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Abstract—A vehicular communication network allows vehi-
cles on the road to be connected by wireless links, providing
road safety in vehicular environments. Vehicular communication
network is vulnerable to various types of attacks. Crypto-
graphic techniques are used to prevent attacks such as message
modification or vehicle impersonation. However, cryptographic
techniques are not enough to protect against insider attacks
where an attacking vehicle has already been authenticated in
the network. Vehicular network safety services rely on periodic
broadcasts of basic safety messages (BSMs) from vehicles in the
network that contain important information about the vehicles
such as position, speed, received signal strength (RSSI) etc.
Malicious vehicles can inject false position information in a
BSM to commit a position falsification attack which is one
of the most dangerous insider attacks in vehicular networks.
Position falsification attacks can lead to traffic jams or accidents
given false position information from vehicles in the network. A
misbehavior detection system (MDS) is an efficient way to detect
such attacks and mitigate their impact. Existing MDSs require
a large amount of features which increases the computational
complexity to detect these attacks. In this paper, we propose a
novel grid-based misbehavior detection system which utilizes the
position information from the BSMs. Our model is tested on a
publicly available dataset and is applied using five classification
algorithms based on supervised learning. Our model performs
multi-classification and is found to be superior compared to other
existing methods that deal with position falsification attacks.

Index Terms—Vehicular networks, grid-based misbehavior de-
tection, network security, machine learning

I. INTRODUCTION

A vehicular communication network consists of wireless
multi-hop connections with fast dynamic topology due to high
speed mobility from moving vehicles. Vehicular networking is
an important component to Intelligent Transportation Systems
(ITS) which enables monitoring of road traffic density to
optimize transportation system and reduce the number of
accidents. Cooperative Intelligent Transportation Systems (C-
ITS) allow wireless technologies between two or more ITS
sub-systems to communicate for an enhanced ITS service and
provide better road safety. Such systems involve vehicle-to-
everything (V2X) communications which includes vehicle-
to-vehicle (V2V), vehicle-to-infrastructure (V2I), vehicle-to-
pedestrian (V2P) and vehicle-to-network (V2N) communica-
tions collectively. With cellular based V2X communications,
vehicles can communicate beyond line-of-sight sensors for
much longer range of communications [1].

In vehicular network systems, basic safety messages
(BSMs) are used to communicate between vehicles. Vehicles
send BSMs out periodically, containing their current loca-
tion, speed, acceleration, heading, etc. These messages are
vulnerable to threats such as attacks on integrity and denial
of service attacks. Taking advantage of the vulnerabilities
of these messages can lead to impersonating the identities
of other vehicles and broadcasting fake traffic warnings to
disrupt traffic flow. Such external attacks can be avoided
using cryptographic solutions, however, internal attacks where
vehicles are already authenticated are much more difficult to
detect [2]. A misbehavior detection system (MDS) is efficient
in detecting malicious vehicles that are already authenticated
in the vehicular network. Although misbehavior detection
systems are more efficient in detecting internal attacks on
vehicular networks, there still exists challenges of deploying
an MDS in a vehicular network. In vehicular networks, there
is high speed mobility from moving vehicles which results
in a fast dynamic topology of the network. An MDS that
is deployed in a vehicular network must adapt to such a
dynamic topology as it affects routing, mobility and security.
As traffic is occurring throughout the roads, an MDS must be
deployed at different points to capture and analyze all of the
traffic. To detect these internal attacks, an MDS will involve all
participating nodes and make a decision based on aggregated
results from data collected through the participating nodes.

One of the internal attacks that an MDS must be able to
detect is the position falsification attack where attackers broad-
cast false position information through the BSMs to disrupt
traffic information flow. Machine Learning (ML) has been
used for security in vehicular networks and recently, several
ML-based misbehavior detection systems have been proposed
to detect position falsification attacks in vehicular networks.
However, the existing methods make use of a high amount of
features which increases the computation complexity and the
size of data needed to train their models.

In this work, we propose a grid-based MDS to detect
position falsification attacks. In the proposed scheme, a multi-
class machine learning based approach is used on grid-based
data. The grid based data is taken by plotting all of the trans-
mitted positions for each vehicle and capturing the transmitted
positions in a grid. We propose new features based on the
grid data to capture transmitted positions of each vehicle. We
reduce the dataset size by using only the proposed features
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based on the grid data from each vehicle instead of using the
data from each BSM.

