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CGPP provides a natural explanation for the origin of dark matter. In this work we study
the gravitational production of massive spin-2 particles assuming two different couplings to
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by solving them numerically we calculate the spectrum and abundance of massive spin-2
particles that results from inflation on a hilltop potential. We conclude that CGPP might
provide a viable mechanism for the generation of massive spin-2 particle dark matter during
inflation, and we identify the favorable region of parameter space in terms of the spin-2
particle’s mass and the reheating temperature. As a secondary product of our work, we
identify the conditions under which such theories admit ghost or gradient instabilities, and
we thereby derive a generalization of the Higuchi bound to Friedmann-Robertson-Walker
(FRW) spacetimes.
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1 Introduction

The study of inflationary perturbations of the massless gravitational field are a standard
part of any graduate course on cosmology [1]. (See also ref. [2].) Additionally, the study of
perturbations in massive lower-spin fields, either during inflation or after inflation during
reheating, i.e., cosmological gravitational particle production (CGPP), has its own long
history [3-5] with applications to cosmological relics such as dark matter [6, 7]. However,
there have not been any comprehensive studies of CGPP with massive spin-2 particles.
(Although there have been steps in that direction, see ref. [8].) In this work we investigate
the evolution of cosmological perturbations in a massive spin-2 field during the epoch of
inflation and the period of reheating after inflation, and we assess the implications for
spin-2 particle dark matter.

Such a systematic investigation of CGPP is well motivated: if these massive spin-2
particles have a lifetime greater than the age of the universe they provide a candidate for
the dark matter. If their lifetime is less than the age of the universe, their late decays
might have interesting cosmological implications. Moreover, in the context of bigravity
which contains one massless spin-2 field (i.e., the graviton) and one massive spin-2 field,
one cannot ‘turn off’ the gravitational interactions that lead to CGPP. The phenomenology
of spin-2 dark matter has been studied in refs. [8-16], and our work offers a production
mechanism for these particles.

In this article, to perform our analysis, we consider two different constructions of a
free massive spin-2 particle on a Friedmann-Robertson-Walker (FRW) background. In the
first, more straightforward construction, we generalize the Fierz-Pauli theory [17] of a free
massive spin-2 particle to an FRW background in a way that maintains the absence of
the Boulware-Deser ghost [18]. Though not necessary for the construction, we show how
this theory can be obtained from ghost-free bigravity [19]. In the second construction, we
consider an exotic nonminimal coupling [20] of the massive spin-2 field to matter which
allows for an alternative free Lagrangian on an FRW background. We also show how this
theory can be obtained from ghost-free bigravity.

An extensive body of literature has explored cosmological solutions and perturbations
in several theories of bigravity; see refs. [21, 22] for a review. Most of this work has focused
on a class of theories where matter only couples to one of the two dynamical metrics [19].
These studies find that there exist homogeneous and isotropic solutions at the background
level [23-28], which is a required feature for a viable cosmological model. However, the
perturbations around these solutions (on at least some branches) are unstable [29] (see
also refs. [30-32]). The instabilities can be evaded if both metrics couple to matter. One
such theory employing two distinct matter sectors was proposed in ref. [29] and studied
in ref. [33], and another such theory with a single matter sector coupled to a composite
effective metric was proposed in ref. [20] and its cosmology was studied in refs. [34-36].
These latter two theories are relevant for our interests here. In regard to the study of
cosmological perturbations in bigravity, our work is distinct from previous studies insofar
as we focus on matter couplings that admit equal FRW background solutions for the two
metrics, in order to derive the simplest free Lagrangians for the massive spin-2 field.



Earlier work on inflationary perturbations, e.g., for cosmic microwave background ob-
servables, has typically assumed that the additional spectator field is light (mass much
smaller than the expansion rate during inflation) and the perturbation amplitude is set
when modes leave the horizon during inflation. However, studies on CGPP have also
extended these calculations to models in which the spectator is heavy (mass larger or com-
parable to the expansion rate during inflation) and particle production happens near the
end of inflation or after inflation during the epoch of reheating. For massive gravity on a
de Sitter background, the Higuchi bound constrains the spin-2 particle’s mass m? > 2H?,
as otherwise the theory would propagate a ghost [37]. A similar bound is expected to be
realized in theories of massive gravity and bigravity on an FRW background [38, 39]. As
part of our analysis we find a generalization of the Higuchi bound to FRW spacetimes:
m? > 2H?(1 — €) where e is the first slow roll parameter. Since we find the spin-2 particle’s
mass must exceed the Hubble scale during inflation, particle production happens primarily
at the end of inflation and during reheating, which motivates the numerical analysis that
we pursue here.

The remainder of this article is organized as follows. In section 2, we use ghost-free
bigravity to derive two distinct theories of a free massive spin-2 particle on an curved
background that we will consider. Focusing on FRW cosmologies, we perform a scalar-
vector-tensor decomposition and present the resultant mode equations in section 3. Some
of the mode equations exhibit instabilities, which we discuss in section 4, where we also
present an FRW generalization of the Higuchi bound. Our numerical results appear in
section 5, including the spectra and relic abundance of gravitationally-produced particles.
In section 6 we summarize and conclude. The article is supplemented by several appen-
dices: appendix A offers an analytical understanding of the long-wavelength spectrum;
appendix B presents an alternative derivation of our FRW-generalized Higuichi bound;
and finally, appendix C contains a discussion of the stability and decay of massive spin-2
particles in our two theories.

2 DMassive spin-2 fields in an FRW background

To study the gravitational production of a spin-2 particle species of mass m (which is not
the massless graviton) during inflation, we desire an effective field theory that describes a
free, massive, spin-2 field and a scalar inflaton field on a fixed curved spacetime background.
This free theory with the usual minimally coupled matter sector can be obtained trivially
from General Relativity (GR): one can simply expand the Einstein-Hilbert action plus
matter sector to quadratic order in perturbations around any background that satisfies the
GR equations of motion and then add the Fierz-Pauli mass term [17]. The resulting theory
of a free massive spin-2 field on a fixed background will be ghost-free, while non-linearities
will generically introduce a ghost.

This same free Lagrangian can also be derived from non-linear ghost-free massive
gravity [40], which describes a self-interacting massive spin-2 particle, and also from ghost-
free bigravity [19] which describes an interacting massive spin-2 particle and massless spin-
2 particle. In addition to giving the free theory, these formulations allow one to consider



higher order perturbations while maintaining the contraint that removes the ghost, as
well as specific ghost-free nonminimal couplings to matter, and, in the bigravity case,
interactions between the massive spin-2 particle and the graviton (i.e., the massless spin-2
particle). The virtue of the particular interacting theories given in refs. [19] and [40], in
contrast to, say, Kaluza-Klein theories containing massive spin-2 particles, is that the mass
of the spin-2 particle is parametrically lower than the cutoff of the effective field theory
so that no new states need to be introduced into the low energy theory beyond a single
massive spin-2.

