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Abstract—This paper presents a deep neural network (DNN)-
and concurrent learning (CL)-based adaptive control architec-
ture for an Euler-Lagrange dynamic system that guarantees
system performance for the first time. The developed controller
includes two DNNs with the same output-layer weights to ensure
feasibility of the control system. In this work, a Lyapunov-
and CL-based update law is developed to update the output-
layer DNN weights in real-time; whereas, the inner-layer DNN
weights are updated offline using data that is collected in real-
time. A Lyapunov-like analysis is performed to prove that the
proposed controller yields semi-global exponential convergence
to an ultimate bound for the output-layer weight estimation
errors and for the trajectory tracking errors.

Index Terms—Deep Neural Networks (DNNs), Concurrent
Learning (CL), Euler-Lagrange dynamics, Lyapunov methods.

I. INTRODUCTION

The control of a wide-range of uncertain nonlinear systems
has been the focus of numerous research efforts over the
years (cf. [1]–[6]). One approach to compensate for system
uncertainty is to develop robust controllers, which develop
control laws that overcome the worst-case uncertainty. How-
ever, controller efficiency and overall system performance
can be improved for an uncertain system by implementing
an adaptive control scheme [7], [8]. To elaborate, adaptive
controllers adjust the control output online using available
information to achieve a control objective despite uncertain-
ties in the dynamic model [9]–[12].

Neural networks (NNs) and deep neural networks (DNNs)
are non-model based adaptive techniques that are capable
of compensating for uncertainty in a wide-class of dynamic
systems by approximating the uncertain dynamic model [13],
[14]. A key distinction between NNs and DNNs is that
DNNs have multiple-hidden layers, which allows DNNs to
approximate complex continuous functions better than NNs
[15]–[17]. The main limitation to the widespread adoption of
DNN-based adaptive controllers was that the multi-hidden-
layer structure of DNNs had long prevented the integration
of DNN-based controllers with a rigorous nonlinear stabil-
ity analysis, which had prevented performance guarantees
[16], [18]. Recent breakthroughs have overcome this DNN
limitation by developing Lyapunov-based update laws that
adaptively update the output-layer DNN weights in real-
time, which has been shown to simultaneously ensure sys-
tem performance and system responsiveness [19]–[23]. To
further improve the DNN learning performance, the results

in [19]–[23] updated the DNN input-layers offline using data
collected in real-time and conventional data-driven training
methods. After sufficient data is collected and the inner-layer
DNN weights are re-trained, the updated inner-layer weights
can be instantaneously updated in the DNN-based controller.
The iterative updates of the inner-layer DNN weights, in turn,
improves the output-layer weight estimation performance
and yields real-time learning [19].

Despite the fact that the Lyapunov-based DNN update
policies developed in [19]–[23] produced an excellent track-
ing performance (i.e., tracking performance was guaranteed),
the update policies cannot guarantee that the output-layer
weights will converge towards a small neighborhood around
their ideal values. A potential solution is to augment the real-
time DNN update law with concurrent learning (CL) inspired
terms. CL is a data driven approach that uses recorded data to
ensure parameter estimation convergence [24], [25]. Another
benefit of CL is that it only requires finite excitation to ensure
parameter estimation, which can be achieved in a finite time
duration provide that the system is sufficiently excited. In the
past, CL has only been applied to dynamic systems that are
linearly parametrizable (i.e. dynamic systems that are linear
in the uncertain parameters) such that the entire dynamic
system can be expressed as Y θ = u, where Y is a measurable
regression matrix, θ is a vector of unknown constants, and u
is the input into the system [11], [26], [27]. Consequently, an
open problem is to develop a DNN- and CL-based adaptive
update law for a DNN-based controller.

In this study, a Lyapunov- and DNN-based control frame-
work is developed for an uncertain and nonlinear Euler-
Lagrange dynamic system. The Euler-Lagrange dynamic
model required two unique DNNs to be developed to ensure
feasibility of the control system. Both DNNs are designed
to approximate the uncertain terms in the dynamic model
and to include the same output-layer weights; however, each
DNN includes different inputs. Furthermore, a CL-based
adaptive update law is developed to update the output-layer
DNN weights in real-time and to ensure that the output-
layer weights converge towards their ideal values. Note
that combining CL with DNNs removes the linear in the
uncertain parameter condition associated with CL, allowing
CL to be implemented on a wider class of dynamic systems.
Additionally, the inner-layer DNN features are designed to be
retrained offline and to be updated iteratively. A non-smooth
Lyapunov-based stability analysis is performed to ensure



semi-global exponential convergence to an ultimate bound
for the trajectory tracking errors and the output-layer DNN
weight estimation errors. Based on the stability analysis, the
performance of the proposed controller is guaranteed even if
the DNN weights are initially randomized.