The rest of the paper is organized as follows. Section II gives
a literature review on various related work about detecting
position falsification attacks in vehicular networks. Section
IIT discusses the system model, dataset, and attack models.
Section IV presents the proposed grid-based misbehavior
detection system. Section V shows the experimental results
and Section VI concludes the paper.

II. RELATED WORK

There are several existing approaches using MDSs to de-
tect insider attacks such as position falsification attacks. In
[3], the authors proposed and evaluated ML-based solutions
for local misbehavior detection information collected through
misbehavior reports (MBRs) which uses On-Board Units
(OBUs) and Road-Side Units (RSUs). The detection process
is executed by the misbehavior authority (MA) which is
a central entity in C-ITS. In [4], the authors proposed a
machine learning approach to classify multiple misbehaviors
in vehicular networks. The approach makes use of behavioral
and concrete features from nodes that are sending out BSM
packets. In [5], the authors proposed an ML-based MDS and
used the analysis of n consecutive positions from vehicles
to create three features. In [6], the authors proposed three
physical layer plausibility checks to exploit the RSSI of BSMs.
The plausibility checks are able to be run individually by each
vehicle and have multi-step mechaisms to raise the detection
rate. In [7], the authors proposed a cooperative ML-based
MDS to detect false alert attacks and position falsification
attacks. The ML-based scheme is used to detect both attacks
and is tested on their generated labelled dataset and publicly
available datasets. In [8], the authors proposed a ML-based
scheme that uses three novel features which are created
based on the sender position to detect position falsification
attacks. The proposed features include the angle of arrival
(AoA) of a message sent from one vehicle to another and
the estimated distance between the sender and receiver. The
final proposed feature takes the difference of the estimated
distance feature and the declared distance between the sender
and the receiver. In [9], the authors used ML-based techniques
to detect position falsification attacks. The authors showed the
efficiency of the ML-based approach on detecting modeled
attack patterns. In [10], the authors proposed a method for
feature extraction based on the positions of vehicles and detect
position falsification attacks with a multi-class classifier. In
[11], the authors detected position falsification attacks using a
data-centric method through an ML-based MDS. The proposed
approach combines information from two consecutive BSMs
sent by a vehicle. The existing methods in detecting position
falsification attacks for vehicular networks use many features
for their schemes, resulting in longer computation time.

In our proposed scheme, we reduce the number of features
by introducing a grid-based approach where the features are
constructed by using plotted position information of each
vehicle. We evaluate our grid-based scheme using different

machine learning algorithms through multi-class classification.
In addition, we evaluate our grid-based scheme on a publicly
available dataset used for evaluation of misbehavior detection
mechanisms in vehicular networks. We find that our grid-
based scheme have superior performance compared to pre-
vious multi-class classification schemes evaluated using the
same dataset.

III. SYSTEM MODEL, DATASET, AND ATTACK MODELS
A. System Model

There are three types of MDS in vehicular networks [12].
The first type is the standalone MDS where each vehicle
collects its own data and uses its own resources to detect
misbehavior in the network. In this type, vehicles do not have
information on other vehicles and they make a decision on de-
tection by themselves with no cooperation from other vehicles
in the network. The second type of MDS is the cooperative
and distributed MDS where vehicles will cooperate with each
other to detect misbehavior in the network. This is a distributed
architecture, so the decision is made by aggregating the results
from other misbehavior detection systems. The third type of
MDS is the hierarchical MDS where the network is made up
of clusters of vehicles. Each cluster has a cluster head chosen
cooperatively between the nodes in the cluster and the cluster
head aggregates the results made by the nodes in the cluster
to make a decision on detecting misbehavior in the network.

In our system model, we propose a cooperative grid based
machine learning scheme to detect the position falsification
attacks. In this scheme, each vehicle is equipped with a MDS
which makes a decision based on the data collected from the
BSMs on the vehicles in the network. The results/decisions
from each vehicle are aggregated and used to ultimately
remove misbehaving vehicles from the network.

((Z R})) AP

S & Network

Trusted Authority

Fig. 1: Vehicular Network Model for ML-based MDS

As shown in Figure 1, the system architecture consists
of the Trusted Authority (TA), the Access Point (AP), the
vehicles and the MDS. The TA is a trustworthy control
center that maintains all significant transactions such as vehicle
registration, key management and vehicle verification. The AP
communicates between the TA and the vehicles through the
cellular communication infrastructure. The MDS is equipped
in each vehicle to be active in detecting malicious vehi-
cles upon every BSM arrival. Vehicles periodically broadcast
BSMs which include their location, time, speed, etc. Vehicles
report to the TA through the APs from misbehavior detection
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system’s decision based on the basic safety messages that the
vehicle has received.

