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ABSTRACT: Self-assembly is a key process in living systems to
facilitate the formation of intricate structures of biomolecules with
properties vital to biological functions. In engineered systems,
controlling self-assembly in response to external stimuli is crucial
for leveraging biomolecular behaviors for technological applica-
tions. In this study, we present two approaches to direct the linear
growth and 2D self-assembly of DNA tiles. The first strategy
involves using toehold-mediated strand-displacement reactions.
The second approach employs a photoresponsive duplex module,
which contains a tile-activator strand coupled with a comple-
mentary strand that incorporates a photocleavable o-nitrobenzyl
group. Exposure to UV light triggers the cleavage of this photocleavable linker, destabilizing the duplex module and releasing the
activator strand, resulting in activation of the DNA-tile assembly. This guided self-assembly in DNA-based systems demonstrates
new potential in developing biosensors, molecular machines, and targeted drug delivery.
KEYWORDS: double-crossover DNA tiles, self-assembly, optochemical trigger, photocleavage, DNA strand displacement

1. INTRODUCTION
Responsive self-assembly plays a crucial role in many biological
processes1,2 such as microtubule formation3 and enzyme
phosphorylation,4 where complexity and high spatiotemporal
control are required.5,6 Applying this responsive self-assembly
principle to create nanostructures that can respond dynam-
ically and in a timely manner opens up potential applications in
biosensing,7−11 cell engineering,12 and nanodevice fabrica-
tion.13,14 DNA nanostructures, due to their high programm-
ability, biocompatibility, and nanoscale dimension, are great
candidates for constructing and studying responsive sys-
tems.15−22 DNA has emerged as an excellent material for
nanoengineering, with studies harnessing various external
stimuli, such as enzymes,23,24 nucleic acids,25 small mole-
cules,26 light,27 metal ions,28,29 and pH,30 to precisely control
the self-assembly of DNA nanostructures. Among them, light
has been proven to be an outstanding external trigger due to its
nontoxicity, orthogonality, cell permeability, and spatiotempo-
ral control capabilities.31−35 Thus, optical switches and
photolabile groups are at the forefront in regulating
enzymes,36,37 nucleic acids,38 and small molecules.39

Photochemical regulation in DNA nanostructures typically
involves single-stranded DNA (ssDNA) with photoresponsive
groups to activate or inactivate their function.40 This can be
achieved by attaching light-responsive moieties to specified
locations of a nucleotide, such as the phosphate backbone,41

the sugar unit,42 or the nucleobase.43 The development of
photoresponsive DNA nanostructures focuses on photo-

isomerization,44−51 photocaging/photocleavage,52,53 and
photo-cross-linking.54 These mechanisms trigger structural
and functional alterations in DNA, enabling precise molec-
ular-level self-assembly control. The following sections will
delve into these categories, showing the varied ways that light
impacts DNA-based materials.
Photoisomerization in DNA nanostructures involves inte-

grating photoisomerizable functional groups, such as azoben-
zene, stilbene, spiropyran, and diarylethylene, into ssDNA,
allowing reversible transformation between E and Z isomers
with specific light wavelengths. This phenomenon has been
harnessed to construct various dynamic DNA nanostruc-
tures.55−58 For example, a light-controlled DNAzyme, featuring
a trans-azobenzene-stabilized hairpin loop, transitions from an
inactive to an active state under UV light.55 This activation
process unfolds the hairpin loop into a single strand, driven by
the shift of trans-azobenzene units to the cis-isomer state,
thereby enabling the reconfiguration. Similarly, a light-driven
DNA walker has been created by using azobenzene units
isomerized by distinct light frequencies.56 Another innovative
design mimics molecular rotaxane for cargo translocation,
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utilizing light to trigger strand displacement.57 Additionally,
light-responsive DNA nanoscissors have been created,
leveraging the reversible isomerization of azobenzene to
control opening and closing actions.58

Incorporating photocleavable groups like o-nitrobenzyl and
coumarin into nucleic acid allows for the temporary suspension
of their function, which can be reactivated by light-triggered
cleavage.59,60 For instance, Tohgasaki and co-workers
developed a DNA nanocapsule featuring a light-activated
unlocking mechanism designed for delivering contents into
cells.61 This system utilizes a photocaging approach to regulate
the capsule’s opening upon exposure to light, enabling
controlled intracellular delivery. Another example is a dynamic
DNA nanotweezer with photocaged DNA strands inside.62