In this section we show how the free Lagrangian of a massive spin-2 field on a fixed
background can be derived from bigravity. In addition to considering the usual minimal
matter coupling, we consider the free theory that arises from an exotic nonminimal coupling
to matter that has been shown to be ghost-free below the strong coupling scale of the non-
linear effective theory Az = (m?Mp)/?, where Mp is the Planck mass [20]. We will consider
both the minimally-coupled theory and the nonminimally-coupled theory when studying
the gravitational production of massive spin-2 particles.

2.1 Ghost-free bigravity

We will construct two different free Lagrangians for a massive spin-2 particle on an FRW
background starting from ghost-free bigravity [19]. Bigravity is an interacting theory de-
scribing one massive and one massless spin-2 particle, with possible couplings to additional
matter fields.! In the first construction that we consider, the bigravity theory is minimally
coupled to matter and one gets the expected result for the free massive spin-2 Lagrangian:
it’s simply the free Lagrangian of a massless spin-2 particle (i.e., General Relativity at
quadratic order) plus the Fierz-Pauli mass term. The bigravity formulation allows one
to also consider exotic ghost-free nonminimal couplings to the matter sector [20]. In the
second construction, we will derive the free action the nonminimally-coupled theory.

We start from the most general non-linear ghost-free bimetric action. The action
contains an Einstein-Hilbert term for each of the two metrics g,,, and f,,, a non-derivative

potential term that mixes them, and matter terms:?

s_/cm[ My il FR MM/ ~gV (X: 5,)
+ V=9 Ly(9,bg) + V=T Li(f,65) + V=9u Lu(9s, D)

The parameters My and My determine the effective mass M? = (M, ? + M r 2)_1 and the
reduced Planck mass MI% =M g2 + Mj% The mass parameter m sets the mass of the spin-2

'Massive gravity can be considered as a limit of the bigravity theory when there is a large hierarchy
between the Planck masses of the two particles: the massless spin-2 eigenstate effectively freezes out and
one is left with only the massive degree of freedom.

2We use the (+,+,+) Misner-Thorne-Wheeler sign convention [41], with mostly plus signs in the
Minkowski metric.



particle. The metric interaction potential can be written as

4
V(X;Bn) = %ﬁnsn(X) , Su(X)=XPL X XX, =g, (2.2)
which depends on the five parameters Sy through 54. A potential of this form guarantees
that the classical theory propagates only the correct five degrees of freedom of the massive
spin-2 [42] and no additional Boulware-Deser ghost [18]. The matter sectors are discussed
further below, including g, which is a composite metric defined in eq. (2.5).

The [ parameters determine the mass of the spin-2 particle and the cosmological
constants Ay and Ay, and parametrize higher-order interactions between the two metrics.
We take

B1+282+83=1, (2.3)

which normalizes the Fierz-Pauli mass to be m. The cosmological constants are
Ay =m*(Bo+381+3B2+B3) and Ay =m?* (B + 382+ 363+ Ba) . (2.4)

Only these linear combinations of the five 3,, parameters appear in the free action (quadratic
in perturbations); the remaining combinations only enter through higher-order interactions.

There are three matter sectors: one that couples minimally to the metric g, one that
couples minimally to the metric f, and one that couples to a composite metric g, given by

2

b
(g*)ﬂl’ = (aj—b)2 g,U«V + (aj—b)Q (gﬂ)\( g_lf))\y +( g_lf)'u)\g)\u> + m-fﬂl”

b2

(2.5)

with free parameters a and b. This form guarantees a ghost-free matter coupling below the
strong coupling scale of the nonlinear effective theory Az = (m?Mp)'/3 [20]. We take the
matter sectors to be that of three independent scalar fields ¢4, ¢ and ¢, that are coupled
to gravity with Lagrangians of the form:

1
Eg(ga ¢g) = _iglwv;ﬂbgvuqsg - Vg(ég) ) (2'63')
L1(F,61) = —5 "V uby Vs — Vi(oy) (2.6)
Lu(g0,62) = — 50 V0 Yoy — Vil6). (2.60)

These fields will source the background FRW metrics seen by the massive spin-2 fields. In
the minimally-coupled theory, a combination of ¢, and ¢; will play the role of the inflaton,
whereas in the nonminimally-coupled theory the inflaton is identified with ¢, alone.

2.2 Minimal matter coupling

In the absence of the composite metric, i.e. £, = 0, the g and f metrics are minimally
coupled to their respective matter fields. Taking this bigravity theory and expanding
both metrics and their corresponding matter fields around the same background solutions,



we recover the free Lagrangian for the massive degrees of freedom that is equivalent to
linearized General Relativity plus a Fierz-Pauli mass term.

In particular, to derive the free Lagrangian, we expand the metrics and scalar fields
around backgrounds (denoted by a bar):

_ 2 2 - _
Guv = Guv + ﬁhuw fuw = fuw + fk;w’ bg = bg+ g, and ¢y =op+ ;.
g
(2.7a)
We seek solutions of the background equations of motion with
_ = 1 - 1 - 1 -
g;u/:f,uz/ and ngbg: ﬁf(ﬁf: ﬁp(ﬁ (27b)

The existence of such solutions imposes a stringent constraint on the model, which requires
the two matter sectors to be mirrored in the sense that

1 g 1 My ) A A A

—¢|=—7=V and =L =__ 2.8

" (10) =3 (310) = 3 V) g @Y
In other words, if the g-sector contains a term Vj(¢y) D cg®y, then the f-sector must
contain a term Vi(¢y) D cpg with ¢f = cg(My/Mys)"~2. This relation links the masses
and couplings of the two scalar fields. We keep track of the cosmological constant A for the
analytic expressions, but we set A = 0 for our numerical analysis; the inflationary phase is
driven by V(¢) > 0.

There are several virtues to expanding around the same background for both metrics.3+*
For one, it makes the expansion of the square-root matrix X that appears in eq. (2.2) simple.
Furthermore, the background equations of motion are simply

_ 1

_ = _ J
R”V — ig'uVR + Agﬂy = ﬁ}% TI-LV y (293)

O¢ —V'(¢) =0, (2.9b)

where the mass term, i.e., the potential term multiplied by m? in eq. (2.1), has dropped
out. Here we have used the background stress-energy tensor:

T;u/ = vuﬁgvl/& + g,ul/[’_(ga d)) ’ (2'10)

£(9,0) = 50" VoVl — V(3). (2.11)

3In the literature “proportional” solutions with g, = c?f,. are also often considered. However, in our
setup the constant parameter ¢ would be a rescaling, which can be absorbed into redefinitions of the fields
and parameters and does not constitute an independent free parameter.

