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1 Introduction

Astrophysical and cosmological observations provide strong evidence for the existence of dark
matter [1, 2]. However, we do not as yet know the mass, charge, and spin of the constituent
dark matter particles. What do astrophysical observations tell us about such properties,
especially spin? The electric charge of dark matter cannot be too large [3], whereas the
mass cannot be lighter than O(10≠19

≠ 10≠18 eV) eV [4, 5]. While we do not know the spin
of dark matter, an important piece of information connecting the spin and mass of dark
matter is known: if dark matter is su�ciently light, it cannot be fermionic since the required
occupation number in phase space would be too large [6]. For bosons, however, light masses
are allowed. In the regime when the dark matter mass is su�ciently light (m π eV), the
occupation number of the field in astrophysical settings becomes so large that dark matter is
adequately described by a classical, non-relativistic field. Classical, wave dynamical e�ects
become relevant in such settings. Can such wave-e�ects then be used to infer the spin of
bosonic dark matter?
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The past decade has seen a resurgence of e�ort in exploring wave dynamical e�ects in
non-relativistic, spin-0 (i.e. scalar) dark matter. See refs. [7, 8] for recent reviews, and [9–14]
for examples of numerical simulations in a structure formation context. In the case of vector
(spin-1 or dark photon) dark matter [15–17] a similar numerical exploration is still in its
nascent stage [18, 19]. While in a broad sense, the governing equations and the resulting
gravitational clustering and growth of structure in non-relativistic vector dark matter is
similar to scalars [20, 21], the additional number of components in higher spin dark matter
(2s + 1 for a spin-s field) can lead to observationally relevant di�erences. A larger number
of components leads to reduced wave interference, which reduces the variance of density
fluctuations in dark matter [18]. Such fluctuations can, for example, be probed by dynamical
heating of stars [4, 22]. Such e�ects; however, can also be mimicked to an extent by n = 2s + 1
scalar fields with similar masses [23]. Furthermore, initial conditions in the early universe do
rely on the intrinsic nature (including spin) of the field [24–34], however, the intrinsic spin
(as a spatial vector) is not directly accessible to Newtonian gravity relevant for dark matter
in the contemporary universe when it is characteristically non-relativistic.

To access spin more directly, one must include non-gravitational interactions within the
field and/or introduce interactions with other Standard Model fields (or include relativistic
corrections). All such e�ects are typically expected to be small in the case of dark matter.
Nevertheless, the e�ects of such non-gravitational interactions, even if weak, can be enhanced
by the large occupation numbers, densities and coherence length of the dark matter field.
These conditions are possible in solitons — coherent field configurations that are long-lived,
spatially localized and whose central amplitudes can be much larger than the background
density (since the amplitudes do not decay with expansion). For a detailed recent discussion
of non-relativistic scalar solitons, see for example ref. [35] and references therein.

Such solitons have been shown to readily form in light scalar field dark matter via
gravitational interactions alone [9, 36], and recently, also in vector dark matter from cos-
mological and astrophysical initial conditions [5, 19]. Unlike scalar solitons, solitons in
vector fields have a richer structure due to the vector nature of the field [20, 21, 37]. They
can be polarized [20, 21], with no particular preference for the polarization in the case of
purely gravitational interactions. Such vector solitons typically carry macroscopic amounts
of intrinsic spin [21]. Non-gravitational self-interactions can lead to preference for one po-
larization over another, and have been explored in refs. [38–41]. This richness in structure
arising from the vector nature of the field provides hope that interactions with Standard
Model fields in environments with solitons might lead to interesting, and potentially large
spin-dependent e�ects.

With these considerations in mind, we consider the direct coupling of spin-1 dark matter
to photons, and explore their implications in an astrophysical environment where solitons are
present. We show that such interactions, while very weak, can still lead to resonant production
of photons when certain conditions are met. This aspect is similar to the case of resonant
photon production from axion stars and miniclusters [42–45]. However, in our case, the polar-
ization pattern of the radiation carries information about the underlying polarization state of
the solitons as well as the specific nature of the interaction. With this preliminary investigation,
we elucidate characteristic features of the electromagnetic radiation (frequency, polarization,
spatial patterns of radiation etc.), and the conditions under which such signals are produced.
If detected, such signals could provide insight into the underlying spin of dark matter.

We study resonant photon production from dark photon (i.e. vector) solitons via a variety
of dimension-6 operators that couple photons and dark photons, within the framework of
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e�ective field theory. We focus on dimension-6 operators since we find that such interactions
lead to significant photon production from solitons even in vacuum. Astrophysical implications
of a more natural dimension-4 operator: gauge kinetic mixing [46, 47], has been explored
extensively in the literature (e.g. [48–51]), albeit in non-solitonic settings. Photon production
from such a coupling is also of interest in the presence of solitons, and might lead to enhanced
signals. Furthermore, our e�ort here is complementary to the significant ongoing e�ort to
detect light dark photon dark matter in terrestrial settings [52].

The remainder of the article is organized as follows. The content of section 2 establishes
the scope of the problem: we specify the model for massive dark photons interacting with
electromagnetism, we discuss a possible ultraviolet embedding for the dimension-6 operators
that we study, and we present the spatially-localized polarized vector soliton configurations.
The core results of our study are presented in section 3, which includes our analysis of
the electromagnetic field’s equation of motion using Floquet theory and our predictions for
the Floquet exponents arising from parametric resonance of a dark photon homogeneous
configuration with either linear or circular polarization. In section 4, we apply previous results
to study electromagnetic radiation from polarized vector solitons and discuss the possible
astrophysical signatures. In section 5, we conclude and summarize key points of our work.
Appendix A contains details of the homogeneous Floquet analysis, appendix B contains the
modified Floquet analysis for an inhomogeneous vector soliton, and appendix C includes an
extension of our work to the case of fuzzy dark photon dark matter.

2 Modeling dark photon interactions with light

We are interested in the interactions of a massive spin-1 dark photon with electromagnetism.
Consider a massive real vector field Xµ(x), which we call the dark photon field. The properties
and interactions of these particles are encoded in the action

S[Xµ(x),Aµ(x),gµ‹(x)] =
⁄

d4x
Ô

≠g
5
≠

1
4Xµ‹Xµ‹

≠
1
2m2XµXµ

≠
1
4Fµ‹F µ‹ + 1

2m2

plR+Lint

6

(2.1)

where Xµ‹ = ÒµX‹ ≠ Ò‹Xµ is the dark photon field strength tensor, Fµ‹ = ÒµA‹ ≠ Ò‹Aµ

is the electromagnetic field strength tensor, R is the Ricci scalar, and indices are raised
and lowered with the metric gµ‹(x). We work in natural units where ~ = c = 1 are set to
one, mpl = 1/

Ô
8fiGN is the reduced Planck mass, and (- + + +) is the metric signature.

We also write Xµ = (X0, X) and ˆµf = (ḟ , Òf). We consider small values of the mass
parameter m π 10 eV corresponding to light dark photons. Extending earlier work on dark
photons, we allow for interactions between Xµ(x) and the electromagnetic field Aµ(x), which
is represented by Lint. We enumerate the relevant interaction operators in section 2.2; these
include Lint ∏ Fµ‹Ffl‡X–X— and Fµ‹Ffl‡ˆ–X— where the Lorentz indices may be contracted
with various combinations of the inverse metric and Levi-Civita symbol.

2.1 Non-relativistic modes of the dark photon field

We are interested in the dark photon as a candidate for the cold dark matter. In the systems of
interest, only non-relativistic modes of the dark photon field will propagate; these modes have
small wavenumbers k π m and large de Broglie wavelengths ⁄ ∫ 2fi/m. This observation
motivates a perturbative expansion in powers of the dark photon field’s spatial gradient; the
parametric relations are |ÒXµ| ≥ ⁄≠1Xµ π mXµ ≥ Ẋµ. We work to leading order in this
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expansion, which e�ectively amounts to setting ÒXµ = 0.1 The temporal component of
the dark photon field, X0(x), is non-dynamical in the theories that we study. In the time
component of the Euler-Lagrange equations, Ẍ0(x) cancels out and its equation of motion is
an algebraic constraint equation, which has the solution X0 =

!
Ò

2
≠m2

"≠1!
Ò ·Ẋ), neglecting

gravitational and electromagnetic interactions. Working to leading order in the gradient
expansion, we set X0(x) = 0.

2.2 Interactions with electromagnetism

Since we seek to study electromagnetic radiation from vector solitons, it is necessary to
introduce a coupling between the dark photon field Xµ(x) and the electromagnetic field
Aµ(x). Working in the context of e�ective field theory (EFT), we consider all operators that
are consistent with electromagnetic gauge invariance, and we organize the operators based
on their mass dimension. The only such operator with mass dimension-4 is the so-called
gauge-kinetic mixing [46, 47]

L (4)

int
∏ Fµ‹X–— , (2.2)

where Fµ‹ = ˆµA‹ ≠ ˆ‹Aµ is the usual electromagnetic field strength tensor and X–— =
ˆ–X— ≠ ˆ—X–. The Lorentz indices can be contracted using any combination of the diagonal
inverse Minkowski metric ÷µ‹ and the totally-antisymmetric Levi-Civita symbol ‘µ‹fl‡; we
normalize ≠÷00 = ÷11 = ÷22 = ÷33 = ‘0123 = 1. The gauge kinetic mixing can be exchanged
for a coupling to charged matter by performing a field redefinition. In this work we consider
systems in the absence of free charges, and the gauge-kinetic mixing operators do not lead
to electromagnetic radiation from a dark photon field. At mass dimension-5 there are no
operators coupling the vector soliton to electromagnetism, since such operators would carry
an odd number of Lorentz indices, which cannot be fully contracted using only the two-
index metric and the four-index Levi-Civita symbol. At dimension-6 the following operators
are available:

L (6)

int
∏ Fµ‹Ffl‡X–X— , Fµ‹Ffl‡ˆ–X— , Fµ‹XflX‡ˆ–X— , Fµ‹ˆflX‡ˆ–X— , Fµ‹ˆflˆ‡ˆ–X— .

(2.3)

The third, fourth, and fifth operators involve only one factor of the electromagnetic field
Aµ(x). In the presence of a background dark photon field Xµ(x), these operators provide
a source for Aµ(x). The radiation arising from such source terms is highly suppressed for
long-wavelength background fields if plasma e�ects can be neglected [53], and we do not
discuss these operators further here.

The dimension-6 operators that we study are summarized as follows:2

O1 = ≠
1

2
Fµ‹F̃ µ‹(X · X) ¥ 2(E · B)(X · X) (2.4a)

O2 = ≠
1

2
Fµ‹F µ‹(X · X) ¥ (E · E)(X · X) ≠ (B · B)(X · X) (2.4b)

O3 = FµflF ‹flXµX‹ ¥ (B · B)(X · X) ≠ (E · X)2
≠ (B · X)2 (2.4c)

O4 = F̃µflF̃ ‹flXµX‹ ¥ (E · E)(X · X) ≠ (E · X)2
≠ (B · X)2 (2.4d)

O5 = FµflF ‹flˆµX‹ ¥ (E ◊ B) · Ẋ . (2.4e)
1
We work in the zero spatial gradient approximation locally, but indirectly take spatial gradients into

account by including the finite size e�ects of dark photon configurations in the phenomenology.
2
Some of these operators are related to one another using integration by parts (dropping total derivatives)

and equations of motion. For the non-relativistic dark photon field, a few other operators reduce to one of

these; for instance FµflF̃ ‹flXµX‹ ¥ ≠O1.

– 4 –



J
C
A
P
0
5
(
2
0
2
3
)
0
1
5

To move from the Lorentz-covariant expressions to the 3-vector expressions, we have dropped
terms containing X0 and spatial gradients ÒXµ, which is an excellent approximation for
non-relativistic modes of the dark photon field.

We write Lint = g2
Oi and we study the e�ect of each operator one at a time. Validity

of the e�ective field theory, which allows us to neglect the e�ects of dimension-8 (and higher-
order) operators, requires the coupling g2 to remain su�ciently small. Moreover, we consider
systems in which the dark photon field acquires a nonzero vacuum expectation value ÈXÍ ≥ X̄,
which causes these dimension-6 operators to renormalize lower-order operators; for instance,
O2 modifies the electromagnetic kinetic term. To ensure that these modifications are negligible,
and that the EFT remains valid, we impose

g2X̄2
π 1 , (2.5)

where X̄ is interpreted as the typical amplitude of the dark photon field X(t, x).

2.3 Ultraviolet embedding

Each of the operators in eq. (2.4) is used to construct an e�ective field theory with Lint = g2
Oi,

and we study the resultant electromagnetic radiation from a non-relativistic dark photon
field. Our analysis is independent of the EFT’s ultraviolet (UV) embedding, except insofar as
we are justified to ‘turn on’ each operator, one at a time. Nevertheless, it is interesting to
remark that these operators can arise from a simple, renormalizable theory in the UV. In the
remainder of this short section, we o�er a concrete UV embedding for operator O2.

