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Abstract— Predicting agents’ trajectories in complex environ-
ments is critical for achieving safe autonomous robot navigation.
Empirically, agents’ decisions and preferences are susceptible to
changes in environmental factors (e.g., interactions with other
agents, weather conditions, traffic rules). State-of-the-art meth-
ods rely on High-Definition (HD) or semantic maps to model the
environment, but do not take into account unpredictable factors
such as complex weather conditions. In addition, since HD maps
are nontrivial to obtain, those methods are limited in the scope
of environments they can be applied in. We propose a more
flexible graph based trajectory prediction model that uses only
images to model the environment, without requiring expensive
map information. We experimentally validate our proposed
model, demonstrating robust performances in trajectory pre-
diction compared to state-of-the-art methods, and outperform
in complex environments that cannot be modeled with purely
map based methods, such as diverse weather conditions.

I. INTRODUCTION

Predicting agents’ future trajectories accurately is essen-
tial for developing safe self-driving autonomous systems.
However, agents’ future motions are not only based on their
past trajectories but also on other environmental factors (e.g.,
weather conditions, surrounding agents, traffic rules). Since
those environmental factors are difficult to model, prediction
uncertainties tend to grow exponentially with variations of
those factors.

In order to support predicting future trajectories properly,
many existing state-of-the-art methods aim to understand
complete scene context by extracting features from rasterized
top-view representations [17], [29], [36] from view limited
camera images. Since agents tend to obey traffic rules
such as lane lines, other methods such as LaPred [17] and
LaneGCN [20] infer the relationship between agents and road
lanes by building a lane graph. In both of these, however,
obtaining a top-view representation and accurate lane labels
require High-Definition (HD) Maps, which are expensive to
acquire and are only included in a few self-driving datasets
(e.g., Nuscene [2] and Argoverse [S5]). Thus, it is not practical
to apply methods that rely solely on semantic and/or HD map
information when these are not readily available.

Although methods such as BEVFormer [19] and
FIERY [13] aim to address this problem by only relying on
camera images, they are mainly focused on predicting future
instance segmentation in the Bird-eye View (BEV); they fail
to predict actual future motions (e.g., locations, accelerations,
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velocities). Therefore, they are not suitable for solving the
real-world trajectory prediction problems.

In this paper, our goal is to achieve the state-of-the-
art trajectory prediction performance without using HD
or semantic maps and in varying weather conditions.
Specifically, we propose a Conditional Variational Encoder
(CAVE) network with a constructed node graph of the current
scene as input. Our proposed model-SWIFT, obtains detailed
semantic information in scenes by using an LSTM [12] to
extract scene features from only camera image sequences.
In addition, in order to provide occupancy details in scenes
(e.g., shapes of vehicles and roads), we extract edge features
in scenes to model scenes’ structural information. The image
and edge feature extractors provide both static and dynamic
contextual information in scenes.

We also directly address weather and lighting depen-
dencies by training a conditioned network using different
weather and lighting conditions [8]. Importantly, agents’ tra-
jectories are inclined to be affected by weather and lighting
conditions. For example, as demonstrated in Figure 1, under
snowy weather conditions, agents avoid driving on road
regions where snow accumulates, even though those regions
are drivable during sunny conditions. Likewise, during rainy
weather or night conditions, agents typically will drive
slower to avoid sliding and unexpected conditions, compared
to driving the same regions during sunny conditions. Thus,
in our model SWIFT, we also incorporate weather factors
into the trajectory forecasting process using camera images.
We append a classification layer to the image feature ex-
tractor so that we can obtain weather label information in
SWIFT’s encoder. We improve the robustness of trajectory
prediction under diverse weather conditions, by incorporating
the predicted weather label and the generation of latent intent
and future trajectories. Finally, we propose displacement
and intention losses to optimize prediction accuracy in our
proposed model.

