
1

Approximate Wireless Communication for Lossy

Gradient Updates in IoT Federated Learning

Xiang Ma, Student Member, IEEE, Haijian Sun, Senior Member, IEEE,

Rose Qingyang Hu, Fellow, IEEE, and Yi Qian, Fellow, IEEE

AbstractÐFederated learning (FL) has emerged as a dis-
tributed machine learning (ML) technique that can protect local
data privacy for participating clients and improve system effi-
ciency. Instead of sharing raw data, FL exchanges intermediate
learning parameters, such as gradients, among clients. This
article presents an efficient wireless communication approach
tailored for FL parameter transmission, especially for Internet of
Things (IoT) devices, to facilitate model aggregation. Our study
considers practical wireless channels that can lead to random
bit errors, substantially affecting FL performance. Motivated
by empirical gradient value distribution, we introduce a novel
received bit masking method that confines received gradient
values within prescribed limits. Moreover, given the intrinsic
error resilience of ML gradients, our approach enables the
delivery of approximate gradient values with errors without
resorting to extensive error correction coding or retransmission.
This strategy reduces computational overhead at both the trans-
mitter and the receiver and minimizes communication latency.
Consequently, our scheme is particularly well-suited for resource-
constrained IoT devices. Our simulations demonstrate that our
proposed scheme can effectively mitigate random bit errors in
FL performance, achieving similar learning objectives but with
the 50% air time required by existing methods involving error
correction and retransmission.

Index TermsÐApproximate communication, federated learn-
ing, lossy wireless communication, gradient model updates, for-
ward error correction (FEC).

I. INTRODUCTION

Federated learning (FL) [1] is a promising learning

paradigm that allows clients to perform machine learning (ML)

tasks locally while benefiting from the collective learning

capabilities of other clients through the exchange of model

parameters. Specifically, client data remains local, and only the

learned model is shared, ensuring robust privacy protection for

all participants. The FL system comprises a central parameter

server (PS) and multiple clients. The server aggregates the

local models uploaded by the clients and sends the global

model back.

Manuscript received April xx, 2024; revised June xx, 2024. This article was
partly presented at the ACM Workshop on Wireless Security and Machine
Learning (WiseML 2023).

Xiang Ma and Rose Qingyang Hu are with the Department of Electrical
and Computer Engineering, Utah State University, Logan, UT 84322 USA
(e-mail: xiang.ma@ieee.org, rose.hu@usu.edu).

Haijian Sun is with the School of Electrical and Computer Engineering,
University of Georgia, Athens, GA 30602 USA (e-mail: hsun@uga.edu).

Yi Qian is with the Department of Electrical and Computer Engineer-
ing, University of Nebraska±Lincoln, Omaha, NE 68182 USA (e-mail:
yi.qian@unl.edu).

In today’s computation world, a paradigm shift is the

transition from cloud to edge computation. Due to computing

scaling law, edge devices, even mobile IoTs, are capable

of processing fairly complex learning and inference tasks.

The topic in this paper is to consider a distributed learning

framework, such as FL, collaboratively accomplished among

IoT devices [2]. In such a setting, FL model exchange, i.e.,

the intermediate model results will be sent wirelessly to the

aggregator (FL server) during each training round. However,

the nature of random wireless channels can introduce errors

during data transmission. The erroneous transmission could

result in meaningless learning. A study by the authors in [3] fo-

cused on transmission bit errors in FL, specifically in a packet

erasure channel. It shows the mean square error of the ground

truth model and the error model experiences large fluctuation.

And the error model does not converge. Numerous methods

have been proposed to address this issue. For example, in the

physical layer, high-power transmission can enhance signal

quality and overcome noise effects. The receiver equalization

can mitigate the impact of fading channels. In the upper

layers, error detection and correction methods such as parity

check, checksum check, cyclic redundancy check (CRC), and

forward error correction (FEC) [4] are commonly utilized.

FEC encodes the message with redundant bits as an error

correction code (ECC) to correct certain errors on the receiver

side. Common ECCs include block code, convolutional code,

and low-density parity check (LDPC) code. However, it in-

troduces redundancy and requires additional computations on

the transmitter and receiver for encoding and decoding the

message [5]. Furthermore, communication overhead is intro-

duced to transmit redundancy information. When the channel

conditions are poor, errors may exceed the ECC’s correction

capability. In such cases, packet retransmission is employed

in the transport layer to ensure reliable transmission. FEC and

packet retransmission can intensely drain energy-constrained

IoT devices [6]. Also, the computation and communication

resources on IoT devices are constrained. Extra methods are

needed to reduce the communication costs of FL in wireless

networks.

Numerous schemes have been devised in FL to mitigate

communication overhead. To allow large-step model updates

to be uploaded at once, Federated Averaging (FedAvg) [7]

groups multiple stochastic gradient descent (SGD) updates

together. However, transmitting gradients can still lead to

significant delays for large-scale distributed ML models with

millions of parameters. In [8] and [9], a joint problem of

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3488377

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Utah State University. Downloaded on December 26,2024 at 18:25:55 UTC from IEEE Xplore. Restrictions apply.

2

resource allocation and user selection is proposed to minimize

the convergence time in FL. Advanced transmission schemes

such as non-orthogonal multiple access (NOMA) [10] offer

promising solutions. NOMA allows various users in the FL

system to transmit model parameters simultaneously, thus

improving channel efficiency and reducing communication

delay. Another practical approach to address this challenge is

gradient compression, with extensive research demonstrating

the efficacy of gradient sparsification and quantization while

incurring minimal performance loss. 1-bit SGD was applied

in [11] to reduce the transmission size of the gradient in a dis-

tributed data-parallel system, achieving at least 4× reduction

in the real training time from end to end. Furthermore, in [12],

the authors found that the drop in 99% of the gradients results

in no or negligible loss of precision in multiple data sets. A

joint learning and communication problem is formulated in

[13] to improve the energy efficiency for IoT devices.

Approximate communication, an analogy of approximate

computing techniques in parallel systems, reduces commu-

nication overhead between transmitters and receivers [14].

