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Abstract—A deep neural network (DNN)-based adaptive
controller with a real-time and concurrent learning (CL)-based
adaptive update law is developed for a class of uncertain,
nonlinear dynamic systems. The DNN in the control law is used
to approximate the uncertain nonlinear dynamic model. The
inner-layer weights of the DNN are updated offline using data
collected in real-time; whereas, the output-layer DNN weights
are updated online (i.e., in real-time) using the Lyapunov- and
CL-based adaptation law. Specifically, the inner-layer weights of
the DNN are trained offline (concurrent to real-time execution)
after a sufficient amount of data is collected in real-time to
improve the performance of the system, and after training is
completed the inner-layer DNN weights are updated in batch-
updates. The key development in this work is that the output-
layer DNN update law is augmented with CL-based terms to
ensure that the output-layer DNN weight estimates converge
to within a ball of their optimal values. A Lyapunov-based
stability analysis is performed to ensure semi-global exponential
convergence to an ultimate bound for the trajectory tracking
errors and the output-layer DNN weight estimation errors.

Index Terms—Nonlinear control, Deep Neural Networks
(DNNs), Concurrent Learning (CL), Lyapunov methods.

I. INTRODUCTION

Many real dynamical systems are highly complex, non-
linear, and challenging to model. Developing a controller
that achieves a control objective, such as trajectory tracking,
is often difficult. These real-world controllers must take
into account uncertainties in the dynamics to ensure safe
functioning in an uncertain environment. In order to develop
an efficient controller for a system with complex dynam-
ics, researchers are exploring various model approximation
techniques [1], [2].

Adaptive control has been explored over the past several
decades as an approach to deal with uncertain dynamical
systems [3]-[5]. Adaptive control architectures enable the
design of control policies without needing to know the
specifics of the dynamic model [6], [7]. Adaptive terms
in an adaptive controller attempt to estimate the uncertain
parameters to ensure that the control objectives are effi-
ciently achieved [8], [9]. Traditional gradient-based adaptive
controllers are model-based adaptive approaches that can
estimate uncertain functions provided that the function is
linearly parametrizable in the unknown parameters and that
the unknown parameters are constant [10]-[14]. Traditional
adaptive controllers are, therefore, limited to estimating
certain classes of functions [2].

To deal with the limitations of traditional adaptive con-
trollers, non-model based adaptive techniques have been
developed over time. For example, function approximators
such as deep neural networks (DNNs) or neural networks
(NNs) have previously been included in control systems to
approximate a wide-class of uncertain dynamical systems
within some residual error [15], [16]. Both NNs and DNNs
are capable of approximating continuous functions over a
compact domain [17]. Although NNs have been shown to
provide good function approximation performance [18], [19],
they are limited to only a single hidden-layer. On the other
hand, a multi-hidden-layer DNN structure is capable of
improving the function approximation accuracy compared
to NNs, particularly for complicated functions, which can
lead to improved system performance [20]-[22]. Therefore,
DNNs are capable of outperforming NNs since they can
better approximate complex dynamical models.

To improve a DNN’s function approximation performance,
a DNN can be trained like any other machine learning algo-
rithm. Often DNN training methods utilize an optimization
method that minimizes a loss function over a given set of
input/output data to achieve statistical guarantees of the DNN
approximation error [23], [24]. However, due to the extensive
computing requirements and slow training speeds associated
with training numerous layers of DNN weights and biases,
DNN-based controllers have traditionally been unable to be
updated in real-time. The inability to update a DNN in real-
time and the fact that DNNs can only achieve probabilis-
tic outputs has limited the adoption of DNNs in safety-
critical applications. Recent breakthroughs have overcome
the limitations of DNNs by developing Lyapunov-based
update laws that adaptively update the output-layer DNN
weights in real-time, which has been shown to guarantee
system performance and to provide system responsiveness
[21], [25]-[29]. In fact, the aforementioned results invoke
a multi-timescale approach since they also collect data in
real-time to iteratively update the inner-layer DNN weights
using conventional offline DNN training methods. After each
offline training is complete, the inner-layer DNN weights
are updated instantaneously. The iterative updates of the
inner-layer DNN weights, in turn, improves the output-layer
weight estimation performance and yields real-time learning
[25]. An advantage of the multi-timescale approach is that
performance is guaranteed even if the inner-layer DNN
weights are initially randomized [25].



