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ABSTRACT
Hybrid exoskeletons are used to blend the rehabilitative effi-

cacy and mitigate the shortcomings of functional electrical stim-
ulation (FES) and exoskeleton-based rehabilitative solutions.
This paper introduces a novel nonlinear controller that may po-
tentially improve the rehabilitative efficiency of a lower limb hy-
brid exoskeleton by implementing four key features into the FES
and exoskeleton controllers. First, the FES input to the user’s
muscles is saturated based on user preference to ensure user
comfort. Second, rather than discarding the excess control effort
from the saturated FES input, it is redirected into the exoskele-
ton’s motor controller. Third, a safe deep neural network (DNN)
is designed to estimate the unknown dynamics of the hybrid ex-
oskeleton and the DNN is implemented in the FES controller to
improve the control efficiency and tracking performance. Fourth,
an adaptive update law is designed to estimate the unknown mus-
cle control effectiveness to facilitate the implementation of the
DNN. Lyapunov stability-based methods are used to generate
real-time adaptive update laws that will train the adaptive esti-
mate of the muscle effectiveness and the output layer weights of
the DNN in real-time, ensure the effectiveness and safety of the
controllers, and prove global asymptotic tracking of the desired
trajectory.

1 Introduction1

Functional electrical stimulation (FES) is a rehabilitation
technique that sends electrical pulses to a user’s muscles, caus-

∗Address all correspondence to this author.
1This research is supported in part by NSF award number 2230971. Any

opinions, findings and conclusions, or recommendations expressed in this ma-
terial are those of the author(s) and do not necessarily reflect the views of the
sponsoring agency.

ing functional muscle contractions in limbs that are paralyzed
or weakened due to a neurological condition or injury. FES has
been used extensively in rehabilitation and has been proven to
be highly effective [1–3]. Yet, despite the enormous rehabili-
tative potential of FES, the technique has one key flaw: FES
evokes muscle fatigue at a higher rate than volitional muscle
activation [4–6]. Because repetitive functional tasks are essen-
tial for neural plasticity and improving cardio-respiratory fitness,
FES-induced muscle fatigue prevents the user from achieving
the number of repetitions needed for clinically effective reha-
bilitation [7–9]. Therefore, to compensate for the faster onset of
muscle fatigue induced by FES, hybrid exoskeletons were intro-
duced to blend the rehabilitative efficacy and mitigate the short-
comings of FES and exoskeleton rehabilitative solutions. That is,
the motors of an exoskeleton and stimulation from FES are used
simultaneously to actuate the user’s limb, allowing the user to
achieve sufficient repetition for rehabilitative benefit, which may
not be possible by using FES alone. In fact, hybrid exoskele-
tons have been documented to be effective during gait restora-
tion and upper limb rehabilitation for users with spinal cord in-
juries [10–12]. Because FES may be uncomfortable for some
users, hybrid exoskeletons are beneficial since they allow users
to limit the FES input to the user’s muscle whiles, still achieving
proper tracking performance and enough repetitions for rehabil-
itative efficacy.

There have been previous attempts to saturate the FES input
to the user’s muscles [13–15]; however, these attempts include
the FES saturation in an adhoc manner. Additionally, there have
been some previous efforts that implement a saturated FES input
into controller design like [16–18], but nearly all prior work sim-
ply discarded the excess FES effort. Therefore, similar to [16],
this paper proposes a control architecture that sends the residual
FES control effort to the motor controller when the FES input
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is saturated. Therefore, the motor controller will compensate for
the saturated FES control effort, improving tracking performance
and enhancing clinical rehabilitation effectiveness. Additionally,
to slow muscle fatigue, the FES and motor controller will in-
clude adaptive DNN-based terms to approximate the uncertain
exoskeleton dynamics.

