2024 IEEE 7th International Conference on Soft Robotics (RoboSoft) | 979-8-3503-8181-8/24/$31.00 ©2024 IEEE | DOI: 10.1109/ROBOSOFT60065.2024.10522031

2024 7th International Conference on Soft Robotics (RoboSoft)
San Diego, CA, USA. April 14-17, 2024

MoLDy: Open-source Library for Data-based Modeling and Nonlinear
Model Predictive Control of Soft Robots

Daniel G. Cheney and Marc D. Killpack

Abstract— Aggressive and accurate control of complex dy-
namical systems, such as soft robots, is especially challenging
due to the difficulty of obtaining an accurate and tractable
model for real-time control. Learned dynamic models are
incredibly useful because they do not require derivation of
an analytical model, they can represent complex, nonlinear
behavior directly from data, and they can be evaluated quickly
on graphics-processing units (GPUs). In this paper, we present
an open-source Python library to further current research
in model-based control of soft robot systems. Our library
for Modeling of Learned Dynamics (MoLDy), is designed to
generate learned forward models of complex systems through
a data-driven approach to hyperparameter optimization and
learned model training. Included in the MoLDy library, we
present an open-source version of NEMPC (Nonlinear Evo-
lutionary Model Predictive Control), a previously published
control algorithm validated on soft robots. We demonstrate the
ability of MoLDy and NEMPC to accurately perform model-
based control on a physical pneumatic continuum joint. We also
present a benchmarking study on the effect of the loss metric
used in model training on control performance. The results of
this paper serve to guide other researchers in creating learned
dynamic models of novel systems and using them in closed-loop
control tasks.

I. INTRODUCTION

Robotic systems are capable of completing a large variety
of unique tasks. However, as the complexity of tasks a
robot is designed to complete increases, the dynamics of the
robotic system may also become more complex. Especially
in the case of soft robotics, dynamic and accurate control
is difficult due to inherent compliance, underactuation, and
nonlinear fluid dynamics for pneumatically actuated systems.

Model-free control [1] is one solution to dynamic control
of soft robots, where, given a simulated or physical system,
a controller learns to output control commands that achieve
a desired task outcome. However, once trained, model-free
controllers generally struggle to be applied to novel tasks. In
contrast, model-based control is a control approach in which
a controller uses a dynamic or kinematic model, learned
or analytical, to generate control commands. Model-based
control has several advantages, including a reduced controller
search space and the ability to extend the underlying model
to novel control tasks.

Deriving an exact analytical model quickly becomes time
intensive and error prone, and requires ongoing system
identification after the model is derived to accurately reflect
changes in the system hardware. In the case of the pneumatic

Both authors are with the Robotics and Dynamics Laboratory at Brigham
Young University

This work was supported by the National Science Foundation under Grant
No. 1935312

979-8-3503-8181-8/24/$31.00 ©2024 IEEE

958

Fig. 1. Graphic of the continuum joint used in this paper, referred to as
the “grub”. The grub has four pneumatically-actuated plastic chambers that
control its motion. Angle position and velocity states are estimated using
two HTC Vive trackers.

link shown in Fig. 1, multiple links can be combined to
make full manipulators, creating significant complexity due
to more diverse flow dynamics and configuration dependent
inertial effects. With heavy use, components in the soft robot,
such as the plastic chambers, degrade, further changing the
true dynamics when compared to a previously derived model.

As an alternative to derived models, learned dynamic
models based on neural networks are capable of accurately
forward propagating system dynamics with high accuracy.
Deep neural networks (DNNs) are effective at representing
nonlinear relationships, including unknown system dynam-
ics, rendering them highly effective for modeling soft robot
dynamics. Despite the utilization of learned dynamic models
in model-based control, past work has required additional
compensation measures in control, such as an integrator [2]
or a residual model [3] because the learned model alone
was inadequate. Additionally, selecting correct learned model
parameters, called hyperparameters, is difficult and time
consuming, yet critical for accurate models [4].