B. Dataset

The VeReMi dataset [13] is a publicly accessible dataset
for evaluating misbehavior detections in vehicular networks.
The VeReMi dataset is a simulated dataset, generated from
using LuST [14] and Veins [15]. The LuST scenario is based
on a real mid-size European city in Luxembourg and is
simulated in the simulation of urban mobility model (SUMO)
[16] for generating real world traffic. Veins is an open source
framework based on SUMO and OMNET++ [17]. SUMO is
a road traffic simulator used to generate real world traffic and
OMNET++ is an event based network simulator.

The VeReMi dataset consists message logs of vehicles from
many simulations. The message logs are either GPS data about
the vehicle or BSM messages received from other vehicles.
The dataset consists of five position falsification attacks, three
vehicle densities (Low, Medium, High) and three attacker
densities (10%, 20%, 30%). Each parameter set is reused five
times, resulting in 225 unique simulations.

Each BSM log entry contains a reception time stamp,
claimed transmission time, claimed sender, simulation based
unique message ID, position vector, speed vector, Received
Signal Strength Indicator (RSSI), position noise vector and
speed noise vector. Each simulation corresponds with a ground
truth file which is updated when a message is sent by a
vehicle. The ground truth file contains the transmission time,
sender, attacker type, message ID, actual position vector and
actual speed vector. The ground truth file contains the actual
information about vehicles from message logs while the log
entry files may contain fake vehicle information transmitted
from malicious vehicles.

C. Attacker Models

The VeReMi dataset includes a set of position falsification
attacks of five different types including the constant attack,
constant offset attack, random attack, random offset attack and
eventual stop attack. For our grid based model, we plot the
positions from all the basic safety messages sent by a vehicle
onto a grid and try to detect any attack patterns. Figure 2
shows plotted positions from transmitted BSMs of normal
vehicle behavior and different types of position falsification
attack vehicle misbehavior.

Figure 2a shows the positions sent by a legitimate vehicle
in a simulation. The positions sent by the legitimate vehicle
seems to form a path in which the vehicle took in the simu-
lation. The points on the grid will be captured and used for
our proposed features in the grid based misbehavior detection
approach.

The first type of attack is the constant attack where a vehicle
transmits a fixed, pre-configured constant position. Figure 2b
shows an example of a constant attack where it is shown
that the attacking vehicle is transmitting the same fixed, pre-
configured position in every BSM.

The second type of attack is the constant offset attack where
a vehicle transmits a fixed, pre-configured offset added to their
actual position. Figure 2c shows an example of a constant
offset attack from a vehicle. Figure 2c has a path that is similar
to the path in Figure 2a, however the path in Figure 2c is
shifted right on the x-axis and down on the y-axis.

The third type of attack is the random attack where a
vehicle transmits a random position within the vehicular area.
Figure 2d shows an example of a random attack from a vehicle
where the transmitted positions are random and have no clear
pattern.

The fourth type of attack is the random offset attack where a
vehicle transmits a random offset within the vehicular area that
is added to their actual position. Figure 2e shows an example
of a random offset attack from a vehicle. Figure 2e is similar
to Figure 2d where the transmitted positions are random and
have no clear pattern, however, the scale in Figure 2e is much
smaller in both axes than the scale in Figure 2d.

The fifth type of attack is the eventual stop attack where a
vehicle behaves normally and transmits its actual position in
the BSMs and then eventually commits a constant attack on
its last transmitted position to act like it has stopped. Figure 2f
shows an example of an eventual stop attack from a vehicle.
The vehicle behaves normally and transmits its actual position
as seen in the first three positions, however, on the fourth
position the vehicle acts as if it has stopped and continuously
transmits the fourth position for the rest of the simulation.

Rather than directly using the values from the VeReMi
dataset, we collect data through these grids on each vehicle
and create the proposed features based on this grid data for
the proposed grid based MDS.