This approach permits communications to be executed ªap-

proximatelyº, deliberately allowing minor errors to achieve

efficiency gains. However, the system must possess intrinsic

error resiliency, and the error should be acceptable to adopt

approximate communication successfully. Within the FL sys-

tem, error resiliency manifests itself in various aspects. First,

the gradients in ML exhibit minimal variation, as demonstrated

by empirical studies in [15]±[17]. These studies reveal that

gradient values often fall within the (−1, 1) or even narrower,

such as (−0.01, 0.01). [15] provides histograms of gradients

for fully connected and convolutional layers in different train-

ing iterations, while [16] presents probability density functions

(PDFs) and cumulative distribution functions (CDFs) of gradi-

ents. These sources collectively establish that the ML gradients

are distributed within a small range and that this range is

empirically known. Furthermore, the error resilience of the FL

system is demonstrated through gradient compression, which

introduces errors in the form of gradient quantization. Individ-

ual gradient errors arise during quantization. However, while

individual gradients are accurately represented, a fraction

of all gradients are removed through gradient sparsification.

Finally, the FL system’s model aggregation occurs on average,

enhancing error resilience by limiting errors to an acceptable

level. With more clients participating in the learning process,

the resilience to errors improves.

Approximate communication has been applied in various

domains, such as network-on-chip (NoC) designs, contributing

significantly to higher energy efficiency [18]±[20]. In [18], an

approximate communication framework was designed for pho-

tonic NoCs to reduce the overhead of lasers and turning power

while maintaining acceptable distortion levels. Furthermore,

[19] introduced a quality control method that collaborates

with data approximation mechanisms to reduce packet size,

thus reducing network power consumption and latency. [20]

proposed packet production and reduction in error checking for

NoC as approximate communication solutions. The proposed

scheme achieves better performance in both energy con-

sumption and latency. Approximate communication was also

presented in [21] to eliminate the need for additional network

or spectrum resources for redundant information transmission

in wireless media delivery. By prioritizing significant bits in

wireless packets and placing them in the most significant bit

positions during high-order modulation, the proposed method

significantly improved video quality by 5 to 20 dB under

wireless conditions. Moreover, in [22], researchers presented

a distributed approximate Newton-type method to improve

communication efficiency in stochastic optimization and learn-

ing problems, accelerating the convergence speed of quadratic

problems.

Inspired by these works, we introduce an approximate

wireless communication framework for FL. This framework

encourages the lossy transmission of FL model gradients,

offering the advantage of low latency, reduced overhead, and

reduced computation. In [3], the server discards erroneous

local models in this scenario and resorts to past local mod-

els for continuity. This will cause the most recent model

updates to be lost. In [23], the authors proposed the FedLC

framework, which applied the user datagram protocol (UDP)

rather than the transmission control protocol (TCP) as the basis

for transmitting the model update in a lossy communication

channel. FEC and packet retransmission are also used as

countermeasures to prevent packet losses. Unlike [23], our

proposed approximate wireless communication operates in the

physical layer, while FedLC uses FEC in the application layer

and packet retransmission, UDP in the transport layer. They

can work together to achieve better performance.

In this research, we conducted a comprehensive theoretical

analysis of ML gradients. Specifically, we analyze the gra-

dients in fully connected neural networks and convolutional

neural networks (CNN) under commonly employed structures

like Sigmoid/ReLU activation and cross-entropy loss func-

tions. This enables us to clarify the gradient vanishing and

gradient exploding problems in deep neural networks (DNN).

The main contributions of this study are summarized below.

1) This study offers a sketch mathematical analysis of

gradient values in commonly employed ML settings.

We demonstrate that back-propagation could result in

gradient vanishing and gradient exploding problems.

2) Using prior knowledge of gradients and the effective-

ness of gradient clipping, received bits are thoughtfully

masked to confine errors within a small range. This allows

approximate transmission for error-resilient FL systems.

3) Approximate communication is applied in wireless FL

gradient transmission, effectively reducing communica-

tion latency and computational overhead. Additionally,

using gray coding with high-order modulation offers

protection for the most significant bits (MSBs), result-

ing in notable improvements in learning performance.

Gradient sparsification can further reduce communication

costs and mitigate the side effects caused by approximate

communication.

4) Extensive simulations are conducted to validate the effi-

cacy of the proposed approximate wireless communica-

tion for FL gradients. Learning performance is evaluated

by considering factors such as the number of users, the

size of the error, and the modulation index that can

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3488377

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Utah State University. Downloaded on December 26,2024 at 18:25:55 UTC from IEEE Xplore. Restrictions apply.

4

server and the client m denoted as dm, and the path loss ex-

ponent represented by α. Additive noise is assumed to follow

a Gaussian distribution, nt ∼ CN (0, n2
σ), where n2

σ represents

the variance. Additionally, we assume that the server has

channel information, that is, cmt =
√

pmt (dm)−αhm
t , with only

the noise remaining unknown.

The transmission process can be described below. First,

the gradients are converted from decimal to binary format.

Subsequently, the bits are mapped to symbols using a quadra-

ture amplitude modulation (QAM) scheme. The symbols are

then transmitted through the wireless fading channel. At the

receiver side, the signal is decoded and demodulated to the

closest point in the QAM constellation. The demodulation

process can be represented as follows:

ĝmt = argḡm
t ∈G min ||rmt −

√

pmt (dm)−αhm
t ḡmt ||2, (7)

where G refers to the set of symbol points on the constellation

diagram. ḡmt represents a potential symbol point within G,

while ĝmt denotes the optimal symbol point.

The main notation in the paper is summarized in Table I.

TABLE I: Summary of notations

Notation Definition

M ; m The total number of clients connected to the server; the
client index

L; l The last layer of the neural network; the neural network
layer index

x; y; ŷ Features of a data point sample; corresponding true label
of the data point; the predicted label

w; g; b Model weight; model gradient; neural network bias

η; δ Learning rate; intermediate quantity as ªerrorº

C; σ(·) Loss function; activation function

z; a Intermediate output of neuron; neuron output

Nl; Ng ; N The number of neurons in the l-th layer; the number of
gradients in neural network; the number of data samples

i; j; k; p; q Index

s; t; u, v Index

t Time (round) index

h; α; n; r Channel factor; path loss exponent; noise; received signal

pmt ; dm The transmission power of the client m at time t;
Distance between the client m and the server

III. GRADIENTS ANALYSIS WITH BACK-PROPAGATION

ML model training aims to find the optimal point to

minimize loss functions. Since neural networks are usually

non-convex, SGD and back-propagation are typical methods

for model training. However, gradient vanishing or exploding

problems can occur in deep neural networks, preventing effi-

cient model learning. The transmission of gradients with errors

can cause the gradient to change in random directions. The

received gradients can be substantial, making the model un-

stable. Studying the gradient behavior and the existing method

to prevent gradient vanishing/exploding helps to design the

method to perform approximate communication.

