling.
Common modelling and analysis techniques are.

� Regression Analysis: It is frequently used for predicting
environmental outcomes based on historical data. Tech-
niques like linear regression, multiple regression, and logistic
regression are often employed. These techniques are effec-
tive in identifying relationships between environmental
variables and predicting future trends. For instance, linear
regression might be used to examine the relationship be-
tween nutrient levels and algal bloom occurrences, while
multiple regression could analyse the impact of several
variables, such as temperature, rainfall, and land use, on
water quality.25,68,232

� Machine Learning Models: Machine learning models are
utilised in UAV‐based water quality assessments to predict
environmental outcomes with high accuracy. Models such as
Random Forest, Support Vector Machines, and Neural

F I G U R E 1 0 Authorship network map for drones in water quality management in natural water bodies.

140 - HAMZAH ET AL.

 29952182, 2024, 2, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/dgt2.12021, W

iley O
nline Library on [26/12/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



Networks are particularly effective in analysing complex
environmental data, identifying patterns, and making pre-
dictions about water quality parameters such turbidity, nu-
trients, and algal blooms. These models learn from historical
data and can handle non‐linear relationships often found in
environmental systems.26,68

� Spatial Analysis: It involves the analysis of spatial data, often
using Geographic Information Systems to study environ-
mental patterns and distributions. These techniques help
understanding the spatial distribution of environmental
phenomena, such as pollution or habitat degradation.26,131

� Multivariate Analysis: Techniques like Principal Component
Analysis and cluster analysis are used to reduce dimensionality
and identify key variables influencing environmental out-
comes. These techniques are effective in simplifying complex
datasets and identifying underlying patterns.25,232

� Statistical Modelling: This involves using statistical tech-
niques to build models that explain and predict environ-
mental processes. Commonly used for hypothesis testing
and to validate environmental theories.26,68

� Hydrological and Water Quality Models: Hydrological and
water quality models like SWAT (Soil and Water Assessment

F I G U R E 1 1 Highlighted four connected sets of the co‐authorship map for drone applications in water quality management in natural water bodies.

F I G U R E 1 2 Largest connected set of co‐authors network.
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Tool), HSPF (Hydrological Simulation Program – Fortran),
and WASP (Water Quality Analysis Simulation Program) are
extensively used in simulating the impact of land use, climate
change, and other factors on water quality and hydrology.
These models are particularly valuable in predicting how
different scenarios—such as deforestation, urbanisation, or
climate change—will affect water bodies over time.26,131

� Remote Sensing‐Based Models: Models that incorporate
remote sensing data, often using UAVs, are increasingly
popular for large‐scale environmental monitoring. These
models leverage high‐resolution imagery and other sensor
data collected by UAVs to monitor and predict environ-
mental conditions across vast areas. They are particularly
useful in tracking changes in land cover, vegetation health,
and water quality parameters over time, enabling large‐scale
assessments that are both detailed and timely.26,232

Use of UAVs: The Use of UAVs in water quality man-
agement has proven to be an invaluable tool for collecting
high‐resolution data, particularly in remote or difficult‐to‐

F I G U R E 1 3 Research articles distribution across key themes in drones for water quality management.

T A B L E 3 Mapping of key insights to identified themes in
drone‐based water quality management.

Theme Key insights

Water quality monitoring
and management

Use of UAVs for water quality monitoring

Advanced technologies in monitoring

Methodological
development

Development of machine learning models like
random forest, support vector machines,
decision tree, etc.

Advanced technologies in monitoring

Application of UAVs
and remote sensing

Use of UAVs for water quality monitoring

Remote sensing for environmental monitoring

River and ecosystem Impact of human activities on river ecosystems

Remote sensing for environmental monitoring

T A B L E 4 Common methodologies and associated techniques.

Methodology Technique

Accuracy and
precision

Calibration techniques231

Error analysis181

Sensitivity analysis178

Data analysis Machine learning models1,28,55,71,86,123,129,154,158,165,
166,199,227

Regression analysis50,54,130,107,129,155,162,165,199,203,212

Spatial analysis119,193,226

Modelling
techniques

Neural networks25,31,59,82,124,140,141,152,155,162,173,215

Random forest14,25,28,29,36,53,55,58,80,123,128,129,138,165,
166,177,189,215,227,232