Although the DNN results in guarantee system perfor-
mance (i.e., trajectory tracking) [21], [25]-[29], they are
unable to ensure that the output-layer DNN weights converge
to a small neighborhood around their ideal values. A poten-
tial solution is to augment the real-time DNN update law
with concurrent learning (CL) inspired terms. CL is a data-
based approach that modifies an estimation update law using
recorded input and output data from numerical simulations
or experiments to ensure estimation convergence in a finite
time (i.e., persistence of excitation is not required) [30]—[34].
Traditionally, CL-based update laws have been implemented
for traditional gradient-based adaptive controllers and the
extension to Lyapunov- and DNN-based controllers is an
open problem [30]-[34].

In this study, a Lyapunov- and DNN-based control frame-
work is developed for an uncertain control-affine nonlin-
ear dynamic systems. The output-layer DNN weights are
updated using a combination of real-time state feedback
and CL-inspired terms. CL-based feedback is incorporated
into the update law to ensure that the output-layer weights
of the DNN converge to their optimum values. The inner-
layer weights are iteratively updated using collected data
and an offline function. The DNN is used to approximate
the uncertain terms in the dynamic model. A Lyapunov-
like stability analysis is performed to ensure semi-global
exponential convergence to an ultimate bound for the the
trajectory tracking and output-layer DNN weight estimation
errors.

II. SYSTEM DYNAMICS

Consider a control-affine nonlinear system modeled as

&)= f(z®)+g (), t)u(t) ey

where z () : R>o — R™ represents the states, f (x (1)) :
R™ — R" represents the uncertain, nonlinear drift dynamics,
g(z(t),t) : R x Rsg — R™™ represents the known
control effectiveness matrix, and w (t) R>y — R™
represents the control input. To facilitate the control design
for the dynamics in (1), the following assumptions are made.

Assumption 1. The function f (z (¢)) is continuous for all
z (t) € Q, where Q C R"™ is a compact simply connected
set.

Assumption 2. The control effectiveness matrix, g (x (t) , t),
is a full-row rank matrix V¢ > to, where typ € Rxq is
the initial time, and the right pseudo inverse of g (z (t),t)
exists and is denoted by g%t (z (¢),¢) : R™ — R™*", where
g* () 2 g7 () (9()g" () " Furthermore, g* ( (¢),)
is bounded such that g7 (z (t),t) € Leo-

III. CONTROL OBJECTIVE

The control objective is for the generalized states in
(1) to track a user-defined time-varying smooth trajectory,
zq (t) : R>o — R, despite the unknown drift dynamics in
the dynamic model.

Assumption 3. The time derivative of the desired trajectory
and the trajectory itself are continuous and bounded such
that 24, &4 € Loo.

The tracking objective for the system is quantified using
a measurable tracking error denoted by e : R>¢ — R", and
is defined as

e(t)2a(t)—wa(t). )

Taking the time derivative of (2) and using (1) yields the
open-loop error system as

e(t)=f(@@)+g@@),Hult)-2a).  O)

A major objective of this work is to approximate the drift
dynamics, f (z (t)), using a DNN.!

A. DNN Approximation and Update Law

DNN-based control architectures are well-suited for ap-
proximating continuous dynamic functions that lie in a
compact set.> Based on universal function approximation
property, there exists a DNN with ideal weights, biases, and
activation functions for the drift dynamics f () such that

f@)=WTo (@ () +e(x), (4)

Yz € Q, where W € Rkxn represents an unknown ideal
output-layer weight matrix of the DNN, o : R? — RF
represents a vector of the unknown ideal activation functions
associated with the output-layer of the DNN, ¢ : R® — R?
represents the inner-layers of the DNN and contains their
unknown ideal weight matrices and activation functions, and
€ : R™ — R” represents the unknown function reconstruction
error. The inner portion of the ideal DNN, &, can be
expressed as

2V or(Vii o1 (Vi 12V 1 (),  (5)

where I € N denotes the number of the user-defined
input- and hidden-layers associated with the ideal DNN, V;,
Vi € [1,I] represents the input- and hidden-layer weight
matrices, and ¢;, Vi € [1, I] represents vectors of the input-
and hidden-layer ideal activation functions.