II. SYSTEM DYNAMICS

Consider an Euler-Lagrange dynamic system modeled as1

M (q) q̈+C (q, q̇) q̇+G (q) + F q̇+ d (t) = τ (q, q̇, t) , (1)

where q : R≥0 → Rn denotes the generalized position, q̇ :
R≥0 → Rn denotes the generalized velocity, q̈ : R≥0 →
Rn denotes the generalized acceleration, M : Rn → Rn×n

denotes the inertia matrix, C : Rn × Rn → Rn×n denotes
the centripetal-Coriolis matrix, G : Rn → Rn denotes the
gravitational effects, F ∈ Rn×n denotes the viscous damping
coefficient matrix, d : R≥0 → Rn denotes the unknown
disturbances, and τ : Rn × Rn × R≥0 → Rn denotes the
generalized input torque. The dynamic system in (1) has the
following properties.

Property 1. The inertia matrix M (q) is bounded as cm ≤
∥M (q)∥ ≤ cM , where cm, cM ∈ R>0 are known constants.
Furthermore, M (q) is symmetric and positive definite.

Property 2. The centripetal-Coriolis matrix C (q, q̇) is
bounded as ∥C (q, q̇)∥ ≤ cC ∥q̇∥, where cC ∈ R>0 is a
known constant.

Property 3. The centripetal-Coriolis matrix C (q, q̇) satisfies
the relationship C (q, ξ) v = C (q, v) ξ, ∀ξ, v ∈ Rn.

Property 4. The terms G (q), F , and d (t) are upper bounded
such that ∥G (q)∥ ≤ cG, ∥F∥ ≤ cF , and ∥d (t)∥ ≤ cD,
∀t ≥ t0 where cG, cF , cD ∈ R>0 are known constants and
t0 ∈ R≥0 is the initial time.

Property 5. The inertia matrix and the centripetal-Coriolis
matrix satisfy the relationship ξT

(
1
2Ṁ (q)− C (q, q̇)

)
ξ =

0, ∀ξ ∈ Rn.

III. CONTROL DESIGN

The control objectives in this work are to track a desired
position, denoted by qd : R≥0 → Rn, and a desired velocity,
denoted by q̇d : R≥0 → Rn.2

Property 6. The desired position qd is a sufficiently smooth
signal that is defined by the user. The desired position qd,
its derivative q̇d, and its double derivative q̈d, are selected to
be continuous and bounded such that qd, q̇d, q̈d ∈ L∞.

The position tracking error, represented by e : R≥0 → Rn,
for the dynamics in (1) is defined as

e ≜ qd − q. (2)

1For the notational brevity, all explicit dependence on time, t, within the
terms q (t), q̇ (t) , and q̈ (t) is suppressed.

2For notational brevity, all functional dependencies are hereafter sup-
pressed unless required for clarity of exposition.

To facilitate the stability analysis, a filtered auxiliary tracking
error, represented by r : R≥0 → Rn, is defined as

r ≜ ė+ αe, (3)

where α ∈ R>0 is a selectable control gain. Using the
tracking error in (2) and the filtered error in (3), a composite
error vector, denoted by z : R≥0 → R2n, can be defined as

z ≜
[
rT , eT

]T
. (4)

Taking the time derivative of (3), substituting in the definition
of the tracking error from (2), multiplying it by the inertia
matrix M, and substituting the dynamics in (1) yields the
open-loop error system as

Mṙ = Mq̈d + Cq̇ +G+ F q̇ + χ− τ, (5)

where χ : R≥0 → Rn denotes an auxiliary term, defined as
χ ≜ Mαė+ d.

Property 7. Using Property 1, Property 4, and (4), the
auxiliary term χ can be upper bounded as ∥χ∥ ≤ ca+cb ∥z∥,
where ca, cb ∈ R>0 are known constants.

Property 8. Using Property 2, the errors in (2) and (3),
and the definition of z in (4), the centripetal-Coriolis matrix
C (q, q̇) can be upper bounded as ∥C∥ ≤ (cd + ce ∥z∥)
where cd, ce ∈ R>0 are known constants.