A. Gradient in Fully Connected Neural Networks

A neuron in neural networks serves as the fundamental unit

for data processing, taking inspiration from neurons in human

brains. It accepts input from the preceding layers, processes

them, and transmits them to the next layer [24]. The diagram

1

1

la 

1

2

la 

l

jb

  

1

1

l

l

Na 



1

l

jw

2

l

jw

1l

l

jNw 

l

ja

j

Fig. 2: Artificial neuron diagram

depicting neurons is illustrated in Fig. 2, providing insight into

the input and output of the j-th neuron in the l -th layer.

In the ML field, especially within neural networks, SGD and

backpropagation are widely used optimization techniques for

locating global minimum points. In a fully connected neural

network, the feedforward equation at each neuron can be

expressed as follows:

zlj = blj +

Nl−1
∑

k

wl
jka

l−1
k ,

alj = σ(zlj).

(8)

Here, b represents the bias, w denotes the weights, z stands

for the intermediate output, and a means the neuron output

after passing through the activation function σ(·). The indices

j and l denote that this neuron is the j-th neuron located in

the l-th layer of the neural network. Additionally, k is the

index of the input from the (l − 1)-th layer, and Nl−1 is the

number of neurons in the (l − 1)-th layer. In particular, the

neuron output from the previous layers serves as the input to

the current layer, and this process can continue back to the

first layer, as illustrated in Fig. 2. And equation (8) becomes

z1j = b1j +

N0
∑

k

w1
jkx

0
k,

a1j = σ(z1j).

(9)

in the first layer. x0
k is the k-th input, and the superscript 0

is used to maintain writing consistency. The corresponding

four fundamental equations in backpropagation for a fully

connected neural network are [25]

δLj =
∂C

∂zLj
=

∂C

∂aLj

∂aLj
∂zLj

=
∂C

∂aLj
σ′(zLj), (10a)

δlj =
∂C

∂zlj
=

Nl+1
∑

k

∂C

∂zl+1
k

∂zl+1
k

∂alj

∂alj
∂zlj

=

Nl+1
∑

k

δl+1
k wl+1

kj σ′(zlj),

(10b)

∂C

∂blj
=

∂C

∂zlj

∂zlj
∂blj

= δlj , (10c)

∂C

∂wl
jk

=
∂C

∂zlj

∂zlj
∂wl

jk

= δlja
l−1
k . (10d)

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3488377

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Utah State University. Downloaded on December 26,2024 at 18:25:55 UTC from IEEE Xplore. Restrictions apply.

5

Here, L designates the final layer in the neural network, and δlj
signifies the ªerrorº in the l-th layer in the neuron j. δlj serves

as an intermediate quantity introduced essential for calculating

the partial derivatives in equations (10c) and (10d).

The weight update can be rewritten as

wl
jk = wl

jk − ηδlja
l−1
k . (11)

Similarly, the bias update can be written as

blj = blj − ηδlj . (12)

The calculation of the gradient gl = ∇wlC(xi,yi;w
l) =

[∂C
∂wl

j1k1

, ∂C
∂wl

j1k2

, . . . , ∂C
∂wl

NlNl−1

] in equation (10d) involves two

terms, δlj and al−1
k . These two terms are discussed separately.

Firstly, al−1
k denotes the output of the activation function

of the neuron k in the (l − 1)-th layer. Its range depends

on the specific activation function used. For example, the

Sigmoid function ensures that al−1
k falls within the range

(0, 1) regardless of input zl−1
k . While for the ReLU activation

function, the output of the activation function al−1
k depends

on the input zl−1
k . More detailed analysis and mathematical

expressions on activation functions can be found in [26].

The calculation of the other term δlj is described in equation

(10b), which involves a sum of products between the errors of

the next layer δl+1
k , the weights of the node j in the l -th layer

to the node k in the subsequent layer wl+1
kj , and the derivative

of the activation function σ′(zlj). And the summation counts

through all neurons in the (l + 1)-th layer. The following

analysis will go through the third term σ′(zlj) first, then wl+1
kj ,

finally δl+1
k .

Firstly, the derivative of the activation function σ′(zlj)
depends on the specific activation function used, with values

ranging from (0, 0.25) for the Sigmoid function and {0, 1} for

ReLU. Next, the weight wl+1
kj is based on the initialization of

the model, the learning rate η, and the previous round gradients

based on Equation (5). Common weight initialization methods

generate random weight values within the range of (−1, 1)
[27], drawn from Gaussian or uniform distributions [28] in

a heuristic manner. Furthermore, more recent initialization

methods improve random initialization, such as in [29], where

the weight is initialized following a uniform distribution

w ∼ U [1√
Np

, 1√
Np

], Np is the number of neurons in the

previous layer. The weight is in the [1√
Np

, 1√
Np

] range. And

in [30], the weight is initialized in the Gaussian distribution,

w ∼ N (0,
√

(2/Np)), where 99.7% of the weights are within

[3 ∗
√

(2/Np), 3 ∗
√

(2/Np)]. Lastly, the error δl+1
k for the

third term can be expressed in the same way as in equation

(10b) with elements in the (l + 2)-th layer as follows:

δl+1
k =

∂C

∂zl+1
k

=

Nl+2
∑

i

∂C

∂zl+2
i

∂zl+2
i

∂al+1
k

∂al+1
k

∂zl+1
k

=

Nl+2
∑

i

δl+2
i wl+2

ik σ′(zl+1
k).

(13)

This process continues till the final layer.

In classification problems, the softmax function is com-

monly used as the activation function in the final layer to nor-

malize the output class probabilities. It provides an effective

combination when used in conjunction with the cross-entropy

loss function. The cross-entropy loss function can be expressed

as follows:

C = −
∑

i

yi log(ŷi), (14)

where yi is the input truth label, ŷi is the softmax probability

for the i-th class, i.e.,

ŷi = σs(zi) =
ezi

∑

k e
zk
. (15)

The derivative is

∂ŷi
∂zj

=

{

ŷi(1− ŷj), if i = j;

− ŷj · ŷi, if i ̸= j.
(16)

Equation (10a) can be written as

δLj =
∂C

∂ŷLi

∂ŷLi
∂zLj

= −
∑

i

yi
∂ log(ŷi)

∂ŷi

∂ŷi
∂zj

,

= −
∑

i

yi
1

ŷi

∂ŷi
∂zj

,

= −yj(1− ŷj)−
∑

i ̸=j

yi
1

ŷi
(−ŷj · ŷi),

= ŷj ·
∑

i

yi − yj .