This work seeks to address the challenge of model-based
control with a learned dynamic model for a variety of soft
robot platforms, without relying on analytical equations or

Authorized licensed use limited to: Brigham Young University. Downloaded on December 26,2024 at 17:02:29 UTC from IEEE Xplore. Restrictions apply.

prior knowledge about system dynamics. Our intent is that
this approach will be particularly beneficial for researchers in
the field of soft robotics through the following contributions:

1) The development and open-source release of MoLDy
(Modeling of Learned Dynamics), a Python library
providing a framework to optimize hyperparameters
and train dynamic models. Found here: https://
bit.ly/moldy_control.

Open-source release of the Nonlinear Evolutionary
Model Predictive Control (NEMPC) algorithm [2], [5]
that uses learned models directly in a sampling-based
approach on a Graphics Processing Unit (GPU).

A case study using MoLDy and NEMPC for model-
based control of a simulation and hardware soft pneu-
matic continuum link (see Fig. 1). Real-time hardware
control is compared against a traditional PID controller.

2)

3)

We next outline the remainder of this paper. Section II
explores previous work similar to ours in the field of learning
for modeling and control of soft robots. In section III-A,
we present MoLDy, the open-source library used to create
learned dynamic models. We then give a brief overview of
the NEMPC control algorithm released within the MoLDy
library (Section III-B). Section IV presents the results of
using MoLDy and NEMPC for model-based control on the
simulation and hardware platforms. We conclude in Section
V with a brief summary of the results and contributions made
in this paper.

II. RELATED WORK

The related literature presented in this section focuses
on machine learning methods applied to soft robotics, as
there is an extensive body of work in machine learning
for modeling and control of soft robots [6]. Additionally,
learned dynamic models have been used in many other
fields including fluid dynamics [7] and traditional robotics
[8]. In contrast to these other fields, soft robots provide an
effective platform to test the accuracy of learned models due
to their inherent uncertainty and the difficulty in deriving
tractable dynamic models, especially for hardware platforms.
We organize our review of the existing literature into three
areas: model-free control, model-based control, and current
modeling toolboxes.

A. Model-Free Control

As previously discussed, model-free control, where a
control policy is learned directly, does not require a model of
the system dynamics or kinematics. Reinforcement Learning
(RL), a common model-free approach, enables an agent to
learn control policies through interactions with the environ-
ment, as demonstrated in a soft robotic throwing task [9].
A common application of RL in soft robotics is solving the
Inverse Kinematics (IK) problem [1], [10]. Non-RL learned
controllers have also been used to learn an IK controller
using data gathered from an analytical model [11], [12]. Al-
though model-free controllers can achieve good performance,
they are often not generalizable to other control tasks.

959

B. Model-Based Control

While model-based control can be performed with an
analytical or learned model, in this review we focus on
model-based control with learned models. Controllers are
often learned [13] or optimization-based, such as Model
Predictive Control (MPC) [14]. Model-based control appli-
cations include stiffness and position control of soft actuators
[15], open-loop control using a learned forward kinematics
model for a soft manipulator [16], and joint-level control
of a large-scale pneumatically actuated soft robot arm [17].
Typically, a model is trained on simulation data generated
from an analytical model of the system. However, when
applied to physical systems this approach can result in
steady-state error during control, primarily due to model
error from unaccounted effects present in hardware.

To solve this challenge, previous work has implemented
solutions such as using an integrator in control [2], [14]
or a simulation model combined with a residual model,
which predicts the error between the simulation model and
actual hardware dynamics [3]. Another solution is to use
a data-driven approach, which relies solely on data from
the hardware platform for model training [18], avoiding a
simulation model entirely.

C. Modeling Toolboxes

Notable toolboxes like AutoMPC [19] facilitate System ID
and MPC tuning, while DeepTime [20] focuses on creating
dynamic models from time-series data without offering con-
trol functionality. The SOFA toolbox is specifically designed
for soft robotics, incorporating modeling and control based
on Finite Element Method (FEM) solvers [21]. While these
libraries offer a wide range of functionality, no library offers
modeling and control methods that resolve the challenges
faced for dynamic control of soft robotics, including cases
where analytical and computer models are intractable. Fur-
thermore, Finite Element Analysis (FEA) models may fall
short in accurately capturing the dynamics of soft robot
hardware to enable model-based control. This can be due
to unique material properties and platform-specific charac-
teristics, which cannot be fully captured using simulation
tools.