Support vector machines (SVM)128

Monitoring and
quality assessment

In situ measurements19,64,113,132,154,159,163,191,
209,212,216,233

Remote sensing
technologies26,55,60,90,94,139,150,155,171,176,183,189,209,212

Sensor networks56,216

Research and study
design

Comparative studies29,69,208

Field surveys18,42,53,57,111,141,190

Use of UAVs GIS integration215

High‐resolution data collection72,195

Real‐time monitoring25,56,68,74,86,94,106,119,132,137,
175,204,234
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access areas. Unmanned Aerial Vehicles are equipped with
advanced sensors capable of capturing detailed imagery and
environmental data, enabling researchers to monitor key water
quality parameters such as turbidity, chlorophyll, and surface
temperature with exceptional precision. The ability of UAVs to
fly at low altitudes and cover extensive areas makes them
especially effective for monitoring regions that are otherwise
challenging to study using traditional methods. This is well‐
documented in studies like25 and.26 One of the most signifi-
cant advantages of UAVs is their capacity to access remote or
inaccessible locations, where conventional monitoring tech-
niques would be difficult or impossible to implement. Un-
manned Aerial Vehicles can be deployed in challenging
terrains, such as mountainous regions, dense forests, or areas
with hazardous conditions, allowing for the collection of
crucial environmental data without exposing researchers to
potential risks. This capability has considerably expanded the
scope of environmental monitoring, as demonstrated in papers
like68 and.232 Furthermore, UAVs offer the advantage of real‐
time monitoring and rapid data acquisition, which is essential
for time‐sensitive environmental assessments. By equipping
UAVs with live data transmission capabilities, researchers can
monitor water quality parameters in real‐time. This allows for
immediate responses to environmental changes or emerging
issues. This real‐time capability is particularly valuable in dy-
namic environments where conditions can change rapidly, as
discussed in ref. 26.

Monitoring and Quality Assessment: Continuous envi-
ronmental monitoring and quality assessment are central
methodologies in these studies. This often involves the use of
advanced sensors, remote sensing technologies, and in situ
measurements. Advanced sensors integrated into UAVs collect
high‐resolution data on key water quality parameters such as
temperature, turbidity, and Dissolved oxygen (D.O.). These
sensors enable efficient monitoring of large water bodies, as
discussed in studies such as 68 and 131. Remote sensing
technologies extend the monitoring capabilities by offering
broad spatial coverage, capturing trends and patterns over time
through various spectral bands. This approach is particularly
effective for monitoring algal blooms, sediment plumes, and
vegetation changes, as explored in refs. 26 and 232 situ mea-
surements are crucial for validating the remotely collected data,
providing ground‐truth references that ensure the accuracy of
the monitoring efforts. This technique is emphasised in
refs. 235 and 26.

Research and Study Design: The studies focus on robust
research design and methodology. This includes the develop-
ment of new study protocols and the refinement of existing
methods to ensure accurate and reliable results. One of the
critical aspects of this design is Experimental Design, where
the structure of the study is carefully planned to yield valid and
reliable results. This includes selecting appropriate study sites,
determining the frequency, and timing of UAV flights, and
choosing the correct sensors and parameters to measure, as
discussed in papers such as 26 and 25. Another vital technique
is the Sampling Strategy, which ensures comprehensive data
coverage by capturing the spatial and temporal variability of

water quality in natural water bodies. This strategy involves
decisions on the number of samples, their locations, and the
intervals at which they are collected, and is explored in studies
such as 68 and 131. Finally, Data Collection Protocols are
established to maintain consistency and accuracy throughout
the study. These protocols include standard operating pro-
cedures for UAV operation, sensor calibration, data logging,
and handling environmental variables, ensuring that all re-
searchers follow the same procedures, thus enhancing the
repeatability and reliability of study outcomes. This is well‐
documented in refs. 25 and 232.

Accuracy and Precision: There is notable emphasis on
achieving high accuracy in measurements and predictions. This
is particularly important in environmental research, where
small inaccuracies can lead to significant errors in outcomes.
Among techniques used in this regard.

� Calibration Techniques: Calibration techniques are
employed to adjust the UAV sensors so that their readings
are accurate and consistent with known standards or envi-
ronmental benchmarks. This process typically involves using
reference samples or ground‐truth data to correct any de-
viations in sensor measurements. For instance, studies often
calibrate sensors before deployment to ensure that they
accurately measure water quality parameters such as
turbidity, pH, and temperature.25

� Error Analysis: This involves assessing the differences be-
tween repeated measurements, identifying systematic errors
(such as biases introduced by the measurement process), or
evaluating random errors due to environmental factors.68

3.3 | Integration of drones and digital twins
for water quality management in natural water
bodies