(17)

Now, equation (10d) can be written as:

∂C

∂wl
jk

= δlja
l−1
k

= [

Nl+1
∑

p

δl+1
p wl+1

pj σ′(zlj)]a
l−1
k

= {
Nl+1
∑

p

[

Nl+2
∑

q

δl+2
q wl+2

qj σ′(zl+1
j)]wl+1

pj σ′(zlj)}al−1
k

= · · ·

=

Nl+1
∑

p

· · · [
NL
∑

i

δLi w
L
ijσ

′(zL−1
j)]× · · · × al−1

k

(18)

And for the first layer, it becomes

∂C

∂w1
jk

=

Nl+1
∑

p

· · · [
NL
∑

i

δLi w
L
ijσ

′(zL−1
j)]× · · · × x0

k (19)

As shown in Equation (18) the gradient calculation involves

multiplications and summation. When
∑Nl+1

p δl+1
p wl+1

pj σ′(zlj)
for each layer is greater than 1, the multiplication increases

the gradient even more. This can result in gradient exploding

problems. On the contrary, when the summation is close to

0, the multiplication makes the gradient even smaller. And

gradient vanishing problems could occur.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3488377

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Utah State University. Downloaded on December 26,2024 at 18:25:55 UTC from IEEE Xplore. Restrictions apply.

6

B. Gradient in Convolutional Neural Networks

Modern image recognition tasks leverage CNNs as the

primary technique. CNN is a particular variant of feedforward

networks comprising three types of layers: convolutional, pool-

ing, and fully connected. Typically, each convolutional layer is

followed by a pooling layer for feature learning, and the net-

work culminates with fully connected layers for classification

[31]. Without loss of generality, the CNN network consists of

two sets of typical CNN layers: two convolutional layers, two

pooling layers, and two fully connected layers, which can be

readily extended to a more general CNN structure. Moreover,

we assume that the dimensions of the layers match, enabling

practical training of the CNN. The diagram of this particular

CNN is shown in Fig. 3.

SoftmaxInput Pool1Conv1 Conv2 FC1Pool2 FC2 Output

Fig. 3: Convolutional neural network diagram

The feedforward process [32] can be written as:

z1j,k = b1j,k +
∑

p

∑

q

w1
p,qx

0
j+p,k+q, (20a)

a1j,k = σ(z1j,k), (20b)

a2j,k = max(a12j,2k, a
1
2j+1,2k, a

1
2j,2k+1, a

1
2j+1,2k+1), (20c)

z3j,k = b3j,k +
∑

p

∑

q

w3
p,qa

2
j+p,k+q, (20d)

a3j,k = σ(z3j,k), (20e)

a4j,k = max(a32j,2k, a
3
2j+1,2k, a

3
2j,2k+1, a

3
2j+1,2k+1), (20f)

z5i = b5i +
∑

j,k

w5
i;j,ka

4
j,k, (20g)

a5i = σ(z5i), (20h)

z6i = b6i +
∑

k

w6
i,ka

5
k, (20i)

a6i = σ(z6i). (20j)

Now, the backpropagation functions for Fig. 3 are shown

in equations (21). In equation (21c), the max-pooling

layer is applied with case 1 represented by a4j,k =

max(a32s,2t, a
3
2s+1,2t, a

3
2s,2t+1, a

3
2s+1,2t+1), where s = j

2
and

t = k
2

. Similarly, in Equation (21d), the 2 × 2 max-pooling

layer is applied.

Here, the softmax function is utilized as the activation

function in the final layer, while the cross-entropy function

is utilized as the loss function. This setting has found wide

applications, such as image classification. There are two kinds

of gradients: one in the fully connected layer, i.e., ∂C
∂w6

i,k

,

∂C
∂w5

i;j,k

, and another in the convolutional layer, ∂C
∂w3

p,q
and

∂C
∂w1

p,q
. We will discuss each of them, respectively, in the

following section.

δ6i =
∂C

∂z6i
=

∂C

∂a6i

∂a6i
∂z6i

=
∂C

∂a36
σ′(z6i), (21a)

δ5i =
∂C

∂z5i
=

N6
∑

k

∂C

∂z6k

∂z6k
∂a5i

∂a5i
∂z5i

,

=

N6
∑

k

δ6kw
6
kiσ

′(z5i), (21b)

δ3j,k =
∂C

∂z3j,k
=

∑

i

∂C

∂z5i

∂z5i
∂a4s,t

∂a4s,t
∂z3j,k

,

=
∑

i

δ5iw
5
i;s,t

∂a4s,t
∂a3j,k

∂a3j,k
∂z3j,k

,

=
∑

i

δ5iw
5
i;s,t

∂a4s,t
∂a3j,k

σ′(z3j,k),

=

{

∑

i δ
5
iw

5
i;s,tσ

′(z3j,k), if case 1;

0, otherwise;
(21c)

δ1j,k =
∂C

∂z1j,k
=

∑

u

∑

v

∂C

∂z3u,v

∂z3u,v
∂a2s,t

∂a2s,t
∂z1j,k

,

=
∑

u

∑

v

δ3u,vw
3
u−s,v−t

∂a2s,t
∂a1j,k

∂a1j,k
∂z1j,k

,

=
∑

u

∑

v

δ3u,vw
3
u−s,v−t

∂a2s,t
∂a1j,k

σ′(z1j,k),

=

{

∑

u

∑

v δ
3
u,vw

3
u−s,v−tσ

′(z1j,k), if case 2;

0, otherwise;

(21d)

∂C

∂w6
i,k

=
∂C

∂z6i

∂z6i
∂wi, k6

= δ6i a
5
k, (21e)

∂C

∂w5
i;j,k

=
∂C

∂z5i

∂z5i
∂w5

i;j,k

= δ5i a
4
j,k, (21f)

∂C

∂w3
p,q

=
∂C

∂z3j,k

∂z3j,k
∂w3

p,q

= δ3j,ka
2
j+p, k+q, (21g)

∂C

∂w1
p,q

=
∂C

∂z1j,k

∂z1j,k
∂w1

p,q

= δ1j,kx
0
j+p, k+q. (21h)

Calculating the gradient ∂C
∂w6

i,k

in the fully connected layer

in equation (21e) involves the multiplication of two terms δ6j
and a5k. For ∂C

∂w5
i;j,k

,

∂C

∂w5
i;j,k

= [

N6
∑

k

δ6kw
6
kiσ

′(z5i)]a
4
j,k. (22)

The summation goes through all neurons in layer 6 and then

by multiplication.