4We note that, from the point of view of the bigravity theory, insisting on equal background solutions
and the corresponding mirroring of the matter sectors amounts to a tuning. Our incentive here is simply to
show how the simplest free Lagrangian, i.e., the generalization of Fierz-Pauli to FRW, can arise from the
ghost-free bigravity theory, which necessitates equal backgrounds. We also note that mirroring can appear
in dimensional deconstruction models with two-site discretization. For a review see ref. [22].



(In these expressions all derivatives are taken with respect to the background metric
Guv)- As a result, the background solutions for both metrics are what we expect from
General Relativity. For example, if the scalar background is homogeneous, qg(t, x) =
#(t), it induces a homogeneous and isotropic expansion, described by the FRW metric
guw = diag(—1,a(t)?,a(t)? a(t)?). The temporal and spatial components of the stress-

energy tensor,
— 1= - _ - 1- N _
Too = §¢2 +V(p)=p and Tj;= <2¢2 - V(¢)> a(t)6;; =pa® sy,  (2.12)

can be identified with the homogeneous energy density p(t) and pressure p(t).
The free Lagrangian is obtained by expanding the action (2.1) around the back-
ground (2.7) keeping terms that are second order in the field perturbations. We can write

S = / 'z |V=GL(9,9) + V=0 Lihess + V=0 Limhssive + interactions| ,  (2.13)

where the massive spin-2 and massless spin-2 sectors of the free Lagrangian decouple. This
decoupling is manifest with the appropriate choice of basis for the metric perturbations [19]

T T T VN T (2.14)

M, M; M, M, My M’

and the scalar perturbations

Yu _ Pg  $I Po _ P9 _PI (2.15)

M, My M, M, M, M

We identify u,, as the massless metric perturbation and v, as the massive perturbation.
We find, as expected, for the massless sector:

2
L) e = LG+ LB + L8, (2.16a)
where
L) = —%V,\uwv)‘uﬁ”’ + VA Vuty — V"V + %V#uvuu (2.16b)
+ (R = M52 V,09,0) (0 = )
v p VuPVy AT QU
_ _ 1 _
L3, = Mp! [(Vmﬁvuwu + VVW,MU) (u“” = 29“”u> — V’(¢)g0uu] , (2.16¢)
1 1, -
£5)o. = =5 VueuVou = SV"(9)e (2.16d)

Indices are raised and lowered with the background metric g and u = g*"u,,,,. This is equiv-
alent to the Einstein-Hilbert Lagrangian plus a minimally coupled scalar field expanded to
quadratic order in perturbations wu,, and ¢,. The massive sector has the identical form,
plus the Fierz-Pauli mass term:

L2 e =LY L3 + L2

massive VU VYo Oupy ?

(2.17a)



where

1 1
Lg) = _ivAU“VV/\U“V + Vuv”’\v,,v“)\ -V, u'"Vyu + ivqu“v (2.17Db)

_ N 1
+ (R — Mp? V,0¥,0) (Wv; - 21}“”1})

1 2 N2 2
- im (v Vpyp — U ) ,
£3 = M5 (V,0V vV, 6V o L V(¢ 2.17
ve, = Mp ( pONV vy + Vi u‘Pv) V= 59" ) = Vi@)ewy) (2.17c)
1 1, -
L), = =5 Vupe Vo0 — 5V"(0)e7 (2.17d)

As mentioned above, £ is what you would get by starting from the General Rela-

massive
tivistic expression, finding the free Lagrangian and adding a Fierz-Pauli mass term. Alter-
natively, our bigravity approach allows one to also consider higher order terms or couplings
between the massive and massless spin-2 particles, and the expressions will be ghost-free

by construction.

2.3 Nonminimal matter coupling

The avoidance of ghosts typically forbids both metrics g and f from interacting with the
same matter sector. However, there is an exotic exception [20] that we will refer to as
the nonminimal matter coupling. Setting £, = Ly = 0 in the action (2.1), let us consider
a coupling of both metrics to a single matter sector, containing a scalar field ¢y, via the
composite metric g, in eq. (2.5). For this nonminimal matter coupling, the free Lagrangian
differs from the minimal coupling.

To determine the free theory, the metrics and scalar field are expanded around their
backgrounds as follows,

_ 2 - 2 _
G = G + thj ) f/w = f/w + ﬁfk;w , and  Qx = Py + 9y, (2-183)
g

and we seek solutions with equal backgrounds for the metrics,

g;w = fuu and QE* = (5 . (2.18b)

The existence of such backgrounds imposes a constraint on the parameters a and b of the
composite metric (2.5), as well as a mirroring condition on the cosmological constants:

a b A, A; A
272 = EVol and = =

A (2.19)
M2 T ME M

g

The composite metric (2.5) is expanded, up to second order in the metric perturbations, as

M,0 M0 2 ab 1

_ 2 N
(el =G+ 3, arb MU T arep At

_ A
=Guw + Upy — 2 VAl y -
Mp M2



where we have used eq. (2.14) to express the result in terms of the massless and massive
metric perturbations, w,, and v,,. For general a and b a quadratic term uu)\u)‘l, is absent.
Choosing a and b to respect eq. (2.19), the massive mode vy, is removed from the effective
metric at linear order. Moreover, using the mass eigenstates, all the dependence on M,
and My separately drops out and one is left with only one coupling scale, Mp.

We expand the action (2.1) in powers of the perturbations (2.18) to obtain

S = /d4ac [\/—g L(g,d) ++/—g £® 4 interactions}. (2.21)

Assuming equal backgrounds for the two metrics, and using the condition in eq. (2.19),
the background equations of motion for this nonminimally-coupled theory are equivalent
to the equations of motion for the minimally-coupled theory, which appear in eq. (2.9).

The free Lagrangian £(2) is obtained by expanding the metrics and scalar field to
second order in their perturbations. Doing so gives

L =L@+ L)+, +L8), (2.22a)
where
£2) = 19,0, VA £V, b, - VYt Y (2.22b)
uu 2 AUpuy o vy I v 5 m .
1
+ (R — My Vugbv,,qb) <u“’\ uy — 2u‘“’u) ,
_ _ 1 _
LY =My! {(vayso* + V6V 04 (u“” - 2gﬂ”u> - V’(gb)cp*u} : (2.22¢)
1 1, -

L), = —50upu0" 0 = SV"(9)4, (2.22d)

1 1
Eg;%) = _§VAUWV’\U’“’ + Vuv”’\VVU“A -V, " Vyu + §VﬂvV“v (2.22¢)

_ 1. - ,
+ <RW + 5 Mp? (V6906 + G L3, ¢))) v,
1

-3 (RW + M2 (Vﬂq_squE + G L(7, qE))) oy

— %mQ (UWU’“’ — v2) .