Consider the following theory. Suppose that Xµ is the vector potential associated with a
dark U(1)d gauge symmetry, and suppose that the UV theory includes a dark Higgs field „(x)
with Dµ„ = ˆµ„ ≠ igdXµ„. If the dark Higgs acquires a nonzero vacuum expectation value
È„Í = vd/

Ô
2, then operator O2 can arise from the dimension-8 operator:

L8 = ≠
1

8
M≠4

--D–„
--2Fµ‹F µ‹ . (2.6)

The operator coe�cients in our EFT are parametrically g2
≥ g2

dv2/M4
≥ m2/M4 where

m ≥ gdv is the mass scale of the dark photon and M is the UV scale of new physics. The
dimension-8 operator, in turn, may arise from a renormalizable theory of charged fermions
Â and ‰ with a Yukawa coupling ≠y„Â̄‰ + h.c.. A one-loop box graph generates L8 upon
integrating out the fermions. Assuming that the fermions have comparable mass m‰ ≥ mÂ and
electromagnetic charge qÂe, the box graph is parametrically M≠4

≥ y2q2

Âe2/16fi2m4

Â. Finally
we arrive at a parametric estimate for the operator coe�cients in our EFT: g ≥ yqÂem/4fim2

Â.
In the next section, we show that operators O1 through O4 lead to resonance

as long as gmpl ∫ 1. For a fiducial set of parameters, we estimate gmpl ≥

(y/1)(qÂ/10≠14)(m/10≠6 eV)(mÂ/keV)≠2. These parameters are chosen to reflect the con-
straints on millicharged particles, which place tight upper limits on qÂ across a wide range of
mÂ values [54]. The strongest limits from stellar cooling plateau to qÂ . 10≠14 for mÂ below
10 keV; lowering mÂ further does not strengthen the qÂ limit. These estimates imply that a
su�ciently large dimensionless coupling gmpl ∫ 1 can be achieved if the ‘UV’ embedding
includes su�ciently light and weakly-charged fermions. Despite the small value of mÂ com-
pared to the Standard Model particle content, the EFT approach remains valid while the
fermion mass is much larger than the dark photon mass, i.e. mÂ ≥ keV ∫ m ≥ µeV.

– 5 –
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2.4 Polarized vector solitons

In the nonrelativistic regime, the equations of motion for the dark photon field X(t, x)
and the gravitational field is a Schrödinger-Poisson system [20, 21]. These equations admit
spatially-localized solutions with spherically-symmetric density profiles, which correspond to
gravitationally bound and coherent clumps of dark photons that are ground states of the
system at fixed particle number [20]. Such solitons have spatially-independent polarization
of the field, with linear and circular polarization being the extremal cases. These have been
called polarized vector solitons, and they typically carry macroscopic amount of spin angular
momentum [21]. A general polarized vector soliton field configuration takes the form

X(t, x) = 1
2

ÿ

a

Ë
c(a) X(r) e≠i(m≠µ)t ‘(a) + h.c.

È
, (2.7)

where r = |x| is the radial distance from the center of the soliton, the index a labels the three
polarization modes, ‘(a) are the corresponding polarization unit vectors that are constants,
and c(a) are c-number coe�cients that are normalized by

q
a |c(a)

|
2 = 1. The real and positive

parameter µ, called the chemical potential, controls the field amplitude via the radial field
profile X(r). Note that the field amplitude oscillates in time with an angular frequency
Ê = m ≠ µ. Validity of the non-relativistic approximation requires

µ/m π 1 and Ê ¥ m . (2.8)

For instance, vector soliton formation by the collapse of Hubble-scale inhomogeneities at
radiation-matter equality [19] would give µ ≥ Heq ¥ 2 ◊ 10≠28 eV, which is far below the
fiducial mass scale m ¥ 10≠6 eV. For solitons forming in nonlinear environments inside dark
matter halos, the chemical potential is expected to be comparable to the typical kinetic energy
per particle in the environment leading to µ/m ≥ v2

≥ 10≠6 [9, 36].
The radial field profile X(r) and the non-dynamical Newtonian potential �(r) are

required to solve the static Schrödinger-Poisson system of equations. For each polarization
mode, a one-parameter family of solutions are labeled by the chemical potential µ, which sets
the amplitude of X(r) and thus also X(t, x). These solutions are well-approximated by the
empirical fitting formula [9, 18]

X(r) ƒ
X̄

(1 + 0.077 µmr2)4
with X̄ ƒ 2.04 mpl

3
µ

m

4
. (2.9)

The localized soliton solution has a finite gravitational binding energy E, total mass M , and
full width at half maximum R that are given by [21]3

E ¥ ≠20.8
m2

pl

m

3
µ

m

43/2

, M ¥ 62.3
m2

pl

m

3
µ

m

41/2

, and R ¥ 3.16 1
m

3
µ

m

4≠1/2

,

(2.10)

which have an error of . 10%. Since µ/m π 1 it follows that |E| π M , implying that
the particles in the vector soliton are cold, and that there are approximately N ¥ M/m
constituent particles. The average binding energy per particle is E/N ¥ ≠0.33m(µ/m). To
ensure that the soliton is a many-particle state, N ∫ 1, the chemical potential is bounded

3
The numerical factors are more accurate than those provided in [18, 39].
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from below as µ/m ∫ (m/mpl)4, which is easily satisfied, since m n mpl for the parameters
of interest.

The three polarization unit vectors ‘(a)(x̂) form an orthonormal basis. Two convenient
basis choices are

‘(x) =

S

WU
1
0
0

T

XV, ‘(y) =

S

WU
0
1
0

T

XV, ‘(z) =

S

WU
0
0
1

T

XV

and ‘(≠) = 1
Ô

2

S

WU
1

≠i
0

T

XV, ‘(0) =

S

WU
0
0
1

T

XV, ‘(+) = 1
Ô

2

S

WU
1
i
0

T

XV .

(2.11)

They correspond to linear polarization along each of the three coordinate axes and circular
polarization with respect to the third z axis. If non-gravitational interactions can be neglected,
each of these six modes is degenerate [21]. We do not consider the ‘hedgehog’ configuration
‘ = x̂ [37], since it corresponds to a state of higher energy. For example, using the circular
polarization basis allows the polarized vector soliton field configuration to be written as

X(t, r) = X(r)

Q

ca
|c(≠)

|
Ô

2

S

WU
cos(Êt≠arg c(≠))

≠ sin(Êt≠arg c(≠))
0

T

XV+ |c(0)
|

S

WU
0
0

cos(Êt≠arg c(0))

T

XV+ |c(+)
|

Ô
2

S

WU
cos(Êt≠arg c(+))
sin(Êt≠arg c(+))

0

T

XV

R

db ,

(2.12)

where c(a) = |c(a)
|ei arg c(a) and Ê = m ≠ µ.

3 Electromagnetic radiation via parametric resonance

Interactions between the dark photon field and the electromagnetic field allow for electromag-
netic radiation to arise from a dynamical dark photon field configuration, even in the absence
of charged matter. We are concerned with the operators appearing in eq. (2.4). In the back-
ground of the oscillating dark photon field X(t, x), these operators induce a time-dependent
equation of motion for the electromagnetic field. This leads to the phenomenon of parametric
resonance, which can be studied using Floquet theory. Fourier modes of the electromagnetic
field that fall into resonance bands experience an exponential amplification Ak(t) Ã eµkt,
where µk are the Floquet exponents, allowing a weak seed field to be transformed into
electromagnetic radiation. This radiation extracts energy from the dark photon field, which
impacts its lifetime while also providing a signal that would make dark photon evaporation
possibly detectable from Earth.

In the remainder of this section, we apply known techniques from Floquet theory
to develop an analytical formalism that allows us to study parametric resonance of the
electromagnetic field coupled to a dark photon field. We derive expressions for the Floquet
exponents µk assuming di�erent polarization configurations for the dark photon field. As a
simplifying approximation, throughout this section we treat the dark photon field as spatially
homogeneous: X(t, x) = X(t). In the following sections, we discuss how our results should
be adapted for the study of inhomogeneous polarized vector solitons.

– 7 –
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3.1 Electromagnetic equation of motion

For each of the five operators that we study, the electromagnetic field’s equation of motion is
linear. Working in the Coulomb gauge Ò · A = 0, the equation of motion admits a Fourier
representation:

OijÄj + PijȦj + QijAj = 0 , (3.1)

where the matrix coe�cients are

Oij =

Y
________]

________[

”ij , Lint = g2
O1

”ij +
!
2g2

|X|
2"

”ij , Lint = g2
O2

”ij +
!
≠2g2"

XiXj +

1
2g2 k·X

|k|2

2
kiXj , Lint = g2

O3

”ij +
!
2g2

|X|
2"

”ij +

1
2g2 k·X

|k|2

2
kiXj +

!
≠2g2"

XiXj , Lint = g2
O4

”ij , Lint = g2
O5

(3.2a)

Pij =

Y
________]

________[

0 , Lint = g2
O1

!
4g2X ·Ẋ

"
”ij , Lint = g2

O2
!
≠2g2"

ẊiXj +
!
≠2g2"

XiẊj +

1
2g2 k·X

|k|2

2
kiẊj +

1
2g2 k·Ẋ

|k|2

2
kiXj , Lint = g2

O3
!
4g2X ·Ẋ

"
”ij +

!
≠2g2"

ẊiXj +
!
≠2g2"

XiẊj +

1
2g2 k·Ẋ

|k|2

2
kiXj +

1
2g2 k·X

|k|2

2
kiẊj , Lint = g2

O4
!
≠2ig2k·Ẋ

"
”ij , Lint = g2

O5

(3.2b)

Qij =

Y
_______]

_______[

|k|
2 ”ij +

!
4ig2X ·Ẋ

"
‘ijkkk , Lint = g2

O1

|k|
2 ”ij +

!
2g2

|k|
2

|X|
2"

”ij , Lint = g2
O2

|k|
2 ”ij +

!
≠2g2

(k·X)
2"

”ij +
!
≠2g2

|k|
2"

XiXj +
!
2g2k·X

"
kiXj , Lint = g2

O3

|k|
2 ”ij +

!
≠2g2

(k·X)
2
+2g2

|k|
2

|X|
2"

”ij +
!
≠2g2

|k|
2"

XiXj +
!
2g2k·X

"
kiXj , Lint = g2

O4

|k|
2 ”ij +

!
≠ig2k·Ẍ

"
”ij , Lint = g2

O5

.

(3.2c)

Here ki = (k)i and Xi = [X(t)]i and Ai = [Ak(t)]i with A(t, x) =
s

d3k Ak(t) eik·x/(2fi)3.
To derive these expressions we have made two simplifying assumptions. First, we work to
leading order in powers of the coupling g2. If the dimensionless combination g2

|X|
2 were to

become O(1), our EFT expansion would be invalid, and we are safe to assume g2
|X|

2
π 1,

which lets us work to leading order in g2. Second, we neglect gradients of the dark photon
field. Whereas for a vector soliton, the dark photon field is inhomogeneous on a scale ≥ R,
the modes that exhibit parametric resonance are inhomogeneous on a much shorter length
scale ⁄ = 2fi/k ≥ m≠1

π R. To study electromagnetic radiation in these modes and calculate
their Floquet exponent, it is a good approximation to neglect spatial gradients of X [43].

3.2 Applying Floquet theory

To identify the growing solutions of eq. (3.1), we adapt known techniques from Floquet theory.
Floquet theory is well established, however, our system is somewhat non-trivial compared
to the usual textbook examples because of the coupling of di�erent components as well as
constraints that must be respected. Here, we follow section 3.2.1–3.2.3 in ref. [55], where a
general framework to compute Floquet solutions was presented and is most easily adapted to
our needs.
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Reduced system. Before applying Floquet theory to analyse the solutions of eq. (3.1), we
impose the Coulomb constraint k·A = 0 and eliminate A3. Explicitly, A3 = ≠k≠1

3
(k2A2+k1A1)

for k3 ”= 0. With this substitution, eq. (3.1) becomes

ÕijÄj +P̃ijȦj +Q̃ijAj = 0, where Õij ©Oij ≠Oi3kj/k3 (similarly for P̃,Q̃ and i, j = 1,2).
(3.3)

Eq. (3.3) is a system of two, second order di�erential equations which can be written as four
first order equations:

q̇(t) = Ũ(t) q(t) with q(t) =
A

A(t)
Ȧ(t)

B

and Ũ(t) =

Q

a
0 1

≠Õ
≠1

Q̃ ≠Õ
≠1

P̃

R

b . (3.4)

If Ũ(t + T ) = Ũ(t) is periodic with period T , then Floquet’s theorem guarantees a general
solution of the form q(t) =

q
4

s=1 cs Ps(t) eµst where Ps(t + T ) = Ps(t), and µs are called the
Floquet exponents. If Ÿ[µs] > 0 for any s, then the equation of motion admits exponentially
growing solutions.

Floquet exponents. The Floquet exponents may be calculated by solving the matrix
equation Ḟ(t) = Ũ(t)F(t) with the initial condition F(0) = 1 (numerically if necessary). The
matrix solution F(t) with this initial condition is often referred to as the fundamental solution.
The fundamental solution evaluated at t = T is called the Monodromy matrix F(T ). Let
fs = |fs|ei◊s , with s = 1 to 4, be the (complex) eigenvalues of the Monodromy matrix F(T ).
Then, the Floquet exponents are given by µs = T ≠1 [ln |fs| + i◊s]. Since det(F) = 1, it follows
that

q
4

s=1 µs = 0.