For ∂C
∂w3

p,q
and ∂C

∂w1
p,q

, we only consider nonzero conditions.

∂C

∂w3
p,q

= {
∑

i

δ5iw
5
i;s,tσ

′(z3j,k)}a2j+p, k+q

= {
∑

i

[

N6
∑

k

δ6kw
6
kiσ

′(z5i)]w
5
i;s,tσ

′(z3j,k)}a2j+p, k+q

(23)

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3488377

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Utah State University. Downloaded on December 26,2024 at 18:25:55 UTC from IEEE Xplore. Restrictions apply.

7

∂C

∂w1
p,q

= {
∑

u

∑

v

δ3u,vw
3
u−s,v−tσ

′(z1j,k)}x0
j+p, k+q

= {
∑

u

∑

v

[
∑

i

δ5iw
5
i;s,tσ

′(z3j,k)]w
3
u−s,v−tσ

′(z1j,k)}

× x0
j+p, k+q

= {
∑

u

∑

v

[
∑

i

(

N6
∑

k

δ6kw
6
kiσ

′(z5i))w
5
i;s,tσ

′(z3j,k)]

w3
u−s,v−tσ

′(z1j,k)} × x0
j+p, k+q

(24)

The gradient calculation in convolutional layers also in-

volves multiplication and summation, while the gradient in

the front layers involves more arithmetic operations.

C. Gradient in Deep Neural Networks

The summation and multiplication operations accumulate

when neural networks deepen and the number of neurons

in each layer increases. This can lead to gradient exploding

problems [33], where the gradients grow exponentially as they

are backpropagated through the neural network from layer to

layer. As a consequence, vanilla SGD becomes unstable for

model training. Several classical methods have been employed

to address the issue of gradient exploding, including gradient

clipping, proper weight initialization, and batch normalization.

These techniques help control the magnitude of the gradients

during the training process. Specifically, gradient clipping is

a fast and effective method of limiting gradients to a prede-

fined threshold. The threshold is introduced as an additional

hyperparameter that needs to be selected carefully. When the

threshold is set too low, the learning ability is restricted with

small gradient updates. On the contrary, the clipping effect

may be affected if the threshold is too high.

When the error δl+1
K , the weight wl+1

kj , and the derivative

of the activation function σ′(zlj) are small in equation (10b),

their summation can result in values in a much smaller range.

Typically, the magnitude is much smaller than 1. This situation

can lead to the gradient vanishing problem [34], where the

gradient exponentially diminishes as it is backpropagated to

the earlier layers. Several techniques can be applied to mitigate

the risk of gradient vanishing. Proper weight initialization

and batch normalization are effective measures to reduce the

probability of encountering this problem. However, replacing

the sigmoid activation function with a Rectified Linear Unit

(ReLU) is the most reliable approach. The ReLU function is

defined as follows:

σ(x) =

{

0, x ≤ 0;

x, x > 0.
(25)

σ′(x) =

{

0, x ≤ 0;

1, x > 0.
(26)

This results in the derivative of the activation function in (10b)

being 0 or 1. This adjustment enhances the likelihood of the

activation function’s derivative being 1, contributing to the

stabilization of the neural network.

IV. PROPOSED METHOD

Motivated by the gradient distribution and effective gradient

clipping method to mitigate gradient exploding problems, we

first present a received bit masking scheme to restrict the

received gradient values within a small range. Then, ap-

proximate communication is applied by transmitting gradients

with errors. The error level is measured using a l2-norm.

Lower transmission errors would result in better learning

performance. Next, to enhance learning performance, the most

significant bits (MSBs) in gradients are protected by gray

coding. Finally, gradient compression is applied to further

reduce communication costs in gradient transmission.

A. Received Bits Masking

Section III provides mathematical demonstrations that es-

tablish that gradients can easily cause vanishing or exploding

problems under specific conditions. Gradient clipping effec-

tively mitigates the gradient exploding problem. This allows

us to establish a threshold for the gradients received by the

server. With this in mind, our approach starts by devising a

reception mechanism tailored to these gradients.

In ML, gradients are commonly represented by floating-

point numbers of 32 bits. These numbers adhere to the

structure dictated by the IEEE-754 standard. In this format,

the initial bit is allocated for sign information, followed by

8 bits assigned to the exponent, and the concluding 23 bits

designated for the fractional component. Each bit is susceptible

to noise during transmission, resulting in potential corruption.

To avoid block corruption, we integrate interleaving at the

transmitter and deinterleaving. This strategy mitigates the

probability of multiple error bits aligning together. Within the

bit-level representation, if the second bit in the 32-bit form,

i.e., the initial bit in the exponent section, is set to 1 while all

other 31 bits are 0s, the corresponding decimal value becomes

2. Conversely, when the second bit is 0, and the other 31

bits are 1s, the value resides below 2. Assuming a magnitude

threshold of 1 for the gradient value, the exponent’s first bit

is consistently set to 0. Building upon this insight, on the

receiving end, irrespective of the decoded value in the second-

bit position of the gradient, we mask it to 0 regardless of the

actual received bit value. This adjustment is visually presented

in Fig. 4, where the ‘0’ bit signifies the constant value of 0 for

that particular bit. In contrast, ‘b’ adopts the value transmitted

during reception.

b 0 b bb b b b b b b bb b b b b b b bb b b b b b b bb b b b

sign exponent(8 bits) fraction(23 bits)

Fig. 4: Received gradient bit representation

B. Approximate Wireless Transmission

With the received bits masking described above, the gradient

received at the server falls within the span of (−2, 2), as

depicted in Fig. 4. Consequently, the associated error is also

limited to a narrow interval. In practical scenarios, this range

is often even more minor. In this context, the inherent error

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3488377

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Utah State University. Downloaded on December 26,2024 at 18:25:55 UTC from IEEE Xplore. Restrictions apply.

8

resilience of FL systems enables them to train models in

the presence of errors. Specifically, gradients in FL systems

can be transmitted with errors and need not be perfectly

accurate. This resilience to error in FL systems manifests

itself in two significant ways. First, the FL system operates

within the domain of machine learning and is inherently

equipped to manage gradient errors. Secondly, the global

gradient aggregation process diminishes the magnitude of the

error through averaging. To quantitatively evaluate the impact

of errors, the researchers in [35] used relative error to assess

individual value discrepancies. This relative error is precisely

defined as:

Erg =
|g − g̃|

g
, (27)

where g represents the original gradient value, g̃ denotes the

approximated value of g, and Erg stands for the relative error.