Many Dynamic systems are highly complex, uncertain, hard
to model, making it difficult to design an efficient controller that
ensures tracking performance. Therefore, researchers have com-
bined Lyapunov-based stability methods with neural network-
based controllers to estimate the complex, unknown nonlinear
dynamics [19–21]. Though neural networks have been proven
to be quality function approximators, deep neural networks
(DNNs) have been proven to be more capable of learning more
complex dynamics than neural networks. [22, 23]. Although
DNN’s have better performance in approximating unknown dy-
namics DNN methods have traditionally lacked performance
guarantees, hindering the adoption of DNN’s in safety-critical
systems. Furthermore, due to the computational power and slow
training speed associated with training the multi-layer weights
and biases of a DNN, the implementation of DNNs to a closed
loop controller may not seem viable. Motivated to improve vi-
ability of DNN-based control, [24] and [25], have implemented
a Lyapunov based real-time and offline DNN layer weight up-
date approach to train the DNN to ensure consistent stability and
tracking performance. To be specific, the outer-layer weights of
the DNN are trained in real-time using Lyapunov based adap-
tive update laws; whereas, the inner layer weights are updated
offline using batches of data collected during real-time experi-
ments [26,27]. A current open problem is the implementation of
a saturated DNN-based controller for a hybrid exoskeleton. The
motivation of this paper it to integrate a DNN into a saturated hy-
brid exoskeleton controller to reduce fatigue and improve track-
ing performance and learning without sacrificing user comfort
and safety.

Building off the controller design from [16] and [25], this
paper develops a novel DNN-based saturated adaptive FES con-
trollers and a robust motor controller for a lower-limb hybrid
exoskeleton that will facilitate leg extension exercises. To be
specific, to reduce the effect of muscular fatigue, the FES control
input will be saturated and include adaptive DNN-based terms. If
the FES input is saturated, the excess control effort is redirected
into the motors of the exoskeleton, guaranteeing proper track-
ing performance and repetition. Furthermore, unlike [16], this
work develops an adaptive estimate of the uncertain muscle con-
trol effectiveness to facilitate the adaptive FES control design.
Additionally, a Lyapunov stability analysis is performed on the
proposed control system to prove global asymptotic tracking.

2 Limb Model
The knee joint dynamics can be mathematically modeled as2

2For notational brevity, all explicit dependence on time, t, within the terms
q(t), q̇(t), q̈(t) is suppressed.

Iq̈+P(q, q̇)+G(q)+Bq̇+d (t) = τH (t)+ τR (t) , (1)

where q : R≥t0 →R denotes the measurable, twice differentiable
knee angle measured clockwise between the shank and the down-
ward vertical axis, t0 ∈ R≥0 is the initial time, I ∈ R>0 denotes
the inertia of the lower limb about the knee joint, P : R×R→R
denotes the passive viscoelastic torque associated with the user’s
joint stiffness and damping due to the muscle tendon complex,
G : R → R denotes the gravitational force exerted on the lower
limb, B ∈ R>0 denotes the viscous damping coefficient asso-
ciated with exoskeletons’ joint, d : R≥t0 → R denotes the un-
modeled disturbances and dynamics, τH : R≥t0 → R denotes the
torque produced by the stimulated quadriceps femoris muscle
(i.e., the human), and τR : R≥t0 →R denotes the torque produced
by the exoskeleton (i.e., the robot).Referencing (1), the torque
produced by the stimulated quadriceps can be defined as

τH (t)≜ Bhuh (t) , (2)

where uh : R≥t0 → R denotes the muscle control input, and Bh ∈
R denotes the unknown muscle control effectiveness term that
maps the FES input to torque.3Conversely, the torque produced
by the exoskeleton can be defined as

τR (t)≜ Brur (t) , (3)

where ur : R≥t0 → R denotes the motor control input, and Br ∈
R denotes the positive, known motor control effectiveness that
maps motor input to torque.

Assumption 1: The product of the unknown muscle control ef-
fectiveness matrix and the control input can be linearly parame-
terized as

Bhuh (t) = Y (t)θ, (4)

such that Y : R≥t0 → R is the known control input (i.e., Y (t) ≜
uh (t)), and θ ∈ R is the unknown muscle control effectiveness
constant (i.e., θ ≜ Bh ).
Assumption 2: In the knee joint dynamics shown in (1),
I,P,G,B,d have known bounds such that ci ≤ I ≤ cI , |P(q, q̇)| ≤
cP1 + cP2 |q̇|, |G(q)| ≤ cG, B ≤ cB, and |d (t)| ≤ cd ,∀t where
ci,cI ,cP1,cP2,cG,cB,cd ∈ R are known positive constants.