The DNN is updated using a multiple timescale approach,
where the weights and biases of the input- and hidden-layers
are trained offline using a traditional training method, and
the output-layer weights are updated in real-time using a
Lyapunov- and CL-based update law. This timescale ap-
proach uses data that was collected from previous experi-
ments or simulations to pre-train all of the DNN weights. If
no prior data is available, the DNN can be initialized with
random weights. Furthermore, data is collected concurrent
to real-time execution and is used to iteratively update the
inner-layer DNN weights. Using (4), the DNN estimation

For notational brevity, all functional dependencies are hereafter sup-
pressed unless required for clarity of exposition.

2The subsequent stability analysis in Theorem 1 proves that if (o) is
initialized within a compact set, then it will remain in a compact set (i.e.,
x € Q) for all time.



of the drift dynamics is denoted as fd,i : Q) — R”, and is
defined as

fd,i £ WT@ <(i)z(x)) ) (6)

where W : R>o — RFX™ is the estimate of the output-
layer DNN weights, &; : R? — R* is the i user-defined
estimation of the activation functions of the DNN output-
layer, i)i : R™ — RP is the i™ estimate of the inner-layers
of the DNN, and 7 € N represents the index for each update
of the DNN.? The mismatch between the ideal output-layer
DNN weights and the weight estimates is denoted as W :
R>o — R¥*" and is defined as

W) 2W —W (). )

Assumption 4. Based on the universal function approx-
imation property, there exists known constants W, @, &,
€ € Rso that upper bound the unknown ideal output-
layer DNN weights W, the unknown vector of ideal acti-
vation functions of the DNN output-layer o (-), the user-
defined estimates of the output-layer activation functions
& (+), and the function approximation error € (-) respectively,
such that sup,eq Wl < W, sup,peallo () < 7,
sup,neq 16: ()l < 0,¥i € N, and sup,eqlle ()] <
€. Furthermore, the DNN estimate is designed such that
SUD,(1) e HO’((I) (x)) — 74 (@ (x))H < 6,Vi € N, where
& : R>q denotes a known constant.

To aid the subsequent analysis, the DNN approximation
in (4) can be combined with the dynamic model in (1) to
yield

WTo (@ (x) + (@) =@ (t) — g ( () ) u(®). @
B. Control Development

Substituting (4) into (3) yields a modified open-loop error
system as

et)=g(x(t),t)u(t) —ia(t)+ W o(®(x)) +e(z). (9

Based on (9) and the subsequent stability analysis, the control
input is designed as

us gt (z(t),t) {—ke — kgsgn (e) + &4 (t) — fd,z} , (10)

where k, ks € Ry represents positive, user-defined control
gains, and sgn (-) represents the signum function. Taking the
open-loop error system in (9), and substituting in (6) and
(10) yields the closed-loop error system as
é(t) :-m—m@@—W%4@@)
(1D
+WTo (@ (2)) +€(x).

3The subscript i on &; and d; represents the ith training_iteration
of the DNN. The expression ®; (z) is explicitly expressed as ®; (z) =

Vo1 (V;'T[,l¢z‘,171(‘/;?},2¢i,172(---‘/£1¢i,1 (Jf)), where V' repre-
sents estimates of the ideal inner-layer weights and ¢ (.) represents estimates
of the ideal inner-layer activation functions for the corresponding training
iterations.

Based on the subsequent stability analysis, the output-layer
weight estimate law with CL-inspired terms is denoted by

W : Rsg — R¥*™ and is designed as

A

W = proj (Fc}i (Cf)z (x)) el + kgl f: i (‘i’z (%)) :

j=1
(8 - o~ 70 (3:2) ).
12)

where proj(-) represents a smooth projection (cf. [35]) that
ensures that the estimate of the output-layer weights, W,
is constrained within user-selected bounds, T' € RF*k rep-
resents a user-defined positive definite diagonal gain matrix
that enables adjustment of the rate at which W is learned, and
ke € Rsg is a control gain. Based on Assumption 4, (7), and
(12), it can be determined that the error between the ideal and
estimated output-layer DNN weights, W, is upper bounded

by a constant, W € R+, such that Hvec (W) H < w.