Given the multitude of gradients present within the neural

network, we employ the l2-norm of errors instead of relative

error to evaluate the impact of errors. The l2-norm of errors

is precisely characterized by the following:

||Er||2 =

√

√

√

√

Ng
∑

i=1

|gi − g̃i|2, (28)

where Ng is the number of gradients in the neural network.

We also adopt error tolerance as a metric to assess the

threshold that yields comparable learning performance to

accurate transmission. In this context, when ||Er||2 ≤ ET ,

the learning performance remains minimally affected.

C. Most Significant Bit Protection

Furthermore, we have observed that the bits at different

locations are of different significance and the gray coding

within high-order modulations produces varying effects on

bits located at different positions [21]. This observation has

significance not only in the transmission of media messages,

but also in the transmission of ML models. In wireless

communication, the transmission system lacks awareness of

the relative importance of data bits and treats all bits equally.

For example, when quadrature phase shift keying (QPSK) is

used as the modulation scheme, each symbol comprises 2 bits,

with possible combinations of 00, 01, 11, 10. In QPSK, the

error probability for the first and second bits is equivalent.

In contrast, 16-QAM employs 4 bits per symbol, with a

constellation map using gray coding, as illustrated below. As

shown in Fig. 5, one of the gray code mappings is depicted.

Notably, it becomes evident that the smallest distance between

two symbols corresponds to just a 1-bit difference.

In Fig. 5, the underlined bit corresponds to the first bit

within each symbol, serving as the most significant bit (MSB)

in the context of 16-QAM. Conversely, the fourth or last bit

represents the least significant bit (LSB). When symbols share

the same transmission probability, the error probability for the

MSB is lower than that for the LSB. For example, if the

symbol s0 is decoded with an error, it will most likely be

misconstrued as s1, s4, or s5 when the noise power is minimal.

For simplicity, we assume that the error symbol can only be

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

15

Fig. 5: Gray coding in 16-QAM constellation map

s1, s4, s5. While the MSB remains constant, the LSB changes

twice. Assuming that the probability of symbol error from s0
to s1 is ρ, then the probability of symbol error for s4 is ρ, and it

becomes
√
2ρ for s5. This observation is summarized in Table

II. The symbols within the other quadrants exhibit symmetry

to that of the first quadrant, yielding identical results. In high-

order modulations, gray coding safeguards the MSB bits of

gradient values represented in bit form.

TABLE II: Gray coding with 16-QAM MSB/LSB error count

Symbol Potential Error

Symbol

MSB Error Count/

Probability

LSB Error Count/

Probability

s0 s1, s4, s5 0 / 0 2 / (1 +
√
2)ρ

s1 s0, s2, s4, s5, s6 2 / (1 +
√
2)ρ 3 / (1 + 2

√
2)ρ

s4 s0, s1, s5, s8, s9 0 / 0 2 / (1 +
√
2)ρ

s5
s0, s1, s2, s4,
s6, s8, s9, s10

3 / (1 + 2
√
2)ρ 3 / (1 + 2

√
2)ρ

D. Gradient Compression

Gradient compression can further reduce the communica-

tion cost. In [10], we showed that gradient quantization and

sparsification can greatly reduce communication time. This

would cause a slight loss in final learning performance due to

compression errors. In our proposed approximate transmission

scheme, there exist transmission errors. We applied the sparsi-

fication here. Only the gradients with large gradient magnitude

and their indices will be transmitted to the server. Gradient

indices will be transmitted accurately through another channel.

On the receiver side, the gradients at the specific positions will

be set to zero.

E. Summary

The whole process is described in Algorithm 1. Our ap-

proach eliminates the need for FEC and packet retransmission.

It is important to note that our methodology diverges from

UDP, where retransmission is unnecessary. The distinction lies

in the fact that UDP operates at a higher level, using the

CRC solely to verify the UDP payload. Regarding physical

or MAC layer errors, retransmission is still invoked within

UDP. In contrast, our approach eliminates FEC and retrans-

mission in the lower layers, encompassing the physical and

MAC layers. This approach yields a tripartite benefit: First, it

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3488377

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Utah State University. Downloaded on December 26,2024 at 18:25:55 UTC from IEEE Xplore. Restrictions apply.

9

reduces communication overhead, facilitating the transmission

of more data bits. Second, it mitigates the computational

burden associated with FEC, a particularly attractive feature

for edge devices. Third, it enhances latency performance, as

retransmission becomes unnecessary.

Algorithm 1 Approximate Wireless Communication for Fed-

erated Learning

1: Initialization: Server initializes w0 and broadcasts to all

Clients.

2: while not converge do

3: Client:

Receives the most recent aggregated global model.

Performs local computation as Eq. (3).

Sends local gradient directly without error correction

coding through wireless channels.

4: Server:

Receives the local gradient with errors.

Masks the second bit in the 32-bit gradient represen-

tation as 0, leaving the other bits as received.

Sends the aggregated global model to clients.

5: end while

V. SIMULATION RESULTS

This section begins by presenting the configurations of the

simulation parameters. After that, we conducted BER sim-

ulation under different modulation schemes. Notably, among

the modulation schemes, the lower-order modulation technique

exhibits a superior BER to higher-order modulation, given the

same SNR level. Specifically, QPSK outperforms 16-QAM

and 256-QAM in terms of BER. Moving forward, we can

compare FL performance across three scenarios: ECRT, naive

erroneous transmission, and erroneous message augmented

by our proposed strategy. The naive erroneous transmission

signifies that transmission in wireless networks is subject

to errors without supplementary measures. In contrast, our

proposed scheme shows significantly improved testing accu-

racy compared to naive erroneous transmission. Compared to

ECRT transmission, our proposed method yields substantial

time savings while achieving commendable performance. The

convergence of our proposed scheme is proved using three

different image datasets in both IID and non-IID data settings.

Then, the aggregation error is quantized and the error is

evaluated under different wireless conditions. Furthermore,

we dive into the implications of gray coding across various

modulation schemes, highlighting the innate bit protection

for MSBs. Finally, we investigate the influence of user par-

ticipation numbers on the FL process. As user participation

increases, aggregation errors decrease, indicating a pronounced

improvement.