The tweezer can be rapidly switched from a closed state to an
open state when exposed to UV light, allowing photocages to
release the lock between the tweezer arms and significantly
increasing the distance between its arms.
Photo-cross-linking has been utilized to stabilize DNA

nanostructures by employing agents like thymine, 8-methox-
ypsoralen, and cyanovinylcarbazole to link the ends of adjacent
strands. Rajendran and colleagues utilized 8-methoxypsoralen
for this purpose, achieving structures that remained stable even
at high temperatures and showed improved assembly yield.63

Similarly, the research groups employed 3-cyanovinylcarba-
zole64 and thymidine,65 respectively, placing these agents
strategically within DNA nanostructures for effective cross-
linking under UV light.
Inspired by these results, we developed two methods to

precisely control the self-assembly of DNA tiles into one-

dimensional (1D) and two-dimensional (2D) structures. One
method uses toehold-mediated strand-displacement reactions
(SDRs), while the other employs a photoresponsive duplex
module activated by UV light to release an activator, initiating
DNA-tile assembly. The exploitation of these methods will
facilitate advanced developments in nanotechnology and
biomaterials, enabling the creation of highly functionalized,
programmable nanostructures.

2. RESULTS AND DISCUSSION
To demonstrate our approach, we employed a layered double-
crossover DNA tile that was assembled through the hybrid-
ization of 12 different ssDNA strands,66 exhibiting two pairs of
arms with sticky ends that can be used for the formation of 1D
and 2D assemblies. These DNA tiles were reported to form
arrays through annealing, which is a temperature-programmed
cooling process. To enable regulation of the assembly process
by external stimuli, we redesigned the tiles to separate the
monomer formation of individual tiles from the tile−tile
interaction by adding extensions to the sticky ends. DNA tiles
were first inactivated by an inhibitor strand that blocked one
sticky strand, preventing interaction between tiles through
hybridization. These inactive tiles were then able to be
reactivated by directly supplying an activator strand that
caused dissociation of the inhibitor from the tile via a toehold-
mediated SDR. The release of the activator strand was
programmed further to enable optochemical control of the
DNA-tile self-assembly. We engineered a photoresponsive
module that consisted of an activator strand, with its
complementary strand containing a photocleavable o-nitro-

Figure 1. Schematics of the responsive self-assembly of (a) 1D and (b) 2D DNA tiles triggered by UV light (1) and a strand-displacement process
(2). The release of the free activator strand (green) from the photoresponsive module guides the conversion of the inactive DNA tile (gray) to the
active form (green) through a SDR that sequesters an inhibitor strand from the DNA tile. Active tiles then self-assemble into 1D and 2D structures.
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benzyl group. Upon exposure to UV light, cleavage of the o-
nitrobenzyl linker occurred, destabilizing the duplex and
releasing the activator strand. This resulted in sequential
activation of the DNA tiles, demonstrating a controlled self-
assembly pathway (Figure 1).
We began by showcasing the responsive 1D assembly

activated by a SDR. Agarose gel electrophoresis (AGE) was
performed to characterize the self-assembly of the inactive and
active tiles. This is because the separation range of native gel is
about 75−500 bp, while it is 200−4000 bp for 1.5% agarose
gel. Inactive tiles were formed by annealing the corresponding
ssDNA strands. Both the gel data and atomic force microscopy
(AFM) images verified the formation of these well-defined
monomer structures (Figure 2). Activation was initiated by
adding activator DNA strands to the monomer mix and
allowing the strands to incubate. AGE results revealed a
distinct gel shift for the reactivated tiles compared to their
inactive counterparts (Figure 2a). The electrophoretic band
observed for the reactivated tiles was similar to that of the
reference tile assembled without an inhibitor strand, working
as the positive control of our experiments. Complementing the
AGE findings, in-fluid AFM imaging also showed the
formation of 1D assemblies from the reactivated tile via a

SDR, which was similar to assemblies observed from the
reference tiles (Figure S1). In contrast, for the inactivated tiles,
only isolated monomer tiles were observed in the AFM analysis
(Figure 2b). These results together suggest that our SDR
method can effectively transform inactive tiles into active tiles
for controlled self-assembly.
To demonstrate the light-responsive 1D assembly of DNA

tiles, we integrated a photoresponsive duplex module with a
photolabile group into the design of the inactive tiles. After UV
irradiation, AGE analysis showed a clear band upshift for the
reactivated tile, indicating inhibitor strand removal and
subsequent tile activation (Figure 3a). The upshifted band
for the UV-treated sample matched that of the reference tile,
which was formed without an inhibitor and served as a positive
control. Conversely, the non-UV-treated samples displayed
only a monomer band. The light-responsive assembly of DNA
tiles was further analyzed by AFM. In the absence of UV light,
only monomer tiles were observed under AFM (Figure 3b),
whereas in the presence of UV light, a significant number of
1D periodic assemblies were observed (Figure 3c). These 1D
assemblies were comparable to the assembled structures
obtained from the reference tile (Figure S1). The formation
yields of 1D assemblies with more than five monomers of the