III. METHODS
A. MoLDy: Open-Source Dynamic Modeling Library

The MoLDy Python library is provided as an open-source
toolbox for other researchers to create and evaluate learned
dynamic models, especially for use in closed-loop control.
To best address the needs described to this point, the MoLDy
library adheres to the following design requirements:

o It must be able to generate models without the need
for an analytical or computer-based model, enabling
modeling and control for complex soft robots.

It must provide methods to analyze results and compare
control performance across different models.

It must have a simple user interface and generated
models must be easily exported for use with other Deep
Learning (DL) libraries.

Authorized licensed use limited to: Brigham Young University. Downloaded on December 26,2024 at 17:02:29 UTC from IEEE Xplore. Restrictions apply.

Deep Neural Network

[1
1 = !
' =1k Output
! - s utpu
| X, Uy I—-—:--l Hidden Layer E : La}?er
Q
<|

Fig. 2. Neural network architecture design implemented and used in
MoLDy, where there is one input layer and n; is the number of hidden
layers.

MoLDy provides the user with several Python classes that
can be inherited in order to model a novel system. Additional
information on using MoLDy for a novel system can be
found in the repository’s ReadMe file. MoLDy operates
through three key stages: data gathering, hyperparameter
optimization, and model training. For novel systems, users
begin by collecting a dataset, followed by optimizing neural
network hyperparameters based on the specific system char-
acteristics, ultimately concluding with model training using
the optimized hyperparameters.

Training data can be generated from an analytical equa-
tion, a simulation, or collected from a physical robot.
In the simulation environment for this paper, random
state/command pairs are generated and forward propagated
by one time step using fourth-order Runge-Kutta numerical
integration on the analytical model. For hardware systems,
data can be collected as per the current system configuration,
such as through the use of the Robot Operating System
(ROS), and then converted into the required format for model
training. The default form for neural network training and
validation data is given by:

x = |z, ug]
(1
y = Az
where x; represents a vector of system states, u; is a vector
of command inputs and = and y denote the input and output
data, respectively, utilized to train the neural network. The
state at the next time step (z;41) is defined as:

2

MoLDy provides users with options to normalize data by
the infinity norm, normalize to a standard deviation of 1 and
a mean of 0, or use raw values. Additionally, the user can
specify whether the output data should be in the form of Ax;
Or T¢41.

To perform hyperparameter optimization, we use the Ray
Tune [22] and Optuna [23] Python libraries. The implemen-
tation on top of these libraries is simple, enabling a quick
start to generating learned models, while allowing the user
to access advanced functionality as required. By default each
hyperparameter optimization run uses the validation loss
reported from model training as the optimization objective.
However, the optimization objective is easily modified to

Tip1 = Ty + Axy.

960

track other metrics. The default optimization algorithm in
MoLDy is the Tree Structured Parzen Estimator (TPE), a
Bayesian-based optimization technique. There are a wide va-
riety of optimization methods available in Optuna, including
grid search, random search, and other advanced algorithms.
Early stopping is implemented with the Asynchronous Suc-
cessive Halving Algorithm (ASHA) Scheduler to terminate
under performing trials, reducing computation time. The
optimization is population-based and can be executed for any
specified number of samples, with each sample representing
a learned model trained on a unique set of optimizer-selected
hyperparameters. For each sample, a model is trained until
the maximum number of training epochs is reached, or
until the ASHA scheduler terminates the training. The full
optimization results along with models, hyperparameters,
and training results for each sample are saved locally. With
MoLDy, many hyperparameters can be optimized, including
the number of hidden layers, number of hidden nodes per
layer, activation function(s), weights optimizer, learning rate,
learning rate scheduler, and network weight initialization
scheme.

Model training is implemented using PyTorch Lightning
[24]. Despite many different architectures that have been
proven to be effective in control of learned dynamic models,
our experiments demonstrated successful real-time control
with a simple Feedforward Neural Network (FNN). The
specific architecture is contingent upon the provided set of
hyperparameters, whether obtained through hyperparameter
optimization or user input. Nevertheless, the general archi-
tecture is shown in Fig. 2. Learned models generated with
MoLDy take as input the system state at a discrete time step,
x4, along with the corresponding command input, u;, at the
same time step. While a user can choose to have models
output the full state of the system, we find that choosing
Axy as the network output reduces the learning burden on the
neural network. Models are saved as ”.ckpt” files in PyTorch
and are easily exported to other Deep Learning libraries such
as TensorFlow, Keras, or Caffe.