Our simulation considers a prototypical FL setup with M =
100 clients that interact with the server. We leverage three

image datasets to validate our proposed approach: MNIST,

Fashion-MNIST, and Cifar-10. These datasets encompass 10
distinct classes, and while MNIST and Fashion-MNIST entail

grayscale images, Cifar-10 features color images. Specifically,

MNIST comprises handwritten digits from 0 to 9, Fashion-

MNIST showcases fashion articles like shoes and clothing,

and Cifar-10 encompasses images of vehicles and animals.

MNIST and Fashion-MNIST provide 60,000 images for train-

ing, whereas Cifar-10 offers 50,000. The test subsets for all

datasets contain 10,000 images. Our simulation encapsulates

Independently and Identically Distributed (IID) and non-IID

data scenarios. In the IID setup, each client randomly samples

a fixed number of images from the training data. Conversely,

in the non-IID setup, each client is allocated images from 2

specific classes. Across the three datasets, CNNs are employed

with varying architectures. The CNN configuration is similar

to the datasets, incorporating 2 convolutional layers with 5-

unit kernels, 2 max-pooling layers with a size of 2, and

multiple fully connected layers in conclusion. The activation

function in all layers, except the final one, uses ReLU, while

the last layer uses the log-softmax function. In particular,

the neural network architectures in the MNIST, Fashion-

MNIST, and Cifar-10 datasets encompass 21,840, 65,558, and

62,006 model parameters, respectively. The learning rate is

η = 0.01, and the size of the training batch is 10. Throughout

the learning process, testing follows each round after global

aggregation, covering all data samples in the test data set. All

clients participate in the training procedure, unless otherwise

specified.

In the communication model, we establish the path loss

exponent for the wireless channel as α = 3 and assume a

distance of 10 meters between the server and the clients. The

transmission power at the clients is normalized to 1.

QPSK achieves the best BER performance. The BER is

summarized in Table III.

TABLE III: BER summary

SNR QPSK 16-QAM 256-QAM

0 dB 2.11× 10−1 3.28× 10−1 4.26× 10−1

10 dB 4.36× 10−2 1.23× 10−1 2.79× 10−1

20 dB 4.91× 10−3 1.90× 10−2 1.12× 10−1

To begin with, we demonstrate that the proposed scheme

attains a convergence point similar to that of the ECRT scheme

under the high SNR regime while experiencing a marginal

reduction in performance under the low SNR regime. Fig.

6 illustrates the learning outcomes for three different data

sets, comparing the transmission of ECRT with our proposed

transmission method using QPSK modulation. We use the

IID data set in Fig. 6(a). When our proposed method is

used, the learning curve exhibits a more significant fluctuation

than that observed with ECRT transmission. This variance is

attributed to transmission errors introduced by approximate

communication. However, except for the Cifar-10 dataset, the

convergence point of learning of our proposed method aligns

closely with that of ECRT transmission for the other two

datasets. This fluctuation becomes more streamlined in the

high SNR regime shown in Fig. 6(b). Furthermore, due to

the non-IID data structure, our proposed method showcases

improved learning performance in certain instances, surpassing

that of ECRT transmission.

Wi-Fi transmission nominally targets the SNR range of 10-

30 dB [36]. When SNR=0 dB, there will be no valid packet due

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3488377

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Utah State University. Downloaded on December 26,2024 at 18:25:55 UTC from IEEE Xplore. Restrictions apply.

12

with forward error correction and packet retransmission, while

consuming at least half the time. Furthermore, this study

investigates the impact of factors such as the variance of

the aggregation error with SNR, the effectiveness of gray

coding in high-order modulation, and the influence of the

number of users participating in the learning process under

error conditions. Gradient sparsification can further reduce

communication costs and mitigate the side effects caused by

approximate gradient transmission.

VII. ACKNOWLEDGE

The work of H. Sun is supported by UGA E-mobility

Initiative and NSF CNS-2236449. The work of R. Q. Hu is

supported by NSF EEC-1941524, ECCS-2139508, and CNS-

2319487. The work of Y. Qian is supported by NSF ECCS-

2139520 and CNS-2319486.

REFERENCES

[1] J. KonečnÂy, H. B. McMahan, F. X. Yu, P. RichtÂarik, A. T. Suresh, and
D. Bacon, ªFederated learning: Strategies for improving communication
efficiency,º [Online]: https://arxiv.org/abs/1610.05492, 2016.

[2] B. Brik, A. Ksentini, and M. Bouaziz, ªFederated learning for UAVs-
enabled wireless networks: Use cases, challenges, and open problems,º
IEEE Access, vol. 8, pp. 53841±53849, Mar. 2020.

[3] M. Shirvanimoghaddam, A. Salari, Y. Gao, and A. Guha, ªFederated
learning with erroneous communication links,º IEEE Commun. Lett., vol.
26, no. 6, pp. 1293-1297, Apr. 2022.

[4] A. Nafaa, T. Taleb, and L. Murphy, ªForward error correction strategies
for media streaming over wireless networks,º IEEE Commun. Mag., vo.
46, no. 1, pp. 72-79, 2008.

[5] M. F. Tsai, N. Chilamkurti, C. K. Shieh, and A. Vinel, ªMac-level forward
error correction mechanism for minimum error recovery overhead and
retransmission.º Mathematical and Computer Modeling, vol. 53, no. 11-
12, pp. 2067-2077, 2011.

[6] I. Ez-Zazi, M. Arioua, El Oualkadi, and Y. el. Assari, ªJoint FEC/CRC
coding scheme for energy constrained IoT devices,º Proceedings of the

International Conference on Future Networks and Distributed Systemsm
pp. 1-8, 2017.

[7] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and H. A. Arcas,
ªCommunication-efficient learning of deep networks from decentralized
data,º [Online]: https://arxiv.org/abs/1602.05629, 2016.

[8] M. Chen, H.V. Poor, W. Saad, and S. Cui, ªConvergence time optimization
for federated learning over wireless networks,º IEEE Trans. Wireless

Commun., vol. 20, no. 4, pp. 2457-2472, 2020.
[9] X. Ma, H. Sun, Q. Wang, R.Q. Hu, ªScheduling policy and power allo-

cation for federated learning in NOMA based MEC,º in IEEE Globecom,
pp. 1-7, 2020.

[10] H. Sun, X. Ma, R. Q. Hu, ªAdaptive federated learning with gradient
compression in uplink NOMA,º IEEE Trans. Veh. Technol., vol. 69, no.
12, pp. 16325-16329, 2020.