This section analyses the integration of drones with digital
twins for water quality management in natural water bodies, a
relatively novel area of research. Due to the limited number of
studies focussing directly on this topic—only one paper spe-
cifically addresses the integration of both drones and digital
twin technologies for water quality monitoring—three addi-
tional papers that explore the integration of these technologies
in water management, specifically for flood and water level
monitoring, are also included. These additional papers
emphasise the technical feasibility of such integrations in the
same context. A relevant study comprehensively explores how
remote sensing technologies, including drones, can be inte-
grated into digital twin models for water bodies.230 The study
describes how drones are vital tools for collecting high‐
resolution, real‐time data on key environmental parameters
such as water temperature, precipitation, and soil moisture,
which are then fed into a digital twin system for detailed
simulation and analysis of water quality. This system enables a
continuous and interactive feedback loop between the physical
environment and the virtual model, facilitating advanced
decision‐making processes in water management. While this
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study offers the most direct application of digital twins and
drones for monitoring water quality in basins, other studies
focus on integrating these technologies for flood and water
level management. Although the three studies do not address
water quality directly, they remain relevant to this survey
because they showcase the technical feasibility and benefits of
combining digital twins and drones for large‐scale water
management. For instance, one study discusses how drones
capture data on water levels and flow rates, feeding this in-
formation into digital twin models for predicting floods and
managing infrastructure.228 Another study highlights the
importance of integrating real‐time drone data into digital
twins for simulating water behaviours in coastal regions.1

Lastly, a third study explores the use of UAV‐collected data for
wetland management in constructing digital twin models,
which simulate water level variations and wetland ecosystem
changes.229 By reviewing these related works, it becomes
evident that there is substantial potential for future research to
focus on integrating these technologies to address pressing
water quality issues in natural bodies of water. The studies
collectively show the technical benefits of drone‐based data
collection and digital twin modelling, suggesting that future
research can adapt these techniques for water quality man-
agement in natural water bodies. Though the number of
research studies in this area is minimal, the timeline of their
publication dates indicates that we are only at the very nascent
stage of integrating drones with digital twin technology.

Core Concepts Analysis: The concept map presented in
Figure 14 synthesises the integration of drones and digital
twins, as extracted from the related literature in 1,228–230.
These studies explore the synergy between drones and digital
twin technologies applications in water quality management,
flood monitoring, and ecosystem simulation. The map iden-
tifies core concepts such as remote sensing, geospatial data,
and 3D visualisation, along with their interconnections. The
concept map highlights several core concepts central to the
integration of drones and digital twins.

◦ Digital Twins: Serves as the core framework for modelling
and simulating water systems. It integrates data from various
sources to enable real‐time decision‐making and predictive
analysis.

◦ Drones: Essential tools for high‐resolution and real‐time
data collection. They gather critical parameters such as wa-
ter temperature, soil moisture, and precipitation, feeding
these inputs into digital twin systems.

◦ Remote Sensing: Complements drones by covering larger
areas and providing data for hydrological and water quality
simulations.

◦ 3D Visualisation: Enhances understanding by translating
complex data into intuitive visual representations.

◦ Ecosystem Simulation: Models changes in ecosystems,
including water quality, sedimentation, and nutrient flow,
using data collected by drones and other sources.

◦ Flood Management: Demonstrates the ability of digital twins
to simulate water flow and infrastructure responses, a func-
tionality that can be adapted for water quality applications.

These concepts and their interconnections underscore the
collaborative role of drones and digital twins in advancing
water quality and resource management. Their relationships are
summarised in Table 5, which highlights the connections and
insights derived from the concept map.

3.4 | Limitations and challenges

Integration limitations: Despite their potential, drone‐
integrated digital twin systems face inherent limitations that
restrict their widespread application in water quality manage-
ment. These limitations include issues with data processing
capacity, operational range, and consistency in challenging
conditions.

� Scalability of High‐ResolutionData: Processing and analysing
detailed, high‐resolution data can be computationally inten-
sive and may lead to delays in providing real‐time insights.228

� Data Accuracy and Latency: Ensuring data accuracy and
minimising latency during the integration of drone and
remote sensing data can be difficult, particularly for real‐
time applications.230

� Limited Coverage in Harsh Conditions: Drones may have
reduced effectiveness in extreme weather or over vast areas,
limiting their operational applicability.230

F I G U R E 1 4 Concept map of drone‐integrated digital twins.
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� Resource Intensity: The continuous use of drones for
monitoring can be resource‐intensive in terms of power
consumption, operational time, and maintenance.229

Integration challenges: The integration of drones with
digital twins for water quality monitoring poses several sig-
nificant challenges that arise from complex environmental
conditions, technical expertise requirements, and cybersecurity
risks associated with interconnected monitoring systems. These
challenges impede seamless operation and data synthesis.