3Due to changes in the muscle geometry, the muscle control effectiveness
varies with motion of the knee. However, in this preliminary work, the control
effectiveness is assumed to have a constant value. Future efforts will seek to
modify the control development and stability analysis that enables the control
effectiveness to vary with the knee angular position and velocity.
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3 Control Development
3.1 Control Objective and Open Loop Error Dynamics
The control objective is to ensure that the knee joint angle
tracks a sufficiently smooth desired position trajectory denoted
by qd : R≥t0 → R, where qd is a known, bounded, and twice
differentiable signal such that qd , q̇d , q̈d ∈ L∞. To ensure trajec-
tory tracking, a tracking error represented by e1 : R≥t0 →R, that
quantifies the deviation of the trajectory in (1) from the desired
trajectory, is established. The tracking error is defined as4

e1 ≜ qd −q. (5)

To further facilitate the analysis, a filtered tracking error e2 :
R≥t0 → R is defined as:

e2 ≜ ė1 +αe1, (6)

where α ∈ R>0 denotes a user-defined control gain. With the
tracking error and the filtered tracking error defined, a composite
error vector z : R2 → R2 can be defined as:

z ≜
[

e1, e2
]T

. (7)

The open-loop error dynamics can be obtained by taking the time
derivative of (6), multiplying the time derivative of (6) with the
inertia of the lower limb I, then adding and subtracting e1 to
the resulting product between the inertia of the lower limb and
the derivative of the filtered tracking error, and substituting the
dynamics in (1) and the product of the linearly parameterized
control effectiveness and control input in (4) to yield

Iė2 = f −Y θ−Brur +Ψ− e1, (8)

where f : R×R→ R is defined as

f ≜ Iq̈d +P+G+Bq̇, (9)

and Ψ : R×R×R≥t0 → R is defined as

Ψ ≜ d + Iαė1 + e1. (10)

Since the constant muscle control effectiveness is unknown, an
estimate of the muscle control effectiveness is necessary to facil-
itate controller development. The estimated control effectiveness
can be obtained from the following equation:

B̂h (t)uh (t) = Y (t) θ̂(t), (11)

4For notational brevity, all functional dependencies are hereafter suppressed
unless required for clarity of exposition.

where B̂h, θ̂(: R≥t0 → R>0 denote the estimate of the human
control effectiveness constant since θ̂ ≜ B̂h. To facilitate anal-
ysis, the product of the estimated muscle control effective-
ness and the control input terms are added and subtracted (i.e.,
Y (t) θ̂(t)− B̂huh (t)) into the open loop error dynamics in (8) to
yield

Iė2 = f −Y θ̃− B̂huh (t)−Brur +Ψ− e1, (12)

where the parameter estimation error θ̃ : R2 → R is defined as

θ̃ ≜ θ− θ̂(t). (13)

To facilitate the development of the DNN approximation, the de-
sired exoskeleton dynamics fd : Ω → R is defined as

fd (xd)≜ Iq̈d +P(qd , q̇d)+G(qd)+Bq̇d , (14)

where xd : R≥t0 → Ω represents the composite desired trajectory
that is defined as xd ≜ [qd , q̇d , q̈d ]

T , and Ω ⊂ R3 is a closed and
bounded set. Now, fd is added and subtracted into the open loop
error system in (12) to yield

Iė2 = S−Y θ̃− B̂huh (t)−Brur +Ψ− e1 + fd , (15)

where S = f − fd . Referencing (10) and (15), there exists con-
stants c1,c2∈R>0 that upper-bound Ψ and S such that |Ψ+S| ≤
c1 + c2||z|| due to Assumption 2 and the Mean Value Theorem.

3.2 DNN Approximation and Update Policy
DNNs are capable of approximating continuous functions

that lie on a compact set, which motivated the introduction of fd
in (15). Since fd : Ω →R, there exists an ideal, pre-trained DNN
with ideal weights, biases, and activation functions such that the
desired exoskeleton dynamics, fd , can be represented using the
universal approximation theorem for neural networks defined as

fd (xd) =W T
σ(Φ(xd))+ ε(xd) (16)

by using the universal approximation theorem for neural net-
works [28], where W ∈ Rn×1 denotes the unknown, ideal out-
put layer weights, σ : Rp → Rn denotes the unknown, ideal ac-
tivation functions associated with the output layer of the DNN,
Φ : Ω→Rp denotes the unknown ideal DNN, ε∈Ω→R denotes
the unknown DNN function approximation error, p denotes the
number of final hidden layer neurons of the DNN, and n denotes
the number of output layer neurons of the DNN. Referencing
(16), the ideal DNN, Φ, can be defined as