Moreover, as observed previously in ref. [43], at quadratic order the massive mode vy,
and the scalar perturbation ¢, decouple entirely. Despite the similar notation, note that
Eq(}%) here is different from the expression appearing in eq. (2.17) for the minimally-coupled
model, whereas Eq(fu) is identical to eq. (2.16).

We note that the nonminimal coupling to matter defines a theory that does not yield
expected results in several regards. For example, taking the de Sitter limit of the FRW
background does not give the usual free action of a massive spin-2 particle on de Sitter.
The reason for this is straightforward to see. Normally when one considers bigravity in

de Sitter, one adds a cosmological constant for each metric

S = /d%« []\?\/?g (Rlg] —2A) + F —2A) + : (2.23)



Alternatively, one could introduce a cosmological constant via a constant scalar potential.
In this case, using the nonminimal matter coupling in terms of g, to couple the two metrics
to the scalar field gives:

S:/d4 [ —9./=gRlg] FR ]+ V=9« (—g“”0u¢*0y¢*+‘/(¢*)> +

(2.24)
But for d,¢. = 0 and V(¢.) = const. this Lagrangian does not give rise to the same
quadratic Lagrangian as (2.23). That is to say

— M}=gA—MiV/—fA# /=g V. (2.25)

This is thus a truly exotic coupling which will give results that do not reproduce those of
a usual massive spin-2 particle in the appropriate limits.

3 Cosmological perturbations

To study gravitational production of massive spin-2 particles in an inflationary cosmology
we require the background fields to describe a homogeneous and isotropic FRW spacetime.
We write the background metric g,,, and background scalar field b as

gyu(”? :B) = g,uz/ (7’) = a2(77) diag(_lv L1, 1) and Gf_)(?% ZL') = QE(U) ) (31)

where 7 is the conformal time coordinate, x is the comoving spatial coordinate, and a(n)
is the scale factor. The background equations of motion (2.9) become

ME(BH? = A) = V(9) + (6)2/(20%) and ¢ +2aH¢ +a*V'($) =0,  (3.2)

where H = a’/a? is the Hubble parameter, V'(¢) = dV/d¢ is the potential gradient, and
other primes denote derivatives with respect to conformal time.

The polarization modes of the spin-2 fields decouple at quadratic order in the homoge-
neous and isotropic FRW spacetime, and the equations of motion are easily studied using
a scalar-vector-tensor (SVT) decomposition. The SVT decomposition allows a 4-tensor
to be represented by variables that transform as 3-scalars/vectors/tensors under spatial
rotations. For the massive spin-2 field v, (n, ) the SVT decomposition is written as [1]

voo = @°E, vy = d*(0iF + Gi), vy; = a*(6;A+ 0;0;B + 0;Cj + 9;C; + D), (3.3a)

)

where ¢, j = 1,2, 3 are spatial indices. We call D,; (n,x) the tensor component of Uy We
call Cj(n, z) and G;(n, ) the vector components; and we call A(n,x), B(n,x), E(n,x), and
F(n,x) the scalar components, since they transform accordingly under spatial rotations.
The vector components C; and G; are required to be transverse, while the tensor component

D;; is required to be transverse and traceless; these constraints are summarized as

8101 = 0, 31G1 = 0, @Dw = O, and Dii = 0, (3.3b)



where repeated indices are summed. Since v, is symmetric, the tensor component is also

I
symmetric D;; = D,,.
Upon implementing the SVT decomposition (3.3), the action (2.1) breaks up into sepa-

rate scalar, vector, and tensor sectors that are unmixed at quadratic order in perturbations:
S = /dn Bz (LS + Ly + LT) + O3 , (3.4)

where Lg, Ly and Lp are the quadratic-order scalar/vector/tensor sector Lagrangians,
respectively. Note that L = /—¢g £ = a* L. In the following subsections, we present each
of these terms and provide the corresponding equations of motion for the field variables.

3.1 Minimal matter coupling

For the theory with a minimal coupling to matter, we perform the SVT decomposition
on the massive spin-2 field v, and isolate the corresponding quadratic-order Lagrangians
Lg, Ly, and Ly. The covariant action for the spectator fields, v, and ¢,, was given by
eq. (2.17) at quadratic order. Using the SVT decomposition (3.3) on an FRW background
causes the scalar, vector, and tensor sectors to decouple at quadratic order. This is ex-
pected, since one can check that all bi-linear cross terms from two different sectors can
be eliminated by a combination of integration by parts and SVT constraints. There are 2
degrees of freedom in the tensor sector, corresponding to the +£2 polarization modes of v, ;
there are 2 degrees of freedom in the vector sector, corresponding to the +1 polarization
modes of v,,,,; and there are 1+1 degrees of freedom in the scalar sector, corresponding to a
mixture of the O-polarization mode of v,,,, as well as the additional ¢,. We shall present the
Lagrangians for each sector, and derive the corresponding mode equations in appropriate
variables.

3.1.1 Tensor sector
The tensor sector Lagrangian is given by:

1
The kinetic term is rendered canonically normalized by the change of variable x,; = aD

which leads to

@5

1 _
Lr = [X;jX;j — Ouxiy O xi; — a2(m? — 2H? —a IH')XUX@} (3.6)
where we have dropped total derivatives. We use Xij(n, k) to denote the Fourier modes
of x;;(n,@). Since the Lagrangian is isotropic, we can take k = (0,0, k) without loss of

generality, and the transverse/traceless conditions (3.3) let us write

)ZJr Xx 0
[Xi] = [Xx =X+ 0], (3.7)
0O 0 0
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which isolates the plus and cross mode functions, x4 (7, k) and xx (7, k). The corresponding
mode equations are written as

X4 (n, k) + wii(n) Xs(n, k) =0 for s = +, x

3.8
where wi(n) = k* + a®*m? — 2a*H? — aH'. (38)

This expression reveals that the tensor sector consists of 2 propagating degrees of freedom,
which can be identified with the &2 polarization modes of the spin-2 field v,,,. The mode
equation that results upon setting m = 0 is equivalent to the mode equation for a gravita-
tional wave propagating on an FRW background, which is familiar from studies of tensor
perturbations in an inflationary cosmology [44, 45]. Note that the effective squared mass
can be written as m? —2H? —a~'H' = m? — R/6 where R = 6a” /a® is the Ricci scalar in the
FRW spacetime. The squared angular frequency w,%(n) can be either positive or negative,
depending on whether m? or R/6 is larger. It is useful to observe that a free scalar field
(minimally coupled to gravity) has the same mode equation as the one in eq. (3.8), and we
leverage this similarity to develop intuition about gravitational particle production.

