ICC 2024 - IEEE International Conference on Communications | 978-1-7281-9054-9/24/$31.00 ©2024 IEEE | DOI: 10.1109/1CC51166.2024.10622903

978-1-7281-9054-9/24/$31.00 ©2024 IEEE

2024 IEEE International Conference on Communications (ICC): IoT and Sensor Networks Symposium

CSMAAFL: Client Scheduling and Model
Aggregation in Asynchronous Federated Learning

Xiang Ma*, Qun Wang', Haijian Sunf, Rose Qingyang Hu*, and Yi Qian’
*Department of Electrical and Computer Engineering, Utah State University, Logan, UT
TDepartment of Computer Science, San Francisco State University, San Francisco, CA

fSchool of Electrical and Computer Engineering, University of Georgia, Athens, GA
§Depar’tment of Electrical and Computer Engineering, University of Nebraska—Lincoln, Omaha, NE

Abstract—Asynchronous federated learning aims to solve the
straggler problem in an environment with heterogeneity, where
certain clients may possess limited computational capacities,
potentially leading to model aggregation delay. The core concept
behind asynchronous federated learning is to empower the server
to aggregate the model as soon as it receives an update from
any client without waiting for updates from multiple clients
or adhering to a predetermined waiting time, which is typical
in synchronous mode. Because of the asynchronous setting, a
potential concern is the emergence of a stale model issue, wherein
slow clients might employ an outdated local model for their
data training. Consequently, when these locally trained models
are uploaded to the server, they may impede the convergence
of the global training. Therefore, effective model aggregation
strategies play a significant role in updating the global model.
Besides, client scheduling is critical when heterogeneous clients
with diversified computing capacities participate in the federated
learning process. This work first investigates the impact of
the convergence of asynchronous federated learning mode when
adopting the aggregation coefficient in synchronous mode. Effec-
tive aggregation solutions that can achieve the same convergence
result as in the synchronous mode are proposed, followed by
an improved aggregation method with client scheduling. The
simulation results in various cases demonstrate that the proposed
algorithm converges with a similar level of accuracy as the
classical synchronous federated learning algorithm but effectively
accelerates the learning process, especially in its early stage.

Index Terms—Asynchronous federated learning, client schedul-
ing, model aggregation

I. INTRODUCTION

The distributed learning nature of Federated Learning (FL)
[1] can effectively address the privacy concerns associated with
machine learning by sharing only the refined model instead of
exposing raw data to other devices. Under the coordination of
the central server, clients collaboratively train a global model
through an iterative process. The training process is organized
into discrete rounds, and each round is based on the previous
round’s training results. This classical synchronous federated
learning (SFL) could suffer straggler issues caused by slow
clients [2].

With the rapid advancement of pervasive intelligence, a
wide range of heterogeneous devices can now serve as clients
for FL. These devices include desktop computers, laptops,
smartphones, Raspberry Pis, and more. These devices can
conduct local training and learning by collecting data from
nearby sensors. However, computing resource-constrained de-

vices, such as Raspberry Pis, may experience delays and be-
come stragglers when processing substantial volumes of data.
Numerous strategies have been suggested for integration into
synchronous federated learning (SFL) frameworks to tackle
these straggler issues.

In [3], a method was proposed where a small subset of clients
is sampled in each round, eliminating the need to wait for
updates from all clients. However, it does not fully address the
straggler issue, as slower clients can still be selected within
the subset. A predefined synchronous window was suggested
to aggregate as many client updates as possible in each round
in [4]. However, slow clients may not get the opportunity
to upload their updates during the entire learning process.
Furthermore, it does not ensure the convergence of the model.
An adaptive local computation scheme in resource-constrained
edge computing systems was proposed in [5], where fast
clients can execute more local iterations than slow clients.
Nevertheless, the global model still needs to wait for all clients
to complete their local computations before getting the updates.