Due to the importance of weather conditions on trajectory
prediction, we use the Ithaca365 [8] dataset, which collects
a series of driving sequences of the same locations under
different weather conditions, as one of our main evaluation
datasets.

Our contribution is summarized as follows:

¢ A novel trajectory prediction model-SWIFT, that does

not rely on HD maps and uses only camera images
for scene context. Thus, it can be applied effectively
under diverse scenarios where HD or semantic maps
are unavailable.

o Our model is the first trajectory prediction method that
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Fig. 1 This example from the Ithaca365 dataset [8] shows the drivable area (i.e., potential trajectory choices) shrinks with the degradation
of weather conditions (sunny — snowy). The blue overlay indicates the save driving area. The red curved line indicates a possible future

trajectory for the agent.

directly factors in weather and lighting conditions of the
self-driving area.

« We evaluate SWIFT’s and other state-of-the-art trajec-
tory prediction models performance on the Ithaca365
dataset [8], empirically showing that our method has
higher prediction accuracy than other state-of-the-art
models in complex environments with diverse weather
conditions.

« Even compared with state-of-the-art methods that use
HD maps for prediction, our method still shows similar
or better performances when using Nuscenes dataset [2]
for evaluation.

II. RELATED WORK

A. Physics based Predictions

The early trajectory prediction methods [11], [14], [21],
[25] take the velocity, acceleration, and steering angles
as input and predict the position for the next time step.
Monte Carlo Sampling [30], Kalman filters [15] are clas-
sical physics-based methods. When scenes contain limited
interactions between agents, those methods can be effectively
applied for predictions with short-time horizon (e.g., 1
second). When predicting with a longer time-horizon, how-
ever, those methods tend to lose accuracy due to increasing
maneuver complexity.

More recently, many deep learning-based methods inte-
grate agent kinematics into their models for more physically
grounded predictions. [1], [18], [23], [26], [32]. These meth-
ods include Reinforcement Learning based models [18],
[26], and LSTM based models [1], [23], [32]. Vehicle and
pedestrian kinematics are used to either design cost functions
in RL or combine Gaussian distributions with LSTM [12],
for predicting the future trajectories. Learning-based algo-
rithms can model higher level maneuver complexity and their
prediction of the future trajectories have higher accuracy
than traditional Monte Carlo Sampling [30] and Kalman
filters [15]. However, due to lack of consideration of scene
context, many learning based methods fail under more com-
plex environments (such as crossroads, traffic jams and roads
in snowy conditions)

B. Semantic-aware based Prediction

State-of-the-art trajectory prediction methods predict fu-
ture trajectories using the semantic information of the sur-
rounding environment [4], [9], [17], [20], [22], [29], [36].
Earlier work uses either top-view camera images or Lidar
sensors to obtain information on the structure of the scene.
Car-Net [28] leverages the attention mechanism to learn
where to focus in top-view images. Similar to Car-Net [28],
Sophie [27] uses top-view cameras as input to the model and
takes advantage of GANSs [10] and attention mechanism to
produces future agents’ positions.

Other methods such as [4], [34] use a rasterized top-down
representation of scene context as map input to their models.
For example, MultiPath [4] generates probabilities over K
predefined anchor trajectories based on the cropped agent-
centric view of feature representation using a rasterized top-
down scene representation.

Methods such as FRM [24], LaPred [17], and
LaneGCN [20] aim to learn the lane that the target
agent should follow and the impact of agents following
nearby lanes on the target agent. Although by leveraging
lane information, those methods provide more accurate
prediction than methods that use a rasterized top-down
representation, they often require HD maps to acquire
precise lane labels, which is not trivial to obtain and very
few self-driving datasets (nuScenes [2] and Argoverse [5])
have HD maps.

None of the methods mentioned above consider the impact
of weather conditions on future agent trajectories. Thus,
potential weather information that could be inferred from
camera images is never exploited. Our model proposes to
take advantage of scene structure and weather information
derived from rgb images.