Φ ≜VLφL(VL−1φL−1(VL−2φL−2(...V1φ1(xd)), (17)
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where Vi and φi ∀i ∈ [1,L]
denote the hidden layer weights and activation function as-

sociated with the ideal DNN, respectively, and L ∈N denotes the
quantity of hidden layers associated with the ideal DNN.

Unlike most DNN-based control approaches, the DNN esti-
mate in this work is trained using a multi-timescale approach.
That is, the hidden layer weights and biases of the DNN are
trained offline using traditional DNN training methods (i.e. gra-
dient descent algorithm) with data sets collected prior to (i.e.,
pre-training) and concurrent to real-time execution, and the out-
put layer weights are trained real-time using update laws that
are developed using Lyapunov stability methods to ensure tra-
jectory tracking performance and stability [25].Referencing (16),
the DNN approximation of the desired hybrid exoskeleton dy-
namics, denoted by f̂d,i : Ω → R, can be expressed as

f̂d,i = Ŵ T
σ̂i
(
Φ̂i(xd)

)
, (18)

where Ŵ : R≥t0 → Rn×1 is the estimate of the ideal output layer
weights, σ̂i : Rp → Rn is the ith estimate of the ideal activation
functions of the output DNN layer, and Φ̂i : Ω →Rp is the ith es-
timate of the ideal DNN, and i ∈ N represents the index for each
DNN update. Note that pre-training the DNN provides Φ̂1 (·)
and Ŵ (t0) . To develop a real-time update law for the output
layer weights of the DNN, an error is established that quantifies
the deviation between the ideal and estimate of the output layer
weights. The error between the ideal and estimate of the output
layer weights, denoted by W̃ : R≥t0 → Rn×1, is defined as:

W̃ (t)≜W −Ŵ (t) . (19)

Assumption 3: Due to the universal function approxi-
mation theory of neural networks, there exists specific combi-
nations of layer weights, biases, and activation functions that
can approximate a function. Therefore, the unknown ideal
output layer weights W , unknown ideal output layer activa-
tion functions σ(·), unknown ideal DNN Φ(·), function ap-
proximation error ε(·), and the user defined activation func-
tions σ̂(·) can be upper-bounded with known constants W , σ, σ̂,
ε ∈ R>0 such that supxd(t)∈Ω ∥W∥ ≤ W , supxd(t)∈Ω ∥σ(·)∥ ≤ σ,

supxd(t)∈Ω,∀i∈N ∥σ̂i (·)∥ ≤ σ̂,and supxd(t)∈Ω ∥ε(·)∥ ≤ ε.

3.3 Control Design and Closed Loop Error Dynamics
Based on the DNN approximation in (18) and the open loop

error system in (15), the quadriceps femoral muscle controller is
designed as

uh ≜ satµ
[
B̂−1

h f̂d,i
]
, (20)

where satµ denotes a saturation function, with a limit of µ ∈R>0,
is defined as

satµ
[
B̂−1

h f̂d,i
]
≜

{
µsgn

(
B̂−1

h f̂d,i
) ∣∣B̂−1

h f̂d,i
∣∣≥ µ

B̂−1
h f̂d,i

∣∣B̂−1
h f̂d,i

∣∣< µ
. (21)

Recall that Bh is a positive constant. Consequently, B̂h (i.e., θ̂)
will be constrained to be a positive constant such that B̂−1

h will
always exist and be bounded.