B. NEMPC Open-Source Controller

We also present the Nonlinear Evolutionary Model Predic-
tive Control (NEMPC) algorithm as a Python library to make
control validation of learned dynamic models easier for other
researchers. The version we release was originally published
in [2], [5] and later modified in [3], with a few minor changes
noted here. NEMPC is a sampling-based controller that
leverages a GPU to forecast control trajectories in parallel at
each time step. The controller then applies the first step of
the lowest-cost trajectory, where the cost is summed over
the control horizon of length n. A significant advantage
of NEMPC is its capability to use nonlinear models in
control, presenting a valuable resource for soft robotics,
which often are modeled as nonlinear analytical or learned
models. NEMPC also has the advantage of defining flexible
cost functions, allowing for nonlinearity, non-convexity, and
other variations within the cost function. In this work we use
a quadratic cost on the state and command inputs:

Authorized licensed use limited to: Brigham Young University. Downloaded on December 26,2024 at 17:02:29 UTC from IEEE Xplore. Restrictions apply.

n
T~ T 1~
J=> (& Q; + i Ri;) 3)
1=0
with ~
Ti = Tj — Ty desired
_ “4)
Ui = Ui — Ui previous

where J is a scalar number corresponding to the total cost
of a specific trajectory, @ is a matrix of weights on the error
in system state, and R is a matrix of weights on change
in command inputs. The subscript ¢ denotes the time step
in the control horizon for each corresponding variable. The
state trajectory of the system is represented by x;, while the
desired state of the system at time step ¢ is represented by
T desired- Current command inputs are represented by wu;
and the previous input is denoted as u; previous-

Given a control trajectory, we use Integrated Absolute
Error (IAE) as a metric for evaluating control performance:

n
IAE = Z |xz - l'i,desi'r‘ed|
=0

&)

We choose TAE due to its effectiveness in capturing both the
transient error response, as well as the cumulative effect of
steady state error. For systems with multiple states of interest,
a total IAE measure is obtained by summing the IAE from
each relevant state.

IV. CASE STUDY

In this section, we present a case study using MoLDy
to model and NEMPC to control a single link continuum
robot (see Fig. 1). We show results in simulation and
on real hardware. Additionally, we compare the effect of
several popular loss metrics for learned models on control
performance as an example of MoLDy’s capability to test
the effects of important parameters related to using learned
models for control. We first provide details on the hardware
platform, discuss experiment setup, and then present results
of modeling dynamics with neural networks and performing
joint-level control for both the simulation and hardware
systems.

A. Platform Description

The grub is a single-link continuum joint actuated by four
pressure valves, connected to blow-molded plastic chambers.
The plastic chambers surround an inextensible Kevlar rope
that maintains an approximately fixed distance between the
end plates. The physical robot stands approximately 30 cm
tall and is 19 cm in diameter. We define the state of the robot
in the same manner as in [3], denoted as = = [p, ¢, ¢]* . Here
p represents a vector containing the four chamber pressure
states, ¢ = [0, ¢] and g = [0, ¢], where 6 and ¢ correspond
to decoupled bending angles (see Fig. 3). The control inputs
are defined as u = [pema)’ where peng is an array of four
pressure commands.

A pressure differential between py and pp, as seen in Fig.
4, causes a net torque and bending about the x-axis. When
po > p1, a positive 6 rotation about the x-axis is induced.

961

Fig. 3. Rotation conventions on the grub, where the RGB axes correspond
to XYZ directions. A positive 8 rotation is about the x-axis while a positive
¢ rotation corresponds to a positive rotation about the y-axis.

Similarly, differential pressures between ps and ps cause a ¢
rotation about the y-axis. Each plastic chamber is rated for
pressures up to 400 kPa, but we limit the pressure to 275 kPa
for safety reasons, which is sufficient to quickly reach joint
limits. The simulation model is based on analytical equations
derived in [25], using experimentally determined values for
parameters such as damping and stiffness. On the hardware
system, we use HTC Vive trackers to estimate the bending
angles.