C. Image-Based Prediction

To address the problem of predicting future agents’ loca-
tions without using any map information, many state-of-the-
art methods such as BEVFormer [19] and FIERY [13] have
been proposed. Those methods aims to use the multi-camera
image sequences and agents’ past locations to predict future
instance segmentation results (i.e., future agents’ locations
in BEV space). However, they fail to predict future agents’
real-world motion information (e.g., locations, velocities, and



accelerations). Therefore, they are not suitable for tackling
real-world trajectory prediction problems.

D. Generative Prediction Approaches

To predict future agent positions, many state-of-the-art
trajectory prediction methods [17], [29], [36] use GANs [10]
and CAVEs [31]. Recurrent networks (such as RNNs and
LSTMs [12]) are chosen as the backbone of most proposed
networks. However, few of them consider dynamic con-
straints during the trajectory generation stage. Thus, trajec-
tories generated from them might be dynamically infeasible.
To address this problem, methods such as Trajectron++ [29]
only produce control variable distributions and integrate
agents’ dynamics with the produced control variable to
generate future positions.

III. METHODOLOGY
A. Problem Setup

Given past agents’ trajectories collected over the time
sequence T = {1,2,3,...,t} (¢ is defined as the current
agent’s time step for our paper), we aim to predict agent
trajectories over future time steps {t + 1,t + 2,..,t + n}.
We first assign each agent with one of the two semantic
class labels (i.e., vehicle or pedestrian). Then at time f,
by incorporating the past positions z(?) (¢ € T) and
additional contextual information (i.e., weather factor w and
encoded image feature I'), our model predicts future position
distribution y*) = p(y® |z, w, I) (k € {t+1,t+2,..,t+n})
for N future timesteps over all interacting agents (z is
defined as the positions over the sequence 7).

B. Map Representation

HD maps contain semantics such as lane information
which is useful for trajectory prediction, since agent motion
tends to follow lanes. Most state-of-the-art methods [17],
[20], [24] extract semantic and interaction features from HD
maps. However, collecting HD maps is a time-consuming
task and thus HD maps do not exist in many self-driving
datasets. To develop a robust and more adaptable trajectory
prediction model, compared models that rely on HD maps,
we address the trajectory prediction problem without using
any HD map information while demonstrating state-of-
the-art performance. Instead we use camera images to (i.e.,
understand scene context). Camera images provide dense
semantic and occupancy information in the scenes, while
also being relatively cheap to acquire or a variety of different
environments.

C. SWIFT’s Structure

In the following sections, we describe the trajectory pre-
diction network.

1) Overall Architecture: Our proposed network-SWIFT is
shown in Figure 2. We build upon Trajectron++ [29] and use
a directed spatiotemporal graph G = (V, E) to describe the
current scene to model interactions between different types
of agents. Each node V in the graph represents either a
vehicle or a pedestrian in the scene. An edge E = (V;,V})

exists if agent V; affects agent V;’s trajectory. We follow the
convention defined in [29] such that there is an edge between
agent V; and Vj if |e; —e;| < d.; (e; and e; represents the
position of agent ¢ and agent j, d., refers to the visual range
of an agent with semantic label c;).

The directed graph is input into the encoder stage of
the trajectory prediction architecture. For modeling previous
trajectory history and interactions with other agents, we
first encode agent trajectory histories and agent interaction
features using two LSTM blocks respectively.

2) Node History Block: Since the input to the encoder is
the constructed scene graph, we can obtain the current and
past states of agents. Thus, similar as [29], to extract features
from agents’ past states, an LSTM network (See Figure 2)
is exploited to extract node history features from the history
sequences.