Fastest growing solutions. Eigenvectors ‘s of the Monodromy matrix provide the func-
tions Ps(t) = F(t)‘se≠µst. Since Ps(t + T ) = Ps(t) is periodic, if one solves the equation
numerically, a solution is only needed for one period (as is the case for calculating Floquet
exponents). If we order the eigenvalues by the largest real part, then q1(t) = c1P1(t)eµ1t

provides the fastest growing solution.
So far we have suppressed the dependence of our quantities of interest on k to reduce

clutter in the equations. Let us re-instate this dependence to discuss the fastest growing
solutions more explicitly. For each Fourier mode, indexed by a wavevector k, there are four
Floquet exponents, and four eigenvectors corresponding to particular polarizations of the
outgoing electromagnetic field. We label the Floquet exponents by µk,s with arbitrary 3-vector
k and with s = 1 ≠ 4 (similarly for the eigenvectors ‘k,s). If the equation of motion admits
exponentially growing solutions, the dynamics will be dominated by the solution that grows
most quickly. Therefore it is useful to identify

µk,max = max
s

Ÿ[µk,s] and µmax = max
k, s

Ÿ[µk,s] . (3.5)

The quantity µk,max gives the largest real part of the four Floquet exponents for a given
wavevector k, and the quantity µmax gives the largest Floquet exponent among all possible
wavevectors. In a given system, µmax parametrizes the growth rate of electromagnetic radiation,
while µk,max parametrizes the radiation emitted in a particular direction and with a particular
wavelength ⁄ = 2fi/|k|. For a given k, the polarization of the radiation is determined by
inspecting ‘k,max, which denotes the eigenvector corresponding to the Floquet exponent with
the largest real part for fixed k.
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Analytical approximations. Since Õ
≠1

Q̃ and Õ
≠1

P̃ are periodic functions with period
T = 2fi/Ê0, they can be expanded as a Fourier series Õ

≠1
Q̃ =

q
l[Õ≠1

Q̃]leilÊ0t and Õ
≠1

P̃ =q
l[Õ≠1

P̃]leilÊ0t, where l is an integer. In the small source amplitude regime, we expect a
solution of the form Ã(t) = Ã+(t)eiÊ0t + Ã≠(t)e≠iÊ0t, with a slowly varying Ã±(t). Since
interaction operators O1 through O4 are quadratic in the photon and dark photon fields, at
leading order, this ansatz corresponds to the process X + X æ A + A. Here, the X particles
are at rest with initial energy Ê0. The emitted photons have the same energy k + O(g2) = Ê0.
Plugging this ansatz in the reduced system of equations, and collecting terms Ã e±iÊ0t, we
arrive at

˙̃y(t) = M̃ỹ(t) with ỹ(t) =
A

Ã+(t)
Ã≠(t)

B

, (3.6)

where

M̃=

Q

ca
≠

i(Ê2
0≠|k|2)
2Ê0

1≠
(Ê2

0+|k|2)
4Ê2

0
[Õ≠1

P̃]0 + i
2Ê0

#
O≠1Q

$
0

(Ê2
0+|k|2)
4Ê2

0
[Õ≠1

P̃]2 + i
2Ê0

#
Õ

≠1
Q̃

$
2

(Ê2
0+|k|2)
4Ê2

0
[Õ≠1

P̃]≠2 ≠
i

2Ê0

#
Õ

≠1
Q̃

$
≠2

i(Ê2
0≠|k|2)
2Ê0

1≠
(Ê2

0+|k|2)
4Ê2

0
[Õ≠1

P̃]0 ≠
i

2Ê0

#
O≠1Q

$
0

R

db .

(3.7)
Here, we have only kept terms up to O(g2) and use Õ

≠1
P̃ = O(g2), [O≠1Q]0 = [Õ≠1

Q̃]0 ≠

|k|
21 = O(g2). Note that these considerations mean that all entries in the above matrix are

O(g2), and so are the eigenvalues. The four eigenvalues of M̃ are the Floquet exponents µs

for s = 1 ≠ 4.

3.3 Linearly polarized dark photon field

We consider a homogeneous and linearly-polarized dark photon field, which is written as

X(t, x) = X̄ cos(mt) ẑ , (3.8)

where X has a constant orientation and varying magnitude. We have set the temporal
oscillation frequency Ê0 = m which is an excellent approximation in the non-relativistic
limit. For each of the operators, O1 through O5, we perform the Floquet analysis described
above, working to leading order in powers of the coupling g2. To illustrate the details of
these analytic calculations, we work through the derivation for operator O3 in appendix A.1;
the calculations for other operators are similar. For each operator, the maximum Floquet
exponent (real part) is found to be

µmax =

Y
_______]

_______[

1

2
g2X̄2m , for Lint = g2

O1

1

2
g2X̄2m , for Lint = g2

O2

1

2
g2X̄2m , for Lint = g2

O3

1

2
g2X̄2m , for Lint = g2

O4

O(g4) , for Lint = g2
O5

, (3.9)

where the maximization is performed over all possible wavevectors k and all possible polariza-
tions of the outgoing radiation. The results are equivalent for operators O1 through O4, and
we discuss these results further below. For O5, the real part of the Floquet exponent is para-
metrically higher order in the coupling. This is because the additional time derivative in O5,
see eq. (2.4), brings a factor of i which renders the leading-order Floquet exponent imaginary.

First we discuss operators O1 and O2. For both of these operators, the dark photon field
enters via X ·X, so its indices are not ‘entangled’ with the electromagnetic field. Consequently
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both O1 and O2 have the same behavior in regard to the direction and polarization of the
radiation. We find that µk,max is independent of the wavevector’s orientation, and the
electromagnetic radiation is emitted isotropically. Since the operators only depend on |X|,
the radiation doesn’t ‘know’ about the dark photon field’s orientation, and we obtain the
same radiation pattern as if the condensate had been a scalar field [43]. Our numerical
results for operator O2 are illustrated in the top-left panel of figure 1, and the chart for O1 is
indistinguishable. The dominant Floquet band is centered at k = m. The isotropic emission
is reflected in the ‘vertical’ nature of the Floquet band, which is independent of the angle ◊
between k and X. For both operators, the emitted radiation has no preferred polarization
direction as shown in the left bottom panel in figure 1.

Next we discuss operators O3 and O4. Here the indices for the dark photon field contract
with the indices for the electric and magnetic fields, and this leads to a richer structure in
the Floquet chart. The top-middle panel of figure 1 shows the Floquet charts for O3 and
O4 which are identical. The maximal Floquet exponent g2X̄2m/2 is obtained for ◊ = fi/2,
corresponding to emission that is normal to the dark photon field’s orientation, k ‹ ẑ.
Whereas for ◊ = 0 or fi, corresponding to k = kz ẑ, the Floquet exponent is smaller by a
factor of 2. More generally, our analytical analysis yields an expression (A.11) for the maximal
Floquet exponent (maximizing over orientations of the electromagnetic field’s polarization)
with an arbitrary angle ◊ between k and ẑ, which is given by

µk,max(◊) = 1
2g2X̄2m

3
1 ≠

1
2 cos2 ◊

4
. (3.10)

The radiation’s polarization is found to be di�erent for the two operators. For operator O3

the outgoing radiation at ◊ = fi/2 is polarized in the direction of the dark photon field X Ã ẑ,
and for operator O4 it is normal to the dark photon field in the azimuthal direction „̂, as
indicated in the bottom-middle panel of figure 1.

3.4 Circularly polarized dark photon field

We consider a homogeneous and circularly-polarized dark photon field, which is written as

X(t, x) = X̄
Ô

2
!
cos(mt) x̂ + sin(mt) ŷ

"
, (3.11)

where X has a constant magnitude and varying orientation. By performing the Floquet
analysis described above, we calculate the Floquet exponents µk,s. We provide some details of
this derivation for O3 in appendix A.2. Maximizing the real part over all possible directions
and polarizations of the outgoing radiation yields

µmax =

Y
_______]

_______[

0 , for Lint = g2
O1

0 , for Lint = g2
O2

1

2
g2X̄2m , for Lint = g2

O3

1

2
g2X̄2m , for Lint = g2

O4

O(g4) , for Lint = g2
O5

. (3.12)

Operators O1 and O2 do not lead to parametric resonance for a circularly polarized dark
photon field, hence µmax = 0. For these operators, the dark photon field enters through |X|,
which remains constant in the circularly-polarized configuration (3.11). For operator O5, the
Floquet exponent is imaginary at O(g2); see section 3.3.
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1.0

<latexit sha1_base64="Wn42y88+IVibZvvyQaolEYrXVlw=">AAAB/nicbVDLSsNAFJ34rPEVFVduBovgqiRS1GXRjcsK9gFtKJPppB06jzAzEUIo+CtuXCji1u9w5984abPQ1rOZwzn3cs+cKGFUG9//dlZW19Y3Nitb7vbO7t6+d3DY1jJVmLSwZFJ1I6QJo4K0DDWMdBNFEI8Y6UST28LvPBKlqRQPJktIyNFI0JhiZKw08I77sRQmRpyyLGdcTV2/5rsDr2qfGeAyCUpSBSWaA++rP5Q45UQYzJDWvcBPTJgjZShmZOr2U00ShCdoRHqWCsSJDvNZ/Ck8s8oQxlLBIgucqb83csS1znhkJzkyY73oFeJ/Xi818XWYU5Gkhgg8PxSnDBoJiy7gkCqCDcssQVhRmxXiMVIIG9tYUUKw+OVl0r6oBZe1+n292rgp66iAE3AKzkEArkAD3IEmaAEMcvAMXsGb8+S8OO/Ox3x0xSl3jsAfOJ8/OhOVAA==</latexit>

0.0

<latexit sha1_base64="zvEyzzpbgQHYoQDFsE2m5O4ddA4=">AAAB/nicbVDLSsNAFJ3UV42vqLhyM1gEVyGR+lgW3bisYB/QhjKZTtqh8wgzEyGEgr/ixoUibv0Od/6NSZuFtp7V4Zx7ueeeMGZUG8/7tiorq2vrG9VNe2t7Z3fP2T9oa5koTFpYMqm6IdKEUUFahhpGurEiiIeMdMLJbeF3HonSVIoHk8Yk4GgkaEQxMrk0cI76kRQmQpyyNGNcTW3PvbAHTs1zvRngMvFLUgMlmgPnqz+UOOFEGMyQ1j3fi02QIWUoZmRq9xNNYoQnaER6ORWIEx1ks/hTeJorQxhJBYsscKb+3sgQ1zrlYT7JkRnrRa8Q//N6iYmug4yKODFE4PmhKGHQSFh0AYdUEWxYmhOEFc2zQjxGCmGTN1aU4C++vEza565/6dbv67XGTVlHFRyDE3AGfHAFGuAONEELYJCBZ/AK3qwn68V6tz7moxWr3DkEf2B9/gBBrJUF</latexit>

0.5

<latexit sha1_base64="4WlytiUafRxdq8pb6UEFBhAKKg4=">AAAB/nicbVDLSsNAFL3xWeMrKq7cDBbBVUmkqMuiG5cV7APaUCbTSTt0JhNmJkIIBX/FjQtF3Pod7vwbkzYLbT2rwzn3cs89QcyZNq77ba2srq1vbFa27O2d3b195+CwrWWiCG0RyaXqBlhTziLaMsxw2o0VxSLgtBNMbgu/80iVZjJ6MGlMfYFHEQsZwSaXBs5xP5SRCbFgPM24UFPbq7n2wKm6NXcGtEy8klShRHPgfPWHkiSCRoZwrHXPc2PjZ1gZRjid2v1E0xiTCR7RXk4jLKj2s1n8KTrLlSEKpUJFFjRTf29kWGidiiCfFNiM9aJXiP95vcSE137GojgxNCLzQ2HCkZGo6AINmaLE8DQnmCiWZ0VkjBUmJm+sKMFbfHmZtC9q3mWtfl+vNm7KOipwAqdwDh5cQQPuoAktIJDBM7zCm/VkvVjv1sd8dMUqd47gD6zPHzualQE=</latexit>

1.0

<latexit sha1_base64="SQgAKdj1o1//cXVnPpEF+mM4D9k=">AAAB/3icbVC5TsNAFFxzBnMZkGhoVkRIVJaNwlFG0FAGiRxSYkXrzTpZZQ9rd41kmRT8Cg0FCNHyG3T8DXbiAhKmGs28pzdvwphRbTzv21paXlldW69s2Jtb2zu7zt5+S8tEYdLEkknVCZEmjArSNNQw0okVQTxkpB2Obwq//UCUplLcmzQmAUdDQSOKkcmlvnPYi6QwEeKUpRnjamL77jm0+07Vc70p4CLxS1IFJRp956s3kDjhRBjMkNZd34tNkCFlKGZkYvcSTWKEx2hIujkViBMdZNP8E3iSKwMYSQWLMHCq/t7IENc65WE+yZEZ6XmvEP/zuomJroKMijgxRODZoShh0EhYlAEHVBFsWJoThBXNs0I8Qgphk1dWlODPv7xIWmeuf+HW7mrV+nVZRwUcgWNwCnxwCergFjRAE2DwCJ7BK3iznqwX6936mI0uWeXOAfgD6/MHoHSVMA==</latexit>

1.5

<latexit sha1_base64="b8c6+9ArYQ1asu9F7HDbgbUaBIM=">AAAB/3icbVDLSsNAFJ34rPEVFdy4GSyCq5CUoi6LblxWsA9oQ5lMJ+3QeYSZiRBiF/6KGxeKuPU33Pk3Jm0W2npWh3Pu5Z57wphRbTzv21pZXVvf2Kxs2ds7u3v7zsFhW8tEYdLCkknVDZEmjArSMtQw0o0VQTxkpBNObgq/80CUplLcmzQmAUcjQSOKkcmlgXPcj6QwEeKUpRnjamrXXA/aA6fqud4McJn4JamCEs2B89UfSpxwIgxmSOue78UmyJAyFDMytfuJJjHCEzQivZwKxIkOsln+KTzLlSGMpIJFGDhTf29kiGud8jCf5MiM9aJXiP95vcREV0FGRZwYIvD8UJQwaCQsyoBDqgg2LM0JwormWSEeI4WwySsrSvAXX14m7ZrrX7j1u3q1cV3WUQEn4BScAx9cgga4BU3QAhg8gmfwCt6sJ+vFerc+5qMrVrlzBP7A+vwBml6VLA==</latexit>

2.0

<latexit sha1_base64="WAvuBCOXzIv6eORRkmH6cY8XN6U=">AAACAHicbVC5TsNAFFxzBnMZKChoVkRIVJYdhaOMoKEMEjmkxIrWm3Wyyh7W7hrJstLwKzQUIETLZ9DxN9iJC0iYajTznt68CWNGtfG8b2tldW19Y7OyZW/v7O7tOweHbS0ThUkLSyZVN0SaMCpIy1DDSDdWBPGQkU44uS38ziNRmkrxYNKYBByNBI0oRiaXBs5xP5LCRIhTlmaMq6ldcy9saA+cqud6M8Bl4pekCko0B85XfyhxwokwmCGte74XmyBDylDMyNTuJ5rECE/QiPRyKhAnOshmD0zhWa4MYSQVLNLAmfp7I0Nc65SH+SRHZqwXvUL8z+slJroOMirixBCB54eihEEjYdEGHFJFsGFpThBWNM8K8RgphE3eWVGCv/jyMmnXXP/Srd/Xq42bso4KOAGn4Bz44Ao0wB1oghbAYAqewSt4s56sF+vd+piPrljlzhH4A+vzB93clUU=</latexit>