Although the link only has two degrees of freedom,
there are significant challenges when modeling such a robot.
Nonlinear pressure dynamics arise due to the valves filling
and venting the plastic chambers. Additionally, stiffness and
damping parameters inherent in the material are difficult
to correctly measure. Difficulty in accurately controlling
the joint in this paper compared to previous studies [3],
[25], comes from recent design changes to reduce parasitic
torque and allow more available torque for each joint, which
resulted in reduced overall damping and inertia.

B. Experiment Setup

To compare the effect of each loss metric we complete
two sets of model training for both the simulation and
hardware experiments. For the first set, each model is trained
with hyperparameters optimized independently for each loss

)
7S

L y

Fig. 4. Cross-section of a grub link with antagonistic pressure chambers
causing a net torque.

Authorized licensed use limited to: Brigham Young University. Downloaded on December 26,2024 at 17:02:29 UTC from IEEE Xplore. Restrictions apply.

metric. In contrast, the second set of models is trained using
a uniform set of hyperparameters across all loss metrics. This
approach ensures that we can distinguish between the effect
of the hyperparameters and the effect of the loss metric on
control.

For the first set, we performed a hyperparameter opti-
mization with 300 samples per loss metric. The optimized
hyperparameters and their ranges are listed in Table 1. We
limited the number of hidden layers and hidden nodes to
ensure models could evaluate fast enough for control. Using
these optimized hyperparameters, we trained 20 models for
each loss metric to account for the stochastic nature of
initialization, data shuffling, and optimizer steps. For the
second set, we trained 20 additional models for each loss
metric with a uniform set of hyperparameters selected from
those obtained during the initial optimization. The dataset is
split, with 80% used for training and 20% for validation. To
prevent exploding gradients during the training process, input
and output data were normalized using the infinity norm. The
models were trained for 500 epochs. Model weights were ini-
tialized using the Xavier uniform initialization, and all biases
were initially set to zero. We used the “ReduceLROnPlateau”
learning rate scheduler and the Adam optimizer from the
PyTorch library. For each model, the weights corresponding
to the epoch with the lowest validation loss were saved and
used in subsequent control validation.

After training, we evaluate the control performance of
each model. Models are controlled using NEMPC with
hand tuned parameters that are kept constant across control
trials to ensure fair results between models. Performance is
reported as the IAE over a commanded joint angle trajectory
that is the same for all trials on both the simulation and
hardware systems. On the hardware platform we compare
our learned model-based NEMPC approach to a simple
differential Proportional-Integral-Derivative (PID) controller.
The PID controller calculates pressure differentials from the
error between the commanded joint angle and the actual joint
angle. Actual pressure commands are calculated from the
output of the differential PID controller, uq;fs by:

Pmaz — Pmin
bo = f

_ Pmaz — Pmin

2

+ Udify

(6)
41 — Udif f
The gains of the differential controller were tuned to mini-
mize the IAE control error over the commanded trajectory.

TABLE I
HYPERPARAMETER RANGES FOR MODEL OPTIMIZATION.

Possible Values
0,1,2,3
16, 32, 64, 128, 256, 512, 1024
Between le-5 and le-3
ReLU, TanH, Sigmoid, Leaky ReLU

Hyperparameter
Hidden Layers
Hidden Nodes

Learning Rate

Activation Function

962

700
o Optimized Parameters
—_
S 600 Same Parameters
2 500 i
o
‘€ 400 I
IS
o it
o 300 P— I I -
<
200
\3 < < < h
c0°’\$ Na N ° v
WO
S
Loss Metrics
Fig. 5. Average IAE control measure for each of the loss metrics across

20 models are shown for trials performed in the simulation environment.

TABLE 11
GRUB SIMULATION OPTIMIZED HYPERPARAMETERS WHERE H. IS
ABBREVIATED FOR "HIDDEN”, ACT FCN IS " ACTIVATION FUNCTION”,
AND LR IS THE "LEARNING RATE”.