� Data Integration and Compatibility: Combining drone data
with other sensor data in real time requires a robust infra-
structure that ensures data synchronisation and
interoperability.1

� Environmental Variability: The dynamic nature of weather
and water bodies can affect the reliability and consistency of
drone‐collected data, complicating integration.229

� Technical Expertise and Logistics: Operating drones over
large areas demands skilled personnel for drone mainte-
nance and data interpretation.230

� Cybersecurity Concerns: IoT‐based integration introduces
cybersecurity risks, such as data breaches and unauthorised
access.1

� Simulation and Modelling Complexity: Developing real‐time
models that accurately capture water quality parameters and
natural system interactions is a complex task.228

3.5 | Impact on environmental management
and policymaking

Digital twin technology and its integration with water man-
agement systems provide significant insights that impact

environmental management and policymaking. Digital twin
platforms facilitate data‐based smart water management by
integrating real‐time data visualisation, simulation models, and
predictive analytics. This approach supports policymakers and
environmental managers by offering enhanced tools for
proactive flood management, resource optimisation, and
infrastructure resilience. These capabilities help in under-
standing complex environmental interactions and assessing
the impact of policy decisions on ecosystem health, water
distribution, and disaster mitigation.228 Moreover, digital
twins demonstrate how integrated earth observation data, IoT
sensor networks, and UAV imagery enhance situational
awareness and decision‐making for coastal resilience and
flood management. These technologies empower urban and
regional planners to address the consequences of climate
change.1

3.6 | Performance metrics

Assessing metrics such as accuracy, reliability, and robustness
of frameworks, technologies, algorithms, and models to ensure
that the data used in digital twins meet the spatial and temporal
requirements for accurate, real‐time analysis and forecasting is
essential for environmental assessments and decision‐making
in policy and management.230 In this regard, different ap-
proaches reveal diverse evaluation strategies across various
domains. Table 6 provides a glimpse of such metrics used in
the literature of drone‐integrated digital twins for water
monitoring.

3.7 | Sensors and drones for drone‐based
digital twins for water quality monitoring

The market offers a range of sensors and drones designed for
assessing and monitoring water quality by measuring various
physical, biological, and chemical parameters. Tables 7 and 8
summarise the common market sensors and drones used for
water quality monitoring.

T A B L E 5 Key connections and insights.

Connection Insights

Drones ↔ remote
sensing

Drones enhance remote sensing by providing
localised, high‐resolution data critical for water
quality and hydrology.

Digital twin ↔ flood
management

Enables real‐time simulation of floods and
infrastructure impacts; adaptable for water
quality management.

3D visualisation ↔
ecosystem simulation

Offers advanced representations of ecosystem
changes, such as nutrient dispersion or
sedimentation patterns.

Drones ↔ digital twin Creates a dynamic feedback loop between
physical environments and virtual models,
enabling real‐time updates and predictions.

Remote sensing ↔
geospatial data

Combines large‐scale environmental data with
high‐resolution drone imagery for
comprehensive water quality analysis.

Cloud integration ↔
digital twin

Ensures seamless processing and storage of
large‐scale data, allowing real‐time updates and
global accessibility.

T A B L E 6 Performance metrics in drone‐integrated digital twins for
water monitoring.

Metric
Dataset/
Technology

Spatial
resolution

Temporal
resolution

Surface temperature1 Modis, landsat,
himawari‐8

30 m to 1 km 10 min to
16 days

Evapotranspiration230 Mod16, glass_v4,
gleam

500 m to 1 km 8 days to
1 month

Precipitation data228 Imerg, trmm,
persiann

Various (high
precision)

Monthly to
seasonal

Water level
monitoring1

Jason satellites,
sentinel series

10 cm accuracy 10–30 days

Vegetation
retrieval230

Modis, sentinel‐2,
landsat

1 m to 1 km 5–26 days
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3.8 | Common water quality parameters

The concept of ‘good’ water quality is relative, varying ac-
cording to the specific purpose of the water, whether for
drinking, recreation, agriculture, industrial processes, or sup-
porting aquatic life. Scientists select measurements from a
broad range of biological, chemical, and physical characteristics
to evaluate water quality effectively. Table 9 outlines water
quality parameters and measurements that could be integrated
into the design of drone‐based digital twins for water quality
monitoring.