2.5

<latexit sha1_base64="qrlDQVtzTLEdhmTCIYwUt39LCEg=">AAACAHicbVC5TsNAFFyHK5grQEFBsyJCorJsiIAygoYySOSQEitab9bJKntYu2sky3LDr9BQgBAtn0HH32AnLiBhqtHMe3rzJogY1cZ1v63Kyura+kZ1097a3tndq+0fdLSMFSZtLJlUvQBpwqggbUMNI71IEcQDRrrB9Lbwu49EaSrFg0ki4nM0FjSkGJlcGtaOBqEUJkScsiRlXGX2hePa0B7W6q7jzgCXiVeSOijRGta+BiOJY06EwQxp3ffcyPgpUoZiRjJ7EGsSITxFY9LPqUCcaD+dPZDB01wZwVAqWKSBM/X3Roq41gkP8kmOzEQveoX4n9ePTXjtp1REsSECzw+FMYNGwqINOKKKYMOSnCCsaJ4V4glSCJu8s6IEb/HlZdI5d7xLp3HfqDdvyjqq4BicgDPggSvQBHegBdoAgww8g1fwZj1ZL9a79TEfrVjlziH4A+vzB9fClUE=</latexit>

3.0

<latexit sha1_base64="MzW+ItqCXwrss5RoM5rN1dCmmGY=">AAACEHicbVC7TsNAEDzzDOEVoKQ5ESGoIhtFQBlBQxkkAkiJFa0va3Lizrbu1ojIyifQ8Cs0FCBES0nH32CHFJAw1WhmVzs7QaKkJdf9cmZm5+YXFktL5eWV1bX1ysbmpY1TI7AlYhWb6wAsKhlhiyQpvE4Mgg4UXgW3p4V/dYfGyji6oEGCvoabSIZSAOVSt7LXCeOIQtBSDTKlzbDcoT4S8HaH8J4yA72hX+blbqXq1twR+DTxxqTKxmh2K5+dXixSjREJBda2PTchPwNDUijMz6QWExC3cIPtnEag0frZ6KEh382VHg9jw4t0fKT+3shAWzvQQT6pgfp20ivE/7x2SuGxn8koSQkj8XMoTBWnmBft8J40KEgNcgLCyDwrF30wICjvsCjBm3x5mlwe1LzDWv28Xm2cjOsosW22w/aZx45Yg52xJmsxwR7YE3thr86j8+y8Oe8/ozPOeGeL/YHz8Q2bb5zq</latexit> ✓[
ra

d]
<latexit sha1_base64="91qv1qdX0/Xla/Hn1a2EXSGj0z0="></latexit>

O3 andO4, linear pol.
<latexit sha1_base64="yT0wN8/L64ewXLU1DeSOrbOyN7s=">AAACOnicbVC7TsMwFHV4U14FRhaLCokBVQlUwFjBwgZIFJCaqrpxHbBw7Mi+QVRRvouFr2BjYGEAIVY+AKcUidedjs+5Vz7nRKkUFn3/wRsZHRufmJyarszMzs0vVBeXTq3ODOMtpqU25xFYLoXiLRQo+XlqOCSR5GfR1X6pn11zY4VWJ9hPeSeBCyViwQAd1a0eh7FWGEMiZD+XaIpKmABeMpD5YdHdCjdoiPwGc1C9onx8ExtfGhOGZRIMTbWsF91qza/7g6F/QTAENTKco271PuxpliVcIZNgbTvwU+zkYFAwyZ2hzPIU2BVc8LaDChJuO/kgekHXHNOjsTa0zEEH7PeLHBJr+0nkNkvr9rdWkv9p7Qzj3U4uVJohV+zzoziTFDUte6Q9YThD2XcAmBHOK2WXYICha7viSgh+R/4LTjfrwXa9cdyoNfeGdUyRFbJK1klAdkiTHJAj0iKM3JJH8kxevDvvyXv13j5XR7zhzTL5Md77Byu/rtU=</latexit>

O3 andO4, circular pol.

<latexit sha1_base64="ZirONJMStFJBCBPYUpUyy0ozbDw=">AAACD3icbVC7TsMwFHXKq4RXgJHFogK1AyWpKmCsYGEsEn1ITVo5rtNatZPIdpCiKH/Awq+wMIAQKysbf0PSdoCWMx2dc6/uuccNGZXKNL+1wsrq2vpGcVPf2t7Z3TP2D9oyiAQmLRywQHRdJAmjPmkpqhjphoIg7jLScSc3ud95IELSwL9XcUgcjkY+9ShGKpMGxqntBb7yEKcsTpgSqV6enPHKeXnUr9kuEkk37dd4ZWCUzKo5BVwm1pyUwBzNgfFlDwMcceIrzJCUPcsMlZMgoShmJNXtSJIQ4QkakV5GfcSJdJLpPyk8yZQh9AIB83Bwqv7eSBCXMuZuNsmRGstFLxf/83qR8q6chPphpIiPZ4e8iEEVwLwcOKSCYMXijCAsaJYV4jESCKusQj0rwVp8eZm0a1Xrolq/q5ca1/M6iuAIHIMysMAlaIBb0AQtgMEjeAav4E170l60d+1jNlrQ5juH4A+0zx+mE5vE</latexit>

(k �m)/(g2X̄2m)
<latexit sha1_base64="ZirONJMStFJBCBPYUpUyy0ozbDw=">AAACD3icbVC7TsMwFHXKq4RXgJHFogK1AyWpKmCsYGEsEn1ITVo5rtNatZPIdpCiKH/Awq+wMIAQKysbf0PSdoCWMx2dc6/uuccNGZXKNL+1wsrq2vpGcVPf2t7Z3TP2D9oyiAQmLRywQHRdJAmjPmkpqhjphoIg7jLScSc3ud95IELSwL9XcUgcjkY+9ShGKpMGxqntBb7yEKcsTpgSqV6enPHKeXnUr9kuEkk37dd4ZWCUzKo5BVwm1pyUwBzNgfFlDwMcceIrzJCUPcsMlZMgoShmJNXtSJIQ4QkakV5GfcSJdJLpPyk8yZQh9AIB83Bwqv7eSBCXMuZuNsmRGstFLxf/83qR8q6chPphpIiPZ4e8iEEVwLwcOKSCYMXijCAsaJYV4jESCKusQj0rwVp8eZm0a1Xrolq/q5ca1/M6iuAIHIMysMAlaIBb0AQtgMEjeAav4E170l60d+1jNlrQ5juH4A+0zx+mE5vE</latexit>

(k �m)/(g2X̄2m)
<latexit sha1_base64="ZirONJMStFJBCBPYUpUyy0ozbDw=">AAACD3icbVC7TsMwFHXKq4RXgJHFogK1AyWpKmCsYGEsEn1ITVo5rtNatZPIdpCiKH/Awq+wMIAQKysbf0PSdoCWMx2dc6/uuccNGZXKNL+1wsrq2vpGcVPf2t7Z3TP2D9oyiAQmLRywQHRdJAmjPmkpqhjphoIg7jLScSc3ud95IELSwL9XcUgcjkY+9ShGKpMGxqntBb7yEKcsTpgSqV6enPHKeXnUr9kuEkk37dd4ZWCUzKo5BVwm1pyUwBzNgfFlDwMcceIrzJCUPcsMlZMgoShmJNXtSJIQ4QkakV5GfcSJdJLpPyk8yZQh9AIB83Bwqv7eSBCXMuZuNsmRGstFLxf/83qR8q6chPphpIiPZ4e8iEEVwLwcOKSCYMXijCAsaJYV4jESCKusQj0rwVp8eZm0a1Xrolq/q5ca1/M6iuAIHIMysMAlaIBb0AQtgMEjeAav4E170l60d+1jNlrQ5juH4A+0zx+mE5vE</latexit>

(k �m)/(g2X̄2m)

<latexit sha1_base64="yNhzRblv8eLR1lSLUJnebNJ8kZs=">AAAB/nicbVDLSsNAFJ3UV42vqLhyM1gEN4ZEirosunFZwT6gDWUynbRD5xFmJkIIBX/FjQtF3Pod7vwbkzYLbT2rwzn3cs89YcyoNp73bVVWVtfWN6qb9tb2zu6es3/Q1jJRmLSwZFJ1Q6QJo4K0DDWMdGNFEA8Z6YST28LvPBKlqRQPJo1JwNFI0IhiZHJp4Bz1IylMhDhlaca4mtrnvusNnJrnejPAZeKXpAZKNAfOV38occKJMJghrXu+F5sgQ8pQzMjU7ieaxAhP0Ij0cioQJzrIZvGn8DRXhjCSChZZ4Ez9vZEhrnXKw3ySIzPWi14h/uf1EhNdBxkVcWKIwPNDUcKgkbDoAg6pItiwNCcIK5pnhXiMFMImb8zOS/AXX14m7QvXv3Tr9/Va46asowqOwQk4Az64Ag1wB5qgBTDIwDN4BW/Wk/VivVsf89GKVe4cgj+wPn8AcJ6VJA==</latexit>�1.0
<latexit sha1_base64="g5nAO3F7HEiJ+67L0M6RZPZJ2HY=">AAAB/nicbVDLSsNAFJ34rPEVFVduBovgxpBIfSyLblxWsA9oQ5lMJ+3QmUmYmQghFPwVNy4Ucet3uPNvnLRZaOtZHc65l3vuCRNGlfa8b2tpeWV1bb2yYW9ube/sOnv7LRWnEpMmjlksOyFShFFBmppqRjqJJIiHjLTD8W3htx+JVDQWDzpLSMDRUNCIYqSN1HcOe1EsdIQ4ZVnOuJzYZ5570XeqnutNAReJX5IqKNHoO1+9QYxTToTGDCnV9b1EBzmSmmJGJnYvVSRBeIyGpGuoQJyoIJ/Gn8ATowxgFEtYZIFT9fdGjrhSGQ/NJEd6pOa9QvzP66Y6ug5yKpJUE4Fnh6KUQR3Dogs4oJJgzTJDEJbUZIV4hCTC2jRmmxL8+ZcXSevc9S/d2n2tWr8p66iAI3AMToEPrkAd3IEGaAIMcvAMXsGb9WS9WO/Wx2x0ySp3DsAfWJ8/dqyVKA==</latexit>�0.5

<latexit sha1_base64="Wn42y88+IVibZvvyQaolEYrXVlw=">AAAB/nicbVDLSsNAFJ34rPEVFVduBovgqiRS1GXRjcsK9gFtKJPppB06jzAzEUIo+CtuXCji1u9w5984abPQ1rOZwzn3cs+cKGFUG9//dlZW19Y3Nitb7vbO7t6+d3DY1jJVmLSwZFJ1I6QJo4K0DDWMdBNFEI8Y6UST28LvPBKlqRQPJktIyNFI0JhiZKw08I77sRQmRpyyLGdcTV2/5rsDr2qfGeAyCUpSBSWaA++rP5Q45UQYzJDWvcBPTJgjZShmZOr2U00ShCdoRHqWCsSJDvNZ/Ck8s8oQxlLBIgucqb83csS1znhkJzkyY73oFeJ/Xi818XWYU5Gkhgg8PxSnDBoJiy7gkCqCDcssQVhRmxXiMVIIG9tYUUKw+OVl0r6oBZe1+n292rgp66iAE3AKzkEArkAD3IEmaAEMcvAMXsGb8+S8OO/Ox3x0xSl3jsAfOJ8/OhOVAA==</latexit>

0.0
<latexit sha1_base64="zvEyzzpbgQHYoQDFsE2m5O4ddA4=">AAAB/nicbVDLSsNAFJ3UV42vqLhyM1gEVyGR+lgW3bisYB/QhjKZTtqh8wgzEyGEgr/ixoUibv0Od/6NSZuFtp7V4Zx7ueeeMGZUG8/7tiorq2vrG9VNe2t7Z3fP2T9oa5koTFpYMqm6IdKEUUFahhpGurEiiIeMdMLJbeF3HonSVIoHk8Yk4GgkaEQxMrk0cI76kRQmQpyyNGNcTW3PvbAHTs1zvRngMvFLUgMlmgPnqz+UOOFEGMyQ1j3fi02QIWUoZmRq9xNNYoQnaER6ORWIEx1ks/hTeJorQxhJBYsscKb+3sgQ1zrlYT7JkRnrRa8Q//N6iYmug4yKODFE4PmhKGHQSFh0AYdUEWxYmhOEFc2zQjxGCmGTN1aU4C++vEza565/6dbv67XGTVlHFRyDE3AGfHAFGuAONEELYJCBZ/AK3qwn68V6tz7moxWr3DkEf2B9/gBBrJUF</latexit>

0.5
<latexit sha1_base64="4WlytiUafRxdq8pb6UEFBhAKKg4=">AAAB/nicbVDLSsNAFL3xWeMrKq7cDBbBVUmkqMuiG5cV7APaUCbTSTt0JhNmJkIIBX/FjQtF3Pod7vwbkzYLbT2rwzn3cs89QcyZNq77ba2srq1vbFa27O2d3b195+CwrWWiCG0RyaXqBlhTziLaMsxw2o0VxSLgtBNMbgu/80iVZjJ6MGlMfYFHEQsZwSaXBs5xP5SRCbFgPM24UFPbq7n2wKm6NXcGtEy8klShRHPgfPWHkiSCRoZwrHXPc2PjZ1gZRjid2v1E0xiTCR7RXk4jLKj2s1n8KTrLlSEKpUJFFjRTf29kWGidiiCfFNiM9aJXiP95vcSE137GojgxNCLzQ2HCkZGo6AINmaLE8DQnmCiWZ0VkjBUmJm+sKMFbfHmZtC9q3mWtfl+vNm7KOipwAqdwDh5cQQPuoAktIJDBM7zCm/VkvVjv1sd8dMUqd47gD6zPHzualQE=</latexit>