Metric H. Layers | H. Nodes | Act Fcn Ir
Same 1 1024 ReLU 9.9e-4
Cosine 2 1024 ReLU 9.6e-4
MAE 1 1024 ReLU 9.9e-4
MSE 3 256 Tanh 2.9e-4
RMSE 2 1024 ReLU 3.2e-4
Smooth L1 1 1024 ReLU 6.7e-4

C. Experiment Results

1) Grub Simulation: For the grub simulation, model train-
ing was conducted with a batch size of 512 on 150,000
random data points generated at 100 Hz. The optimized hy-
perparameters are shown in Table II. Control was performed
in simulation at a rate of 100 Hz with a control horizon of
0.5 seconds. The IAE control performance of models from
each loss metric is presented in Fig. 5. Control results on the
simulation system with a step reference trajectory are shown
in Fig. 6. Generally, the control performance is consistent
across loss metrics, with the exception of the optimized
MSE models and all Cosine models. We hypothesize that
the MSE hyperparameter optimization converged to a local
minimum, causing poor control performance due to the
selected network architecture being unable to represent the
simulated dynamics.

2) Grub Hardware: To collect data on the hardware plat-
form, a command of four random pressures was applied to
the system for a random delay between 1 and 5 seconds. This
process was repeated until we collected 180,000 data points
at 50 Hz, which took approximately one hour. Models are
trained with a batch size of 1024 and to predict Ax; for 0.02
seconds into the future, in order to achieve a longer horizon
during real-time control. 40 total models (20 with optimized
hyperparameters and 20 with uniform hyperparameters) were
trained for each loss metric as before, but only five from
each loss metric were selected to be run in hardware control
trials based on each model’s open-loop prediction perfor-
mance. We do not include a comparison of optimized and
constant hyperparameters for the hardware system because,

Authorized licensed use limited to: Brigham Young University. Downloaded on December 26,2024 at 17:02:29 UTC from IEEE Xplore. Restrictions apply.

1 q
=)
S o
= —
[ar) | ——
-1 T
] —
1
= !
-8 ==~ Command
s 04 —— Differential HW
< —— MB NEMPC HW
----- MB NEMPC Sim
-1 T
100
Time (s)
Fig. 6. Subset of the control trajectory used in experiments to test the Model-based NEMPC (MB NEMPC) and differential PID controllers.

for all loss metrics, the optimized hyperparameters showed
little variation. Fig. 8 illustrates the open-loop prediction
performance of the learned hardware model. Given only the
initial state and the trajectory of pressure commands, the
hardware model is able to accurately predict the full state
of the robot for over 25 seconds. Control was performed
in real-time at a rate of 25 Hz with a 1.2 second horizon.
Additionally, we apply a first-order filter to the command
outputs from NEMPC to reduce control signal noise on the
hardware task. We report control results for each loss metric
in Fig. 7. The trajectory tracking results for model-based
NEMPC and the differential PID controller are compared in
Fig. 6. The hardware models also have the ability to track
a variety of reference inputs such as sine and ramp waves
(Fig. 9). For a video showing the robot performing a portion
of the control task as well as an overview of the MoLDy
library, see https://bit.ly/moldy_video.

The hardware results are similar to the simulation results,
including the Cosine metric performing the worst. The higher
error in hardware results over simulation results is likely
due to various real-world factors, such as sensor noise,
non-uniformity of the robot materials, friction, and pressure
dynamics. These factors make generalizing a model to the
hardware data more difficult. Additionally, we had to use
NEMPC parameters that allowed for real-time control on
hardware, sacrificing performance for speed. The comparison
between the differential PID and model-based NEMPC con-
trollers in Fig. 6 demonstrates the advantages of model-based
control, particularly for soft robots. The average control IAE
for the differential PID controller was 6905.49 radians, while
the average for the Smooth L1 loss models on hardware
was 514.86 radians. Even after substantial tuning of the
differential controller, incorporating integral and derivative
gains, there is persistent steady-state error, highlighting the
limitations of simple PID control on a complex system,
necessitating a model-based approach as presented in this

paper.
V. CONCLUSION

As shown in the case study, MoLDy can be used to
effectively generate a learned dynamic model of complex soft

