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Fractal lattices, featuring the self-similarity symmetry, are often geometric descents of parent crystals,
possessing all their discrete symmetries (such as rotations and reflections) except the translational ones. Here, we
formulate three different general approaches to construct real space Hamiltonian on a fractal lattice starting from
the Bloch Hamiltonian on the parent crystal, fostering for example strong and crystalline topological insulators
resulting from the interplay between the nontrivial geometry of the underlying electronic wave functions and the
crystal symmetries. As a demonstrative example, we consider a generalized square lattice Chern insulator model
and within the framework of all three methods we successfully showcase incarnations of strong and crystalline
Chern insulators on the Sierpiński carpet fractal lattices. The proposed theoretical framework thus lays a generic
foundation to build a tower of topological phases on the landscape of fractal lattices.
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Introduction. Quasicrystals and fractals are prominent
members of the structurally diverse family of solids, typically
encompassing crystals. As such, quasicrystals are constituted
by a set of sites living on a brane inside a higher-dimensional
crystal, as shown in Fig. 1(a) in terms of the one-dimensional
Fibonacci quasicrystal residing within a two-dimensional
(2D) square lattice (SL) [1]. By contrast, fractals can be built
by eliminating specific sites of crystals, such that the resulting
structures feature the self-similarity symmetry. This procedure
is shown in Fig. 1(b) for the Sierpiński carpet fractal lattice
(SCFL), emerging out of a SL [2]. Thus together they consti-
tute the geometric descent family of crystals.

Such geometric correspondences, when imposed on the
Hilbert space of the topological Bloch Hamiltonian for a
crystal, raise a fascinating possibility of harnessing novel
topological phases of matter on quasicrystals [3,4] and fractal
lattices, resulting from the intriguing interplay between the
geometry of the underlying electronic wave functions and
the crystal symmetries. Among the plethora of possibilities,
strong [5–16] and crystalline [17–20] topological insulators
(TIs), about which more in a moment, are the most promi-
nent and commonly occurring ones in quantum crystals that
are routinely discovered in nature following the prescriptions
of topological quantum chemistry [21–27]. Identifying such
phases on fractal lattices is the central theme of the current
pursuit.

As demonstrative examples, here we showcase the appear-
ance of both strong and crystalline TIs on SCFLs, possessing
all the discrete symmetries of a SL, such as the fourfold
rotation about the z direction and the reflections about x
and y axes, except for the translational ones, starting from a
generalized SL model for quantum anomalous Hall or Chern
insulators [Figs. 1(c) and 1(d)]. We formulate three different
approaches to construct the effective real space Hamiltonian
on SCFLs, each of which allows strong and crystalline analogs
of the SL Chern insulator. In all these cases, the bulk-boundary
correspondence between a nontrivial bulk topological in-
variant and the resulting edge modes remain operative. Our

theoretical formulation, therefore, opens an unexplored ter-
ritory of exotic topological phases, already cataloged for
topological quantum crystals, realizable on their geometric
descent fractal lattices.

FIG. 1. Construction of (a) a one-dimensional (1D) Fibonacci
quasicrystal (blue dots), realized by projecting the red sites of the
parent square lattice, living within the green lines, each with a
slope (1 − √

5)/2, on a 1D chain, and (b) a two-dimensional (2D)
Sierpiński carpet fractal lattice from a parent square lattice, built by
eliminating its red colored sites. (c) Phase diagram of the generalized
Qi-Wu-Zhang model for t1 = t2 = B = 1 [Eqs. (1) and (2)], fostering
strong topological insulators with the band inversion at the � (�
phase) and M (M phase) points as well as a crystalline topological
insulator with the band inversion simultaneously at the X and Y
points (valley XY phase) [19]. Each phase is identified by a distinct
quantized Chern number C (see color bar) and C = 0 for the normal
insulator (NI) [Eq. (4)]. We arrive at an identical phase diagram in
terms of the Bott index [Eq. (5)]. (d) 2D Brillouin zone of a square
lattice with lattice spacing a, showing the �, M, X, and Y points.
Along the B̃ = 0 line of the phase diagram we also set t2 = 0 to
switch off all hopping processes along the diagonal directions.
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FIG. 2. Phase diagram on a Sierpiński carpet fractal lattice
(SCFL) in terms of the Bott index (BI), see Eq. (5), obtained via
method 1 (method of symmetry) and method 2 (method of site
elimination) for t1 = B = 1 and (a) t2 = B̃ = 0, showing the analogs
of the � phase with BI = −1 and the M phase with BI = +1, and (b)
t2 = 1 and M = 10, supporting an analog of the “valley XY phase”
with BI = −2, besides the normal insulators with BI = 0. These two
methods yield identical phase diagrams on SCFL of third and fourth
generations, containing 512 and 4096 sites, respectively. In method
1, we set R1 = (1 + δ)a [for (a) and (b)] and R2 = (