3) Edge History Block: Agents’ trajectories are not only
affected by their planning decisions but also by the sur-
rounding agents’ trajectories. Thus, to model the interactions
between agents, similar to [29], we also use LSTMs to extract
features lying in graphs’ edges. Specifically, we feed edge
into LSTM blocks (See Figure 2) to obtain different kinds
of interaction features. The weights of the LSTM blocks are
shared among all edges that have the same semantic types.
For example, all LSTMs that extract Vehicle-Vehicle edge
features are shared with the same weights. Finally, we use
the attention mechanism to combine features from different
edge types and feed the weighted features into a later stage.

Then, to extract scene context and environmental cues, we
intentionally add two image-based feature extraction blocks
in the encoder stage. The first block extracts RGB image
features I and the second block extracts occupancy and
structural information O in the current scene. We describe
the details of the two added blocks below.

4) Image Feature Extractor: We use camera images to
provide semantic information normally obtained from HD
maps. Specifically, we add an additional LSTM block to
the encoder stage. The input to the LSTM block is the
sequence of previous images collected from the previous
time sequences T'. The output of the image feature extraction
block is appended to features extracted from the node history
and the edge influence blocks.

5) Structural Information Extractor: Structural informa-
tion for the scene (e.g., positions of lanes, infrastructure,
shapes of roads, cars, and pedestrians) is important for agents
to understand the scene’s occupancy and interactions with
lanes and other agents. It’s essential to extract structural
information during the encoding stage, for understanding the
underlying interactions and scene context. Edge detectors
such as the Canny edge detector [3] are efficient tools for
obtaining structural scene information and we use it on top
of the camera images to attain ‘edge’ image sequences at
the previous time sequences 7. Then, in the encoding stage,
‘edge’ image sequences are input into an LSTM block to
obtain structure feature E.

6) Weather Classification: Agents’ behaviors are usually
influenced by changes in lighting and weather conditions.
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Fig. 2 The network architecture for our proposed trajectory prediction model (SWIFT). Besides node and edge history blocks, we include
the image features in the encoder by using both raw image and edge detection sequences (obtained by using Canny Edge detector [3]).
The predicted weather label w is also obtained in the image feature block such that in the later stage (i.e.,, between encoder and decoder),
the generation of agents’ latent intent z will consider the forecasted weather information. In the decoder stage, the final future agents’
positions are predicted by using the encoded features, latent intent, weather information, and the previous states.

For example, during snowy conditions, vehicles tend to
avoid snow-accumulated regions and slippery areas (See
Figure 1). Likewise, during driving scenarios at night, drivers
tend to avoid regions with poor lighting conditions. We
incorporate weather factor classification in the encoding
stage of our proposed model since weather conditions affect
the decision-making process of agents. Specifically, after the
image feature extractor LSTM, we add a fully connected
layer and softmax layer for predicting the current scene’s
weather and lighting conditions. In our case, we divide the
scene’s weather and lightning conditions into four categories:
sunny, snowy, night, and rainy. The softmax layer described
above predicts the probability distribution p(w|l) among
those four weather labels. The predicted weather label w
is then incorporated later into the decoding stage of our
proposed model. Note that our weather classification model
can not only classify single weather condition, under the case
that the dataset contains enough mixed weather condition
labels, our proposed model can also be applied potentially
for the mixed-weather conditions (e.g.,, we can also create
weather classification such as night+snowy, night+rainy)

7) Latent Intent Classification: Agent intent, which is
defined as discrete decision making (e.g., turning around
or going forward) significantly affects future trajectories.
Thus, similar to other state-of-the-art trajectory prediction
models [29], we use a categorical latent discrete variable
z € Z. The latent variable z can be regarded as a latent
indication of agents’ intent (e.g., turn right, turn left, go
straight).

Since agents’ intent and decisions are affected by not only
previous states and interactions, but also current weather
conditions, we also incorporate the weather factor w into
the prediction model. Thus, the predicted trajectory y can be

expressed as p(y|z) = >__c z o (Y|, 2, w)pc (2|2, w) (¢ and

(¢ are parameters for the described distributions respectively).
We constrain |Z| = 25.