Another strategy to tackle the straggler problem is called
asynchronous federated learning (AFL) [6], in which the local
model uploading at clients and the global aggregation at the
server are decoupled. Thus, aggregation of the global model is
executed without waiting to receive all the client models. The
authors in [7] presented an online AFL algorithm with data
being non-Independent and Identically Distributed (non-IID).
The server initiates the aggregation process upon receiving an
update from any single client. The newly aggregated model
is subsequently distributed to the clients considered “ready”.
Nevertheless, a clear definition for “ready” clients is absent.
And it does not provide a methodology for their selection
either. Similarly, the researchers in [8] proposed to decouple
scheduling and aggregation but did not define the criteria for
client selections in the scheduling. A Euclidean distance-based
adaptive federated aggregation algorithm was introduced in [9]
to solve the stale model problem in AFL. The staleness is mea-
sured using the distance between the current and stale global
models. This evaluation process requires the server to store all
the global models, starting from the initial training phase up
to the current iteration, leading to significant consumption of
storage resources on the server. AFL over wireless networks is
considered in [10], where a global model is broadcast to all the
clients in each global iteration. Each client must independently

274

Authorized licensed use limited to: Utah State University. Downloaded on December 26,2024 at 18:42:08 UTC from IEEE Xplore. Restrictions apply.

2024 IEEE International Conference on Communications (ICC): IoT and Sensor Networks Symposium

determine whether to commence training with the latest model.
This has resulted in significant wastage of both energy and
time resources. Despite the various works mentioned above,
few of them have offered a comprehensive architectural outline
of AFL. Moreover, no comparative analysis between SFL and
AFL has been provided.

This work develops a new AFL framework with client
scheduling and model aggregation. Unlike the existing work,
our method allows the recently aggregated global model to be
sent exclusively back to the client that has just uploaded its
local model. This eliminates the need to broadcast to a group
of clients, thereby circumventing the necessity of addressing
the client selection challenge globally. Instead, we introduce
a client scheduling algorithm as part of our algorithm. The
proposed scheduling mechanism considers both computational
capabilities and fairness. The model aggregation component
addresses the staleness problem inherent in AFL. We employ
the iteration difference as the metric for staleness. Only one
hyperparameter is introduced to keep the aggregation simple.
Besides, a detailed AFL architecture and a comparative analysis
between AFL and SFL are given. The major contributions of
this paper are summarized as follows:

e A new AFL architecture is introduced. One client is
selected to upload its local model in each global itera-
tion. Subsequently, the newly aggregated global model is
returned only to the client that uploaded its local model.

o A comparative analysis of the completion time between
AFL and SFL is presented. While the total learning
completion time is not necessarily shorter in AFL, its
distinct advantage lies in the timely updating of the global
model within a significantly reduced timeframe.

o A general baseline AFL framework is first introduced,
which can achieve the same accuracy performance as
SFL. Then, the solution of the aggregation coefficients
is developed based on this framework setting.

o« A new AFL framework incorporating client scheduling
and model aggregation is proposed, which considers client
computational capabilities, fairness, and model staleness
as import metrics. As a result, the proposed AFL frame-
work provides a solution to the inherent stale model issue.

The rest of the paper is organized as follows. Section II
introduces the system model of SFL and AFL, where the
two models are compared. Section III presents the baseline
AFL framework to achieve the same learning performance as
SFL. The advanced client scheduling and model aggregation
framework is then developed. Simulation results are given in
Section IV. The paper is concluded in Section V.

II. SYSTEM MODEL

The classical federated averaging (FedAvg) algorithm is a
synchronous communication model where the server performs
aggregation after receiving models from a predetermined num-
ber of clients or after a set amount of time has elapsed. While
in an asynchronous setting, the server commences model ag-
gregation immediately upon receipt of an update. This ensures
that the server is always updated with the most recent model.

The considered FL system comprises a central server and M
clients. Each client m has |D,,| amount of dataset.