[11] F. Seide, H. Fu, J. Droppo, G. Li and D. Yu, ª1-bit stochastic gradient
descent and its application to data-parallel distributed training of speech
dnns,º in Fifteenth Annual Conference of the International Speech Com-

munication Association, 2014.
[12] A. F. Aji, and K. Heafield, ªSparse communication for distributed

gradient descent,º [Online]: https://arxiv.org/abs/1704.05021, 2017.
[13] Z. Yang, M. Chen, W. Saad, C.S. Hong and M. Shikh-Bahaei, ªEnergy-

efficient federated learning over wireless communication networks,º IEEE

Trans. Wireless Commun., vol 20, no. 3, pp. 1935-1949, 2020.
[14] F. Betzel, K. Khatamifard, H. Suresh, D. J. Lilja, J. Sartori, U. Karpuzcu,

ªApproximate communication: Techniques for reducing communication
bottlenecks in large-scale parallel systems.º ACM Comput. Surv., vol. 51,
no. 1, pp. 1-32, Jan. 2018.

[15] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li, ªTerngrad:
Ternary gradients to reduce communication in distributed deep learning,º
in Advances in Neural Information Processing Systems, vol. 30, 2017.

[16] A. M. Abdelmoniem, A. Elzanaty, M. S. Alouini, and M. Canini, ªAn
efficient statistical-based gradient compression technique for distributed
training systems,º in Proceedings of Machine Learning and Systems, vol.
3, pp. 297-322, 2021.

[17] B. Guo, Y. Liu, and C. Zhang, ªA partition based gradient compression
algorithm for distributed training in aiot,º in Sensors, vol. 21, no. 6, pp.
1943, 2021.

[18] F. Sunny, A. Mirza, I. Thakkar, M. Nikdast, and S. Pasricha, ªARXON:
A framework for approximate communication over photonic networks-
on-chip,º [Online]: https://arxiv.org/abs/2103.08828, 2021.

[19] Y. Chen, and A. Louri, ªAn approximate communication framework for
network-on-chips,º IEEE Trans. Parallel Distrib. Syst., vol. 31, no.6, pp.
1434-1446, 2020.

[20] M. F. Reza, and P. Ampadu, ªApproximate communication strategies
for energy-efficient and high performance NoC: Opportunities and chal-
lenges,º Great Lakes Symposium on VLSI 2019, May 2019.

[21] S. Sen, S. Gilani, S. Srinath, S. Schmitt, and S. Banerjee, ªDesign
and implementation of an ªApproximateº communication system for
wireless media applications,º Proceedings of the ACM SIGCOMM 2010

Conference, pp.15-26, 2010.
[22] O. Shamir, N. Srebro, and T. Zhang, ªCommunication-efficient dis-

tributed optimization using an approximate newton-type method,º Pro-

ceedings of the 31st International Conference on Machine Learning, vol.
32, no. 2, pp. 1000-1008, PMLR, 2014.

[23] X. Su, Y. Zhou, L. Cui, and J. Liu, ªOn model transmission strategies
in federated learning with lossy communications,º IEEE Trans. Parallel

Distrib. Syst., vol. 34, no. 4, pp. 1172-1185, 2023.
[24] R. Y. Choi, A. S. Coyner, J. Kalpathy-Cramer, M. F. Chiang, and J. P.

Campbell, ªIntroduction to machine learning, neural networks, and deep
learning,º Translational Vision Science & Technology, vol. 9, no. 2, Jan.
2020.

[25] M. A. Nielsen, ªNeural networks and deep learningº, Determination

Press, 2015.
[26] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, ªActivation

functions: Comparison of trends in practice and research for deep
learning,º [Online]: https://arxiv.org/abs/1811.03378, 2018.

[27] I. Goodfellow, Y. Bengio, and A. Courville, ªDeep learning,º MIT Press,
2016.

[28] I. Sutskever, J. Martens, G. Dahl, G. Hinton, ªOn the importance of ini-
tialization and momentum in deep learning,º in International Conference

on Machine Learning, pp. 1139-1147, PMLR, 2013.
[29] X. Glorot, and Y. Bengio, ªUnderstanding the difficulty of training

deep feedforward neural networks,º in Proceedings of the Thirteenth

International Conference on Artificial Intelligence and Statistics, pp. 249-
256, 2010.

[30] K. He, X. Zhang, S. Ren, and J. Sun, ªDelving deep into rectifiers:
Surpassing human-level performance on imagenet classification,º in Pro-

ceedings of the IEEE International Conference on Computer Vision, pp.
1026-1034, 2015.

[31] K, O’Shea, and R. Nash, ªAn introduction to convolutional neural
networks,º [Online]: https://arxiv.org/abs/1511.08458, 2015.

[32] P. Murugan, ªFeed forward and backward run in deep convolution neural
network,º [Online]: https://arxiv.org/abs/1711.03278, 2017.

[33] G. Philipp, D. Song, J. G. Carbonell, ªThe exploding gradient problem
demystified - definition, prevalence, impact, origin, tradeoffs, and solu-
tions,º [Online]: https://arxiv.org/abs/1712.05577, 2018.

[34] H. H. Tan, and K. H. Lim, ªVanishing gradient mitigation with deep
learning neural network optimization,º 2019 7th International Conference

on Smart Computing & Communications (ICSCC), pp. 1-4. IEEE, 2019.
[35] Y. Chen, and A. Louri, ªLearning-based quality management for approx-

imate communication in network-on-chips,º IEEE Trans. Computer-Aided

Design Integr. Circuits Syst., vol. 39, no. 11, pp. 3724-3735, 2020.
[36] M. Duarte, A. Sabharwal, V. Aggarwal, R. Jana, K.K. Ramakrishnan,

C.W. Rice, and N.K. Shankaranarayanan, ªDesign and characterization
of a full-duplex multiantenna system for WiFi networks,º IEEE Trans.

Vehi. Techno., vol. 63, no. 3, pp. 1160-1177, 2013.
[37] B. K. Butler, ªMinimum distances of the QC-LDPC codes in IEEE 802

communication standards,º [Online]: https://arxiv.org/abs/1602.02831,
2016.

[38] S. Varma, ªChapter 4 - Congestion control in broadband wireless
networks,º Internet Congestion Control, ISBN 9780128035832, pp. 103-
134, https://doi.org/10.1016/B978-0-12-803583-2.00004-9.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3488377

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Utah State University. Downloaded on December 26,2024 at 18:25:55 UTC from IEEE Xplore. Restrictions apply.