To optimize the latent intent distribution estimation dur-
ing the training process, the ground-truth latent behavior
distribution is estimated by g, (2q:|%, ygt, wge) where yg
represents encoded ground truth future trajectory vector and
wg represents ground truth weather labels.

8) Predicting Future Trajectories: Since deep learning
models tend to fail considering the system dynamics, the
trajectories directly generated by them might be infeasible for
agents to traverse. Thus, similar to [29], in the decoding stage
of SWIFT, the encoded features f,, predicted latent intent
z, and weather label w are input into the Gated Recurrent
Units (GRU) module [6] to generate control variable a”
for the future timesteps. To trajectories suitable for agents’
systems, the predicted control variable a” is then input into
one of the two system models (i.e., unicycle and single
integrator) according to the agent’s type (unicycle model for
vehicles and single integrator for pedetrians). By classifying
agents into different dynamic models, the generated future
trajectories will be feasible for agents to traverse.

D. Training Details

We introduce loss functions used during the training
process.

a) Weather Classification Loss: Since we incorporate
the predicted weather label w in our model, to optimize the
weather classification block and improve the label prediction
precision, we first adopt the Cross-Entropy loss for the
weather classification block and denote it as L,,.

b) KL Divergence Loss using Latent Intent: Before the
decoding stage, the ground truth latent intent is produced
by ¢, (2gt|, wyt, ygt). The latent intent z* conditioned on
the predicted future trajectory y should be similar with
z conditioned on the ground truth y4. Thus, to optimize



the predicted trajectory, we first estimate Z by using the
predicted weather label w, current state x, and the predicted
future trajectory y (i.e., qv(z,|x,w,y)). Then, we use KL
divergence loss to reduce the distance between z and z.
Specifically, the loss L.is given by:

L. = Dr(gy(2 2,0, 9)|gy (29t |7, wge, ygt)) (1)

c) Displacement Loss: We employ a displacement loss
to enforce ||y — yqell2 = 0. Specifically, we use Average
Displacement Error (ADE) for computing the displacement
loss. To compute the ADE, we sample 1 predicted trajectory
during the training. The displacement loss function L is
defined as follows:

t+n
1
Lo=5 > (lv" —ygll) @
k=t+1

where v79t refers to to the groudtruth future position at
timestep 1.

d) Total training objective: Besides the described three
loss functions above, we also use the infoVAE [29], [35]
objective function. The total training objective function can
be described as follows:

Liotal = MaL e ¢y
}Ezwq,Y (zgtlz,ygt,wgt) [logp¢ (y|xa Z, U})]
— 0Dk (¢4 (2gt|z, Ygt, wye ) Ip¢ (2], w))
+ €Iq(x7 Z) + £w + Ed + [:z

3)

where I, is the mutual information between x and 2
based on distribution ¢,. We compute I, by approximating
Q’Y(th|x7 Ygt, wgt) with p<(2’|x, w) [29]. cvc

IV. EXPERIMENTS

In the following experimental section, we evaluate the
performance of our proposed model on the Ithaca365 [8]
and Nuscenes [2] datasets. Although SWIFT can be poten-
tially applied for mixed-weather labels, due to the limited
number of mixed weather scenarios in both of the two
datasets (e.g.,, rainy+night, night+snowy), in the following
experiment section, we only discuss the experimental results
for single weather labels.

A. Experiments on Ithaca365 Dataset

1) Introduction: The Ithaca365 dataset [8] is a publicly-
released dataset collected across four diverse weather condi-
tions (i.e., sunny, rainy, snowy and night) and four diverse
scenes (i.e., rural, highway, urban and campus area) along
a repeated 15km route. Since it contains multiple driving
traversals along the exact same routes with different weather
conditions (i.e., sunny, snowy, rainy, and night) it is a
uniquely suitable dataset to evaluate our image based agent
trajectory prediction method with weather factor classifica-
tion.