A. DNN Approximation

Another control objective of this work is to approximate
the uncertain dynamics in (1) using a DNN. To aid the CL
development, the uncertain dynamics in (1) can be repre-
sented by a single function, denoted as f1 (x1) : R3n → Rn,
that is defined as

f1 (x1) ≜ Mq̈ + Cq̇ +G+ F q̇, (6)

where x1 ≜
[
qT , q̇T , q̈T

]T
. Notice that substituting (6) into

the dynamics in (1) yields

f1 (x1) + d = τ. (7)

Based on the subsequent analysis, a second DNN must
be developed to approximate a function that is denoted as
f2 (x2) : R3n → Rn and is defined as

f2 (x2) = Mq̈d + Cq̇ +G+ F q̇, (8)

where x2 ≜
[
qT , q̇T , q̈Td

]T
. Notice that (8) has the same form

as (6); however, the acceleration q̈ has been replaced by the
desired acceleration q̈d. Substituting (8) into the open-loop
error system in (5) yields

Mṙ = χ+ f2 (x2)− τ. (9)

In this work, two DNNs are developed and both are
updated using a multiple timescale approach. Specifically,
the inner-layer features of each DNN are trained offline using
traditional training methods and data is collected concurrent
to real-time execution to enable iterative updates of the inner-
layer DNN features; whereas, the output-layer DNN weights



are updated in real-time using a Lyapunov- and CL-based
update law. Furthermore, previously collected data can be
used to pre-train the DNNs; however, the DNNs can also be
randomized initially.

Based on the universal function approximation property,
continuous functions that lie on compact sets can be ap-
proximated by DNNs. Consequently, (6) and (8) can be
approximated by DNNs provided that x1, x2 ∈ Ω, where
Ω ⊂ Rn is a simply connected compact set and Sn (Ω) is a
space where f1 (x1) and f2 (x2) are continuous. Therefore,
there exists a DNN (called DNN1) with ideal weights, biases,
and activation functions such that f1 (x1) ∈ Sn (Ω) can be
be represented as

f1 (x1) = WTσ(Φ1(x1)) + ϵ1(x1), (10)

where W ∈ Rm×n denotes unknown ideal DNN output-
layer weights for DNN1, σ : Rp → Rm denotes the
unknown ideal vector of ideal activation functions for DNN1,
Φ1 : Rn → Rp represents the ideal unknown inner-layers of
DNN1 and contains the inner-layer activation functions and
weight matrices, and ϵ1 : Rn → Rn denotes the unknown
reconstruction error of DNN1. The inner-portion of DNN1,
Φ1, can be represented as

Φ1 = V T
L1
ϕL1

(V T
L1−1ϕL1−1(V

T
L1−2ϕL1−2(...V

T
1 ϕ1(x1)),

(11)
where L1 ∈ N represents the number of inner-layers as-
sociated with DNN1, Vi denotes the weights of the ith

inner-layer ∀i ∈ [1, L1], and ϕi denotes the ideal activation
function vector of the ith inner-layer ∀i ∈ [1, L1]. The DNN
estimate of the function f1, denoted as f̂d1,k : Ω → Rn, can
be expressed as

f̂d1,k = ŴT σ̂k

(
Φ̂1,k(x1)

)
, (12)

where Ŵ : R≥0 → Rm×n denotes the estimate of weights
associated with the output-layer of the DNN, k ∈ N denotes
the index for each training iteration of DNN1, σ̂k : Rp →
Rm represents the kth user-defined estimate of the activation
functions associated with the output-layer of DNN1, and
Φ̂1,k : Rn → Rp represents the kth estimate of the inner-
layers of DNN1.

Similar to above, the function f2 (x2) ∈ Sn (Ω) can be
represented using a DNN (called DNN2) as3

f2 (x2) = WTσ (Φ2 (x2)) + ϵ2 (x2) , (13)

where Φ2 : Rn → Rp represents the ideal unknown inner-
layers of DNN2, and ϵ2 : Rn → Rn denotes the unknown
reconstruction error for DNN2. To enable the CL-based DNN
update law, the ideal output-layer weights of DNN1, W , and
the ideal output-layer activation functions of DNN1, σ, are
both used in DNN2. The result of using W and σ in DNN2
(instead of the ideal weights and activation functions for the

3As will subsequently be shown, DNN1 is required to augment the DNN
update law with CL-like terms and DNN2 is required to develop an adaptive,
real-time, and DNN-based control structure.

output-layer of DNN2) is that ϵ2 is larger. However, it should
be noted that DNN1 learns f1 (x1), DNN2 learns f2 (x2),
and that f1 (x1) = f2 (x2) whenever q̈ = q̈d.