Furthermore, the motor controller can be designed as

ur ≜ B−1
r (k1e2 +(k2 + k3 ∥z∥)sgn(e2))

+B−1
r

(
f̂d,i − B̂huh

)
,

(22)

where k1,k2,k3 ∈ R>0 are positive, user defined control gains,
and sgn(·) denotes the signum function. It is important to note
that the difference between the estimated desired exoskeleton dy-
namics and the product of the estimated muscle control effective-
ness term and the muscle control input in the motor controller
(i.e., f̂d,i − B̂huh) will compensate for the residual control effort
that results from the saturation term in (21). More precisely, the
excess muscle control inputs are fed into the motor controller to
ensure overall system performance. Based on the open loop er-
ror system in 15 and the subsequent stability analysis, the output
layer weights of the DNN are updated using the an update law
defined as

˙̂W ≜−proj
(
Γσ̂i(Φ̂i(xd))e2

)
(23)

and the adaptive update law used for the estimation of the muscle
control effectiveness term is defined as

˙̂
θ ≜−proj(γYe2) , (24)

where proj(·) denotes a smooth projection operator from
[29] that ensures θ̂ and Ŵ are constrained within known bounds,
and γ ∈ R>0 is a user defined learning rate that governs the pace
at which the muscle control effectiveness estimate learns. Simi-
larly, Γ∈Rn×n is a user-defined diagonal matrix of learning rates
that adjusts the learning rates of the estimates of the output layer
weights of the DNN. After substituting the muscle controller in
(20), the motor controller in (22), the ideal DNN approximation
in (16), and the DNN estimate in (18) into the open loop error dy-
namics in (15), the closed loop error dynamics can be obtained
as

Iė2 = −Y θ̃− k1e2 − k2sgn(e2)− k3 ∥z∥sgn(e2)
+W T σ(Φ(xd))−Ŵ T σ̂i

(
Φ̂i(xd)

)
S+Ψ+ ε(xd)− e1.

(25)
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It is important to note that the DNN performance will be im-
proved if the DNN is pre-trained prior to controller operation.
That is, all layer weights and biases of the DNN are initialized
with optimal weights and biases based on dynamic data col-
lected in previous simulations or experiments. To further im-
prove the DNN performance, data is collected during controller
operation to perform iterative offline updates (concurrent to real-
time execution) of the inner layer DNN weights, and the output
layer weights of the DNN are updated in real-time using the up-
date law in (23) to ensure optimal tracking and stability. How-
ever, it should be noted that system performance is guaranteed
even if the DNN is initially randomized although overall per-
formance will be worse than cases when the DNN is properly
pre-trained [25].

4 Stability Analysis
The stability of the DNN-based saturated adaptive control

system is stated in the following theorem:
Theorem 1: Given the closed loop error dynamics in (25)

that satisfies Assumptions 1-3, the control inputs in (20) and
(22), and the adaptation laws in (23) and (24) ensure that the
composite error vector defined in (7) (and hence the tracking er-
rors defined in (5) and (6)) yields a global asymptotic tracking
result in a sense that lim

t→∞
e1 (t) = 0 and lim

t→∞
e2 (t) = 0 provided

that the following gain conditions are satisfied:

k2 > c1 + ε+W
(
σ+ σ̂

)
, k3 > c2. (26)

Proof: Let VL : R3+n →R be a candidate Lyapunov function
defined as

VL(η) =
1
2

e2
1 +

1
2

Ie2
2 +

1
2

W̃ T
Γ
−1W̃ +

1
2γ

θ̃
2, (27)

where η : R≥t0 →R3+n is defined as η =
[

e1, e2, W̃ T , θ̃
]T . For

t ∈ [t0,∞), let η(t) be a Filippov solution to the differential in-

clusion η̇ ∈ K[h] (η), where h(η) =
[

ė1, ė2,
˙̃W T , ˙̃

θ

]T
and K[·],

defined in [30], is Filippov’s differential inclusion operator. Due
to the discontinuous sliding mode terms included in the motor
controller in (22) and the DNN estimate in (18) being updated
iteratively, time derivative of (27) exists almost everywhere (a.e)
within t0 ∈ [t0,∞) such that V̇L (η)

a.e.
∈ ˙̃VL (η), where ˙̃VL (η) de-

notes the generalized time derivative of VL along the Filippov
trajectories of η̇ = h(ζ). Referencing (27), the generalized time
derivative of VL can be denoted as ˙̃V ⊆

⋂
ξ∈∂VL(η)

ξT
[
K[h]T (η),1

]T

(according to [31, Equation 13]), where ∂VL(η) denotes the
Clark’s Generalized gradient of VL(η), and, since VL(η) is con-
tinuously differential in terms of η, Clark’s generalized gradient
of VL(η) can be redefined as ∂VL(η) = ∇VL(η), where ∇VL de-
notes the standard gradient of VL with respect to η and t.