A. Synchronous Federated Learning

In the SFL framework, the learning process unfolds itera-
tively between the server and clients. Each iteration consists
of four basic steps. In step 1 (S1), the server disseminates the
current global model to all clients. In step 2 (S2), clients utilize
the global model as the initial point and employ an optimization
method such as stochastic gradient descent (SGD) to derive a
new local model. Following this, in step 3 (S3), the updated
local model is uploaded to the server. Finally (S4), the server
awaits either a fixed amount of time or a fixed number of
model updates from a predetermined number of clients before
performing aggregation. This process can be observed in Fig.
1 (left). Notably, in SFL, a “wait” stage allows all clients to
upload their respective local models, thereby preventing the
server from aggregating prematurely.

Synchronous FL O Asynchronous FL

=
=]
==ty ©

(1]
/ ° .
;«., [I O
@ﬁ “Clicn M. [Ciicoi > J Ciicni M |

| Clicnt M |

Fig. 1. Synchronous vs Asynchronous FL.

The global model is first initialized as wq. Clients perform
the local learning process as follows:

—nVF,(w),t=0,1,2, ..., (1)

wy = wy

where w;" is the local model of client /m at round ¢ after local
learning, w, is the global model broadcast by the server at
round ¢, i) represents the learning rate, and V F,,, (w;) signifies
the gradient of the loss function F,(w;). This occurs in step
(S2), while the global model w; is the initial reference point
for each client’s local learning process.

Once the server receives the models from a predetermined
number of clients or when a specified time limit elapses, the
server proceeds to perform aggregation using:

M
Wi = Y omwi”,)
f

where o, is the aggregation coefficient of client m, which is
usually defined as a,, = EID‘ D‘ Ik Without loss of generality,
we let all clients participate in each learning round as in
equation (2).

Based on the procedure mentioned above, the model of
each client is synchronized with the global model following
step (S1) in each round. Subsequently, in step (S2), the local

models become different across clients after local learning.

275

Authorized licensed use limited to: Utah State University. Downloaded on December 26,2024 at 18:42:08 UTC from IEEE Xplore. Restrictions apply.

2024 IEEE International Conference on Communications (ICC): IoT and Sensor Networks Symposium

Step (S3) acts as a blocking operation, thus expanding the
overall learning time. Lastly, in step (S4), the global model
is updated by using equation (2).

B. Asynchronous Federated Learning

Under asynchronous settings, the server is not mandated to
wait. Instead, the server initiates the aggregation process once a
client model is received. This approach enables faster clients to
proceed with local learning without waiting for slower clients.
In SFL, a round is uniformly observed by both the server
and all clients. However, faster clients perform more rounds in
AFL than their slower counterparts. We will utilize the global
aggregation number to keep track of the learning process. To
differentiate the notation used in SFL, we employ the term
“iteration” along with the symbols ¢ and j to denote the global
aggregation time in AFL. The aggregation process at the server
is then performed as follows:

wjr1 = Biw; + (1 — By w", 3)

where w;1 is the global model in iteration j+1, w; represents
the global model from the previous iteration j. The local model
w;™ corresponds to the model obtained from client m after
local learning, utilizing the global model from iteration ¢ when
client m was reselected during iteration j. 8; € (0, 1) denotes
the aggregation coefficient. Following the aggregation process,
the client m that recently sent its model to the server receives
the updated global model from the server. In Fig. 1 (right),
it is evident that only one client participates in the learning
process during each iteration. Consequently, the subsequent
local learning iteration continues based on the received updated
global model, that is

wity = wjt1 — NV Ep(wj11), “4)

where w(’; is the updated local model of client m. The

proposed AFL follows a different approach where only one
client receives the updated model during each global iteration.
While client m uploads its model to the server, other clients
can either continue their local computations or wait for the
channel to idle. This allows for concurrent local computations,
achieving efficient resource utilization in the AFL framework.