963

800
o
5]
O 700
n
2 600
£ |
8 s00 I I 1
w
< 400
300 \2 \4 < < N
« 0"—)\$ W W ?S'\(j S ’(\,\\,
VI\O
S
Loss Metrics
Fig. 7. Average IAE control measure for each of the loss metrics across

five models are shown for trials performed on the hardware platform.

robots. Interestingly, we found that the loss metric used in
model training had a minimal effect on control performance
compared to other hyperparameters, excluding Cosine loss.
We conclude that any of the other high-performing loss
metrics we compared can be used to successfully create
learned dynamic models. This process also demonstrates
the ability of the MoLDy toolbox to perform benchmarking
studies to explore the effects of varying hyperparameters.
The optimization performed by MoLDy was helpful to
obtain a set of hyperparameters that performed well across
loss metrics. The models produced by MoLDy have good
dynamic performance and low steady state error when used
in control with NEMPC, without requiring an integrator or
pre-training on simulation data.

The versatility of MoLDy is highlighted by its capability
to model and control novel systems, such as the soft link,
without the need for prior knowledge beyond data collection.
The MoLDy toolbox could be used to create learned models
of other soft systems, such as sensors or actuators, with an
input/output relationship that can be measured empirically.

In this work, we have presented a new library for creating
effective learned models for use with model-based control.
Additionally, we have released a previously published control
algorithm (NEMPC) that can directly use these learned
models. These resources will enable other researchers in soft

Authorized licensed use limited to: Brigham Young University. Downloaded on December 26,2024 at 17:02:29 UTC from IEEE Xplore. Restrictions apply.

& 200 \/ N — // \\ 7\
& 1001 \/ —f— ~
2 2 i
g ol Nl N m SR bl -
- ‘Lf’ ‘\/ | | | he |
E]) “'\‘v\ f™
B ot Ny " \«VJ\;-\
~ 7 A'V \,<..,,//
S

/ \
—11 - /—\ﬁg NS
-~ 14 ——\
® ol —— HW Data
= -1 N/~ Model Prediction
0 5 10 15 20 25
Time (s)

Fig. 8. Open-loop prediction performance for the grub hardware. Only
two pressure states are included as the performance was similar for all four
pressure states.

robotics to perform accurate, model-based control of various
soft robot platforms without the need to derive analytical
equations or hand tune model parameters.

REFERENCES

[1] H. Zhang, R. Cao, S. Zilberstein, F. Wu, and X. Chen, “Toward ef-
fective soft robot control via reinforcement learning,” in International
Conference on Intelligent Robotics and Applications, 2017.

[2] P. Hyatt and M. D. Killpack, “Real-time nonlinear model predictive
control of robots using a graphics processing unit,” IEEE Robotics and
Automation Letters, vol. 5, no. 2, pp. 1468-1475, 2020.

[3] C. C. Johnson, T. Quackenbush, T. Sorensen, D. Wingate, and M. D.
Killpack, “Using first principles for deep learning and model-based
control of soft robots,” Frontiers in Robotics and Al, vol. 8, 2021.

[4] J. M. Bern, Y. Schnider, P. Banzet, N. Kumar, and S. Coros, “Soft
robot control with a learned differentiable model,” in 2020 3rd IEEE
International Conference on Soft Robotics (RoboSoft), 2020.

[5] P. Hyatt, C. S. Williams, and M. D. Killpack, “Parameterized
and GPU-parallelized real-time model predictive control for high
degree of freedom robots,” 2020. [Online]. Available: https:
/farxiv.org/abs/2001.04931

[6] D. Kim, S.-H. Kim, T. Kim, B. B. Kang, M. Lee, W. Park, S. Ku,
D. Kim, J. Kwon, H. Lee, J. Bae, Y.-L. Park, K.-J. Cho, and S. Jo,
“Review of machine learning methods in soft robotics,” PLOS ONE,
vol. 16, no. 2, pp. 1-24, 02 2021.

[71 N. Geneva and N. Zabaras, “Transformers for modeling physical
systems,” Neural Networks, vol. 146, pp. 272-289, feb 2022.

[8] D. Nguyen-Tuong and J. Peters, “Model learning for robot control: a

survey,” Cognitive Processing, vol. 12, no. 4, pp. 319-340, Nov 2011.