3.1.2 Vector sector

The vector sector Lagrangian is given by:

Moving to Fourier space, we let C;(n, k) and G;(n, k) denote the Fourier modes of C;(n, )
and G;(n, ), respectively. The action [dnd®z Ly = [dnd®k Ly y/(27)® defines the La-
grangian in Fourier space:

Ly = a®k*|G; — CI)? + a*m?|Gi|* — a*k*m?|Cy 2. (3.10)
Using the constraint (k% 4 a?m?)G; = k2C! to integrate out G; leads to
4]432

a m2

LV,k = m’éﬂz — a4k2m2|C~’i|2 . (3,11)

Note that for m = 0 the Lagrangian would vanish trivially, indicating that the massless
theory does not propagate any vector modes. For theories with m > 0 and modes of finite
wavelength, £ > 0, the kinetic term may be rendered canonically normalized by a change

atk?m?
Xi = 1\/2-———+—=C;. 3.12
X \ " k2 + a2m? ( )

Without loss of generality we take k = (0,0,%) and the transverse constraint 9;C; = 0

of variables:

implies x3 = 0. From the two remaining mode functions we define x+(n,k) = (X1 F
iX2)/v/2. Their mode equations are found to be

Xa(n, k) + wi(n) Xs(n,k) =0 for s = 4, —

(3.13
where wi(n) =k?+a*m? - f"/f, f=d*/Vk2+a2m?2. )
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For m # 0 the vector sector consists of 2 degrees of freedom, which can be identified with
the 1 polarization modes of the spin-2 field v,,,- For modes that are non-relativistic at
conformal time 7 we have k < a(n)m and w} ~ a*m? — 24> H? — aH’, which is the same
effective mass appearing in the tensor-sector mode eq. (3.8). The sign of w,% may be either
positive or negative depending on how m? compares with k, H? and H'/a.

3.1.3 Scalar sector

The analysis of the scalar sector is substantially more challenging than either the tensor or
vector sectors. There are several sources of difficulty. First, there are more field variables
in the scalar sector. In addition to the scalar field perturbation ¢,, the massive spin-2
field contains four scalar perturbations (A, B, E, and F) for a total of five field variables.
Second, all but two of these fields are restricted by a combination of gauge symmetry
and constraints. It is necessary to eliminate the constrained fields in order to isolate
the two propagating fields. Third, the two propagating fields experience a time-dependent
mixing in an FRW spacetime. Care must be taken to identify appropriate initial conditions
and extract physical observables. Fourth and finally, many more terms in the quadratic
action (2.17) contribute to the scalar sector than either the tensor or vector sector. In this
subsection, we only discuss the key steps in the calculation and present our final results.
The algebra was checked using the Mathematica package xTensor.

We implement the SVT decomposition (3.3) in the quadratic action (2.17) and take
an FRW background (3.1). Setting to zero the tensor and vector sector fields leaves the
scalar sector Lagrangian:

LS(A7B7E7 F7 Pus AlvB/')El')F/vSD;); 81A761B781E7 aZFu 82()0’07 77) . (314)

Each term in Lg is bi-linear in the five fields. Upon integration by parts, one can show
that the Lagrangian does not contain second-order time or spatial derivatives in any of the
fields. It is useful to define

a_IQ[;,A

1
MpH (3.15)

@v = PYv —
and to eliminate ¢, for ¢, through that relation. The hatted field is invariant under gauge
transformations, making it more closely connected with the ‘physical’ propagating degrees
of freedom. Since Lg is bilinear in each of the five fields, it is convenient to move to Fourier
space where the Lagrangian density is written as Lgx(A, B, E, F,¢,; A", B',E',F',\: n).
An explicit computation reveals that Lgy does not contain kinetic terms for either Enor F,
which may be identified as non-dynamical variables. The corresponding Euler-Lagrange
equations are constraints that can be solved to express E and F in terms of the other
variables. Upon doing so, the Lagrangian can be written as LS,k(fl, B,o,; A, B 3L ).
With these transformations, the kinetic term for A has dropped out of the Lagrangian, and
its Euler-Lagrange equation is a constraint that can be solved to eliminate A in terms of
the other variables. Upon doing so, we arrive at a concrete expression for the scalar-sector
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Lagrangian, which takes the form

L = Ko |2, = My |@u|* + Kp | B'? = Mp | B + Ly @)/ B' + L1 53 B’ — Lo 5, 5.

Note that the mixed terms may be complex, but they lead to a real action because of the
reality condition Lg_ = Lg,. The seven coefficients, which are time-dependent and real,

can be expressed as

K, =

M, =

2 H?k* + 3a? (m2 - m%,) H2Ek? + %a‘lm2 (m2 - m%{) H?2

a
2 H2Kk* + 3a2 (m? — m?) H2k? + 2a*m? (6m>H? — 4H?>m3, — m%;)

a? Clok‘lo + Cgkﬁg + CGk‘G + C4k‘4 + CQk'Q + co

2 [H2k* 4 32 (m? — m%) H2k? + 3a*m? (6m2 H? — 4H?m2, — m%)]?

Ci0 = H4

1
s = 5GQHQ [(12m2H2 +8H" — 14H*m3; — my) + 4

HV'(9)¢/

2H2v// n
o (O

3
ce = ga4H2 [(36m4H2 +72m2H* — 82m?H?*m?% — 64H*m?%

Cy =

2

—Tm2mYy + 40H>*m}; + 8m?{)

HV'(¢)¢/

2 _ 42
+8 (3m® — 4m3;) Y.

+16 (m? —m3) H*V"(9)

%aﬁ 407 (9mGH2 +36m*H* + 16m>*H® — 30m* H?*m?3, — 16m>H*m%

=3m*my + 31m*H*mY; + 24H* my; + 6m>my — 6H*m$; — 3m¥;)

V'(¢)?
—4m*H? (H? —m3%
HV'(9)¢/
+ (36m4H2 + 8m2H* — 94m*H*m?2, + m*m7y; + 48H2m‘}{) %
P

+ (36m*H? — 58m>H*m3 — m*mY; + 24H*mY;) H*V" (¢)

9
East H? (18m°H? 4+ 120m*H* + 128m>H® — 78m* H*m}; — 384m>H'm3;

—9m*mi; + 132m* H*mY, + 128H*m7; + 23m>mf; — 32H?m§;, — 16m7;)

VI 2
—8H? (2m2H2 —2m*m3; + m‘}{) ]\(j;)
P
HV' N A7
+4 (6m*H? — 22m* H*m3; + m*my; + 14H*mY;) #
P

+4 (m? —m¥) (12m*H? — 10H*m}; — mY;) H*V" (¢)
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V'(¢)?
M3
HV'(¢)¢'
aM3

co = Eamm4 —2H? (ZmQH2 —2m*m?% + m%)
—m? (2H? —m%;) (AH? +mi)