Figure 2. Responsive self-assembly of 1D DNA tiles via a SDR. (a) 1.5% AGE analysis of DNA tiles before and after tile activation with a free
activator (lane 1, positive control; lane 2, inactive tile; lane 3, reactivated tile via a SDR). AFM images of the DNA-tile assembly (b) before and (c)
after tile activation with the free activator.

Figure 3. Responsive self-assembly of a 1D DNA tile triggered by UV light. (a) 1.5% AGE analysis of DNA tiles before and after UV-light shedding
(lane 1, positive control; lane 2, inactive tile; lane 3, reactivated tile via an optochemical reaction). AFM images of DNA-tile assembly (b) before
and (c) after UV treatment.
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reactivated tiles through SDR and light-responsive pathways
closely matched that of the positive control (Figure S12 and
Table S3). In support of this, fluorescence microscopic analysis
also showed that UV light triggered the responsive assembly of
Cy3-labeled DNA tiles (λex = 530 nm). No significant Cy3
fluorescence was obtained in the case of inactive tiles due to
the quenching effect of a Cy5-modified inhibitor (Figure S4).
These results cohesively support our design principle that
DNA-tile assembly can be precisely controlled via a non-
invasive optochemical reaction.
We then systematically studied the light-induced release of

the activator using fluorescence experiments and native PAGE
analyses (Figure 4a). To label the light-responsive module, one

of the sticky strands and the inhibitor strand were tagged with
a Cy3 fluorophore (λex = 515 nm and λem = 550 nm) and a
Cy5 quencher, respectively. As expected, the release rate of the
16-nucleotide-long activator strand from the light-responsive
module followed a UV dose-dependent behavior. With only 5
min of UV treatment (UVP transilluminator, 365 nm), ∼50%
of the activators were released, while it needed 8 min of light
exposure to reach >90% release (Figure 4b). On the other
hand, UV dose-dependent studies with a nonresponsive
module, which lacked a photoresponsive linker, did not show
tile activation under the same experimental conditions (Figure
4c). It is noted that the length of the light-responsive module is
important. If it was extended from 16 to 24 nucleotides, no
significant increase of the fluorescence intensity was observed,
indicating that the activator was still firmly bound to the
photoresponsive strand’s halves due to the high melting

temperature of the duplexes (Figure S9). Furthermore, native
PAGE analyses were also employed to study the UV dose-
dependent effect of the light-responsive module (Figure 4d).
As predicted, the nonresponsive module, which is a duplex
lacking a photocleavable linker, showed no remarkable changes
in the electrophoretic mobility (Figure S11). To investigate the
amount of activator required for tile activation, the
fluorescence intensity recovery at 515 nm was collected as a
function of the concentration of the light-responsive module. A
steady increase in the fluorescence intensity was observed with
increasing concentration of the light-responsive module and
plateaued with 1 mol equiv of the activator (Figure 4e). A
further increase of the light-responsive module concentration
up to 5 mol equiv did not show any notable change in the
fluorescence intensity. These observations demonstrated that
the photoresponsive release of the DNA activator in this DNA-
tile system is an efficient process with programmable behaviors.
To further prove the versatility of our design strategy, we