3.9 | Case study: A digital twin for dam and
watershed management in Korea

The K‐Twin SJ digital twin platform is a state‐of‐the‐art sys-
tem designed to enhance water management, particularly in the
context of dam and watershed operations. Built for the Sumjin
River basin in South Korea, this platform integrates a broad
range of technologies to ensure comprehensive monitoring,
predictive modelling, and automated responses for improved
flood management and decision‐making.228 Figures 15 and 16
show the digital twin platform and the architecture of the
digital twin, respectively.
Key Technological Components: (a) 3D Geospatial

Reality Modelling: The platform features a high‐precision 3D
model of the 173 km river and its infrastructure, generated
using LiDAR and drone photogrammetry. This model in-
tegrates topographic data to enable real‐time flood simulation
and water flow analysis (Figure X). The use of LiDAR allowed

for detailed mapping with a point density of over 25 points/
m2, which was essential for precise terrain representation. (b)
Drone‐Based Monitoring: Drones equipped with optical and
thermal cameras provided real‐time surveillance and data
collection capabilities, see Figure 17. These unmanned aerial
systems were capable of operation in adverse weather, with-
standing up to 10 mm of rainfall and wind speeds of 10 m/s.
Automated drone stations facilitated continuous monitoring by
enabling automatic vertical take‐off and landing, as well as
remote charging and long‐distance mission capabilities. (c)
Flood Simulation Models: The platform incorporates three
types of flood analysis models—K‐Drum for rainfall‐runoff,
K‐River for river flow, and K‐Flood for two‐dimensional flood
inundation. These models, driven by real‐time sensor data,
simulate potential flood events and predict river behaviour
during varying dam operation scenarios. The simulation results,
figure X, are validated using historical flood data, achieving
high accuracy metrics like an NSE value of 0.95, which indicate
strong reliability. (d) AI‐Enhanced Monitoring and Analysis:
An AI‐driven CCTV analysis system was developed to detect
and respond to abnormal conditions, such as rising water levels
and potential flooding. The platform employs deep learning
models (YOLOv4 for vehicles and people, YOLACT for wa-
termarks), achieving over 90% detection accuracy, and pro-
cesses video at more than 1 fps for real‐time decision support.
Operational Highlights and Validation: The plat-

form demonstrated its efficacy during the August 2020 flood,
where its models accurately predicted water inflow and river

T A B L E 7 Market sensors for water quality monitoring.

Sensor/
Instrument Key features

Measurement
capabilities Applications

ProDSS236 Handheld
multiparameter
metre

pH, ORP,
chloride, algae,
turbidity, ODO,
conductivity

General water
monitoring

EXO2
Multiparameter
Sonde237

Water quality sonde
with seven sensor
ports and a central
wiper port

Conductivity,
temperature,
DO, fDOM,
nitrate, pH,
turbidity

Comprehensive
water analysis

IQ SensorNet
20203G
Controller238

Modular system for
sensor networks

DO, pH,
conductivity,
turbidity, TSS,
ammonium,
nitrate

Varied
environmental
applications

Pontoon
Vertical
Profiling
System239

Automated data
collection with YSI
EXO & 6‐series
sondes

Various water
quality
parameters

Reservoirs,
research,
surveillance

ProSolo Optical
Dissolved
Oxygen240

Handheld optical
dissolved oxygen
metre

Optical dissolved
oxygen
measurement

Portable water
monitoring

T A B L E 8 Market Drones for water quality monitoring.

Drone model Key features Capabilities Use case

SplashDrone
4241

Waterproof, fixed‐
angle camera, payload
release

Aquatic data
collection

General water
body
monitoring

DJI Phantom
4 Pro1

High‐resolution
camera, stability

Detailed aerial
imaging

Water body
inspection

DJI Mavic 2
Pro33

Portability, Hasselblad
camera

High‐quality
aerial photos/
videos

Environmental
monitoring

DJI Matrice
350 RTK242

Industrial‐grade,
multiple payload
capacity

Thermal and
visual data
collection

Comprehensive
analysis

Parrot
ANAFI
USA243

32x zoom, thermal
imaging

Detailed
inspections

Water and
surrounding
areas

SenseFly eBee
X244

Fixed‐wing, large‐area
mapping

High‐
resolution,
extensive
mapping

Large water
region
monitoring

AquaDrone245 Water‐specific design,
land on water, optional
sensing attachments

Water quality
sensing,
underwater
exploration

Specialised
water
environments

HyDrone‐
ASV 246

Autonomous surface
vehicle

Water sampling
and mapping

Ponds, lakes,
rivers
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levels, closely matching observations at key monitoring points.
The AI flood prediction system provided optimised dam
discharge strategies to alleviate downstream damage while
maintaining dam safety (Figure 18). Integrated tools for safety
analysis allowed for assessments of slope stability and seepage
to monitor and reinforce potential failure points.
Impact on Water Management and Decision‐

Making: The K‐Twin SJ digital twin serves as a compre-
hensive tool for water resource management, combining data
synchronisation, AI, and real‐time monitoring to inform pro-
active flood response strategies. This integration of advanced
technologies supports seamless decision‐making, improves
operational efficiency, and enhances resilience against extreme
weather events. As such, it sets a benchmark for digital
transformation in environmental management and policy
development.
Lessons Learnt from K‐Twin SJ Implementation:

The development and application of the K‐Twin SJ platform

T A B L E 9 Common water quality parameters.