Assumption 5. Let {z;,u;,z, }?:1 denote a history stack
of previous states, control inputs, and numerically-computed
state-derivative estimates corresponding to times t; €
Ryg,Vj, where h € N is the size of the history stack.
It is assumed that the errors between the state-derivative
estimates and the true state-derivatives are bounded such
that ||z; — i < d,Vj, where d, € Rsq is a known
constant. Furthermore, it is assumed that the system is
sufficiently excited over a finite duration of time such that
Amin (Set) > As > 0,Vt > T, where T € R+ is a finite
time, Amin (+) is the minimum eigenvalues of (-), A; € R
is a user-selected constant, and

h T
Sei éz op (‘i)z (%)) 0y ((i)z (%))

j=

13)

Note that the pre-training of the DNN is done using pre-
vious experimental or simulation data. The pre-trained DNN
provides an initial estimate of the inner-layer DNN , /@1 (),
and an initial estimate of the output-layer weights W (¢g).
Furthermore, the output-layer weights are updated in real-
time using the proposed update law in (12). The summation
terms (i.e., the CL-inspired terms) are included in the update
law to ensure that the output-layer DNN weights converge to
a small neighborhood around their optimal values. State and
input information are collected in real-time and used in the
adaptive update law to train the output-layer DNN weights
in real-time and to train the inner-layer DNN weights offline.
After the inner-layer DNN weights are sufficiently trained,
they will be updated instantaneously to generate the updated
DNN estimate, ®;41 ().

IV. STABILITY ANALYSIS

To facilitate the stability analysis for the closed-loop error
system in (11), a positive definite and continuously differ-
entiable common Lyapunov-like function candidate, denoted



as V, : R"HR) x Ry — R, is defined as

l@(at%%%eﬂ%%%nwm(ﬁﬁTfﬁi), (14)

where trace (+) is the trace operator and z : Rso — R*(1+F)

is defined as
T

\T
z & [eT, vec (W) ] ,
where vec () denotes the vectorization operator. Moreover,
V}, can be bounded as

Bullzll® < Vi < B |2l*,

where [31 £ min(3, i (7)) and By =
max (%, 2)\mdx (I‘ 1)), where A\, (+) is the the maximum
eigenvalue of (- ) Furthermore, V;, can also be bounded as

15)

(16)

3 el < i < 5 el + va, (17)
where v, € Ry is defined as
a1 1 =2
Va = 5 Amax r-Hw. (18)

Theorem 1. For the nonlinear and uncertain dynamic model
in (1) that satisfies Assumptions 1-5, the control input in (10)
and the adaptation law in (12) ensure that the closed-loop
error system in (11) yields a bounded result ¥t € [ty,T) in

the sense that
) (19)

Iz (¢ <max<\/ 1z (to)ll

and semi-global exponential convergence to an ultimate
bound V't € [T, 00) in the sense that

2kﬁ

2 . 2 0 (t+—T
lz®I> < B llz@)fPe 5D

20
_'_132;12 _ e*%(t*T)) ’ (20)

provided that the following gain condition is satisfied
ks > W5+, (21

is a known constant,

where v = 2kva + C’W C’ S R;o
5 £ min (k zkaAs ), and vy £ 2k o

Proof: Let z(t) be a Filippov
ferential inclusion z € K [h](2)
where h : R”(Hk)T — R"(HK) s defined as h(z) £
{ T, Vec(W)T } , and K] is Filippov’s differential in-
clusion operator defined in [36]. Due to the iterative updates
of the DNN and the control law having a sliding mode term,

the controller is discontinuous. Thus, the time-derivative of
V1, exists almost everywhere (a.e.) within ¢ € [to,00) such

that V7, (2) E VL (2), where V denotes the generalized
time-derivative of (14). The generalized time derivative of

VL in (14) is defined as V, € () &7 [K[W)7(2),1]",

£€aVL(2)
where OV, (z) denotes the Clark’s generalized gradient of

solution to the dif-
for t € [tg,0),

Vi(%). Since Vi(z) is continuously differentiable in z,
OVL(z) = VVL (%), where V is the gradient operator.