IV. GRID-BASED MISBEHAVIOR DETECTION SYSTEM

In our scheme, we transform the data by taking the posi-
tional data from all the BSMs such that each sample represents
a vehicle instead to capture the vehicle’s positional pattern
on the road. Any unusual positions of vehicles where they
seem to be well off road would be captured and marked as
misbehaving. The positional data for each vehicle is repre-
sented on our grid-based scheme in which we create seven
features. The proposed MDS involves a grid-based approach
to generate seven new features along with one other feature
taken from the BSMs. The grid-based MDS uses these features
on a multi-class classifier to classify and detect which vehicles
are committing the position falsification attacks.

A. Grid Generation

A rectangular grid is created for each vehicle by plotting all
of the transmitted positions from the BSMs for each vehicle. A
2-D matrix is created to represent a vehicle’s grid and capture
the vehicle’s transmitted positions.

To normalize our features, the grid for each vehicle needs to
be in the same scale on both axes. To address this, let x,,,;,, be
the minimum x-coordinate out of all the transmitted positions
in the dataset, let x,,,, be the maximum x-coordinate out of
all the transmitted positions in the dataset, let y,,;, be the
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Fig. 3: 10 x 10 Grid of vehicle committing eventual stop attack

minimum y-coordinate out of all the transmitted positions in
the dataset and let ¥,,,, be the maximum y-coordinate out of
all the transmitted positions in the dataset. The coordinates:
{(mminaymin)» (xminvymaz)a (mmawaymin)a (xmawvymam) }
are used as the corners of the rectangular grid. The size of
each window by the x-axis is represented by Ax and the size
of each window by the y-axis is represented by Ay. Therefore,
the size of each window in a grid is Az by Ay. To create an
n x n grid, we calculate Az and Ay as follows:

Let K represent the set of all vehicles in the dataset, and
V¥ (k € K) represent an n x n matrix in which, the (i, j)th
entry of vk, vl’f j» represents the total number of transmitted
positions for the window in the ith row and jth column of the
grid.

Let M* be the set of all messages transmitted by the vehicle
k € K. We initialize V* to a zero matrix. For each message
m € MF, let (x,,,ym) be the BSM transmitted position. We
can find the corresponding window by calculating (7,7) as
follows:

.Y = Ymin
Tl Ay J ®
. T — Tmin
1= " Ax J “4)

We increment v} ; by 1.

Figure 3 shows a 10 x 10 matrix corresponding to the grid
of the vehicle’s positions in Figure 2f. The grid shows that

Tmaz — Tmi
Az = w (1) the first three BSMs from this vehicle are legitimate with
three different positions transmitted once each but the fourth
) position is transmitted 89 times representing an eventual stop
Ymaz — Ymin
Ay="—""—"+ (2) attack.
n
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B. Proposed Features

Rather than using the message log data, we use the grid data
for each vehicle and propose new features to greatly reduce
the size of the dataset.

The first new feature, py, corresponds to the total number
of positions from all BSMs transmitted for any vehicle & (i.e.,
the sum of all the entries in V*):

n—1ln—1

&)

The second new feature, wy, represents the number of
windows in any vehicle k’s grid that contains points. Let a
be an integer. We define a function X such that X (a) = 1, if
a >0, and X (a) = 0 otherwise.

n—1n—1

we =Y X(vf))

i=0 j=0

(6)

The third feature is called the spread ratio (sr) which is
between the second (number of windows containing points)
and first feature (total points) for any vehicle k (sr = ]“D’k) sr
of a vehicle captures how spread out the vehicle’s transmitted
positions are on its grid.

We define a binary n x n attacking matrix A for the grid us-
ing the whole training set. We set a; ; = 0 if v¥ ;> 0Vke K
where vF . ;; has at least one position from a benlgn vehicle, and
a;; = 1 otherwise. The windows with a; ; = 1 are considered
attacking windows which may include empty windows. The
fourth feature, g corresponds to the total number of points in
attacking windows for any vehicle k’s grid.

n—1n—1
q= Z Z Uf, Qi 5
i=0 j=0

The fifth feature is called the attack ratio (ary) which is the
ratio between the fourth (total number of points in attacking
windows) and first feature (total points) for any vehicle &
(ary = g—’;). With the attack ratio, the vehicle positions outside
of the windows containing positions from benign vehicles are
captured such as positions that are clearly not on the road.

The sixth feature represents the average absolute difference
between all consecutive points for any vehicle k.