1.0
<latexit sha1_base64="yNhzRblv8eLR1lSLUJnebNJ8kZs=">AAAB/nicbVDLSsNAFJ3UV42vqLhyM1gEN4ZEirosunFZwT6gDWUynbRD5xFmJkIIBX/FjQtF3Pod7vwbkzYLbT2rwzn3cs89YcyoNp73bVVWVtfWN6qb9tb2zu6es3/Q1jJRmLSwZFJ1Q6QJo4K0DDWMdGNFEA8Z6YST28LvPBKlqRQPJo1JwNFI0IhiZHJp4Bz1IylMhDhlaca4mtrnvusNnJrnejPAZeKXpAZKNAfOV38occKJMJghrXu+F5sgQ8pQzMjU7ieaxAhP0Ij0cioQJzrIZvGn8DRXhjCSChZZ4Ez9vZEhrnXKw3ySIzPWi14h/uf1EhNdBxkVcWKIwPNDUcKgkbDoAg6pItiwNCcIK5pnhXiMFMImb8zOS/AXX14m7QvXv3Tr9/Va46asowqOwQk4Az64Ag1wB5qgBTDIwDN4BW/Wk/VivVsf89GKVe4cgj+wPn8AcJ6VJA==</latexit>�1.0

<latexit sha1_base64="g5nAO3F7HEiJ+67L0M6RZPZJ2HY=">AAAB/nicbVDLSsNAFJ34rPEVFVduBovgxpBIfSyLblxWsA9oQ5lMJ+3QmUmYmQghFPwVNy4Ucet3uPNvnLRZaOtZHc65l3vuCRNGlfa8b2tpeWV1bb2yYW9ube/sOnv7LRWnEpMmjlksOyFShFFBmppqRjqJJIiHjLTD8W3htx+JVDQWDzpLSMDRUNCIYqSN1HcOe1EsdIQ4ZVnOuJzYZ5570XeqnutNAReJX5IqKNHoO1+9QYxTToTGDCnV9b1EBzmSmmJGJnYvVSRBeIyGpGuoQJyoIJ/Gn8ATowxgFEtYZIFT9fdGjrhSGQ/NJEd6pOa9QvzP66Y6ug5yKpJUE4Fnh6KUQR3Dogs4oJJgzTJDEJbUZIV4hCTC2jRmmxL8+ZcXSevc9S/d2n2tWr8p66iAI3AMToEPrkAd3IEGaAIMcvAMXsGb9WS9WO/Wx2x0ySp3DsAfWJ8/dqyVKA==</latexit>�0.5
<latexit sha1_base64="Wn42y88+IVibZvvyQaolEYrXVlw=">AAAB/nicbVDLSsNAFJ34rPEVFVduBovgqiRS1GXRjcsK9gFtKJPppB06jzAzEUIo+CtuXCji1u9w5984abPQ1rOZwzn3cs+cKGFUG9//dlZW19Y3Nitb7vbO7t6+d3DY1jJVmLSwZFJ1I6QJo4K0DDWMdBNFEI8Y6UST28LvPBKlqRQPJktIyNFI0JhiZKw08I77sRQmRpyyLGdcTV2/5rsDr2qfGeAyCUpSBSWaA++rP5Q45UQYzJDWvcBPTJgjZShmZOr2U00ShCdoRHqWCsSJDvNZ/Ck8s8oQxlLBIgucqb83csS1znhkJzkyY73oFeJ/Xi818XWYU5Gkhgg8PxSnDBoJiy7gkCqCDcssQVhRmxXiMVIIG9tYUUKw+OVl0r6oBZe1+n292rgp66iAE3AKzkEArkAD3IEmaAEMcvAMXsGb8+S8OO/Ox3x0xSl3jsAfOJ8/OhOVAA==</latexit>
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O2

Figure 1. Electromagnetic radiation arising from a homogeneous dark photon field coupled to
electromagnetism though several dimension-6 operators via the phenomenon of parametric resonance.
Top: The maximal Floquet exponent µk,max is shown as a function of the wavenumber k of the
electromagnetic radiation and the polar angle ◊ such that cos ◊ = k · ẑ/k. The dominant Floquet
band is centered at k ¥ m and has width O(g2X̄2m), where m is the dark photon mass, X̄ is the field
amplitude, and g is the coupling to electromagnetism with Lint = g2

Oi. The three panels correspond
to di�erent operators Oi and di�erent polarizations for the dark photon field. Bottom: These graphics
illustrate the orientation of the radiation’s polarization. The green arrows denote the polarization of
the dark photon field (e.g., vector soliton), while the red and blue arrows denote the polarization of
the emitted radiation (for di�erent operators). For operators O1 and O2 (bottom-left) the radiation
is emitted isotropically, and has no preferred polarization direction. For operators O3 and O4 with
a linearly-polarized dark photon field (bottom-middle) the radiation is predominatly emitted in the
directions normal to ẑ, whereas for a circularly-polarized dark photon field (bottom-right) the emission
is predominantly aligned with ±ẑ.

Next we discuss operators O3 and O4. The analytic calculations are facilitated by moving
to a circular polarization basis for the outgoing radiation. The top-right panel of figure 1 shows
the Floquet chart for operator O3, and the chart for O4 is indistinguishable. The Floquet
exponent is maximized for ◊ = 0 and fi, corresponding to radiation in the direction normal to
the plane of the dark photon field, k = kz ẑ, as shown in the right bottom panel of figure 1.
The radiation carries circular polarization with the same handedness as the dark photon field.
This means that the radiation emitted from ◊ = 0 and ◊ = fi have opposite helicity.
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4 Radiation from polarized vector solitons

In this section we adapt the results of our Floquet analysis to study electromagnetic radiation
from polarized vector solitons.

4.1 Condition for parametric resonance

Our Floquet analysis is performed assuming a homogeneous dark photon field X(t, x) = X(t).
Of course, a vector soliton is not a homogeneous field configuration; rather, the field’s
amplitude drops smoothly to zero beyond a distance r ¥ R away from the soliton’s center.
Nevertheless, earlier work [43] has established that for scalar solitons the maximal Floquet
exponent is insensitive to the soliton’s finite size provided that the soliton is su�ciently large.
Here we show that these arguments carry over to vector solitons as well. Specifically, we claim
that the maximum Floquet exponent µ(sol.)

max of the electromagnetic radiation emitted by a
polarized vector soliton can be approximated by

µ(sol.)
max ¥

Y
]

[
µ(hom.)

max ≠ R≠1 , µ(hom.)
max R & 1

0 , µ(hom.)
max R . 1

(4.1)

where ·lc ¥ 2R is the light-crossing time of a soliton with radius R, and we have dropped a
factor of order unity (see appendix B and figure 2). In this relation µ(hom.)

max is the maximal
Floquet exponent in a homogeneous system with X(t, x) = X(t, 0) equal to the dark photon
field at the soliton’s center. We have already presented results for µ(hom.)

max assuming that the
homogeneous dark photon field is either linearly or circularly polarized; see eqs. (3.9) and (3.12).
We motivate the approximation in eq. (4.1) by directly calculating the Floquet exponent
using a spherical soliton profile for operator O1; we present these results in appendix B.

The condition µ(hom.)
max R > 1 must be satisfied in order for parametric resonance to occur.

Since µ(hom.)
max is the instability growth rate and R is the soliton’s light-crossing time, this

condition expresses the fact that radiation is being generated more quickly than it is leaving
the system, and parametric resonance results from the associated Bose enhancement. This
condition imposes a lower limit on the strength of the coupling. Using the expression for X̄
from eq. (2.9) and the expression for R from eq. (2.10), the parametric resonance condition is
expressed as

g2X̄2 >
3

µ

m

41/2

and gmpl >
3

µ

m

4≠3/4

(4.2)

where µ is the chemical potential for the soliton solution. In addition, the coupling must remain
small to justify truncating the EFT at dimension-6 operators; see eq. (2.5). Taken together,
the conditions for valid EFT and successful parametric resonance imply (µ/m)1/2 < g2X̄2

π 1
and (µ/m)≠3/4 < gmpl π (µ/m)≠1. Both conditions can be satisfied provided that µ/m π 1.
Recall that µ/m < 1 is required for validity of the non-relativistic expansion, and µ/m π 1 is
typical for soliton solutions.

It is instructive to compare the above resonance condition with the case when we
have a scalar soliton. The resonance phenomenon for scalar (or pseudoscalar) solitons is
di�erent in several aspects from that for vector solitons. The spatially-localized configura-
tion with spherically-symmetric density profiles for such solitons takes the form „(t, r) =
(


2/m)Â(r)cos(Êt), where Â(r) is well-approximated by the empirical fitting formula given
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in eq. (2.9), under the replacement X̄ æ „̄. The dimension-5 operators which enter in play
are Ō1 = ≠(1/4)Fµ‹F̃ µ‹„ and Ō2 = ≠(1/4)Fµ‹F µ‹„, where Lint = gŌ1 and Lint = gŌ2,
respectively. The resonance condition takes the same form as eq. (4.1), but now µ(hom.)

max is
the maximal Floquet exponent in a homogeneous system with „(t, x) = „(t, 0) equal to the
scalar field at the soliton’s center. Since only one scalar connects to two photons, the maximal
Floquet exponent for both operators is proportional to only one power of the product between
the constant field amplitude and the coupling constant. Moreover, the dominant Floquet
band is centered at k = m/2. For both operators, we have µ(hom.)

max = g„̄m/4. As a result,
the parametric resonance condition is expressed as (again ignoring factors of order unity):
g„̄ > (µ/m)1/2 and gmpl > (µ/m)≠1/2 where µ is the chemical potential of the scalar
soliton solution. For the same value of µ/m for scalar and vector solitons, the resonance
phenomenon requires a larger g in vector solitons compared to the scalar case. Conversely
for the same g, the resonance condition can be satisfied for larger values of µ/m for scalars
compared to vectors (ie. for fixed m, smaller radii solitons).

4.2 Vector soliton decay

Electromagnetic radiation via parametric resonance extracts energy from the vector soliton.
If this emission continues for a su�ciently long time, it would eventually cause the vector
soliton to decay. For each of the dimension-6 operators, and for both the linearly- and
circularly-polarized soliton configurations, we estimate the vector soliton’s lifetime as · =
1/µ(sol.)

max ¥ 1/µ(hom.)
max . Assuming that the condition for parametric resonance (4.2) is satisfied,

and using the results in eqs. (3.9) and (3.12), the soliton lifetime is calculated as

· =

Y
_______]

_______[

2/g2X̄2m , for Lint = g2
O1

2/g2X̄2m , for Lint = g2
O2

2/g2X̄2m , for Lint = g2
O3

2/g2X̄2m , for Lint = g2
O4

O(g≠4) , for Lint = g2
O5

and · =

Y
_______]

_______[

Œ , for Lint = g2
O1

Œ , for Lint = g2
O2

2/g2X̄2m , for Lint = g2
O3

2/g2X̄2m , for Lint = g2
O4

O(g≠4) , for Lint = g2
O5

(4.3)

for the linearly-polarized and circularly-polarized vector solitons, respectively. Recall that
operators O1 and O2 do not lead to electromagnetic radiation from a circularly-polarized
vector soliton, and we write · = Œ.

With these estimates, we turn to the question of vector soliton stability and decay.
Since T ¥ 2fi/m is the oscillation period of the non-relativistic dark photon field, and for
g2X̄2

π 1, these formulas reveal that the vector soliton survives for many cycles of oscillation,
≥ ·/T ¥ 1/g2X̄2

∫ 1. However, for parameters that are typical of dark photon dark matter,
m≠1

≥ (10≠6 eV)≠1
≥ 10≠9 s, the lifetime · is still very short compared to the age of the

universe today t0 ≥ 1017 s. The conclusion is that any solitons in the Universe today must
fail to meet the parametric resonance condition (4.2), which shuts o� the channel for their
decay into electromagnetic radiation. The observation has been noted previously for axion
dark matter with a dimension-5 coupling to electromagnetism [43, 56].

The condition for soliton stability is the converse of the condition for parametric res-
onance (4.2). A stable soliton must have a weak coupling to electromagnetism such that
gmpl . (µ/m)≠3/4. Using eq. (2.10) this condition is expressed as an upper limit on the mass
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of the soliton:

M . Mc ©
102m4/3

pl

g2/3m
≥

!
3 ◊ 1021 kg

" 3
m

10≠6 eV

4≠1 3
g

10≠10 GeV≠1

4≠2/3

. (4.4)

For these fiducial parameters, we also have X̄ ≥ (1◊108 GeV) g≠4/3

10
, N ≥ (2◊1063)g≠2/3

10
m≠2

6
,

and R ≥ (100 km)g2/3

10
m≠1

6
where m6 © m/10≠6 eV and g10 © g/10≠10 GeV≠1. Eq. (4.4)

gives an upper limit on the mass of polarized vector solitons that we should expect to find in
the Universe today.

Finally let us address the cosmological history of vector soliton decay. At the time
of soliton formation, there maybe be solitons with M > Mc. The parametric resonance is
ine�ective until the age of the Universe reaches · , and subsequently these solitons begin
to decay. However, their decay is halted when M decreases below Mc and the channel for
parametric resonance is blocked. Consequently, we expect that any solitons formed with
M > Mc should have M ¥ Mc today, just below the threshold for parametric resonance. A
similar cosmological evolution has been discussed previously in the context of scalar solitons
coupled to electromagnetism [56].