+ (m* —m¥) (6m*H? — AH*m3;, — mi) H*V" ()

am? (8m?H? — 6H*m?% — m*m%) k*
Kp = 274 2 (12 2\ 7242 & 3,472 (G2 [ 2 2,2 1 (3.17¢)
8  HZk* 4 3a2 (m? —m3;) H?k% + ga*m? (6m2H? — 4H?m73, —my;)
6,,,2 klO kS kG k4
My = LT Clok + cgh” + ol + ¢4 ~ (3.17d)
8 [H2k* +3a2 (m2 — m%) H2k? + 3a*m? (6m2H?2 — 4H2m?%; — m7;)]
cro = H? (8m*H? — 8H* — 2H*m};, — m*m3;)
cs = a*H? [(30m4H2 +32m2H* — 96 H® — 3m*m?2, — 56m?H*m
+48H*m3; + 5m*mi; + 6H2mj§1)
HV'(6)d/
4m? — 24H?) —— =
+ (4m ) aM3
3
6 = ga m [(96m4H4 + 144m*HC® — 6m* H*m?%, — 252m* H*m?3, — 192H%m?,
+8m2H?*m; + 200H*m%, — 10H*mS, — QO%)
HV'(6)d/
2
3
cy = ga m [(36m4H4 48m?HS + 64H® — 12m*H*m?% — 32H%m?,
—12m*H?mj; + 4H*mj; + 12H*m§; — 3m*m§; + 2mf;)
HV'(¢)¢'
— (24m>H? — 16H* — 12m*m% — 8H>m3 + 8m’) (?ﬂ
aMg
3002 4 H2k4+§ 2 m2fm2 H2k2
[, = &M 20 (m” —miy) (3.17e)

2MpH H2k* + 3a® (m? — m%) H2k? + 3a'm? (6m2H? — 4H?>m3, — m%;)

a4m2él (H2 — im%{ — %M) k‘4 — %a (m2 —mH) <H2 + 4 H + 111HVI(¢)) k

(z)/
Ly =—
! Mp H2E* + 302 (m? — m%) H2K2 + 2atm? (6m2H? — 4H?m%, — m¥)
(3.17f)
3,2 A klO kS k6 k4 k2
Lo = a’m<o c10 + cgk® + cgk® + c4k* + co _ (3'17g)
2MpH [H2k* + 302 (m? — m%;) H2k2 + 2a*m? (6m2H? — 4H2m% — m¥)]
Ci10 = H4
1 HV'(¢
ey = 5a*H | (9m? + 12H* — 13m;) — 4‘12(@
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3t {(18m4H2 + 32m2H* + 64HS — 48m> H?*m?%, — 64H*m?,

Cg = 3
+m*my; + 28H2m‘}1)
HV'(¢
+8 (—4m*H? + 4H* + m*m3) aHV(9)
¢/
3
cy = Eaﬁm?fﬂ {(18m4H2 — 24m?H* + 256 H® — 54m?H?m?2, — 160H m?,

+9m>mf; + 60H?*m%; — 7m?{)

H !/
+4 (=30m*H? + 32H* + 12m*m}; + AH*m¥ — Tm};) “‘;("5)]
c2 = %a8m4H2 (2H? —m¥) {— (4H2 +mY) (3m2 —4H? —mY)
aHV'(9)
+4 (=3m* + 2H? + 2m¥) —5
where we’ve defined a time-dependent squared mass parameter
m¥ () = 2H? — (¢')?/(aMp)*. (3.18)

The field variables g?)v and B have both kinetic mixing and a mass mixing. The kinetic
mixing can be eliminated by a change of variables:

=T +r(m)B and B=k"2B (3.19)
where the time-dependent coefficient is

Ly am?¢/ k2 4+ 3a%(m? —m%)
2K, 2MpH k* + 3a2(m2 — m%)k2 + Ja*m2(m? — m%)

R(n) = (3.20)

In terms of the new field variables, the scalar sector Lagrangian is finally written as
Lsy = K1 |IT'|? — My |12 + K5 |B'|? — Mg |B]* + M\ IT*B' — X\ IT* B, (3.21)

where we have also used integration by parts and dropped total derivative terms. In this
new field basis, there is no kinetic mixing. The kinetic term coefficients are given by:

a? H2Ek* + 302 (m2 — m%,)szz2 + %a4m2 (m2 — m%[)H2
KH:KW:E 214 2 (12 2 V252 1 3,402 (612 2 2,2 o (3:22)
H2EA + 3a?(m?2 — m3;) H2k? + ga*m?(6m2H? — 4H?*m¥; — my;)
4K, Kp — L3 3a%m?(m? — m?
Kp = ‘ 4B 2= 4 212 2( 2 ]{1) 2(12 23 (3.23)
4K, 4k* 4+ 12a2(m? — m3)k? 4 9atm?(m? —m3;)

and the other coefficients are easily derived, but too unwieldy to reproduce here.

Note that the various kinetic and mass coefficients may be either positive or negative,
allowing for either ghost-like or tachyon-like instabilities. For instance Kp < 0 for m? <
m%l We analyze these instabilites further in section 4.1.
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Figure 1. The evolution of the mixing parameter «(7n) near the end of inflation, plotted in coor-
dinate time. The end of inflation is indicated by the vertical dashed line.

The scalar-sector quadratic action (3.21) contains a wealth of information about this
system. It reveals that the scalar sector contains two propagating (‘physical’) degrees of
freedom, which are identified with IT and B. However, the presence of time-dependent
mixed terms (with coefficients A\ and Ag) prevents one from immediately associating I
with inflaton particles and B with helicity-0 polarization, massive spin-2 particles. In light
of this mixing and its impact on our gravitational particle production calculation, we take
care to identify the appropriate initial conditions and to extract physical observables.

We study the evolution of the mixing by investigating the time dependence of ()
(figure 1 shows the evolution of k near to the end of inflation). At early times when the
background is inflating, for relativistic modes inside the horizon we have the relations

(Z_S/
aH Mp

m2a?

2k2

&/
aH Mp

> 1, and |k(n)| ~

k
<1, —>1, <1. (3.24)
am

aH

As such, initially the kinetic terms are diagonalized in either basis, since II ~ ¢, and
B = k2B, and the kinetic mixing is negligible. At late times, when H < m and for
non-relativistic modes, the FRW equations imply:

(Z_)/

k
H — k1 d N ——
<«<m, e <1, and k() SaH Mp

(3.25)
At late times after inflation ¢'/a oscillates about zero with magnitude 1/2/3 ~ 0.8. As
such, there is an O(1) kinetic mixing in the ((,, B) basis, which motivates our move to
the (II, B) basis where there is no kinetic mixing. In the new basis, it is illuminating to
evaluate the late-time behavior of the scalar sector Lagrangian. This is accomplished by
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expressing Lgy, as a series in powers of H/m, which takes values H/m < 1 at late times.
Doing so yields®

_aj 2 (1.2 2171 TV 17712
Lsk = 5 [ = (K +a*V"(6))|IP

3.26
3abm? ( )

* (22 + 3a?m?)