The inner-portion of DNN2, Φ2, can be represented as

Φ2 = V
T

L2
ϕL2

(V
T

L2−1ϕL2−1(V
T

L2−2ϕL2−2(...V
T

1 ϕ1(x2)),
(14)

where L2 ∈ N represents the number of inner-layers as-
sociated with DNN2, V i denotes the weights of the ith

inner-layer ∀i ∈ [1, L2], and ϕi denotes the ideal activation
function vector of the ith inner-layer ∀i ∈ [1, L2]. The DNN
estimate of the function f2, denoted as f̂d2,k : Ω → Rn, can
be expressed as

f̂d2,i = ŴT σ̂i

(
Φ̂2,i(x2)

)
, (15)

where i ∈ N denotes the index for each training iteration
of DNN2, σ̂i : Rp → Rm represents the ith user-defined
estimate of the activation functions associated with the
output-layer of DNN2, and Φ̂2,i : Rn → Rp represents the
ith estimate of the inner-layers of DNN2.

The difference between the output-layer weights of DNN1
and DNN2 and the estimated output-layer weights can rep-
resented by W̃ : R≥t0 → Rm×n, and is defined as

W̃ (t) ≜ W − Ŵ (t) . (16)

Property 9. There exists known constants W , σ, σ̂1,
σ̂2, ϵ1, ϵ2 ∈ R>0 that upper bound the ideal output-
layer weight matrix for DNN1, W , the unknown vector
of ideal activation functions associated with the output-
layer of DNN1, σ, the estimates of the unknown activation
function vector σ̂k and σ̂i for DNN1 and DNN2, respec-
tively, and the function approximation errors of DNN1,
ϵ1, and DNN2, ϵ2, respectively, such that ∥W∥ ≤ W,
∥σ∥ ≤ σ, ∥σ̂k∥ ≤ σ̂1, ∀k ∈ N, ∥σ̂i∥ ≤ σ̂2, ∀i ∈ N,
supx1(t)∈Ω ∥ϵ1 (x1)∥ ≤ ϵ1, and supx2(t)∈Ω ∥ϵ2 (x2)∥ ≤
ϵ2. Additionally, the DNN1 estimate is selected such that
supx1(t)∈Ω

∥∥∥σ (Φ (x1))− σ̂k

(
Φ̂1,k (x1)

)∥∥∥ ≤ σ̃, ∀k ∈ N,

where σ̃ : R≥0 represents a known constant.

B. Control Law Development

Substituting (13) into (9) yields a modified open-loop error
system as

Mṙ = χ+WTσ (Φ2 (x2)) + ϵ2 (x2)− τ. (17)

Based on the open-loop error system in (17) and the sub-
sequent stability analysis, the controller τ can be designed
as

τ ≜ k1r+
(
k2 + k3 ∥z∥+ k4 ∥z∥2

)
sgn (r)+e+f̂d2,i, (18)

where k1, k2, k3, k4 ∈ R>0 are positive user-assigned control
gains, and sgn (·) is the signum function. Substituting the
controller τ from (18) into the open-loop error system in



(17) yields the closed-loop error system as

Mṙ = χ+WTσ (Φ2 (x2)) + ϵ2 (x2)

−k1r −
(
k2 + k3 ∥z∥+ k4 ∥z∥2

)
sgn (r)

−e− ŴT σ̂i

(
Φ̂2,i (x2)

)
.