D. Bianchi, M. Antonelli, C. Laschi, and E. Falotico, “Open-loop

control of a soft arm in throwing tasks,” in Proceedings of the 19th

International Conference on Informatics in Control, Automation and

Robotics - Volume 1: ICINCO,, INSTICC. SciTePress, 2022.

[10] X. You, Y. Zhang, X. Chen, X. Liu, Z. Wang, H. Jiang, and X. Chen,
“Model-free control for soft manipulators based on reinforcement
learning,” in 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2017, pp. 2909-2915.

[11] A. Alkhodary and B. Gur, “Kinematics transformer: Solving the
inverse modeling problem of soft robots using transformers,” 2022.

[12] A. Centurelli, A. Rizzo, S. Tolu, and E. Falotico, “Open-loop model-
free dynamic control of a soft manipulator for tracking tasks,” in 2021
20th International Conference on Advanced Robotics (ICAR), 2021.

[9

—

964

6 (rad) ¢ (rad)

¢ (rad)

---- Command
—— Grub HW

Time (s)

Fig. 9. Grub control performance for sine and ramp command inputs on
the hardware platform.

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

T. G. Thuruthel, E. Falotico, F. Renda, and C. Laschi, “Model-based
reinforcemefnt learning for closed-loop dynamic control of soft robotic
manipulators,” IEEE Transactions on Robotics, vol. 35, 2019.

M. T. Gillespie, C. M. Best, E. C. Townsend, D. Wingate, and
M. D. Killpack, “Learning nonlinear dynamic models of soft robots
for model predictive control with neural networks,” in 20/8 IEEE
International Conference on Soft Robotics (RoboSoft), 2018.

T. Luong, K. Kim, S. Seo, J. Jeon, C. Park, M. Doh, J. C. Koo, H. R.
Choi, and H. Moon, “Long short term memory model based position-
stiffness control of antagonistically driven twisted-coiled polymer
actuators using model predictive control,” IEEE Robotics and Automa-
tion Letters, vol. 6, no. 2, pp. 41414148, 2021.

T. G. Thuruthel, E. Falotico, F. Renda, and C. Laschi, “Learning
dynamic models for open loop predictive control of soft robotic
manipulators,” Bioinspiration & Biomimetics, vol. 12, 2017.

P. Hyatt, D. Wingate, and M. D. Killpack, “Model-based control of
soft actuators using learned non-linear discrete-time models,” Frontiers
in Robotics and Al, vol. 6, 2019.

T. G. Thuruthel, B. Shih, C. Laschi, and M. T. Tolley, “Soft robot per-
ception using embedded soft sensors and recurrent neural networks,”
Science Robotics, vol. 4, no. 26, 2019.

W.J. J. Edwards, G. Tang, G. Mamakoukas, T. D. Murphey, and K. K.
Hauser, “Automatic tuning for data-driven model predictive control,”
2021 IEEE International Conference on Robotics and Automation
(ICRA), pp. 7379-7385, 2021.

M. Hoffmann, M. K. Scherer, T. Hempel, A. Mardt, B. de Silva, B. E.
Husic, S. Klus, H. Wu, J. N. Kutz, S. Brunton, and F. No€, “Deeptime:
a python library for machine learning dynamical models from time
series data,” Machine Learning: Science and Technology, 2021.

F. Largilliere, V. Verona, E. Coevoet, M. Sanz Lopez, J. Dequidt, and
C. Duriez, “Real-time Control of Soft-Robots using Asynchronous
Finite Element Modeling,” in ICRA 2015, May 2015.

R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. E. Gonzalez, and
I. Stoica, “Tune: A research platform for distributed model selection
and training,” arXiv preprint arXiv:1807.05118, 2018.

T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A
next-generation hyperparameter optimization framework,” 2019.

W. Falcon and The PyTorch Lightning team, “PyTorch Lightning,”
Mar. 2019. [Online]. Available: https://github.com/Lightning- Al/
lightning

P. Hyatt, C. C. Johnson, and M. D. Killpack, “Model reference
predictive adaptive control for large-scale soft robots,” Frontiers in
Robotics and Al vol. 7, 2020.

Authorized licensed use limited to: Brigham Young University. Downloaded on December 26,2024 at 17:02:29 UTC from IEEE Xplore. Restrictions apply.