3 [|B2 = (K + a*m?)|BP2] + O(H/m).

In particular, note that the mixings in this basis are A1, \g = O(H/m) at late times. The
absence of mixings and the presence of familiar mass terms, allow us to interpret II as the
inflaton perturbation and B as the helicity-0 mode of the massive spin-2 field. We use this
basis to calculate observables in our study of gravitational particle production.

Provided that K., K > 0, the kinetic terms in the Lagrangian (3.21) can be canoni-
cally normalized. The change of variables

. 1 ~ 1
II=—xn, B=—%5, 3.27
oK oK " (3.27)
allows the Lagrangian to be written as
L_l~/212~21~/212~2 ~x ~/ ~% ~
Sk = 5 IXul” — 5 Wit [Xu|” + 2 Xsl” — 5wB [XB|" + 01 X11XB — 00 XT1XB » (3.28)

where total derivatives have been dropped, and where

4KgMp + (Kég)2 — ZKBKg

wr = K2 ) W = 4K 2 )
. o (3.29)
A1 2KpX\o + M Kj
0] = —F——F—— and og= 372
2v/KnvKp 4/ K (Kp)
The mode equations for x7 and x5 are given by:
Xi1 + whi X — 01Xs + ooXs = 0 (3.30)

g +wEXs + o1 + ooxn = 0.

At late times, the modes x11 and xp decouple as in eq. (3.26):

Lsg = oIS — (8 + V" @)lxal] + 5 [IK6 — (2 + a*m?)|sl?] + O(H/m).
(3.31)

3.2 Nonminimal matter coupling

For the theory with a nonminimal coupling to matter, the covariant Lagrangian appears in
eq. (2.22), and we implement the SVT decomposition using eq. (3.3). The resultant scalar,
vector, and tensor sector Lagrangians appearing in eq. (3.4) are presented here, along with
the corresponding mode equations.

®The FRW equations and the inflaton EOM imply: ¢'/amMp = O(H/m), ¢'/kMp = O(H/m), and
V/(§) = mi (¢ —v) ~ £my(6MEH? — (¢)?/a®)/? = O(H [m).
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3.2.1 Tensor sector
The tensor sector Lagrangian is given by:
1

Performing the change of variable x,;; = aD,; yields a Lagrangian with canonically nor-
malized kinetic terms:

1 _
Lr =35 {X/in/ij — O XijOxiy — a*(m* —A+ H> +a IH/)Xz'inj] : (3.33)

Moving to the Fourier domain and identifying the plus and cross modes (3.7) yields the
mode equations

X2, k) +wi(n) Xs(n, k) =0  for s =+, x

3.34
where wi(n) = k* + a®*m? — a*A + o> H* + aH' . (3.34)

Comparing this mode equation with the minimally-coupled theory (3.8), the two expres-
sions differ only in the cosmological constant and the Hubble-dependent terms appearing
in the effective mass.

3.2.2 Vector sector

The vector sector Lagrangian is given by:
where we’ve defined the time-dependent squared mass parameters

pi(n) =m?*—A+3H? —a'H (3.36a)
ps(n) =m* — A+ 3H* + 247 'H'. (3.36D)

This Lagrangian admits a Fourier representation, which is
Ly = a1 — CIP + a*u3|Gif> - a*K13ICif? (3.37)
By using the constraint equation, (k? + a%u%)éi = k‘QCN’Z(, the variable G; is eliminated
giving
Ly = Kc|Ci)? = Mc |G, (3.38)
where the time-dependent kinetic and mass term coefficients are

a*k? i

T Mol —el (339

Kc(n)

In contrast with the minimally-coupled theory from eq. (3.11), this Lagrangian does not
vanish for m = 0, and the theory still propagates vector modes even if the spin-2 field

~ 18 —



is massless.® Note that the time-dependent coefficient of the kinetic term remains non-
negative for cosmologies with A = 0, H’ < 0 and models with non-tachyonic mass m? > 0.
Therefore the kinetic term can be canonically normalized by the transformation x;(n, k) =
V2Kc(n)'/2C;i(n, k), and the Lagrangian becomes

1, 1 .
Lyy = 5|%P = @i [xl?, (3.40)
2 2
up to a total derivative term that is dropped. The squared comoving angular frequency is
given by
4KcMe + (K[)? — 2K K,
wi = 4}?2 C =2k +a*mi, (3.41)
C
where

us  m?—A+3H?+ 20 H'

2
_ M2 , 3.42
() 2 m2—A+3H2—a lH (342)

The squared sound speed ¢? controls the high-k behavior of w,% while the squared effective
mass mz goes as k" as k — oo. The transverse condition (3.3) implies k;C; = 0, which
eliminates one degree of freedom, such that the vector sector has only 2 propagating degrees
of freedom, which can be identified with the £1 polarization modes of the spin-2 field v,
The equations or motion are

U, k) + w,%(n) Xs(n, k) =0 for s = +, —, (3.43)

where w(n) is given by eq. (3.41).

2
s

squared sound speed c2(n) also arises in the mode equation for a spin-3/2 field on an FRW
background [46, 47].) For models with m? > A and cosmologies with H’ < 0, the mass
parameter y? is positive at all times, and the sign of ¢? is controlled by the sign of p2. If

2 2

In the Minkowski spacetime we have ¢; — 1 and mj — m”. (A time-dependent

H’ becomes sufficiently large and negative, which may happen at the end of inflation, then
p3 and ¢ may be temporarily negative, and the mode equation admits an exponentially
growing solution. We explore this gradient instability in section 4.2.

3.2.3 Scalar sector

The analysis of the scalar sector in this model of bigravity with a nonminimal coupling
to matter is simpler than the minimally-coupled model. This is mainly because the scalar
field perturbation ¢, does not couple to the massive metric perturbation v,, at quadratic
order, which can be seen from the free Lagrangian in eq. (2.22), and there is only a single
propagating degree of freedom in the scalar sector. Otherwise, the analysis here runs

5This can potentially be understood from the fact that, because of the nonminimal matter coupling,
there is no enhanced diffeomorphism invariance in the m — 0 limit which would remove additional de-
grees of freedom, in contrast to the case of the minimal matter coupling where there are two independent
diffeomorphism invariances of the bigravity theory when m — 0.
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parallel to the discussion in section 3.1.3 for the scalar sector of the minimally-coupled
model. In Fourier space on an FRW background, the scalar sector Lagrangian is written as

Lsy(A, B, E, F; A" B'E',F'; n). (3.44)
Neither E(n, k) nor F(n,k) have kinetic terms, and their Euler-Lagrange equations are
constraints that can be solved to eliminate these variables. Upon doing so, the kinetic
term for fl(n,k:) also drops out, and this variable too can be eliminated by solving its

constraint equation. We are left with only a single variable B (n,k), and the scalar sector
Lagrangian takes the form