Parameter Description Significance

Ammonia
(NH4þ)247,248

Impacts nutrient dynamics
and toxic above 40 μg/L

Protects aquatic life

Turbidity249 Indicates cloudiness of water Water clarity
assessment

Bacteria250 Quick reproduction under
optimal conditions

Contamination
indicator

Water quality index
(WQI)251

Consolidates multiple water
quality parameters

Simplifies water
health assessment

Plankton252 Evaluates abundance of
microscopic plants and
animals

Supports aquatic life
balance

Secchi disk
transparency251

Measures depth for water
clarity

Water transparency
indicator

Light
transmission251

Depth where 1% of surface
light reaches

Assesses
photosynthesis limit

pH251 Measures acidity of water Water quality and
aquatic health

Biochemical oxygen
demand (BOD)250

Indicates oxygen needed by
microorganisms

Organic pollution
indicator

Chemical oxygen
demand (COD)250

Quantifies organic matter in
water

Total pollution
assessment

Dissolved oxygen
(D.O.)251

Essential for aquatic life
respiration

Key for aquatic
health

Phosphorus251 Influences algae and plant
growth

Nutrient level
indicator

Algae250 Contribute to oxygen
production

Impact on water taste
and odour

Viruses250 Cause diseases like hepatitis Water safety concern

Fluoride250 Promotes dental health,
excess causes fluorosis

Dental health
indicator

Chlorine250 Disinfects water, 0.2 mg/L
for safety

Water disinfection

Sulphate250 Affects taste, laxative at high
levels

Taste and usability
factor

Photosynthetic
active radiation
(PAR)250

Measures photosynthesis‐
related sunlight

Ecosystem health

CDOM253 Absorbs UV spectrum Aquatic ecosystem
monitoring

Acidity250 Influences corrosion,
reactions

Water usability

Chloride250 Signals pollution, salty taste Taste regulation

Protozoa250 Consume organic matter,
resistant cysts

Contamination and
treatment

Taste and odour250 Indicate potential
contamination

Consumer
acceptability

Nitrogen251 Essential for plant growth Nutrient
management

Temperature250 Affects taste, smell, purity,
chemical processes

Key parameter for
processes

TAB LE 9 (Continued)

Parameter Description Significance

Colour250 Affected by organic/
inorganic materials

Water appearance

Toxic Inorganic
substances250

Heavy metals, cyanides Water quality
assessment

Toxic organic
substances250

Insecticides, solvents Contamination
control

Rhodamine254 Tracks water flow, pollutant
movement

Dispersion studies

Radioactive
substances255

Pose health risks, damage
tissues

Regulated for safety

Chlorophyll‐a256 Indicator of algal biomass Ecosystem health

Iron and
Manganese257

Cause taste, stains Turbidity and
aesthetic impact

Copper and zinc257 Essential but affect taste at
high levels

Water acceptability

Oil, Hydrocarbon258 Monitored near oil‐related
activities

Contamination
tracking

Total organic carbon
(TOC)259

Measures organic
contaminants

Safety and biological
growth control

Conductivity251 Measures ion content and
electrical conduction

Water classification

Cyanide260 Toxic with carbon‐nitrogen
bond

Health protection

CO2261 Alters pH and mobilises
substances

Risk assessment

Solid250 Includes TDS and TSS Organic content
indicator

Hardness250 Caused by calcium,
magnesium

Safe up to 500 mg/L

Alkalinity256 Water's capacity to resist pH
change

Maintains stable
conditions
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offer several critical takeaways that underline the value of
integrating digital twin technology into water management
systems. These lessons provide a blueprint for enhancing
resilience, operational efficiency, and decision‐making in
similar projects globally. (a) Value of Multi‐Source Data

Integration: The success of K‐Twin SJ hinges on its ability to
merge diverse datasets, including LiDAR surveys, drone
photogrammetry, IoT sensors, and historical flood records.
This multi‐source integration ensures a comprehensive, real‐
time understanding of the watershed, which is critical for