Ithaca365 dataset [8] contains 40 labeled traversals anno-
tated at 10 Hz, and Table I shows the number of traversals
collected under each of the four weather conditions respec-
tively. To ensure the data we use for training and testing does

not contain imbalanced classes, we use the same amount of
traversals 8 per weather condition, which means that we use
32 out of 40 traversals for training and testing. Finally, for
each traversal, we choose 25% of the traversal for testing
(i.e., 3.75 km) and 75% of the traversal for training (i.e.,
11.25 km). Each route traversal in the Ithaca365 dataset
contains around 7500 images for training and around 2500
images for testing.

TABLE I The number of traversals collected under different
weather conditions

sunny

# of traversals | 15 8 8 9

rainy | night | snowy

2) Training and Evaluation Metrics:

a) Training: SWIFT was trained on one 3090 GPU for
20 epochs on the Ithaca365 [8] dataset.

b) Evaluation Metrics: Following the convention of
prior work [29], we evaluated our proposed model using two
popular metrics-average displacement error (ADE) and final
displacement error(FDE). ADE is defined as the minimum
error of the [y distance between the predicted most likely
trajectory and the ground truth trajectory. FDE is defined as
following: At target time stamp ¢, the minimum error of the
I, distance between the predicted final most likely position
and the ground truth final position. To evaluate the trajectory
prediction accuracy with the increasing time horizon, we
evaluate predicted future trajectories at ¢t = {2, 3,4} s using
the described ADE and FDE metrics.

3) Main Results: Since the Ithaca365 [8] dataset does
not contain any map information, we only compare our
proposed model with the state-of-the-art models that perform
trajectory prediction without any semantic maps. Specifi-
cally, the four state-of-the-art models we choose to compare
with are AgentFormer [33], FQA [16], S-LSTM [1], Tra-
jectron++ [29]. We evaluate our models quantitatively and
qualitatively to show our image based model improves tra-
jectory prediction results under adverse weather conditions.

From the table II, since our method has the lowest ADE
and FDE results among the five evaluated methods, we can
conclude that generally, our proposed model outperforms all
other state-of-the-art methods which do not require HD map
information as a necessary component.

Also, from the FDE and ADE evaluation under four
weather conditions (i.e., sunny, rainy, night, and snowy)
(Table II ), we have three additional findings:

o Compared with sunny and night conditions, FDE and
ADE errors are larger under rainy and snowy conditions.
Thus, those two weather conditions cause the most
challenging scenarios for trajectory prediction.

o Compared with four state-of-the-art methods, under
adverse weather conditions (i.e., rainy and snowy), the
ADE and FDE errors of our proposed model are even
lower than the ADE and FDE errors of other baselines
under benign weather conditions (i.e., sunny). Thus,
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Fig. 3 Visual comparisons of predicted trajectories produced by our proposed model and the four SOTA methods (FQA [16], S-LSTM [1],
Trajectron++ [29], AgentFormer [33]) on the Ithaca365 [8] dataset. Columns demonstrate our model versus the four SOTA models while
rows demonstrate different weather conditions (snowy, rainy). Our proposed model predicts the most accurate future trajectories compared
with the other methods.The yellow dots in the picture indicate the starting location of agents.

TABLE II Performance comparison between our proposed model and the four baselines evaluated on the entire Ithaca365 [8] test set
and Ithaca365 [8] test set under four different weather conditions(i.e., snowy, rainy, night and sunny)