C. Comparison

There exists extensive idle time in SFL while learning
continues uninterrupted in AFL. Based on the details above, we
can infer that AFL is expected to learn faster than SFL as more
computations can be executed within the same time frame. We
analyze both modes in specific scenarios to assess the speed
advantage offered by AFL. First, we consider a homogeneous
scenario in which all clients have identical computational
capabilities. Let 7 denote the computation time, which is the
same for all clients. Another assumption is that a client can
be scheduled to upload the local model again only when all
other clients have completed their model uploads. We further
assume all the clients have the same channel conditions and
power allocations to facilitate the analysis. Thus, uploading
time 7 in step (S3) is identical for all the clients.

In step (S1), the time required to download the global model
is assumed to be 7. Hence, in SFL, the total completion time
for one round, when employing time-division multiple access
(TDMA), can be expressed as 79" = 79 + 7+ M - 7%
Consequently, the global model receives updates after 7,7"
time has elapsed. On the other hand, in AFL, performing the
same operation takes 7,>"" = M-7%+M 7947 time. Although
AFL requires an additional (M —1)-7¢ time compared to SFL
to obtain the same global model, AFL updates the global model
every 7% +7% time instead of waiting for 7¢47+M 7% time as
in SFL when communication time is significantly longer than
computation time.

In the heterogeneous scenario, clients have varying compu-
tation capabilities, and channel conditions differ. The compu-
tation time for the fastest client is assumed to be 7, while
the slowest client requires a - 7 time. Typically, computation
takes less than communication, with communication being the
latency bottleneck of the system. Nevertheless, in scenarios
where slow clients have parallel computation tasks, the value
of a can become significant, resulting in a-7 surpassing M -7,
As a result, the completion time for one round is predominantly
determined by the computation duration of the slowest client
rather than the communication time. In SFL, the global model
must wait for 7,Y" = 7¢+a-7+ M - 7% time to get updated.
This implies that the faster clients must remain idle during this
waiting period. In contrast, AFL accomplishes model updates
within a timeframe spanning from M - 7% + 7 + M - 7% to
M-7%4a-74 M -7% time, under the assumption that all client
models are uploaded with faster clients being scheduled first.
Notably, in AFL, the global model is updated every 7% + 7¢
time. The server performs aggregation more frequently in AFL
than in SFL.

The differences between AFL and SFL contribute to AFL’s
accelerated learning pace. However, they can also result in
model staleness among slow clients, which may impede the
global model’s convergence. Hence, it becomes essential to
determine the optimal aggregation coefficient, denoted as [,
and incorporate client scheduling throughout the learning pro-
cess. Client scheduling is pivotal in enhancing convergence
throughout the learning process while optimizing the aggrega-
tion coefficient to minimize individual client model staleness.
These strategies work in tandem to ensure overall convergence
and reduce the impact of model staleness in AFL.

III. PROPOSED ALGORITHM

In this section, we first utilize the SFL aggregation coeffi-
cient in AFL. Subsequently, we introduce an AFL algorithm
to attain comparable learning performance to SFL. Lastly, we
propose a client scheduling and model aggregation framework
in AFL (CSMAAFL).

A. SFL Aggregation Coefficient in AFL

In SFL, client scheduling may not be critical since all
clients actively participate in model updates. Furthermore,

276

Authorized licensed use limited to: Utah State University. Downloaded on December 26,2024 at 18:42:08 UTC from IEEE Xplore. Restrictions apply.

2024 IEEE International Conference on Communications (ICC): IoT and Sensor Networks Symposium

the aggregation coefficient is determined by considering the
relative number of samples present on each client, i.e.,

Dl
mZ Z2|D| | ®

Here, a,, represents the relative significance of the client m
in terms of its model’s contribution. However, when using v,
as the aggregation coefficient in AFL, the influence of initially
selected clients diminishes as the iterations progress. Given
a specific client scheduling sequence ¢(1),d(2),...,¢(M),
where ¢(i) indicates the index of the client that is scheduled
to upload its local model in iteration %, equation (3) can be
expressed as follows:

w1 = (1 = agy))w; + aggw
i—1
= (1 — () (1 — agg-n)wj—1 + agg-nwp?)
+ a¢(])u)¢(])