Taking the generalized time derivative of (14), using
properties of the trace operator and the matrix vectoriza-
tion operator, and substituting the output-layer DNN weight
estimation error in (7), the closed-loop error system in (11),
and the update law in (12), yields

Vi C

—keTe — keTK| sgn e) +eTe(

76TWTK 0; Ai :|:|+€TWT (x))

—trace | kyWT ZK Al <i> ) .

) T
(.fj — gjuj — WTK [6’1 (‘I)l (Z‘J))}) ) .
e
Consider an arbitrary ¢ € N such that 6; and ®; are

continuous. Adding and subtracting e? W75, (i)l (:c)) into
(22) and using the definition of W from (7), yields

—eTWTK |6, (@ (

‘7L C —keTe—k eTK[sgn( )] +ele(x)

W |0 (@ () — & (i (2)]
h N
—trace( aW'T g (<I> (x ))

(ij — gju; — W76, (Ci% (xj)>>T) .

Note that Filippov’s differential inclusion operator, K[|,
is defined such that —eK [sgn(e)] < —|le||. Using As-
sumption 4, the gain condition in (21), and the fact that
—eK [sgn(e)] < — |le|| yields

(23)

. a.e. 2 NT h . ~
Vi < —klle|? - trace [ kaW za,-(cpi(xj))-

J=1
(jsj — gju; — Wl <<i>L (m])>)T> .
(24)

Adding and subtracting terms into (24) and using Assump-
tions 4 and 5, (7), (8), (13), and properties of the trace
operator yields

v, < —kleP+C Hvec (W) H

—trace (kcle SCIW) 2

Notice that (25) holds for any arbitrary ¢ € N, such that

(25) holds for all ¢t € [to,oo . During the time interval

t e [to, T ) sufficient excitation has not yet been achieved
according to Assumption 5. Thus, it can conservatively be
assumed that the term S,; is only positive semidefinite V¢ €
{to, T), and (25) can be upper bounded as

Vi < <klel®+CW, veel|t,T). (@6



Solving the differential inequality in (26), and using (16) and
(17) yields

l=@)* <

2 _2k(t—
A O

[1— e 2] e € 1, 7).
27

+ab
Inspection of (27) leads to the result in (19).
During the time interval ¢ € [T, c0), sufficient learning has
occurred according to Assumption 5. Therefore, the term S,
is positive definite V¢ € [T, c0) and

—trace (kchTSch) < —kgAs ||vec (W) H2 . (28)

Using (15) and (28), and completing the squares yields an
upper bound for (25) as

02
2k’

Solving the differential inequality in (29), and using (16)
yields (20) in the theorem statement.

From (19) and (20), it can be seen that z € L. From
the definition of z in (15), the terms e, W € L.,. From
the definition of e in (2) and Assumption 3, it is clear
that x € L,,. From Assumptions 2 and 4, it is stated that
9" (2,t),6 (-) € Loo. Furthermore, using (7) with the fact
that W € L, ensures that W € L, (along with the design
of W in (12)). Therefore, it can be proven that the DNN
estimate defined in (6) and the controller defined in (10) are
bounded. Lastly, recall that the DNN in (6) requires x to be
bounded for all time. Based on (19) and (20), if = (t9) € Lo
(i.e., a semi-global result), then x (t) € Lo, Vt € [tg,00). B

V< a2 + Vte [T 00).  (29)

V. CONCLUSION

A DNN-based controller with a CL-inspired DNN weight
update law was developed for an uncertain, control-affine
nonlinear dynamic system. In this preliminary work, the
control effectiveness matrix was assumed to be known.
The inner-layers of DNN are updated offline (concurrent
to real-time execution) and the output-layer DNN weights
are updated online using a Lyapunov- and CL-based DNN
update law. The CL policy in the adaptive controller helps to
ensure exponential convergence of the output-layer weights
to a small neighborhood containing the ideal DNN weights.
A Lyapunov-like stability analysis was performed to ensure
semi-global exponential convergence to an ultimate bound
for the trajectory tracking errors and the DNN output-layer
estimation errors. Future efforts will perform simulations
to ensure the effectiveness of the developed control law.
Additionally, the controller can be extended to consider
systems with an uncertain control effectiveness matrix.
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