Finally, the seventh feature corresponds to the average
absolute speed from all the BSMs sent from any vehicle k.
Any parked vehicle will be differentiated from a constant
attack with this feature because its average speed will be 0
while a constant attacking vehicle will have its actual speed
transmitted.

)

V. PERFORMANCE EVALUATION

To evaluate the proposed grid-based MDS system, we have
trained and tested on five classification models using the
VeReMi dataset. The models were trained and tested with
multi-classification and compared to other existing approaches
that detected position falsification attacks on the VeReMi
dataset using multi-classification.

Communication and Information System Security Symposium

A. Evaluation Metrics

The two main metrics used to evaluate the performance of
the proposed scheme are model accuracy and F1 score. The
model accuracy is the ratio between the number of correctly
predicted observations and the number of total observations.

TP+ TN
TP+TN+FP+ FN

Where T'P is the number of true positives, T'N is the
number of true negatives, F'P is the number of false positives
and F'N is the number of false negatives.

Precision is the ratio between the number of correctly
predicted malicious vehicles and the total number of predicted
malicious vehicles: %. Recall is the ratio between the
number of correctly predicted malicious vehicles and the total
number of actual malicious vehicles: TPZ%. The F1 score
is the weighted average of precision and recall.

(®)

Accuracy =

precision X recall

Flscore =2 x 9

precision + recall
B. Multi-class Classification

The grid-based scheme is evaluated using multi-class clas-
sification where each class of position falsification attacks
is classified and detected. Normal vehicles are labeled as
0, vehicles that commit a constant attack are labeled as 1,
vehicles that commit a constant offset attack are labeled as
2, vehicles that commit a random attack are labeled as 4,
vehicles that commit a random offset attack are labeled as
8 and vehicles that commit an eventual stop attack are labeled
as 16.

The VeReMi dataset is used to create our grid based data
which is shuffled into training (70%) and test (30%) sets for
evaluating the model. Five classification algorithms are used
to evaluate and test the grid based data including Decision
Tree (DT), Random Forest (RF), K-Nearest Neighbor (KNN),
Naive Bayes (NB) and Logistic Regression (LR). Five different
grid sizes (n = {20, 40, 60, 80,100}) are used to evaluate the
impact of window sizes on the detection performance.

Accuracy

0.95
0.9

0.85

0.8 - - =
window =20 window =40 window =60 window =80 window =100

NDT MRF EHLR BKNN CONB

Fig. 4: Model Accuracy

In Figure 4 and Figure 5, the accuracy and F1 score are
shown for each classification algorithm at different grid sizes.
As n increases, both the accuracy and F1 score increase,
however, at n = 60, the accuracy and F1 score plateau and
increasing n any further does not seem to affect the model

5200
Authorized licensed use limited to: Utah State University. Downloaded on December 26,2024 at 18:36:02 UTC from IEEE Xplore. Restrictions apply.



2024 IEEE International Conference on Communications (ICC): Communication and Information System Security Symposium

F1-Score
1.05

0.95

0.9

0.85 =
038 E
0.75 B

window =20 window=40 window=60 window =80 window =100

NDT EMRF ELR BKNN EINB

Fig. 5: Model F1-score

Metric Fl-score | Precision | Recall
Ref [10] 0.744 0.744 0.744
Ref [7] 0.954 0.978 0.932
Ref [11] 0.985 0.988 0.981
Proposed 0.992 0.993 0.990

TABLE I: Comparing other multi-class approaches

performance. This may be due to the window size being small
enough at n = 60 such that decreasing the window size further
won’t capture any points that the window size at n = 60
already has captured. The reason that the accuracy and F1
score increase from n = 20 is because the window size is
much bigger at n = 20 and therefore will not be able to
capture the transmitted position patterns of as many vehicles
as the window size at n = 40 would. Since the scales of
the plotted transmitted positions for each vehicle is different,
some vehicles’ positions with smaller scales may all fit into
one window while other vehicles’ positions with larger scales
will be more spread out on the grid. As for the classification
algorithms, the decision tree model performed the best while
the Naive Bayes model performed the worst.

Table I shows a comparison of the proposed scheme with
other multi-class approaches in detecting position falsification
attacks, using the VeReMi dataset. The proposed grid based
approach outperforms the other multi-class approaches at
n = 60 (number of windows = 3600) using the Decision Tree
model. We find that n = 60 seems to be the optimal value

grid based model that targets specific position falsification
attack types and also omit features of less importance.
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