4.3 Astrophysical signatures from soliton mergers

In light of the discussion from the preceding section, isolated vector solitons in the Universe
today are not expected to produce electromagnetic radiation since the condition for parametric
resonance is not met: M < Mc. However, it is reasonable to expect that an appreciable
population of vector solitons with masses just below the threshold for parametric resonance
may reside in the Milky Way halo. The merger of these sub-critical vector solitons may
trigger a burst of electromagnetic radiation. This radiation can be understood to arise from a
temporary ‘activation’ of parametric resonance when the mass of the merged pair exceeds the
threshold: M1 + M2 > Mc although M1, M2 < Mc.

The collision and merger of two solitons is a complicated non-linear process, and it
is challenging to obtain accurate predictions with analytical methods. Nevertheless, 3-
dimensional simulations have been performed using numerical lattice techniques; see refs. [56–
58] for work on scalar solitons and refs. [18, 39] for work on vector solitons. For both the
scalar and vector soliton studies, the collision induces radiation that carries away an O(1)
fraction of the constituent particles and mass, leaving an approximately spherically-symmetric
condensate. The simulations reported in refs. [56, 57] exhibit a mass for the merged system
that is approximately Mfinal ¥ 0.7(M1 + M2) in terms of the progenitor masses (similar
results were also seen for vector solitons in [18]). This relation would allow Mfinal > Mc while
M1, M2 < Mc, meaning that the merger could ‘trigger’ parametric resonance. Although it is
worth noting that these simulations do not allow for the coupling to electromagnetism that
we study here, and any potential back reaction e�ects have been neglected.

For collisions of vector solitons, the polarization state (or spin density) of the transient
and final dark photon configuration can impact the electromagnetic signatures from the
merger. Our calculations have assumed maximally-polarized configurations with spin |S| =
0 and ~N in the linearly- and circularly-polarized configurations, respectively. During the
merger process, it is likely that the system is better characterized as a fractionally polarized
soliton [21] with 0 < |S| < ~N or as an excited, non-solitonic state. It is straightforward to
extend our calculation to fractionally polarized solitons; however, we have not attempted to
characterize excited states and their signatures. Simulations of collisions and mergers will
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help to reveal the realistic range of initial conditions for parametric resonance, leading to
more robust predictions for the associated electromagnetic radiation.

We are interested in the spectrum of electromagnetic radiation resulting from vector
soliton collisions. For these estimates, we model the radiation as ‘triggered’ parametric
resonance. That is to say, once the merger has ‘completed’ the radiation is emitted as a
sudden burst that carries away an O(1) fraction of the excess mass �M = Mfinal ≠ Mc.
These dynamics have been observed previously in simulated collisions of non-gravitationally-
bounded scalar solitons with a coupling to electromagnetism [18]. However, our interest
is in gravitationally-bounded soliton solutions for which the soliton’s light-crossing time
scale R is many orders of magnitude larger than the time scale for parametric resonance · .
For such solutions, it is possible that the radiation seeps out via less-intense bursts as the
merged configuration settles into a spherically-symmetric condensate [44]. This discussion
motivates further study of gravitationally-bounded vector soliton collisions. We expect that
our approach, the ‘triggered’ parametric resonance model, overestimates the strength of
the signal, since it allows for the largest possible energy release and the smallest possible
emission duration.

To characterize the astrophysical signature associated with such a phenomenon, we need
the signal duration · , the central wavelength ⁄0, and the signal bandwidth �⁄. The soliton
lifetime · from eq. (4.3) sets the signal duration. For a fiducial set of parameters, we estimate

· ≥
!
20 µs

" 3
g

10≠10 GeV≠1

42/3 3
m

10≠6 eV

4≠1

, (4.5)

where the critical mass condition M = Mc has been used to eliminate µ. The signal wavelength
⁄0 = 2fi/k0 is controlled by the wavenumber k0 ¥ m at the first instability band of the
Floquet chart, and the signal bandwidth �⁄ = (2fi/k2

0)�k is controlled by the width of
the Floquet band �k ¥ g2X̄2m. For the fiducial parameters we estimate the corresponding
frequencies to be

‹0 ≥
!
200 MHz

" 3
m

10≠6 eV

4
, (4.6a)

�‹ ≥
!
40 kHz

" 3
g

10≠10 GeV≠1

4≠2/3 3
m

10≠6 eV

4
. (4.6b)

These estimates imply that the radiation will be nearly monochromatic (a consequence of
g2X̄2

π 1). For the fiducial mass parameter m = 10≠6 eV, the emission is in the radio band
of the electromagnetic spectrum. Since radio telescopes lose sensitivity below a frequency
of ≥ (10 ≠ 15) MHz, due to absorption and scattering in the ionosphere, only models with
m & 5 ◊ 10≠8 eV could be probed with ground-based radio observations.4

The strength of the signal is parametrized by a spectral flux density SB . If the source is
a distance d away and it liberates an energy O(Mc) in a time · , then we can estimate

SB ≥
Mc/·

4fi�‹d2
≥

!
3 ◊ 1018 Jy

" 3
g

10≠10 GeV≠1

4≠2/3 3
m

10≠6 eV

4≠1 3
d

1 Mpc

4≠2

, (4.7)

4
This issue also arises in axion search strategies such as that related to the axion-photon conversion during

axion ultracompact minihalo-neutron star encounters (see, for example, Section VII in ref. [59]). One solution is

to consider planned space-based facilities such as the Orbiting Low Frequency Antennas for Radio Astronomy

Mission (OLFAR) [60].
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where 1 Jy = 10≠26 W/m2/Hz. For a cosmologically-distant source, the e�ect of cosmological
redshift must also be included. Note that reducing the coupling g2 increases the strength of
the signal, since the suppression from (�‹)≠1

≥ g2/3 is counterbalanced by the enhancements
from ·≠1

≥ g≠2/3 and Mc ≥ g≠2/3, so that more energy per unit of frequency is emitted over
a shorter time.

Radio telescopes typically have sensitivities at the level of ≥ 100 µJy at 100 kHz with
≥ 1 kHz resolution bandwidth [61]. Our estimate in eq. (4.7) suggests that if a vector soliton
collision triggers parametric resonance while the host galaxy is being observed, then the
signal would easily be detectable. However, we must remember that our model generously
overestimates the energy liberated and underestimates the duration of release. One should
not interpret eq. (4.7) as a prediction for the spectral flux density, but rather an indication
from dimensional analysis that the signal may be strong enough to detect.

Radio telescopes, such as Green Bank Telescope (GBT), measure not just the intensity
but also the polarization of incident radio waves [62]. A measurement of the polarization
would prove invaluable to discriminate among di�erent possible soliton sources. Whereas
a scalar soliton emits unpolarized radiation, a vector soliton, such as the ones we study
here, may produce polarized radiation. In this way, a detection of polarized emission could
be interpreted as evidence of vector soliton mergers. Moreover, the polarization strength
and orientation depends on the nature of the coupling between the dark photon field and
electromagnetism, providing an additional handle on the underlying particle physics model.

However, a realistic analysis of the expected polarization signal is non-trivial. First,
depending on the particular UV embedding, we expect that several dimension-6 operators
would simultaneously source resonance. Each may lead to a di�erent polarization pattern
for the resultant radiation. Second, individual solitons or solitons produced from mergers
may be fractionally polarized, as discussed already above [18]. This too would complicate the
resultant polarization pattern.

5 Summary and conclusion

In this work we have studied the electromagnetic radiation that arises via parametric resonance
from a spatially-coherent dark photon field that interacts with the electromagnetic field via
several dimension-6 operators. We study a homogeneous field and adapt these results to
assess the radiation from polarized vector solitons formed from dark photon dark matter.
The calculations presented in this article represent predictions for the electromagnetic signals
arising from polarized vector solitons, and provide an avenue for probing soliton collisions
and mergers.

We identify five dimension-6 operators that couple a massive dark photon field to elec-
tromagnetism and lead to parametric resonance. These operators take the form X–X—Fµ‹Ffl‡

and ˆ–X—Fµ‹Ffl‡. There also exist dimension-6 operators with one fewer factor of the photon
field, which we do not consider here, since they do not lead to parametric resonance. We
consider systems with either a linearly-polarized or a circularly-polarized dark photon field.
In the first scenario, the orientation of the dark photon field X(t, x) remains fixed as its
magnitude oscillates, whereas in the second scenario, the orientation oscillates while the
magnitude remains fixed. For each of the five operators and both of the polarization configu-
rations, we perform a Floquet analysis using both analytical and numerical methods. The
electromagnetic field is exponentially amplified via parametric resonance with |A(t)| Ã eµmaxt.
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We calculate the maximal Floquet exponents µmax assuming a dark photon field with either
linear or circular polarization, and these results are summarized below.

• For a linearly-polarized vector soliton, operators of the form X–X—Fµ‹Ffl‡ lead to a
maximum resonance growth rate (Floquet exponent) that is parametrically ≥ g2X̄2m,
where g2 is the dimension-6 operator coe�cient, X̄ is the amplitude of the dark photon
field, and m is the dark photon mass. This result agrees parametrically with earlier
work on axion dark matter (spin-0 particles) [43] where the interaction is „Fµ‹F̃ µ‹ ,
where „ is the scalar field amplitude. We find that the resonance band is centered at
a wavenumber of |k| = m, which sets the frequency of the resultant electromagnetic
radiation. By contrast, the axion case gives |k| = m/2. For operators X–X–Fµ‹F µ‹

and X–X–Fµ‹F̃ µ‹ , the emitted radiation does not show any preferred polarization
orientation. For operators XµX‹FµflF ‹fl and XµX‹FµflF̃ ‹fl, we find that the radiation
is primarily linearly polarized along an axis that di�ers for each interaction operator.
In this case, outgoing radiation is peaked in the equatorial plane perpendicular to the
direction of oscillation of the dark photon field.

• For a circularly-polarized vector soliton, operators X–X–Fµ‹F µ‹ and X–X–Fµ‹F̃ µ‹

do not lead to electromagnetic radiation via parametric resonance. This is because
X–X– = ≠(X0)2 + X · X is static for a circularly-polarized dark photon field. Other
operators lead to parametric resonance with a growth rate that is parametrically
≥ g2X̄2m, similar to the linearly-polarized scenario. We find that the outgoing radiation
is primarily circularly polarized with the same handedness as the dark photon field. In
this case, outgoing radiation is peaked near the poles of the circularly polarized soliton.

Since parametric resonance can occur even for an isolated vector soliton in vacuum, it
provides a channel for vector solitons to decay. We find that electromagnetic radiation by
parametric resonance exhausts the soliton’s energy very quickly as compared to the age of the
Universe. Echoing earlier studies of scalar solitons [56], we conclude that isolated vector solitons
in the Universe today must have a su�ciently small mass so as to avoid activating parametric
resonance (4.4): M < Mc with Mc ƒ (3 ◊ 1021 kg)(m/10≠6 eV)≠1(g/10≠10 GeV≠1)≠2/3.

The work presented in this article furthers the e�ort to model vector solitons in dark
matter halos, and assess their electromagnetic radiation as a potential channel for discovery.
Although isolated solitons would not be emitting, electromagnetic emission may occur when
solitons collide and merge [45, 56]. The frequency of this radiation is controlled by the dark
photon mass, ‹ ≥ (200 MHz)(m/10≠6 eV), falling into the radio band for typical masses. The
strongest potential signal would correspond to an O(1) fraction of the critical mass Mc being
liberated in a sudden burst of electromagnetic radiation that lasts for a time · ≥ µ≠1

max set
by the resonance growth rate. Such a strong signal would easily exceed the sensitivity of
typical radio telescopes, even for a cosmologically-distant source. To derive robust predictions
for the expected signal, a more careful study of the complex dynamics of vector soliton
collisions is warranted, including the e�ects of backreaction from electromagnetic radiation
(similar to [18], but for dilute vector solitons). Of particular interest is the polarization of the
emitted radiation, which carries information about the nature of the source, and could help
to observationally distinguish vector soliton mergers from other objects. While current radio
telescopes routinely characterize the polarization of incoming radio waves [62], we have not
attempted to assess the feasibility of measuring the polarization signals from solitons in a
realistic setting in this paper.
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It is worth reemphasizing that polarization patterns of the electromagnetic radiation
depend on the nature of the interaction (the particulars of the dimension-6 operator), as
well as the polarization state of dark photon field of the soliton. By contrast, radiation from
scalar solitons do not show any preference for polarization of the outgoing photons. The rich
structure seen in the results is a direct consequence of the assumed spin-1 nature of the dark
photon field. Motivated by our results, and taking an optimistic view, if such radiation is
detected, it is a potential probe of the underlying spin of the dark matter field that makes up
the solitons.

Although we have focused on dark photon dark matter forming vector solitons, our
analysis can be extended to other field configurations as well. We briefly discuss the resonance
phenomenon and its implications for fuzzy dark photon dark matter in appendix C.
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A Details of the Floquet analysis

Following the general framework to compute Floquet solutions detailed in section 3.2, the
reader can reproduce the maximum Floquet exponents (real part) listed in eqs. (3.9) and (3.12)
for operators O1 through O5. As an example, here we give a detailed derivation for operator O3.