After taking the generalized time derivative of the Lyapunov
equation in (27), the closed loop error dynamics in (25), the fil-
tered trajectory tracking error in (6), the parameter estimation er-
ror in (13), the error between the ideal output layer weights and
estimated output layer weights in (19), the output layer adapta-
tion law in (23), and the parameter estimation law in (24) are
substituted into the generalized derivative of the Lyapunov func-
tion yielding

˙̃VL ⊆ −αe2
1 + e2S− k1e2

2 − k2e2K [sgn(e2)]
−k3 ∥z∥e2K [sgn(e2)]+ e2W T σ(Φ(xd))
−e2Ŵ T K

[
σ̂i
(
Φ̂i(xd)

)]
+ e2ε(xd)

+e2Ψ+W̃ T K
[
σ̂i(Φ̂i(xd))

]
e2.

(28)

Using (19) and adding and subtracting e2W T K
[
σ̂i(Φ̂i(xd))

]
into

(28) yields

˙̃VL ⊆ −αe2
1 − k1e2

2 − k2e2K [sgn(e2)]
−k3 ∥z∥e2K [sgn(e2)]+ e2 (S+Ψ+ ε(xd))
+e2

(
W T σ(Φ(xd))−W T K

[
σ̂i(Φ̂i(xd))

])
.

(29)

Using the fact that |Ψ+S| ≤ c1 + c2||z||, Assumption 3, and the
fact that e2K [sgn(e2)] = |e2|, (29) can be upper-bounded as

V̇L
a.e.
≤ −αe2

1 − k1e2
2 − (k3 − c2)∥z∥|e2|

−
(
k2 − c1 − ε−W

(
σ+ σ̂

))
|e2| .

(30)

By satisfying the conditions stated in (26), (30) can be further
upper-bounded as

V̇L
a.e.
≤ −αe2

1 − k1e2
2 ≤−min(α,k1)∥z∥2 . (31)

Knowing that the Lyapunov function in (27) is positive definite
and radially unbounded and that the time derivative of the Lya-
punov function is negative semi-definite implies that VL(η)∈ L∞,
which implies that η ∈ L∞. Due to the definition of η and the
fact that η ∈ L∞, it is implied that e1,e2,W̃ , θ̃ ∈ L∞. Because
e1,e2,W̃ , θ̃ ∈ L∞, the relationships in (5), (13), and (19) implies
that q(t), θ̂(t),Ŵ (t) ∈ L∞. If q(t), θ̂(t),Ŵ (t) ∈ L∞ then the re-
lationship in (11) implies that B̂ ∈ L∞. The definition of the
muscle controller in (20) implies that Y,uh ∈ L∞. Assumption
2, the fact that Ŵ (t) ∈ L∞, and the definition in (18) implies that
σ̂i, f̂d,i ∈ L∞. Using the prior results and (22), it can be shown
that ur ∈ L∞. Furthermore, by the extension of the LaSalle-
Yoshizawa Theorem for non-smooth systems in [32] and [33]
and because VL(η) is positive definite and V̇L(η) is negative semi-
definite, it can be shown that −min(α,k1)∥z(t)∥2 → 0 as t → ∞,
which would imply that e1 (t) ,e2 (t)→ 0 as t → ∞.
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5 Conclusion
FES and motor controllers were developed for a leg exten-

sion hybrid exoskeleton. The FES controller included saturated
feedforward DNN terms in an effort to slow the onset of muscle
fatigue. A special feature of this work is that whenever the FES
input is saturated, the excess is sent into the motors of the ex-
oskeleton to improve tracking performance and repetition. To be
specific, the motor controller uses robust feedback terms when
actuating the user’s limb under non-saturated conditions; but,
when the FES is saturated, the motor include the excess DNN-
based terms from the FES controller. To train the DNN, the out-
put layer weights are updated in real-time using Lyapunov based
adaptive update laws; whereas, the hidden layer weights are up-
dated offline concurrent to real-time execution using traditional
DNN training methods with data collected in real-time. Addi-
tionally, a nonsmooth Lyapunov-based stability analysis proves
that the controllers yield a global asymptotic tracking result.
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