demonstrated the responsive self-assembly of 2D DNA tiles
using a SDR and light-controlled reaction. Like the 1D
assemblies, we first studied the dynamics of responsive 2D
assemblies using a SDR only. In the 2D assembly tile design,
we redesigned the DNA tiles to carry two inhibitors on two of
the four sets of sticky ends and thus to prevent the formation
of 2D arrays. The activation of a previously inactivated tile
through the addition of free activators via DNA strand
substitution was confirmed by AGE and AFM analyses. It was
clear from the AGE analysis that the inactive tile showed a
much lower electrophoretic migration compared to the
reactivated tile (Figure 5a), with the electrophoretic shift of
the reactivated tile aligning with that of the reference tile.
Similarly, AFM analysis also displayed the formation of 2D
periodic assemblies in the reactivated tile (Figure 5c), whereas
only monomer tiles were seen in the inactive tiles (Figure 5b).
The 2D arrays identified via AFM closely resembled those
formed by the reference tile without any inhibitors (Figure S5),
indicating the successful restoration of tile activity. It is also to
be noted that the size of the 2D arrays obtained in our studies
is much smaller than that in previous work. We attribute this
size difference to modification of the tile design and the change
of annealing conditions. In order to incorporate the responsive
strand, the sticky end domains of the original tiles were
extended with ssDNA overhangs for the reversible binding of
activator and inhibitor strands. In addition, the previous study
used a one-pot annealing program to archive large arrays.
However, in our study, we need to conduct a stepwise
annealing program to first form inactive tiles, followed by the
formation of active tiles with the addition of activator strands.
Therefore, the relatively smaller size of the 2D assembly in our
design is expected due to modification of the tile design and
the change in annealing conditions.
Finally, to demonstrate the light-triggered assembly of DNA

2D arrays, a pair of photoresponsive modules carrying two
different activator strands were introduced to the inactive tile
systems. The release of free activators upon UV-light
irradiation gradually initiated the tile assembly by sequestering
the inhibitor strands responsible for tile inactivation. The result
of AGE showed a notable difference in the electrophoretic
migration rate of the tile before and after UV treatment (Figure
6a). The electrophoretic bands corresponding to the
reactivated tile showed a migration rate similar to that of the
reference tile, which was the positive control sample with 2D
arrays assembled from inhibitor-free tiles. This was further

Figure 4. Light-responsive self-assembly of the 1D DNA tile triggered
by UV light. (a) Schematic diagram showing the light-triggered
release of a free activator from the photoresponsive module and UV
dose-dependent fluorescence studies of (b) a photoresponsive module
and (c) a nonresponsive module. (d) 12% native PAGE analyses
showing the release of the free activator strand from a photo-
responsive module (1 μM in 1xTAE, Mg2+, pH 8.2) in UV dose-
dependent manner. (e) Concentration-dependent fluorescence
spectral studies with increasing concentration of a photoresponsive
module. All of the fluorescence experiments shown in this panel were
carried out at a 50 nM concentration of DNA tile in 1xTAE buffer,
12.5 mm MgCl2 at pH 8.2, and 28 °C.
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confirmed by AFM analysis, which also revealed the formation
of 2D arrays for the UV-treated DNA samples (Figure 6c). No
significant array formation was observed for the non-UV-
treated DNA samples (Figure 6b). AFM analysis of the UV-
treated samples was aligned with that of the reference tile
assembled without inhibitor strands. Overall, these results
demonstrated that the 2D self-assembly of DNA tiles can be
precisely regulated through both strand substitution reactions
and optochemical triggers.

3. CONCLUSIONS
In conclusion, our study demonstrated simple yet efficient
approaches for initiating the 1D and 2D assembly of DNA tiles
via SDR and optochemical mechanisms. Our strategies,
characterized by their simplicity and efficiency, have the
potential to be applied to various DNA-based systems
including DNA origami. It opens avenues for developing
advanced biosensors, light-driven nanomachines, and respon-
sive nanocontainers. Its applications span from medical

diagnostics and targeted drug-delivery systems, where precision
and responsiveness are important, to the creation of smart
materials that can change properties on demand for use in soft
robotics and adaptive optics. In advancing this field, future
research will focus on incorporating more stimuli-responsive
elements, improving assembly accuracy, and scaling up these
nanostructures for practical applications. We are particularly
excited about designing light-responsive nanocarriers for the
efficient and targeted delivery of RNA to living cells and
developing rapid light-powered DNA nanodevices, highlighting
our continued focus in these innovative areas.
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Figure 5. Responsive self-assembly of a 2D DNA tile via a SDR. (a) 1.5% AGE analysis of DNA tile before and after tile activation with free
activators (lane 1, positive control; lane 2, inactive tile; lane 3, reactivated tile via a SDR). AFM images of DNA-tile assembly (b) before and (c)
after tile activation with free activators.

Figure 6. Responsive self-assembly of a 2D DNA tile triggered by UV light. (a) 1.5% AGE analysis of DNA tile before and after UV light shedding
(lane 1, positive control; lane 2, inactive tiles; lane 3, reactivated tiles via an optochemical reaction). AFM images of DNA-tile assembly (b) before
and (c) after UV treatment.
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