(19)
Based on the subsequent stability analysis, the output-layer

weight estimate law with CL-inspired terms is denoted by
˙̂
W : R≥0 → Rm×n and is designed as

˙̂
W = proj

(
Γσ̂i

(
Φ̂2,i (x2)

)
rT

+kclΓ
N∑
j=1

σ̂k

(
Φ̂1,k (x1,j)

)
·(

τj − ŴT σ̂k

(
Φ̂1,k (x1,j)

))T)
,

(20)

where Γ ∈ Rm×m is a positive definite user-defined gain
matrix, kcl ∈ R>0 is a user-defined control gain, proj(·) is
a smooth projection function (cf. [28]) that ensures that the
estimate of output-layer weights remains within user-selected
bounds, {x1,j , τj}Nj=1 denotes a history stack of previous
states and control inputs corresponding to times tj ≤ t, ∀j,
and N ∈ N represents the size of the history stack. It should
be noted that x1 contains the generalized acceleration q̈,
which may be unmeasurable. Due to the fact that only prior
values of x1 must be known (i.e., x1,j), the acceleration at
each time tj can be numerically calculated. As per Property
9, the definition of W̃ in (16), and the update law in (20),
W̃ , is upper bounded by a constant W̃ ∈ R>0, such that∥∥∥vec

(
W̃
)∥∥∥ ≤ W̃ .

Assumption 1. It is assumed that the system is sufficiently
excited over a finite duration of time such that λmin (Sel) >
λss > 0, ∀t ≥ T , where T ∈ R>0 is a finite time, λmin (·) is
the minimum eigenvalue of (·), λss ∈ R>0 is a user-selected
constant, and

Sel =
N∑
j=1

σ̂k

(
Φ̂1,k (x1,j)

)
σ̂k

(
Φ̂1,k (x1,j)

)T
. (21)

Data collected prior to an experiment can be used to
pre-train the DNN estimates in (12) and (15). Pre-training
DNN1 and DNN2 provides initial estimates for the inner-
layer features, Φ̂1,1 (·) and Φ̂2,1 (·), and an initial estimate for
the the output-layer weights Ŵ (t0). As previously stated, the
DNNs in this project are updated using a multiple timescale
approach. Specifically, the output-layer weights are updated
in real-time using the proposed update law in (20). The
summation terms in (20) (i.e., the CL-inspired terms) are
included in the update law to ensure that the output-layer
DNN weights converge towards their optimal values. State
and input information are collected in real-time and used
in the adaptive update law to train the output-layer DNN
weights in real-time and to train the inner-layer DNN weights

offline. After the inner-layer DNN weights for DNNs 1 and
2 are sufficiently trained, they are updated instantaneously
to generate the updated DNN estimates, Φ̂1,k+1 (·) and
Φ̂2,i+1 (·).

IV. STABILITY ANALYSIS

To facilitate the subsequent analysis, a common Lyapunov-
like function candidate is denoted by VL : Rn(2+m)×R≥0 →
R≥0 and is defined as

VL (y, t) ≜
1

2
rTMr+

1

2
eT e+

1

2
trace

(
W̃TΓ−1W̃

)
, (22)

where y : R≥0 → Rn(2+m) is defined as

y ≜

[
rT eT vec

(
W̃
)T ]T

, (23)

where vec (·) represents the vectorization operator. The pos-
itive definite and continuously differentiable Lyapunov-like
function candidate in (22) can be bounded as

β1 ∥y∥2 ≤ VL ≤ β2 ∥y∥2 , (24)

where β1, β2 ∈ R>0 are defined as β1 ≜
min

(
1
2λmin (M) , 1

2 ,
1
2λmin

(
Γ−1

))
and β2 ≜

max
(
1
2λmax (M) , 1

2 ,
1
2λmax

(
Γ−1

))
, and λmax is the

maximum eigenvalue of (·). Moreover, VL can also be
bounded as

η1 ∥z∥2 ≤ VL ≤ η2 ∥z∥2 + η3, (25)

where η1, η2 ∈ R>0 are defined as η1 ≜ min
(
1
2λmin (M) , 1

2

)
and η2 ≜ max

(
1
2λmax (M) , 1

2

)
, and η3 : R>0 is defined as

η3 ≜
1

2
λmax

(
Γ−1

)
W̃

2

. (26)

Theorem 1. For the nonlinear and uncertain dynamic model
in (1) that satisfies Properties 1-9 and Assumption 1, the
control input in (18) and the adaptation law in (20) ensure
that the closed-loop error system in (19) yields a bounded
result ∀t ∈ [t0, T ) in the sense that

∥y (t)∥ ≤ max

(√
β2

β1
∥y (t0)∥ ,

√
v1
δ1β1

)
, (27)

and semi-global exponential convergence to an ultimate
bound ∀t ∈ [T,∞) in the sense that

∥y (t)∥2 ≤ β2

β1
∥y (T )∥2 e−δ2(t−T )

+ v2

δ2β1

(
1− e−δ2(t−T )

)
,

(28)

provided that the following gain conditions are satisfied

k2 ≥ ca + ϵ2 +Wσ +Wσ̂2,
k3 ≥ ce,
k4 ≥ cb + cd,

(29)

where δ1 ≜ λ1

η2
, v1 ≜ λ1η3

η2
+ C1W̃ , δ2 ≜ λ2

β2
, v2 ≜ C2

1

2kclλss
,

λ1 ≜ min (k1, α), λ2 ≜ min
(
k1, α,

1
2kclλss

)
, and C1 ∈ R>0

is a known constant.