(6)
where ¢(j — 1) represents the client scheduled in iteration
j — 1, and k denotes the iteration when client ¢(j — 1) is
scheduled to upload its model last time. Consequently, the
aggregation coefficient for client ¢(j — 1) can be calculated
as ag(j—1)(1 — ag(;)). For the first client in the scheduling
sequence, the aggregation coefficient is cvg(1)(1 — ag(2))(1 —
ag3)) - (1 —ag(;). Since « falls within the (0, 1) range, the
aggregation coefficient diminishes over time.

B. Baseline

To achieve comparable learning performance to SFL, AFL
needs to adopt the same client scheduling strategy and ag-
gregation coefficient. In AFL, a client is scheduled to upload
its model again only when all other clients have finished
uploading theirs. Additionally, faster clients are prioritized in
the scheduling, allowing them to upload, while slower clients
still perform computations. As for the aggregation weight 3, it
varies in each global iteration. To ensure that clients contribute
the same as in SFL, the aggregation weight S should also be
calculated according to the contribution of each client m. This
relationship is formulated in the following equation:

M
§ : m

W = Wh+1 =
m=1

In Equation (7), the left-hand side (LHS) corresponds to the
global model after aggregation in SFL, whereas the right-hand
side (RHS) represents the global model after completing one
iteration through all clients in AFL. By analyzing Equation (7),
we can infer that 3; is associated with both the iteration j and
the scheduled client ¢(5).

Brrwnr + (1= Bar)w?P . (7)

wyr = By—1wn—1 + (1 — ﬂM_l)wMM*l)

= Bar—1(Bri—awai—2 + (1 — Brr—2)w?M=2)

From Equation (8), when the client scheduling
#(1),6(2),...,0(M) is predetermined, the only unknown
parameters are [31,032,...,8m. On the other hand,
ai,Qo,...,ap are known, and this knowledge allows

us to formulate a set of M non-linear equations. Non-linear
equations often possess multiple solutions. By examining
Equation (7), we can deduce that client ¢(M) is chosen
during iteration M. The following equation

agy =1 — B, ©
is formulated. Given that gy is a known value, we can

solve for 3);. By considering Equation (7) and Equation (8),
it becomes apparent that

= Bum(1 = Bar—1)-

Consequently, we can solve for 5j;_1. Using this method, we
can sequentially compute Bys_o, Bpr—3, and so forth, until we
decide f3;.

As outlined above, we have established a baseline for AFL
to achieve comparable learning performance to SFL. This
baseline entails the following requirements: a) a client is sched-
uled again for upload only when all other clients have been
scheduled once; b) client scheduling is predetermined before
the learning process; and c) the global model is distributed
to all clients every M iterations. However, requirement a)
results in the under-utilization of faster clients’ computational
capabilities, which hampers AFL’s full potential. Furthermore,
requirement b) imposes a relatively strong assumption, neces-
sitating the server’s knowledge of each client’s computational
capabilities beforehand. Lastly, requirement c) entails that
clients halt local learning or discard their local learning models
in favor of the global model.

(M —1) (10)

C. CSMAAFL: Client Scheduling and Model Aggregation in
AFL

To fully leverage the advantages offered by AFL, we propose
a client scheduling approach incorporating a model aggregation
scheme. This scheduling method considers both clients’ com-
putational capabilities and the principle of fairness. When a
client completes its local computation, it requests a time slot for
uploading its updated local model. Upon server authorization
of the request, the client transmits its local model and the
estimated computational capacity to the server. Subsequently,
the server undertakes global model aggregation and returns the
aggregated model exclusively to the client who recently up-
loaded its local model. Furthermore, the server allocates more
local iterations to clients with more computational capabilities,
while clients with limited computational resources are assigned
fewer local iterations. The server learns the computational
capabilities of clients after the clients report. And then set
the slowest client as the iteration basis. Subsequently, upon
receiving the most recent aggregated global model, the client
proceeds with learning for the next iteration. A slotted ALOHA

(8) protocol as in [10] is employed. Priority is given to the client

+ (1= Bu-1)w HM=1) with the older model when two clients complete their local

=B8(..)+(1—-pB)w o(1) computations simultaneously and apply for an uploading time
277

Authorized licensed use limited to: Utah State University. Downloaded on December 26,2024 at 18:42:08 UTC from IEEE Xplore. Restrictions apply.