Prediction Horizon (ADE/FDE)
Entire Ithaca365 [8] Dataset
Model Trajectron++ [29] AgentFormer [33] S-LSTM [1] FQA [16] Ours
2s 0.337/0.940 0.329/0.932 0.543/1.431 0.403/1.047 0.268/0.693
3s 0.609/1.831 0.591/1.618 0.912/2.197 0.829/1.828 0.476/1.349
4s 0.956/2.957 0.939/2.872 1.216/3.871 1.001/3.217 0.741/2.171
Snowy Conditions
2s 0.369/0.994 0.362/0.990 0.681/1.554 0.453/1.125 0.281/0.722
3s 0.644/1.893 0.627/1.867 1.006/2.392 0.883/1.910 0.495/1.389
4s 0.993/2.769 0.984/2.967 1.471/4.002 1.131/3.416 0.765/2.222
Rainy Conditions
2s 0.367/1.001 0.361/0.982 0.670/1.545 0.450/1.134 0.278/0.719
3s 0.651/1.912 0.631/1.885 0.998/2.377 0.882/1.905 0.492/1.395
4s 1.002/3.109 0.987/3.005 1.438/3.892 1.164/3.411 0.759/2.235
Night Conditions
2s 0.334/0.935 0.314/0.928 0.547/1.434 0.401/1.043 0.257/0.680
3s 0.601/1.639 0.583/1.600 0.916/2.200 0.824/1.819 0.461/1.327
4s 0.935/2.943 0.919/2.825 1.221/3.877 0.982/3.109 0.722/2.144
Sunny Conditions
2s 0.313/0.841 0.309/0.804 0.408/1.22 0.366/0.928 0.227/0.595
3s 0.560/1.682 0.545/1.500 0.850/2.078 0.747/1.660 0.419/1.207
4s 0.889/2.843 0.882/2.779 0.725/3.569 0.871/3.046 0.666/1.981

our proposed model shows state-of-the-art performances
across all weather conditions.
e With regard to the ADE metric, for our proposed
method, the ADE of the adverse weather conditions
is about 3% higher than the ADE results of the av-
erage results across all weather conditions. Since this
percentage is the lowest across all evaluated models,
our method shows a smaller variance between adverse
weather conditions (i.e., snowy and rainy) and the
average results calculated across all weather conditions
(Table II). Thus, our method demonstrates robust per-
formances even under adverse weather conditions.

Qualitative evaluation of the trajectory prediction results

under snowy and rainy conditions is shown in Figure 3. From
the figure, we can see that with the increasing of prediction
length, other four baselines tend to gradually deviate from
the groudtruth labels. However, the predicted trajectories pro-
duced by our method are consistently follow the groudtruth
labels. Besides when the vehicles are comparatively static
(e.g., short trajectories on the Figure 3), our method can
correctly identify the status of the current vehicle while other
method tend to generate trajectories that do not actually exist
in the future. Thus, comparing with other state-of-the-art
methods, we can conclude that our method has the minimum
errors from the ground truth trajectories, which also means
that our proposed model-SWIFT is robust under adverse



weather conditions.

B. Nuscene [2] Dataset

We conduct additional evaluation on the popular Nuscenes
dataset [2] which features HD maps. We use the same metrics
as described in Section IV-A.2.b and evaluate all methods
at t = {2,4,6} s. Four state-of-the-art methods are chosen
for comparison-Trajectron++ [29], PGP [7], LaPred [17] and
AgentFormer [33]. Note that since the four SOTA methods
are focused on predicting vehicles’ future trajectories. There-
fore, in the following experimental table III, we only discuss
the ADE and FDE results for the predictions of vehicles’
trajectories.

1) Training Details: Since the Nuscene dataset [2] is
sampled at 2 Hz, it contains a limited number of images
to train a good weather classifier. Thus, we pretrained the
entire image feature extractor module on the Ithaca365
dataset [8] to obtain a robust weather classifier. Then, before
the training, we initialize the weights of the image feature
extractor from the pretrained module and finetune its weights
during training. The SWIFT has been trained using 20 epochs
on Nuscene dataset [2].

TABLE III Performance comparison between our proposed
model and other four baselines evaluated on the Nuscene [2]
test set (vehicles).