Proof: Let y (t) be a Filippov solution of the dif-
ferential inclusion ẏ ∈ K [h] (y) for t ∈ [t0,∞), where
K[·] is defined in [29] as Filippov’s differential inclusion
operator and h : Rn(2+m) → Rn(2+m) is defined as

h (y) ≜
[
ṙT , ėT , vec( ˙̃

W )T
]T

. Due to the controller
being discontinuous, the solution of the time-derivative of
VL exists almost everywhere (a.e.) within t ∈ [t0,∞) such
that V̇L (y)

a.e.
∈ ˙̃

V L (y), where ˙̃
V L denotes the generalized

time-derivative of (22). The generalized time derivative ˙̃
V L is

defined as ˙̃
V L ⊆

⋂
ξ∈∂VL(y)

ξT
[
K[h]T (y), 1

]T
, where ∂VL(y)

represents the Clark’s generalized gradient and simplifies to
∂VL(y) = ∇VL(y) since VL(y) is continuously differen-
tiable in y. Note that ∇ denotes the gradient operator.

Taking the generalized time derivative of (22), using
properties of the trace operator and the matrix vectorization
operator, and substituting the definition of the auxiliary error
in (3), the output-layer DNN weight estimation error in (16),
the closed-loop error system in (19), and the adaptive update
law in (20), yields

˙̃
V L ⊆ 1

2r
T Ṁr + rTχ+ rTWTσ (Φ2 (x2)) + rT ϵ2

−
(
k2 + k3 ∥z∥+ k4 ∥z∥2

)
rTK [sgn (r)]

−k1r
T r − rT ŴTK

[
σ̂i

(
Φ̂2,i (x2)

)]
−αeT e− rT W̃TK

[
σ̂i

(
Φ̂2,i (x2)

)]
−trace

(
kclW̃

T
N∑
j=1

K
[
σ̂k

(
Φ̂1,k (x1,j)

)]
·

(
τj − ŴTK

[
σ̂k

(
Φ̂1,k (x1,j)

)])T)
.

(30)
Considering an arbitrary i ∈ N and an arbitrary k ∈ N,
such that σ̂i, σ̂k, Φ̂1,k, and Φ̂2,i are continuous. Adding and
subtracting rTWT σ̂i

(
Φ̂2,i (x2)

)
into (30) and using (16)

yields

˙̃
V L ⊆ 1

2r
T Ṁr + rTχ+ rT ϵ2 − k1r

T r − αeT e

+rTWT
[
σ (Φ2 (x2))− σ̂i

(
Φ̂2,i (x2)

)]
−
(
k2 + k3 ∥z∥+ k4 ∥z∥2

)
rTK [sgn (r)]

−trace

(
kclW̃

T
N∑
j=1

σ̂k

(
Φ̂1,k (x1,j)

)
·

(
τj − ŴT σ̂k

(
Φ̂1,k (x1,j)

))T)
.

(31)
Using Properties 5 and 7-9, noting that ∥r∥2 ≤ ∥r∥ ∥z∥ and
−rTK [sgn (r)] ≤ −∥r∥, and using the gain conditions in

(29) allows (31) to be further upper bounded as

V̇L

a.e.
≤ −k1 ∥r∥2 − α ∥e∥2

−trace

(
kclW̃

T
N∑
j=1

σ̂k

(
Φ̂1,k (x1,j)

)
·

(
τj − ŴT σ̂k

(
Φ̂1,k (x1,j)

))T)
.

(32)

Adding and subtracting terms into (32) and using (7), (10),
(16), (21), Properties 4 and 9, and properties of the trace
operator yields

V̇L

a.e.
≤ −k1 ∥r∥2 − α ∥e∥2 + C1

∥∥∥vec
(
W̃
)∥∥∥

−trace
(
kclW̃

TSelW̃
)
.