2024 IEEE International Conference on Communications (ICC): IoT and Sensor Networks Symposium

slot. If clients m and n complete their local computations at the
current time and intend to upload their updated local models
during time slot k, and if the previous upload slots for clients
m and n are labeled as m’ and n’ respectively, then client m
will receive priority if (k —m’) > (k — n').

The client scheduling approach described above is practical
when there is relatively slight variation in the computation
capabilities among clients. However, two extreme scenarios
need to be considered. The first scenario arises when there are a
few extremely fast clients, potentially operating at significantly
accelerated speeds (e.g., 10 times faster). The second scenario
occurs when there are some excessively slow clients. To ensure
that all clients have a fair opportunity to contribute to the global
model, we employ a policy similar to the one outlined in [5].
This policy allows clients with greater computation capabilities
to perform more local iterations, dedicating more time to the
learning process. Conversely, clients with lower computation
capabilities perform fewer local iterations, enabling them to
spend less time on the task. By adopting this approach, we can
maintain a balanced contribution from all clients, regardless of
their varying computation speeds.

The client scheduling problem has been addressed, ensuring
that each client has an equitable opportunity to upload their
local updates. It also needs to be addressed how to balance
the current global model and the uploaded local models in
each iteration. In equation (3), it can be observed that the
contribution of client m to the global model diminishes over
time. Furthermore, the difference between the current iteration
and the iteration when client m last uploaded its model,
denoted as j —1i, also influences the process. A smaller value of
J — 4 indicates a lower level of staleness. To account for this,
we introduce the moving average u;; to capture the average
value of 7 — ¢ over time. Let

m ; Hji m
(1 - B;)w;" = min(1, P Yw™,
for equation (3), where ~ is a positive constant value. The
term % reflects the gradual decrease in the contribution of
individual client models over time. The effect of staleness is
represented by J“—j; When the learning starting point ¢ of a
client m is recent (i.e. when j —¢ is small), the value of % is
large, indicating a significant contribution from the individual
client. As previously mentioned, extremely fast or slow clients
are instructed to perform more or fewer local computations
during their learning process, ensuring that every client has a
comparable opportunity to access the channel for uploading
the updated local models. This approach results in only slight
changes in j — 4, leading to the value of % close to 1. This
helps maintain the stability in the system while accounting for
staleness’s effects. The complete algorithm is summarized in
Algorithm 1.

an

IV. SIMULATION RESULTS

In this section, we begin by outlining the simulation settings.
Subsequently, we present the simulation results for MNIST
and Fashion-MNIST datasets in both IID and non-IID cases.

Algorithm 1 Asynchronous Federated Learning with Client
Scheduling and Model Aggregation

1: Initialization: Server initializes wy and broadcasts to all
Clients.
2: while not converge do
3: Client:
Receives the most recent aggregated global model.
Performs local computation as Eq. (4).
Applies for uploading time slot.
Upload the calculated local model and estimated local
computational capability when the request is approved.
4: Server:
Approves the first client m requested the time slot.
Receives the local model and computational capability
from client m.
Performs aggregation by Eq. (7) and Eq. (11).
Sends the aggregated global model and the number
of local computation iterations to client m.
5: end while

Finally, we analyze and discuss the impact of the constant
on the results.