A.1 Homogeneous and linearly-polarized dark photon field for O3

We consider a homogeneous and linearly-polarized dark photon field in the ẑ-direction as
shown eq. (3.8). We use the reduced system (3.3); however, instead of eliminating A3 we
eliminate A1 from the system using the Coulomb gauge condition. Correspondingly, the
Õij = Oij ≠ Oi1kj/k1 where i and j both take values of 2 or 3 (similarly for P̃ and Q̃). For
the case under consideration, A3 decouples from A2, and satisfies

Ë
1≠g2X̄2(1+cos(2mt))sin2 ◊

È
Ä3+

Ë
2g2mX̄2 sin(2mt)sin2 ◊

È
Ȧ3

+
Ë
k2

≠g2k2X̄2(1+cos(2mt))
È
A3 = 0 , (A.1)

where we used k3 = k cos ◊. We solve this equation in the small amplitude regime performing
an harmonic expansion of the modes as

A3(t) =
Œÿ

l=≠Œ
Ã3,l(t) eilmt , (A.2)

where Ã3(t) is a slowly varying function so that ¨̃A3(t) ¥ 0. There exists a spectrum of narrow
resonant bands, which are equally spaced at k2

¥ n2m2 for n = 1, 2, 3, · · · . We replace
eq. (A.2) into eq. (A.1) and express all cosine and sine factors in their exponential form. We
collect all terms proportional to eilmt, ei(l+2)mt, and ei(l≠2)mt, and change the variable of
summation so that they all take the form eilmt. We integrate over time from t = 0 to 2fi/m.
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The resultant equation is evaluated at l = ±1, since the first instability band dominates
the resonance. Dropping Ã3,±3, the resultant system of di�erential equations to be solved is
given by A ˙̃A3,+

˙̃A3,≠

B

=
A

M̃11 M̃12

≠M̃12 ≠M̃11

B A
Ã3,+

Ã3,≠

B

, (A.3)

with

M̃11 =
1
2im ≠ 2ig2mX̄2 sin2 ◊

2≠1 1
≠k2 + m2 + g2k2X̄2

≠ g2m2X̄2 sin2 ◊
2

, (A.4)

M̃12 =
1
2im ≠ 2ig2mX̄2 sin2 ◊

2≠1
31

2g2k2X̄2 + 1
2g2m2X̄2 sin2 ◊

4
. (A.5)

The two Floquet exponents (associated with the A3 polarization mode function) are the
complex eigenvalues of the M̃ matrix. The eigenvalue with the larger real part is

µk,max =

ÚË
(2(k2 ≠ m2) ≠ g2X̄2(3k2 ≠ m2 sin2 ◊)

È Ë
≠2(k2 ≠ m2) + g2X̄2(k2 ≠ 3m2 sin2 ◊)

È

4m
Ë
1 ≠ g2X̄2 sin2 ◊

È .

(A.6)

The edges of the first instability band are defined by the condition µk,max = 0. For a given ◊,
using the expression above, we obtain the left edge kl,edge, the right edge kr,edge, the central
wavenumber k0, and the bandwidth �k to be

kl,edge = m

Ò
2 ≠ 3g2X̄2sin2◊
Ò

2 ≠ g2X̄2

= m ≠
g2mX̄2

2

A

1 ≠
3cos2◊

2

B

+ O(g4) , (A.7)

kr,edge = m

Ò
2 ≠ g2X̄2sin2◊
Ò

2 ≠ 3g2X̄2

= m + g2mX̄2

2

3
1 + 1

2cos2◊
4

+ O(g4) , (A.8)

k0 = (kr,edge + kl,edge)
2 = m + 1

2g2mX̄2cos2◊ + O(g4) , (A.9)

�k = (kr,edge ≠ kl,edge) = g2mX̄2

A

1 ≠
cos2◊

2

B

+ O(g4) . (A.10)

We evaluate eq. (A.6) at k = k0 finding

µk,max(◊) ¥
g2mX̄2

2

A

1 ≠
cos2◊

2

B

+ O(g4) . (A.11)

Even though µk,max(◊) was calculated using the electromagnetic field equation of motion for A3

alone, this expression matches the largest Floquet exponent among all possible electromagnetic
mode functions.

A.2 Homogeneous and circularly-polarized dark photon field for O3

We consider a homogeneous and circularly-polarized dark photon field on the x ≠ y plane
as shown in eq. (3.11). We use the reduced system (3.3), and we focus on radiation that
propagates along k = kẑ such that the Coulomb gauge condition imposes A3 = 0. Working
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in a circular-polarization basis for the electromagnetic field, AL = (A1 + iA2)/
Ô

2 and
AR = (A1 ≠ iA2)/

Ô
2, the system of di�erential equations to be solved reads as

ÄL + k2AL ≠ i [cos(2mt) + isin(2mt)] g2X̄2mȦR = 0 , (A.12a)
ÄR + k2AR + i [cos(2mt) ≠ isin(2mt)] g2X̄2mȦL = 0 , (A.12b)

We perform an harmonic expansion of the electromagnetic modes and focus on the first
instability band to obtain

Q

cccca

˙̃AL,+
˙̃AR,+
˙̃AL,≠
˙̃AR,≠

R

ddddb
=

Q

ccca

M̃11 0 0 M̃14

0 M̃22 0 0
0 0 ≠M̃22 0

≠M̃14 0 0 ≠M̃11

R

dddb

Q

ccca

ÃL,+

ÃR,+

ÃL,≠
ÃR,≠

R

dddb (A.13)

where

M̃11 = ≠

A
2

g2X̄2
≠

g2X̄2

2

B≠1 A

≠
ik2

g2mX̄2
+ im

g2X̄2
≠

ig2mX̄2

2

B

, (A.14)

M̃22 = ≠(2im)≠1(k2
≠ m2) , (A.15)

M̃14 = ≠

A
2

g2X̄2
≠

g2X̄2

2

B≠1 A
ik2

2m
+ im

2

B

. (A.16)

The four Floquet exponents are the four complex eigenvalues of M̃, and the one with largest
real part is

µk,max =

Ò
k4 ≠ 2k2m2 + m4 ≠ g2m4X̄4

m
Ò

≠4 + g2X̄4

(for k = k ẑ) . (A.17)

The edges of the first instability band, its center in the k-space, and bandwidth read as

kl,edge = m
Ò

1 ≠ g2X̄2 = m

A

1 ≠
g2X̄2

2

B

+ O(g4) , (A.18)

kr,edge = m
Ò

1 + g2X̄2 = m

A

1 + g2X̄2

2

B

+ O(g4) , (A.19)

k0 = (kl,edge + kr,edge)
2 ¥ m + O(g4) , (A.20)

�k = (kr,edge ≠ kl,edge) ¥ mg2X̄2 + O(g4) . (A.21)

Replacing k0 into eq. (A.17), one finds the largest Floquet exponent among all possible
wavenumbers as

µk,max ¥
1
2g2mX̄2 (for k = k ẑ) (A.22)

in complete agreement with numerical results.
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B Floquet analysis for spherical soliton profile

In the main text we observed that the unstable modes have wavenumbers k ≥ m ∫

m (µ/m)1/2
≥ R≠1 that are large compared to the inverse of the size of the soliton. Then if

the Floquet exponent is large, µk,max ∫ R≠1, such that the amplification rate exceeds the
escape rate for the radiation, we argued that the Floquet exponent can be calculated by
treating the dark photon field as homogeneous. In this appendix, we relax the assumption of
a large Floquet exponent, and we extend the Floquet analysis to account for the finite size of
the polarized vector soliton.

We provide the calculation for the operator O1, since the equation to be analyzed is
similar to that for the case of scalar solitons, which has been studied previously [43]. For
the other operators, we expect the general procedure describe below to work, however the
structure of the equations will be more complicated to analyze numerically. We also expect
the qualitative results described here to carry over.

For an electromagnetic field A(t, x) interacting with the vector soliton via operator O1,
the field’s equation of motion (in Coulomb gauge Ò · A = 0) is given by eq. (3.1):

Ä ≠ Ò
2A + g2X2(r) 2Ê sin(2Êt) Ò ◊ A = 0 . (B.1)

As we have done in the main text, here we drop gradients of the dark photon field when
compared against gradients of the electromagnetic field, since |ÒA| ∫ |ÒX|. Due to the
inhomogeneous term with X(r), it is cumbersome to work directly in k-space, because the
Fourier transform of eq. (B.1) involves a convolution. Instead, we decompose the vector
potential A(t, x) onto a basis of vector spherical harmonics, and then eventually go to a
one-dimensional Fourier space conjugate to the radial component alone. A similar approach
was employed previously in refs. [43, 63] to study spherically-symmetric scalar solitons. The
corresponding equation in ref. [63] is Ä ≠ Ò

2A ≠ gÊÏ(r) sin(Êt) Ò ◊ A = 0. The results from
that work can be carried over with the replacements: ≠gÏ(r) æ g2X2(r) and Ê æ 2Ê.

The vector spherical harmonic decomposition of the vector potential reads as

A(t, x) =
Œÿ

¸=0

ÿ̧

m=≠¸

Ë
A(Y )

¸m (t, r) Y¸m(x̂) + A(�)

¸m (t, r) �¸m(x̂) + A(�)

¸m (t, r) �¸m(x̂)
È

, (B.2)

where Y¸m(x̂), �¸m(x̂), and �¸m(x̂), are the vector spherical harmonics, and where r = |x|

and x̂ = x/r. The Coulomb gauge condition, Ò · A = 0, imposes r¸(¸ + 1)A(�)

¸m = ˆr(r2A(Y )

¸m ).
For ¸ = 0 this implies A(Y )

¸m = 0, and since �00 = �00 = 0, the vector potential vanishes
trivially, so only ¸ > 0 contributes.

Using the vector spherical harmonics, the equation of motion (B.1) decomposes into three
separate equations for the three mode functions. Notice that the spherical Bessel functions of
the first kind j¸(kr) are eigenfunctions of the Laplace operator. We discard solutions built
from spherical Bessel functions of the second kind y¸(kr), which are singular at the origin.
This observation motivates the Ansatz

A(Y )

¸m (t, r) =
⁄ Œ

0

dk

2fi

5
¸(¸ + 1)

kr
j¸(kr) wk¸m(t)

6
(B.3a)

A(�)

¸m (t, r) =
⁄ Œ

0

dk

2fi

5
≠

i


¸(¸ + 1)
j¸(kr) vk¸m(t)

6
, (B.3b)
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Figure 2. The Floquet exponent with the largest real part, µ(sol.)
max , is calculated for a linearly-polarized

vector soliton with N = m2
pl/m2 and coupling g to electromagnetism. The red curve shows the

result of a numerical Floquet analysis applied to eq. (B.18), and the blue curve shows an analytic
approximation (4.1). We use µesc ¥ 2/R to match the numerical solution at large coupling. The
numerical Floquet analysis of the inhomogeneous soliton (red) confirms that the resonance starts
shutting o� when the escape rate becomes comparable to the homogeneous Floquet exponent (ie. when
the blue curve crosses zero). In the above figure, this happens around gmpl ≥ 250.

where the complex mode functions wk¸m(t) and vk¸m(t) are labeled by k œ (0, Œ), ¸ œ

{1, 2, · · · }, and m œ {≠¸, ≠¸ + 1, · · · , ¸ ≠ 1, ¸}. Using this Ansatz and the Coulomb gauge
condition lets us write

A(Y )

¸m (t, r) Y¸m(x̂) + A(�)

¸m (t, r) �¸m(x̂) + A(�)

¸m (t, r) �¸m(x̂)

=
⁄ Œ

0

dk

2fi

5
vk¸m(t) Mk¸m(x) ≠ wk¸m(t) Nk¸m(x)

6 (B.4)

where we’ve defined the vector spherical wavefunctions

Mk¸m(x) = ≠
i


¸(¸ + 1)

j¸(kr) �¸m(x̂) (B.5a)

Nk¸m(x) = ≠


¸(¸ + 1)

kr
j¸(kr) Y¸m(x̂) (B.5b)

≠

Q

a 1
kr

Û
¸ + 1

¸
j¸(kr) ≠

1


¸(¸ + 1)
j¸+1(kr)

R

b �¸m(x̂) .

The vector spherical wavefunctions have the following properties:

Ò ◊ Mk¸m = ≠ikN , Ò ◊ Nk¸m = +ikM , and Ò · Mk¸m = Ò · Nk¸m = 0 , (B.6)

and they are eigenfunctions of the Laplace operator: Ò
2
Mk¸m = k2

Mk¸m and Ò
2
Nk¸m =

k2
Nk¸m.
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The equations of motion are reduced to
⁄ Œ

0

dk

2fi

5
ẅk¸m(t) + k2 wk¸m(t) + 2ig2X2(r) Êk sin(2Êt) vk¸m(t)

6
◊

5
l(l + 1) j¸(kr)

(kr)

6
= 0 ,

(B.7a)
⁄ Œ

0

dk

2fi

5
v̈k¸m(t) + k2 vk¸m(t) ≠ 2ig2X2(r) Êk sin(2Êt) wk¸m(t)

6
◊

5
≠i

j¸(kr)


¸(¸ + 1)

6
= 0 .

(B.7b)

To isolate the equation for the modes labeled with k, we multiply the first equation by r3j¸(kÕr)
and the second equation by r2j¸(kÕr). Then integrating over r and using the identity

⁄ Œ

0

dr r2 j¸(kr)j¸(kÕr) = fi

2k2
”(k ≠ kÕ) (B.8)

leads to

ẅk¸m(t) + k2 wk¸m(t) + 2k2

fi
2ig2Ê sin(2Êt)

⁄ Œ

0

dr
⁄ Œ

0

dkÕX2(r) vkÕ¸m(t) r2j¸(kÕr)j¸(kr) = 0

(B.9a)

v̈k¸m(t) + k2 vk¸m(t) ≠
2k2

fi
2ig2Ê sin(2Êt)

⁄ Œ

0

dr
⁄ Œ

0

dkÕX2(r) kÕ wkÕ¸m(t) r2j¸(kÕr)j¸(kr) = 0 .