√
2 + δ)a [for

(b)], where δ � 1 is a small positive number, ensuring that nearest-
neighbor and next-nearest-neighbor sites are connected during the
numerical analyses. Phase diagram on a parent L = 27 square lattice
and third generation SCFL using method 3 (method of renormaliza-
tion) for t1 = B = 1 and (c) t2 = B̃ = 0, showing the appearance of
the � (M) phase with BI = −1 (+1), and (d) t2 = 1 and M = 10,
showing the appearance of the “valley XY phase” with BI = −2.
The phase diagrams for the SCFL obtained via method 3 are always
identical to that of its parent square lattice; see Fig. 1(c) and compare
with Fig. S1(c) of the Supplemental Material [33]. Note that, when
t2 = B̃ = 0, all diagonal hopping is switched off of SL [Eq. (2)]
and we recover the original Qi-Wu-Zhang model with only nearest-
neighbor hopping [28], yielding the phase diagram on the B̃ = 0 axis
in Fig. 1(c) of SL. In (a) and (c), we expose such a line on the fractal
lattice.

Bloch Hamiltonian. The Qi-Wu-Zhang model for quantum
anomalous Hall or Chern insulators is given by [28]

Hgen
QWZ =

∑
k

(c†
+,k c†

−,k)

⎡
⎣ 3∑

j=1

τ jd j (k)

⎤
⎦ (

c+,k

c−,k

)
. (1)

Fermionic creation (annihilation) operators with parity τ = ±
and momentum k = (kx, ky) are c†

τ,k (cτ,k). The vector Pauli
matrix τ = (τ1, τ2, τ3) operates on the parity index. The com-

FIG. 3. Spectral gap between two closest-to-zero-energy modes,
living on either side of it, for t1 = B = 1, and t2 = B̃ = 0 on (a) an
L = 81 parent square lattice and fourth generation Sierpiński carpet
fractal lattice, obtained by (b) method 3, (c) method 1, with R1 =
(1 + δ)a, where δ � 1 is a small positive number, and (d) method 2
with periodic (black dots) and open (red dots) boundary conditions.
Insets show their local density of states for M = 6, yielding BI = +1
with (i) periodic and (ii) open boundary conditions. The spectral
weight of inner edge modes, as shown in (ci) and (di), is domi-
nantly localized around the central square hole, while that around
the smaller square holes is negligibly small.

ponents of d(k) are [19]

d1(k) = t1Sx + t2CxSy, d2(k) = t1Sy + t2CySx,

d3(k) = M − 4B − 4B̃ + 2B(Cx + Cy) + 4B̃CxCy, (2)

where S j = sin(k ja) and Cj = cos(k ja) for j = x, y. The hop-
ping amplitude between the orbitals with opposite [same]
parities [parity], living on the nearest-neighbor (next-nearest-
neighbor) sites of the SL with the lattice spacing a is t1
(t2) [2B (4B̃)]. The on-site staggered density between two
orbitals is M − 4B − 4B̃ ≡ Meff . For simplicity, we ignore
any particle-hole asymmetry. The corresponding tight-binding
Hamiltonian on a SL reads

HSL
TB =

∑
r

[
Meff�

†
r τ3�r +

{( ∑
j=1,2

{
t1
2i

�†
r τ j�r+ê j

+ B�†
r τ3�r+ê j

}
+ t2

4i

∑
α,β=±

�
†
r+αê1

(βτ1 + ατ2)�r+β ê2

+ B̃
∑

α,β=±
�

†
r+αê1

τ3�r+β ê2

)
+ H.c.

}]
, (3)

where ê j = a ĵ with ĵ as the unit vector in along j = x, y,
��

r = (cr,+, cr,−) and cr,τ is the fermionic annihilation oper-
ator at r with parity τ = ±.