F I G U R E 1 5 K‐Twin SJ platform.228

F I G U R E 1 6 Architecture of the K‐Twin SJ digital twin.228

F I G U R E 1 7 Development of a drone and station system for monitoring dams and rivers.228
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accurate modelling and prediction. Future projects can repli-
cate this approach to improve data fidelity and actionable in-
sights. (b) Critical Importance of Model Validation: Validating
models with historical flood events, like the August 2020 flood
in the Sumjin River basin, demonstrated the platform's pre-
dictive accuracy and reliability. Regular validation against
diverse environmental conditions and datasets ensures models
remain robust and adaptive, fostering stakeholder confidence
in their outputs. (c) Significance of Automation and AI: The
inclusion of AI‐driven tools such as intelligent CCTV analysis
and optimised dam discharge models revolutionised response
times and decision‐making efficiency. By automating critical
functions like anomaly detection and flood prediction, the
platform significantly reduces the burden on human operators
while improving accuracy and speed. (d) Role of User‐Centric
Design: Developing an intuitive interface and providing
training to operational teams was pivotal in ensuring the
platform's usability. A user‐centric approach enhances adop-
tion rates, reduces the learning curve, and ensures stakeholders
can fully leverage the platform's capabilities. (e) Scalability as a
Strategic Goal: Designing the platform with scalability in mind
allows for its adaptation to larger watersheds or other
geographic regions. Modular components, such as simulation
models and AI tools, can be customised for different hydro-
logical and infrastructural contexts, making the platform a
versatile solution for global water management challenges. (f)
Collaborative Frameworks Drive Success: Collaboration
among government agencies, research institutions, and private
sector partners was instrumental in K‐Twin SJ's development.
This partnership model ensures that the platform addresses
real‐world challenges while benefiting from the latest techno-
logical innovations. (g) Proactive Climate Adaptation: K‐Twin
SJ highlights the need for proactive, rather than reactive,
approaches to managing climate‐induced risks. Its predictive
capabilities enable preemptive actions, reducing the socioeco-
nomic impacts of extreme weather events and positioning the

platform as a critical tool in global climate adaptation
strategies.

4 | FUTURE DIRECTIONS

The integration of digital twin technology with drones for
monitoring water quality in natural water bodies like rivers,
lakes, reservoirs etc. is an emerging field with significant po-
tential. Current research and pilot projects provide a founda-
tion for understanding future directions in this domain, and
several key trends and areas for development have been
identified.

4.1 | Integration of water quality sensors
with digital twins

Most current digital twin implementations for water manage-
ment focus on hydrodynamic modelling, flood management,
and infrastructure monitoring, as seen in platforms such as K‐
Twin SJ.228 Sheng Lu et al. emphasise the use of drones for
high‐precision environmental monitoring, including terrain
and vegetation mapping.229 Furthermore, authors discuss the
integration of drones with real‐time data collection for water
management.228 Building upon that, the potential to extend
these platforms by incorporating more sensors and measure-
ments to monitor chemical and biological parameters in real‐
time is a promising future direction. Drones, equipped with
water quality sensors for measuring parameters, such as pH,
turbidity, D.O., and nutrient concentrations, can provide high‐
frequency, spatially detailed data across large water bodies. This
data can be fed into the digital twin for real‐time monitoring
and long‐term trend analysis. For example, by integrating
drone‐collected water quality data into a digital twin, man-
agement authorities could monitor the spread of pollutants,

F I G U R E 1 8 Simulation and prediction for flood management.228
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track sedimentation, and respond to harmful algal blooms,
which is crucial for water quality management.

4.2 | AI and machine learning for predictive
analytics

Building on the Poyang Lake project,229 the application of AI
and machine learning for predicting water quality changes is a
promising next step. By leveraging predictive analytics, it would
be possible to anticipate environmental events such as harmful
algal blooms, hypoxic conditions, and pollutant dispersion by
analysing historical data, drone observations, and real‐time
sensor inputs. Machine learning algorithms could be trained
to identify early warning signs of water quality degradation,
such as shifts in pH, turbidity, or nutrient levels, and predict
future trends based on a combination of physical, chemical,
and meteorological data. This advancement would enable water
managers to take proactive, preventative actions before a crisis
occurs, significantly improving response times and manage-
ment strategies. The potential of AI in water resource man-
agement is vast, as demonstrated by its successful application
in flood prediction and infrastructure monitoring in platforms
like K‐Twin SJ,228 and Hampton Roads coastal resilience
project.1 By integrating AI with digital twins, predictive models
can provide critical insights for maintaining ecological balance
of water bodies to ensure sustainable and effective
management.