(33)

Since (33) holds for any arbitrary i, k ∈ N, (33) holds for all
t ∈

[
t0,∞

)
. During the time interval t =

[
t0, T

)
, sufficient

excitation has not yet been achieved based on Assumption
1 and it can be conservatively assumed that Sel is only
positive semidefinite ∀t ∈

[
t0, T

)
. Therefore, based on the

discussion under (20), the definition of λ1 in the theorem
statement, and (4), (33) can be further bounded as

V̇L

a.e.
≤ −λ1 ∥z∥2 + C1W̃ , ∀t ∈

[
t0, T

)
. (34)

Using (24), (25), and the definitions of δ1 and v1 in the
theorem statement, and solving the differential inequality in
(34) yields

∥y (t)∥2 ≤ β2

β1
∥y (t0)∥2 e−δ1(t−t0)

+ v1

δ1β1

[
1− e−δ1(t−t0)

]
, ∀t ∈

[
t0, T

)
.

(35)
The result in (27) can be obtained by inspection of (35).

During the time interval t ∈ [T,∞), sufficient learning has
occurred according to Assumption 1. Therefore, the term Scl

is positive definite ∀t ∈ [T,∞) and it can be proven that

−trace
(
kclW̃

TSelW̃
)
≤ −kclλss

∥∥∥vec
(
W̃
)∥∥∥2 . (36)

Using (23), (36), and the definition of λ2 in the theorem
statement, and completing the squares yields an upper bound
for (33) as

V̇L

a.e.
≤ −λ2 ∥y∥2 +

C2
1

2kclλss
, ∀t ∈ [T,∞) . (37)

Using (24) and the definitions of δ2 and v2 in the theorem
statement, and solving the differential inequality in (37)
yields (28) in the theorem statement.

From (4), (27), and (28), it can be seen that z, y ∈ L∞.
Therefore, from (23) and the fact that y ∈ L∞, it is clear
that e, r, W̃ ∈ L∞. From (2), (3), and Property 6, it can be
seen that q, q̇ ∈ L∞. From the projection algorithm in (20),
it is clear that ŴT ∈ L∞, and from Property 9 and 15, it can
be seen that f̂d2,i ∈ L∞, ∀i ∈ N. Therefore, the controller
defined in (18) is bounded.

Lastly, recall that the DNNs in (12) and (15) require x1

and x2 to be bounded for all time, respectively. Furthermore,



recall that DNN2 defined in (15) is implemented in real-time
in the controller; whereas, DNN1 is implemented using pre-
viously collected data in the CL portion of the DNN update
law defined in (20). A complication with DNN1 is that x1

contains q̈; however, since DNN1 is implemented using prior
data, the data used in DNN1 (i.e., x1,j) can be limited to
times (i.e., tj) when ∥q̈ (tj)∥ ≤ C2, where C2 ∈ R>0 is a
user defined constant. Based on (27), (28), and the fact that
q̈ (tj) ∈ L∞, ∀tj , if q (t0) , q̇ (t0) ∈ L∞ (i.e., a semi-global
result), then q (t) , q̇ (t) ∈ L∞, ∀t ∈ [t0,∞), which ensures
that x1 (tj) ∈ L∞, ∀tj and x2 (t) ∈ L∞, ∀t ∈ [t0,∞).

V. CONCLUSION

A DNN-based controller with a CL-inspired DNN weight
update law was developed for an uncertain, Euler-Lagrange
nonlinear dynamic system. To augment the DNN update law
with CL-inspired terms, two DNNs had to be developed.
The DNNs in this work were designed to have the output-
layer weights updated in real-time using a Lyapunov- and
CL-based adaptive update law; whereas, the inner-layer
weights and biases were designed to be updated offline
using traditional DNN training techniques. Real-time data
collection was utilized to update the DNN’s inner-layers
and to implement the CL-inspired terms in the DNN real-
time update law. The CL policy in the adaptive controller
helps to ensure exponential convergence of the output-layer
weights to to a small neighborhood containing the ideal
DNN weights. A nonsmooth Lyapunov-like analysis was
performed to guarantee semi-global exponential convergence
to an ultimate bound for the trajectory tracking errors and
the DNN output-layer estimation errors. In the future, simu-
lations and experiments will be performed to further validate
the effectiveness of the developed control law.
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