Chern number. Topological properties of this model can
be tracked by computing the first Chern number of the filled
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TABLE I. Symmetry analyses of various terms appearing in the momentum space [Eqs. (1) and (2)] and real space [Eq. (6)] Hamiltonian
is shown in the first and last five columns, respectively. Here, Sj ≡ sin(k ja) and Cj ≡ cos(k ja) for j = x, y, M̄ = M − 4B − 4B̃ and C are real
constants, k = (kx, ky ) is the momentum, and φ jk is the azimuthal angle between sites j and k, measured about the horizontal direction. Terms
transforming identically under all symmetry transformations appear in the same row. Here, RBZ

π/2 represents a π/2 rotation about the z direction
under which k → (−ky, kx ), while RBZ

x [RBZ
y ] corresponds to reflection about the x [y] axis under which k → (kx,−ky ) [k → (−kx, ky )]. On

the other hand, RRS
π/2 represents a π/2 rotation about the z direction in the real space under which φ jk → φ jk + π/2 and RRS

x [RRS
y ] corresponds

to reflection about the x [y] axis in the real space under which φ jk → 2π − φ jk [φ jk → π − φ jk]. We summarize the transformation of each
term under the complex conjugation (K), with Kk → −k. In the fifth and tenth columns + (−) corresponds to even (odd).

Symmetry-adapted terms in the Brillouin zone (BZ) Symmetry-adapted terms in the real space (RS)

Function RBZ
π/2 RBZ

x RBZ
y K Function RRS

π/2 RRS
x RRS

y K

Sx , SxCy −Sy, −SyCx Sx, SxCy −Sx, −SxCy −, − i cos φ jk −i sin φ jk i cos φ jk −i cos φ jk −
Sy, SyCx Sx , SxCy −Sy, −SyCx Sy, SyCx −, − i sin φ jk i cos φ jk −i sin φ jk i sin φ jk −
Cx + Cy, CxCy Cx + Cy, CxCy Cx + Cy, CxCy Cx + Cy, CxCy +, + C C C C +
M̄ M̄ M̄ M̄ + M̄ M̄ M̄ M̄ +

valence band, for example, given by [29]

C = −
∫

BZ

d2k
4π

[∂kx d̂(k) × ∂ky d̂(k)] · d̂(k), (4)

where d̂(k) = d(k)/|d(k)|. The integral is restricted within
the first Brillouin zone (BZ). The resulting phase diagram is
shown in Fig. 1(c). It accommodates Chern insulators with the
band inversion at the � and M points with C = −1 and +1,
respectively, named � and M phases. They represent strong
TIs with the band inversion at an odd number of points in
the BZ. The latter is translationally active, as the M point
results from the translational symmetries of the SL. Due to
longer range hopping (t2 and B̃), the above model also sup-
ports a Chern insulator with the band inversion simultaneously
around the X and Y points of the BZ [Fig. 1(d)], connected by
fourfold rotations, with C = −2, representing a crystalline TI.
The normal insulator (NI) has C = 0.

Bott index. We aim to harness these phases on the SCFLs,
where the notion of a BZ becomes moot due to the ab-
sence of the translational symmetry. Thus we bring a related
topological invariant onto the stage, the Bott index (BI), com-
puted from the Hilbert space of the associated real space
Hamiltonian Hgen,SL

QWZ on a SL, obtained via a Fourier trans-

formation of Hgen
QWZ, satisfying Hgen,SL

QWZ |E〉 = E |E〉. First, we
define two diagonal matrices, X and Y , with their respective
matrix elements given by Xi, j = xiδi, j and Yi, j = yiδi, j , encod-
ing the position (xi, yi ) of the ith site, from which we define
two unitary matrices UX = exp(2π iX ) and UY = exp(2π iY ).
Next, in terms of the projector onto the filled eigenstates
of Hgen,SL

QWZ , up to the Fermi energy EF = 0, defined as P =∑
E<EF

|E〉〈E |, we compute [30]

BI = 1

2π
Im(Tr[ln(VX VY V†

X V†
Y )]), (5)

in systems with periodic boundary conditions (PBCs), where
V j = I − P + PU jP for i = X,Y , showing BI ≡ C. Thus BI
yields an identical phase diagram as in Fig. 1(c).

Method 1. In this method, also named “method of sym-
metry”, we replace each term appearing in d(k) [Eq. (2)],
constituting the Bloch Hamiltonian [Eq. (1)], by its symmetry
analogous term in the real space, such that both transform
identically under all the discrete symmetry operations, the
fourfold rotation about the z direction, and the reflections
about x and y axes. See Table I. The resulting real space
Hamiltonian on SCFLs then reads