A typical FL setting is considered for simulation here. The
setup involves 100 clients connected to the server. In the case of
SFL, all clients participate in the learning process during each
round. However, for AFL, a client only waits for its next upload
when all other clients have completed their current uploads. To
simulate the heterogeneity in clients’ computation capabilities,
client selection is randomized at each time, corresponding to
the round time in SFL. The communication is assumed to be
uniform for each client. Consequently, this random selection
affects the values of j —4 and j1;;. Two public image datasets,
i.e., MNIST and Fashion-MNIST, are used for simulation.
MNIST consists of handwritten digit images, while Fashion-
MNIST comprises images of Zalando’s articles. Both datasets
feature 10 classes, with 60,000 training and 10,000 testing
images. Under the IID case, the images are randomly allocated
equally among the clients. However, in the non-IID case, each
client is assigned two classes, resulting in approximately 600
training images per client. We employ Convolutional Neural
Networks (CNN) for the machine learning tasks with two
convolutional layers, two max-pooling layers, and two fully
connected layers. Given the complexity of the Fashion-MNIST
images, the hidden layer sizes in the CNN for Fashion-MNIST
are larger. The activation function for the last layer is the log
softmax function, while ReLU is used in other layers. The
learning rate 7 is 0.01, and the local batch size is 5. The
constant y in equation (11) can be considered a hyperparameter.
A larger vy value leads to smaller contributions from individual
client models. To investigate the effect of v, we set its value
as 0.1, 0.2, 0.4, and 0.6, respectively.

Four simulation cases are considered, incorporating two
datasets, MNIST and Fashion-MNIST, and two data distribu-
tions: IID and non-IID. In each case, we conduct simulations
using both SFL. and AFL approaches. The classical FedAvg

278

Authorized licensed use limited to: Utah State University. Downloaded on December 26,2024 at 18:42:08 UTC from IEEE Xplore. Restrictions apply.

2024 IEEE International Conference on Communications (ICC): IoT and Sensor Networks Symposium

algorithm is employed for SFL simulations, while our proposed
CSMAAFL scheme is utilized for AFL simulations.

100 { Ce—

‘7.)

801 98.5

60 975 e—e————————

85 90 95 100

Test Accuracy (%)

40 4
—— FedAvg

CSMAAFL, gamma=0.1
204 —— CSMAAFL, gamma=0.2
—— CSMAAFL, gamma=0.4
——— CSMAAFL, gamma=0.6

0 20 40 60 80 100

Time
Fig. 2. Case 1: MNIST IID

In Fig. 2, the MNIST dataset with an IID data distribution
is used. All schemes, except for CSMAAFL with v = 0.1,
demonstrate comparable performance. This indicates that our
proposed CSMAAFL approach converges and reaches a similar
outcome as FedAvg when the value of ~y is tuned correctly.

80 1

60 1

20 30

Test Accuracy (%)

401

—— FedAvg

CSMAAFL, gamma=0.1
204 —— CSMAAFL, gamma=0.2
—— CSMAAFL, gamma=0.4
—— CSMAAFL, gamma=0.6

0 20 40 60 80 100
Time

Fig. 3. Case 2: MNIST non-IID

In Fig. 3, the simulation is performed on the MNIST dataset
with a non-IID data distribution. After 25 relative time slots,
the FedAvg algorithm is starting to approach the performance
of CSMAAFL, which indicates the proposed algorithms’ faster
convergence advantage.

60 76 744
50 A et
ey

— FedAvg
CSMAAFL, gamma=0.1

Test Accuracy (%)
Test Accuracy (%)

85 90 95 100

40 — FedAvg

CSMAAFL, gamma=0.1
—— CSMAAFL, gamma=0.2 20
—— CSMAAFL, gamma=0.4
—— CSMAAFL, gamma=0.6 10

—— CSMAAFL, gamma=0.2
—— CSMAAFL, gamma=0.4
—— CSMAAFL, gamma=0.6

0 20 40 60 80 100 0 20 40 60 80 100
Time Time

(a) Case 3: Fashion-MNIST IID (b) Case 4: Fashion-MNIST non-IID
Fig. 4. Fashion-MNIST

The results for the Fashion-MNIST dataset with IID distri-
bution are depicted in Fig. 4(a). Among the different v values,
CSMAAFL with v = 0.2 exhibits the best performance, closely
resembling the performance of the FedAvg algorithm.