Prediction Horizon (ADE/FDE) | 2s 4s 6s

Trajectron++ (w/ map) [29] 0.21/0.45 | 0.82/2.20 | 1.99/5.81
AgentFormer [33] 0.21/0.42 | 0.78/1.99 | 1.86/3.89
LaPred [17] - - 1.41/2.65
PGP [7] - - 1.32/2.48
SWIFT(ours) 0.17/0.33 | 0.50/1.42 | 1.35/2.57

2) Main Results: From table III, the ADE and FDE results
of our proposed model are better than all listed state-of-the-
art methods except PGP [7], which means our model demon-
strates the state-of-the-art performances even compared to
methods that use HD map information. Therefore, using
image modules to replace the HD map information is not
only cheaper and more flexible, but also does not degrade
performance and actually performs favorably compared to
methods using HD maps.

C. Ablation Study on Ithaca365 [8] Dataset

1) Overall Ablation Study: We perform ablation studies
to evaluate the improvements obtained from the proposed
components. First, we construct the baseline model A by
removing the image feature extractor, structural information
module, displacement loss, and KL divergence intent loss
(i.e., the baseline Trajectron++ model without using HD
maps [29]). Then we construct an improved model B by
adding the image feature extractor (without weather clas-
sification layer) in the encoder stage. On top of model
B, we construct a further improvement by appending the
weather classification layer to the image feature extractor
(we call it model C). We conduct a further improvement D
by adding the structural feature extractor module. Model E is

constructed by adding the displacement loss during training
on top of model D. Model F is constructed by adding the
KL divergence loss during training on top of model E.

From the ablation evaluation Table IV, there are three find-
ings. First, all proposed components facilitate the improve-
ment of trajectory prediction to different degrees. Second,
from the improvement of ADE and FDE results, model B
demonstrates the largest percentage of improvement (10%
improvement from model A to model B). Thus, the ad-
dition of an image module feature extractor plays a more
important role in our proposed trajectory prediction model.
Finally, because considering weather conditions can help
drivers arrive at the same location while avoiding water-
accumulated or snow-accumulated regions, compared with
other design choices, the addition of a weather classification
layer improves the ADE results more obviously.

TABLE IV Ablation Study on the Ithaca365 [8] test set.

Prediction Horizon (ADE/FDE) | 2s 3s 4s

A 0.337/0.940 | 0.609/1.831 | 0.956/2.957
B 0.327/0.840 | 0.589/1.632 | 0.925/2.657
C 0.280/0.773 | 0.537/1.472 | 0.771/2.392
D 0.275/0.730 | 0.517/1.405 | 0.759/2.281
E 0.269/0.696 | 0.500/1.366 | 0.753/2.250
F(ours) 0.268/0.693 | 0.476/1.349 | 0.741/2.171

2) Evaluation of Weather Classification: We evaluate the
accuracy of the weather classification block of our model
on the Ithaca365 test set. From the results in Table V, we
see that the sunny and night have the highest classification
accuracy since they have the most distinguishable features.
The classification accuracy of the raining scenario is the
lowest because sometimes light rain scenarios and sleet cause
challenges in differentiating between rainy and other weather
conditions (e.g., snowy and sunny).

TABLE V Accuracy of Weather Classification
Weather

sunny

98.03%

Snowy

93.85%

Rainy
91.21%

Night
97.64%

Accuracy(%)

V. CONCLUSION

We propose SWIFT, a flexible trajectory prediction model
that can be applied effectively even under scenarios where
HD map information does not exist. By leveraging image
based features, our model empirically outperforms other
state-of-the-art baselines, even without using HD map in-
formation. SWIFT takes weather conditions into considera-
tion when using camera image sequences, and demonstrates
robustness for trajectory prediction under diverse weather
conditions (i.e., sunny, rainy, night, snowy), which is not
accounted for in other trajectory prediction methods. SWIFT
is a flexible image based trajectory prediction model, and
easily applied to a wide variety of scenes and environmental
conditions.
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