Hgen,1
QWZ =

∑
j 	=k

�
(
R1 − rPA

jk

)
2

exp

[
1 − rPA

jk

rPA
0

]
c†

j

[ − it1
(
τ1 cos φPA

jk + τ2 sin φPA
jk

) + 2Bτ3
]
ck +

∑
j 	=k

�
(
R2 − rBD

jk

)
2

× exp

[
1 − rBD

jk

rBD
0

]
c†

j

[
− i

t2√
2

(
τ1 sin φBD

jk + τ2 cos φBD
jk

) + 2B̃τ3

]
ck +

∑
j

c†
j [M − 4B − 4B̃]τ3c j, (6)

where rα
jk = |r j − rk| (φα

jk) is the distance (azimuthal angle)
between the jth and kth sites, located at r j and rk , respec-
tively, placed along the principal axes (α = PA) and body
diagonals (α = BD), c�

j = (c+, j, c−, j ) is a two-component
spinor, and cτ, j is the fermion annihilation operator with parity
τ = ± on the jth site. In this construction, R1 (R2) con-
trols the range of exponentially decaying hopping along PA
(BD) through the Heaviside step function �. Throughout, we
set rPA

0 = rBD
0 = a.

Method 2 and method 3. Any tight-binding Hamiltonian on
a SL (HSL) can be cast as a block matrix

HSL =
(

H•• H••
H•• H••

)
, (7)

where H•• (H••) is the part of HSL operating only on the
black (red) colored sites [see Fig. 1(b)] and H•• and H•• = H†

••
capture the coupling between them. In method 2, also named
“method of site elimination”, the effective Hamiltonian for
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SCFLs is given by

Hgen,2
QWZ = H••. (8)

Here contributions from the red sites are completely ignored.
In method 3, also named “method of renormalization”, the ef-
fective or renormalized Hamiltonian for SCFLs is constructed
by integrating out the red colored sites of the parent SL,
yielding

Hgen,3
QWZ = H•• − H•• H−1

•• H••, (9)

assuming that H−1
•• exists. This condition is satisfied as pos-

sible singularities (zero-energy modes of H••) are always
isolated and therefore can be regularized by taking a proper
limiting procedure [31]. This is so because the gap at the bulk
or boundary nodal point scales as ∼1/LR, where LR is the
linear system size, constituted by the red sites, with the nodal
point pinned at zero energy only in the thermodynamic limit
(LR → ∞). With all three general methodologies of construct-
ing the Hamiltonian for SCFLs being staged, we now proceed
to showcase the incarnation of all the TIs, accommodated by
the SL Qi-Wu-Zhang model, on such systems. The results
are summarized in Fig. 2, which we discuss next. All the
numerical codes are available on Zenodo [32].

Results. A SCFL is constructed from a parent SL in the
following way. We divide a SL into 3 × 3 squares. Then
we remove the central square. We repeat this procedure re-
cursively for each of the eight remaining squares to obtain
different generations (g). In the gth generation the total num-
ber of squares is 9g and the total number of unremoved
squares is 8g. Hence the SCFL has a fractal dimension dfrac =
ln(8g)/ ln(

√
9g) ≈ 1.89. The topological phases in the SCFLs

of any g can be identified from the BI by diagonalizing the
corresponding real space Hamiltonian, shown in Eqs. (6),
(8), and (9).

Irrespective of g, method 1 and method 2, resulting in the
Hamiltonian in Eqs. (6) and (8), respectively, yield identi-
cal phase diagrams for SCFLs for various parameter values
therein, when in the former setup we set R1 = (1 + δ)a and
R2 = (

√
2 + δ)a, where δ � 1 is a small positive number.

This observation assures the existence of various phases, ap-
pearing in the phase diagrams, in the thermodynamic limit.
Specifically, Fig. 2(a) displays Chern insulators with BI = −1
and +1, identical to those for the � and M phases, respec-
tively. Figure 2(b) shows the appearance of a Chern insulator
with BI = −2, as found in the “valley XY phase.” These phase
diagrams are qualitatively similar to the one shown in Fig. 1(c)
for a SL, obtained in terms of the first Chern number and
BI. Phase diagrams of a g = 3 SCFL, obtained via method
3, are identical to those found in the parent SL of linear di-
mension L = 27. For example, Fig. 2(c) accommodates Chern
insulators with BI = +1 and −1, whereas Fig. 2(d) shows
a Chern insulator with BI = −2. The phase diagrams in the
(M, B̃) plane, obtained from three methods, are shown in the
Supplemental Material [33].