(B.9b)

Note that the integrand contains a factor of k in the first equation and a factor of kÕ in the
second equation. The soliton profile X2(r) is defined for r Ø 0, and if we extend its domain
to r < 0 by imposing X2(≠r) = X2(r), then it admits a Fourier transform

X2(r) =
⁄ Œ

≠Œ

dq

2fi
ÁX2(q) eiqr = 2

⁄ Œ

0

dq

2fi
ÁX2(q) cos(qr) (B.10)

which lets us write

ẅk¸m(t) + k2 wk¸m(t) + 2ig2 Êk sin(2Êt) Iv = 0 , (B.11a)
v̈k¸m(t) + k2 vk¸m(t) ≠ 2ig2 Êk sin(2Êt) Iw = 0 , (B.11b)

where

Iv ©
4k2

fi

⁄ Œ

0

dr
⁄ Œ

0

dkÕ
⁄ Œ

0

dq

2fi
ÁX2(q) cos(qr) vkÕ¸m(t) r2j¸(kÕr)j¸(kr) , (B.12)

and Iw has wkÕ¸m instead of vkÕ¸m, and it contains an additional factor of kÕ/k in the integrand.
In order to simplify Iv, we use the identity [64]

j¸(kr) j¸(kÕr) = 1
2kkÕr

⁄ k+kÕ

|kÕ≠k|
dkÕÕ sin(kÕÕr) P¸

A
k2 + kÕ2

≠ kÕÕ2

2kkÕ

B

(B.13)

and
s Œ

0
drr cos(qr) sin(kÕÕr) = ≠(fi/2)ˆkÕÕ [”(q + kÕÕ) + ”(q ≠ kÕÕ)], to obtain

Iv = ≠

⁄ Œ

0

dkÕ

2fi
vkÕ¸m(t) k

kÕ

⁄ k+kÕ

|kÕ≠k|
dkÕÕ P¸

A
k2 + kÕ2

≠ kÕÕ2

2kkÕ

B
ˆ

ˆkÕÕ
ÁX2(kÕÕ) . (B.14)
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The derivative of the one-dimensional Fourier transform ÁX2(kÕÕ) is peaked around
kÕÕ

≥ 2fi/R and has a width order 2fi/R also. To ensure that this peak is not missed by
the dkÕÕ integration, we require |kÕ

≠ k| . 2fi/R. Furthermore, for resonance, we expect
k ¥ Ê ¥ m, and recall that for non-relativistic solitons mR ∫ 1. Note that this m is mass of
the dark photon, not the index of spherical harmonic.

With these considerations, the argument of the Legendre polynomial is close to unity.
Expanding the Legendre polynomial with its argument close to 1 (and for fixed ¸) we obtain

P¸

A
k2 + kÕ2

≠ kÕÕ2

2kkÕ

B

= 1 ≠
¸(¸ + 1)

2

A
kÕÕ2

≠ (k ≠ kÕ)2

2kkÕ

B

+ . . . . (B.15)

Since (kÕÕ2
≠ (k ≠ kÕ)2)/(2kkÕ) ≥ 1/(mR)2, the Legendre polynomial is well approximated by

one when ¸ π mR. In this regime,

Iv =
⁄ Œ

0

dkÕ

2fi
vkÕ¸m(t) k

kÕ

Ë
ÁX2(k ≠ kÕ) ≠

ÁX2(k + kÕ)
È

+ O[¸2/(mR)2] (B.16)

¥

⁄ Œ

0

dkÕ

2fi
vkÕ¸m(t)ÁX2(k ≠ kÕ) + O[¸2/(mR)2], (B.17)

where in the second line we used kÕ
≥ k ≥ m, and ignored ÁX2(k + kÕ) using the fact that

ÁX2(q) is centered around q = 0 with a width ≥ 1/R π m≠1. Also note that with the same
approximations Iw ¥ Iv (with v æ w).

Then we may write (B.11a) and (B.11b) as

¨̃vk¸m(t) + k2 ṽk¸m(t) ± 2g2Êk sin(2Êt)
⁄ Œ

0

dkÕ

2fi
ÁX2(k ≠ kÕ) ṽkÕ¸m(t) = 0

and w̃k¸m(t) = ±iṽk¸m(t) with ¸ π mR .
(B.18)

Note that ÁX2(k ≠ kÕ) couples modes over a kÕ width of ≥ 1/R around k ¥ m. These results
agree with those derived in [43] for the case of scalar solitons, under the replacement 2Ê æ Ê

and ÁX2(k ≠kÕ) æ Â�(k ≠kÕ), where Â�(k ≠kÕ) represents the one dimensional Fourier transform
of the scalar soliton profile. Authors in [43] only studied the particular channel (¸, m) = (1, 0),
but due to the likeness between the vector and scalar soliton analysis, we can conclude that
their results generically holds for any pair of spherical harmonic numbers (¸, m) so long
as ¸ π mR. We note that when ¸ ∫ mR, we have numerically verified that Iv,w decays
exponentially with ¸, and hence we ignore that regime in what follows.

The integro-di�erential eq. (B.18) can be analysed using Floquet theory since the system
is coupled in k-space, but still periodic in time. We will follow ref. [43] where a closely related
system was analyzed. We discretize the system in k-space, and solve the coupled system of
di�erent k modes numerically. There are two physical considerations which set the resolution
and size of the grid in k-space. First, the width ≥ 1/R of ÁX2(k ≠ kÕ) sets the extent of the
k-space grid, whereas the requirement of resolving the resonance band near k ¥ m, sets the
resolution of the k-grid (�k < g2X̄2m).

By numerically solving the integro-di�erential equation, we study a linearly-polarized
vector soliton with N = m2

pl
/m2 and di�erent values of the coupling g. We calculate the

Floquet exponent with the largest real part, µ(sol.)
max = max

i
Ÿ[µi]. Our results are summarized

in figure 2, which shows the dependence of the Floquet exponent on the coupling g. These

– 25 –



J
C
A
P
0
5
(
2
0
2
3
)
0
1
5

results show an excellent agreement with the analytic approximation in eq. (4.1), i.e. the
resonance phenomenon is turned on when the maximal Floquet exponent for the corresponding
homogeneous case starts becoming larger than the soliton light-crossing time, µ(hom.)

max &
O(1/R). The quantity µesc. = O(1/R) can be interpreted as the escape rate for radiation
leaving the soliton. When µ(hom.)

max . µesc, radiation is leaves the system more quickly than it
is being generated and the Bose enhancement required during the resonance is suppressed.
The same feature was reported in ref. [43] for the case of scalar solitons.5 We find that
µ(sol.)

max ¥ µ(hom.)

max ≠ µesc if we fix µesc ¥ 2/R.
We note that the zoom-in figure 2 shows a slightly disagreement between numerical

results at gmpl < 250 which are small but non-zero (at a level larger than machine precision),
and the analytical expectation that these should approach zero. Even a small non-zero
Floquet exponent is relevant because of the exponential nature of the instability, and required
further analysis to determine whether this discrepancy is physical or numerical. Our analysis
indicates that this disagreement is a result of numerical issues. Resolving the resonance band
�k Ã g2X̄2m, and covering the width ≥ 1/R of ÁX2(k ≠ kÕ) becomes exceptionally challenging
at small g. We have found that for gmpl . 250, the numerically evaluated Floquet exponent
continues to decrease as we increase the resolution and extent of the k-grid, whereas for larger
g the values do not change. While not quite a proof, we take this as an indication that the
Floquet rate approaches zero for small coupling as expected from theoretical considerations.

C Fuzzy dark photon dark matter

Although our primary interest in this work has been the phenomenon of parametric resonance
in polarized vector solitons, the calculations presented here can be carried over to other
systems as well. In this appendix, we consider fuzzy dark photon dark matter, not forming
solitons, and we adapt the results of our analysis to assess the implications of parametric
resonance of electromagnetic radiation for this system.

The inhomogeneous dark photon field admits a Fourier representation as

X(t, x) =
⁄ d3k

(2fi)3
Xk(t) eik·x , (C.1)

where modes are labeled by a wavevector k with corresponding wavenumber k = |k| and
wavelength ⁄ = 2fi/k. We are interested in systems in which the dark photons are non-
relativistic, which means that the modes amplitudes Xk(t) only have support for modes
with small wavenumbers k π m. As a fiducial parameter choice we take m = 10≠20 eV,
corresponding to ‘fuzzy’ dark matter, and the non-relativistic modes have ⁄ ∫ 2fi/m ƒ

(0.004 pc)(m/10≠20 eV)≠1.
The energy density carried by the non-relativistic dark photon field today is approxi-

mately flX(x) ¥ m2
|X(x)|2/2. Assuming that the mode amplitude is only a function of the

5
In ref. [43], the growth rate of photons in scalar solitons follows the analytical approximation µ(hom.)

max ≠ µesc,
with the escape rate defined as µesc = 1/(2Rc). These authors approximate the scalar soliton profile using a

sech function, where Rc is a characteristic scale length. This quantity is related to the radius of the power-law

approximation, eq. (2.10), as Rc ¥ R/3. In addition, the resonance calculation for the scalar case considers

one power of the soliton profile, while that for the vector case involves the square of the soliton profile.

The ratio between the full width at half maximum of a sech function and its square is about
Ô

2. Thus,

transforming the scalar escape rate which fits numerical data to the vector escape rate which fits ours, we have

1/(2Rc) æ 3
Ô

2/(2R) ¥ 2/R, in complete agreement with results shown in figure 2.
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wavenumber, |Xk| = |Xk|, we can write
⁄

d3x flX(x) ¥

⁄ Œ

0

dk

k
EX,k with EX,k = 1

4fi2
m2k3

|Xk|
2 , (C.2)

where EX,k is the spectral energy distribution of the dark photon field today. We assume that
EX,k is peaked at a wavenumber k = kú such that 0 < kú π m. Consequently, non-relativistic
modes with wavevectors satisfying |k| ¥ kú carry most of the energy. For instance, the
production mechanism discussed in refs. [25, 29, 32, 33] leads to kú ≥


mHeq/(1 + zeq) where

zeq = 3300 and Heq = 10≠28 eV are the redshift and Hubble parameter at radiation-matter
equality; this corresponds to a length scale today of ⁄ú ƒ (63 kpc)(m/10≠20 eV)≠1/2. We
define X̄ = k3

ú|Xkú |/2fi2 to be the field amplitude of the dominant modes, and their energy
density is written as flX,ú ¥ EX,kú ¥

1

2
m2X̄2.

The condition µ(hom.)
max ⁄ú ¥ g2X̄2m⁄ú/2 & 1 must be satisfied in order for parametric

resonance to occur; see eq. (4.1). This places a lower bound on the field amplitude X̄ that
depends upon the coupling g, mass m, and the coherence length scale ⁄ú. Conversely, the
requirement that the dark photon relic abundance does not exceed the known dark matter
relic abundance imposes an upper bound on the field amplitude today X̄ Æ


2fldm/m2. Taken

together, these two bounds are expressed as

!
1◊104 GeV

"3
g

10≠10 GeV≠1

4≠13
m

10≠20 eV

4≠1/23
⁄ú

1 Gpc

4≠1/2

π X̄ Æ
!
4◊105 GeV

"3
m

10≠20 eV

4≠1

. (C.3)

These inequalities emphasize why we focus on such low-mass fuzzy dark matter with m ≥

10≠20 eV. For larger values of m (at the same g, ⁄ú) the upper and lower bounds become
incompatible.

If the condition for parametric resonance is satisfied, the dark photon field will decay into
electromagnetic radiation. The time scale for this energy transfer is controlled by the maximal
Floquet exponent via · ¥ 1/µ(hom.)

max ¥ 2/g2X̄2m, using the results in eqs. (3.9) and (3.12).
For the same fiducial parameters used in the estimates above, we have the lifetime

· ƒ
!
1 ◊ 1015 s

"3
g

10≠10 GeV≠1

4≠23
X̄

105 GeV

4≠23
m

10≠20 eV

4≠1

. (C.4)

Since the age of the universe today is t0 ≥ 1017 s, these estimates imply that the dark photon
field would have been depleted long ago by the resonant amplification of electromagnetic
radiation. Conversely, the condition for parametric resonance to be inoperative today is
written as

3
g

10≠10 GeV≠1

4
<

!
0.025

"3
m

10≠20 eV

41/23
⁄ú

1 Gpc

4≠1/2

, (C.5)

assuming that the dark photon makes up all of the dark matter. Therefore, in order to have
a viable model of fuzzy dark photon dark matter coupled to electromagnetism through the
dimension-6 operators that we consider, the parameters must be such that the parametric
resonance instability is inoperative today, implying an upper limit on the coupling g.

If the parameters are chosen such that the parametric resonance instability is inoperative
today, it is interesting to ask whether parametric resonance may have taken place in the early

– 27 –



J
C
A
P
0
5
(
2
0
2
3
)
0
1
5

universe. Specifically, we are interested in the time dependence of µ(hom.)
max (t)⁄ú(t) and how it

compares to 1. In an Friedman-Robertson-Walker spacetime with scale factor a(t) at time t,
we can write the time dependence as µ(hom.)

max (t)⁄ú(t) Ã a(t)rX̄(t)2⁄ú(t) where the additional
factors of a(t)r arise from the metrics and inverse metrics appearing in the operators O1

through O5; for example, X · X = gµ‹(t)XµX‹ ¥ a(t)≠2X̄(t)2. The field’s coherence length
grows no more quickly than ⁄ú(t) Ã a2(t) (tracking the causal horizon during radiation
domination); we can write ⁄ú(t) Ã a(t)s. Similarly, the field amplitude (for non-relativistic
modes inside the horizon) oscillates under a decreasing envelope X̄(t) Ã a(t)≠1/2 [25]. Putting
together these factors gives µ(hom.)

max (t)⁄ú(t) Ã a(t)r+s≠1. Since a(t) is a growing function of
time, if the condition for parametric resonance is not satisfied today, and if r + s ≠ 1 Ø 0
then parametric resonance was never operative (on cosmological scales) throughout the
cosmic history. Conversely, if r + s ≠ 1 < 0 then parametric resonance may have taken place
in the early universe. The associated electromagnetic energy injection to the primordial
plasma may have had an observable impact on the abundances of light elements, produced
at big bang nucleosynthesis (BBN) [65], or on spectral distortions of the cosmic microwave
background (CMB) radiation [66].
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