4.3 | Automation and continuous
monitoring via drone networks

The use of drones in current digital twin platforms is often
limited to periodic, manual monitoring missions, which means
continuous real‐time data is still lacking in many applications.
Future systems could automate drone missions, triggered by
real‐time conditions such as changes in water levels, turbidity,
or detected anomalies via the digital twin. For example, drones
could automatically be deployed to collect water samples or
monitor areas with suspected pollution. K‐Twin SJ,228 is an
example of a platform that uses drones to monitor infra-
structure during floods, but this concept could be extended to
water quality monitoring, enabling continuous or event‐
triggered surveillance. Autonomous drones, with enhanced
navigation capabilities, could fly in adverse weather conditions,
offering real‐time monitoring even during critical environ-
mental events.

4.4 | Improved data fusion and
interoperability

A challenge for expanding digital twin applications to water
quality monitoring is ensuring that all data sources, including
IoT sensors, drone observations, satellite imagery, and hydro-
logical models, can seamlessly integrate into a single platform.

Future digital twins will need to support a wide range of data
formats and standards, enabling comprehensive monitoring
and management. K‐Twin SJ,228 already integrates data from
multiple sources (e.g. rainfall sensors, CCTV footage, LiDAR,
and drones) for flood management, but a similar approach
could be adopted for water quality. Furthermore, Earth
observation data and real‐time drone imagery could be com-
bined to track pollution sources and flow patterns over time 5
Scalability and Customisation of Digital Twin Platforms. As
digital twin technologies continue to develop, one critical di-
rection will be enhancing the scalability and adaptability of
these systems. While existing platforms such as K‐Twin SJ,228

focus on specific river systems, future digital twins could be
designed to manage various water bodies, from small lakes to
vast watersheds. This scalability would require flexible archi-
tecture capable of accommodating different environmental
conditions, data sources, and monitoring objectives. Custom-
isation of digital twins to local contexts, integrating specific
environmental challenges (e.g. heavy industrial pollution and
agricultural runoff), will also be crucial for their successful
deployment.

4.5 | Focus on ecosystem health and
biodiversity

In addition to water quality and hydrodynamics, future digital
twin systems could integrate data related to ecosystem health,
such as biodiversity metrics, habitat quality, and species dis-
tribution. These ecological data, collected via drones or remote
sensors, would provide a holistic understanding of the water
body's health. In projects such as the Poyang Lake,229 Digital
Twin, drones are already being used to collect vegetation and
land cover data, which could be expanded to include biodi-
versity monitoring and integrate ecological indicators into the
water management strategy. This would enable a more inte-
grated approach to managing water resources, combining
physical, chemical, and biological monitoring within a single
digital twin platform.

4.6 | Development of an integrated
framework

A crucial future direction is the development of an integrated
framework that connects drones, digital twins, laboratories,
remote sensing technologies, and decision‐makers. This
framework would enable the seamless flow of real‐time data
across different platforms, enhancing both monitoring preci-
sion, decision‐making, and autonomy. By incorporating real‐
time water quality sensors, satellite data, laboratory valida-
tion, and predictive models, this integrated system would
empower decision‐makers to manage water bodies more
effectively. It would also allow for better communication be-
tween environmental agencies, scientists, and government en-
tities. Figure 19 shows a proposed integrated drone‐based
digital twin framework for water quality management.
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5 | CONCLUSIONS

This systematic review discussed the promising potential of
leveraging drone‐based digital twin technology for water
quality monitoring and management in natural water bodies.
The convergence of digital twins and drones presents a
powerful combination. The growing trend towards utilising
digital twins in water resource management highlights their
capacity to provide dynamic, real‐time models that can
simulate, predict, and optimise water quality parameters.
Meanwhile, drones have emerged as an effective tool in
capturing high‐resolution spatial and temporal data from
hard‐to‐reach water bodies that allow for continuous and
precise monitoring. Together, they enhance the capacity for
real‐time insights into both physical and ecological aspects of
water bodies. Despite these clear advantages, this review has
revealed that the integration of UAVs with digital twin tech-
nology remains under‐researched. There is a pressing need
for further exploration of deeper synergies between these two
technologies, particularly in developing standardised meth-
odologies and improving data integration techniques. Such
advancements will be key revolutionise the management of
water bodies by incorporating real‐time water quality sensors,
automating data collection with drones, and utilising AI for
predictive analytics. These systems will not only provide
comprehensive, real‐time insights but also enhance the ability
to respond to environmental challenges such as pollution,
algal blooms, and habitat degradation, offering water man-
agers the tools for more effective and sustainable water
resource management.
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