In Fig. 4(b), it can be observed that CSMAAFL with
v = 0.6 achieves a performance that closely matches that of

FedAvg. However, it takes FedAvg 55 relative time slots to
reach the same performance level as our proposed CSMAAFL
scheme. This result demonstrates that our CSMAAFL scheme
accelerates the learning performance during the initial stages
while maintaining the overall learning performance.

The constant value for +y in different scenarios leads to vary-
ing effects. In the case of MNIST IID, MNIST non-IID, and
Fashion-MNIST non-IID, a value of v = 0.1 results in random
guessing. This occurs because the contribution of the individual
client model is overly emphasized. On the other hand, for
MNIST IID and Fashion-MNIST IID, the best performance is
achieved with v = 0.2, while for MNIST non-IID and Fashion-
MNIST non-IID, the optimal results are obtained with v = 0.4.
By tuning ~, better learning performance can be achieved.

V. CONCLUSIONS

In this study, we introduced a client scheduling and model
aggregation scheme for asynchronous federated learning. Our
approach considered both the computation capability and fair-
ness of the clients in the scheduling process while also ad-
dressing the issues of individual client contribution and model
staleness in model aggregation. The results demonstrated that
the proposed scheme can accelerate the federated learning pro-
cess during the initial stages while still achieving comparable
performance to the synchronous algorithm.

VI. ACKNOWLEDGEMENT

This work was partially supported by the National Science
Foundation under grants CNS-2008145, CNS-2007995, CNS-
2319486, CNS-2319487.

REFERENCES

[1] J. Kone¢ny, H.B. McMahan, FEX. Yu, P. Richtdrik, A.T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” 2016. [Online]. Available: arXiv:1610.05492.

[2] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” 2019. [Online]. Available:
arXiv:1908.07873.

[3] H.B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics, pp. 1273-1282, PMLR,
2017.

[4] T. Nishio, and R. Yonetani, “Client selection for federated learning
with heterogeneous resources in mobile edge,” 2018. [Online]. Available:
arXiv:1804.08333.

[5] S. Wang, T. Tuor, T. Salonidis, K.K. Leung, C. Makaya, T. He, and K.
Chan“Adaptive federated learning in resource constrained edge comput-
ing systems,” IEEE J. Select. Areas Commun., vol. 37, no.7, pp. 1205-
1221, Mar. 2019.

[6] M.R. Sprague, A. Jalalirad, M. Scavuzzo, C. Capota, M. Neun, L. Do, and
M. Kopp, “Asynchronous federated learning for geospatial applications,”
in ECML PKDD 2018 Workshops, pp. 21-28.

[7]1 Y. Chen, Y. Ning, M. Slawski, and H. Rangwala, “Asynchronous online
federated learning for edge devices with non-iid data,” in IEEE Big Data,
pp. 15-24, 2020.

[8] C. Xie, S. Koyejo, and I. Gupta, “Asynchronous federated optimization,”
2019. [Online]. Available: arXiv:1903.03934.

[91 Q. Wang, Q. Yang, S. He, Z. Shui, and J. Chen, “AsyncFedED:
Asynchronous federated learning with euclidean distance based adaptive
weight aggregation,” 2022. [Online]. Available: arXiv:2205.13797.

[10] Z. Wang, Z. Zhang, Y. Tian, Q. Yang, H. Shan, W. Wang, and T.Q.
Quek, “Asynchronous federated learning over wireless communication
networks,” IEEE Trans. Wireless Commun., vol. 21, no. 9, pp. 6961-
6978, Mar. 2022.

279

Authorized licensed use limited to: Utah State University. Downloaded on December 26,2024 at 18:42:08 UTC from IEEE Xplore. Restrictions apply.