Note that while the range of hopping in Hgen,1
QWZ [Eq. (6)]

(obtained from method 1) can be tuned by R1 and R2, we
chose their values such that only the nearest-neighbor and
next-nearest-neighbor ones are operative. By contrast, Hgen,2

QWZ

[Eq. (8)], directly obtained from HSL
TB [Eq. (3)] after elimi-

nating the sites falling outside the fractal lattice (method 2),
contains only these two hopping processes. Consequently,
these two methods yield identical phase diagrams, fostering
the same TIs as the parent SL, with the BI = ±1,−2 and a
NI with BI = 0. However, the parameter regimes over which
these phases are realized for Hgen,1/2

QWZ are different from the
ones for the parent SL [Fig. 1(c)], as the exact form of the cor-
responding real-space Hamiltonian are different. Finally, we
note that, although Hgen,3

QWZ and HSL are of different dimensions
[compare Eqs. (9) and (7)], the former Hamiltonian is defined
in terms of longer-ranged hopping with renormalized ampli-
tudes, as it is obtained by integrating out red colored sites of
the SL [Fig. 1(b)], captured by the second term of Eq. (9),
falling outside SCFL. Therefore, even though HSL is defined
in terms of only nearest-neighbor and next-nearest-neighbor
hopping amplitudes, the renormalized hopping range and am-
plitude of Hgen,3

QWZ ensure that it possesses identical topological
properties of HSL, directly following the definition of the
renormalization procedure. Consequently, the phase diagram
obtained from method 3 is identical to the one for the parent
SL in the entire parameter regime [33].

Topological phases with nontrivial and quantized BI
support topological edge modes, manifesting the hallmark
bulk-boundary correspondence. On a SL, the near-zero-
energy topological edge modes are found only in systems
with open boundary conditions (OBCs) [Fig. 3(a)]. Due
to the self-similarity symmetry, 2D fractal lattices harbor
outer and inner edges. The topological Hamiltonian con-
structed in method 3 (Hgen,3

QWZ ), however, accommodates such
near-zero-energy modes on SCFLs only with OBCs that are
localized only near the outer edges [Fig. 3(b)]. This Hamil-
tonian does not support any near-zero-energy modes close to
the inner edges of SCFLs with PBCs. This is so because Hgen,3

QWZ
[Eq. (9)] is constructed by systematically integrating out the
red sites of the parent SL, thereby inheriting all the spectral
properties of the parent crystal. By contrast, the Hamiltoni-
ans for the SCFLs, constructed from method 1 [Eq. (6)] and
method 2 [Eq. (8)] support near-zero-energy modes close to
their outer and inner edges in systems with OBCs and PBCs
[Figs. 3(c) and 3(d)], respectively, as they are constructed
by ignoring any influence of the red sites of the parent SL.
Thus these two methods expose the inner boundaries of the
self-similar fractal lattices. Although in Fig. 3, we display
these results for a Chern insulator with BI = +1, we arrive
at qualitatively similar results for those with BI = −1 and −2
(not shown explicitly). Finally, we note that SCFLs also sup-
port NIs with BI = 0, devoid of any near-zero-energy outer or
inner edge modes.

Summary and discussions. Here we formulate three in-
dependent approaches to construct the effective real space
Hamiltonian on fractal lattices starting from the Bloch Hamil-
tonian in their parent crystals to harness different classes of
TIs therein, namely the strong and crystalline ones. We believe
that none of these methods can describe the effective Hamil-
tonian on fractal lattices in real materials in full accuracy.
Nonetheless, given that all three methods permit strong and
crystalline TIs, with method 2 and method 3 corresponding to
two extreme limits, and feature the signature bulk-boundary
correspondence, it is highly conceivable that all these phases
can also be found in real fractal lattices, nowadays realizable
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in designer electronic [34,35] and molecular [36] systems as
well as in classical metamaterials [37–39].

Our proposed methodologies can be employed to cap-
ture topological phases on any fractal lattice belonging to
any Altland-Zirnbauer symmetry class and any crystalline
group in any dimension (such as the 2D hexaflake and three-
dimensional Menger sponge), as long as there exists a parent
topological crystal (honeycomb and cubic, respectively). Our
theoretical framework, therefore, opens promising possibili-
ties to realize (both theoretically and experimentally) a vast
variety of topological phases of matter on the rich landscape
of fractal lattices, going beyond the existing studies of spe-
cific topological models on specific fractal lattices [40–56].
We also note that there is no sharp topological bulk gap

when effective Hamiltonians are constructed from methods 1
and 2 (Fig. 3) due to in-gap modes localized near the inner
boundaries of SCFLs, raising a question of fundamental and
practical importance regarding the stability of TIs on fractal
lattices in the inevitable presence of disorder. These fascinat-
ing questions are reserved for systematic future investigations.
For the model considered here, we show that all the TIs
are stable against sufficiently weak disorder, while a normal
or trivial insulator with BI = 0 appears in strong disorder
regime [33].
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[40] M. Brzezińska, A. M. Cook, and T. Neupert, Topology in
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