Lsy = Kp|B'|> — Mp|B|? (3.45)
up to total derivatives that are dropped. The time-dependent, real coefficients are’
Kp = ‘;1[061@6 + cqk?] (3.46a)
cg = —4H?
ey = 3a*(m? + H?) (m? + 3H* — H)(m® + 3H? + 2H)
Mp = ]‘f; [c10k™0 + csk® + cok® + cak?] (3.46b)

c10 = 12(m? + H?)(m? + 3H?)® + 16(m? + 3H?)* (6m® + TH)H
+ 4(m? + 3H?) (63m? + TLH?) H? + 8(25m> + 27H?) H?® — 48H*
—32H(m* + 3H*)HH — 48HH*H
cs = 12a%(m? + 3H? + 2H) x [2(m? + H?)(m? + 3H?)*(2m? + 5H?)
+ (m? 4+ 3H?) (19m* + 64m> H? + 49H*)H + 2(Tm* + 20m*H? + 17TH*) H?
— (23m? + 25H?) H? + 2H* — 2H (m? + H?) (m® + 3H*)H
— 4H (m? + H*)HH|
ce = 9a*(m?* + H?)(m? + 3H* — H)(m? + 3H* + 2H)2
x [T(m?+ H?)(m? + 3H?) + 17(m* + H*)H — 8117]
¢y = 2708 (m? + H?)*(m? + 3H? — H)*(m? + 3H? + 2H)*
where H=a 'H', H=a"2H" — o 'HH’, and
P = 4[m*+3H? + 3H] k*
+12a?[(m? + H?) (m? + 3H?) + 2(m? + H*)H — H?] k? (3.47)
+ 9a*(m?* + H?*)(m? + 3H* — H) (m* + 3H* + 2H) .

"The coefficients above are presented in terms of H and its derivatives instead of my as in eq. (3.16),
since mpy is irrelevant to the nonminimally coupled model. We could also present the coefficients in terms
of H, ¢ and ¢’ by systematically substituting out the derivatives of H via rules such as H' — —¢'?/(2aM32)
and H” — ¢'(2aV'(¢) + 5H¢')/(2MZ). These rules can be derived from the field equation eq. (3.2) for ¢
and the Friedmann equations; they reflect the fact that the background equation is a 2nd-order ODE whose
solution is completely determined by ¢ and ¢’ at a given time.
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Note that these coefficients may be either positive or negative depending on the FRW
background and the mass m and comoving wavenumber k of the massive spin-2 mode.
Negative values for Kp and positive values for Mg would indicate the presence of an
instability in the system, which we explore further in section 4. Assuming that Kpz(n) > 0,
the kinetic term can be canonically normalized by the change of variables ¥ = 2K g 2B,
which allows the Lagrangian to be written as

1 1 B
Lsy = §|X/|2 - §<JJ1%|X|2 (3.48)

up to total derivatives, which are dropped, and where

4KpMp + (K/B)2 — QKBK%

2
= 3.49
The corresponding mode equation is written as
X" (0, k) + wi(n) X(n, k) = 0. (3.50)

Note that the squared angular frequency w,%(n) may be either positive or negative. At
early times w?(n) — k? for relativistic modes inside the horizon. At high-k there is a
singularity in w?(n), associated with a ghost instability (Kp = 0), which we discuss further

in section 4.3.

4 Instabilities

In this section we discuss instabilities that can arise in these two theories of bigravity on
an FRW background.

4.1 Ghost instability and FRW-generalized Higuchi bound (minimally-coupled
theory)

For massive gravity on a de Sitter background, there is a unitarity bound that constrains
the spin-2 particle’s mass relative to the constant Hubble parameter: m? > 2H?. This
relation is known as the Higuchi bound [37]. For masses below this bound, the helicity-0
mode of the massive spin-2 field has a wrong-sign kinetic term, corresponding to a ghost
instability. In this section we derive a generalization of this bound on an FRW background
that applies for either massive gravity or bigravity with a minimal coupling to matter.
For massive gravity with a minimal coupling to matter, the scalar sector quadratic
action is given by eq. (3.16). The absence of a ghost requires the two-by-two matrix of

R K, Ly/2\ (¢
L 1% /% ® v 4.1
S,k D) (SOU B ) <L2/2 KB ) (B/ ) ( )

to have two positive eigenvalues. This ensures the positivity of the kinetic terms in the

kinetic terms,

corresponding Hamiltonian. The matrix coefficients depend on comoving wavenumber
k and on conformal time 7 via the scale factor a(n), the Hubble parameter H(n), and
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its derivatives. We find that both eigenvalues are positive, for arbitrary wavenumber k,
provided that®

m? > miy (n) = 2H(n)*[1 — e(n)] (4.2)

where m?%; (1) was defined in eq. (3.18), and where €(n) = —H'/(aH?) is the first slow-roll
parameter. We can write this relation equivalently in several useful ways:
(¢)? 3p+p

2
2 2 2 1y 2
=2H* — —~— ‘. _ =2H*+2a "H = -A— =(14+wA—-(1+3w)H

(4.3)

where we assume that the cosmological medium consists of a perfect fluid with energy
density p(n), pressure p(n), and equation of state w(n) = p(n)/p(n). Equation (4.2) is our
FRW-generalized Higuchi bound for massive gravity or bigravity with a minimal coupling
to matter. In the de-Sitter limit, sending € — 0 yields the familiar Higuchi bound [37].”

In de Sitter spacetime, if the Higuchi bound is saturated, m? = 2H?, then the helicity-
0 mode of the massive spin-2 field drops out entirely from the Lagrangian. This is due to
an enhanced gauge symmetry known as the “partially massless” symmetry [48, 49]. In an
FRW spacetime, the generalized Higuchi bound (4.2) can only be satisfied momentarily,
since H(n) and €(n) vary in time. At the time ¢, when the bound is saturated m? =
2H (t.)%(1 — €(ts)), we find that the coefficient of its kinetic term passes through zero, but
the scalar mode is still present in the Lagrangian through the mass and mixing terms.
Thus, we find that there is no analogous gauge symmetry at this point.

In matter-dominated and radiation-dominated universes, the slow-roll parameter is € =
3(1+w)/2 > 3/2. The right-side of the generalized Higuchi bound (4.2) becomes negative,
implying that there is no lower bound on m. In our numerical analysis of gravitational
particle production, we choose m such that eq. (4.2) is satisfied at all times, and the ghost
instability is avoided. Since H is monotonically decreasing for inflationary cosmologies,
choosing m? > 2H12nf will guarantee that the FRW-generalized Higuchi bound is satisfied
during the entire cosmic history.

4.2 Gradient instability (nonminimally-coupled theory)

For bigravity with the nonminimal coupling to matter on an FRW background, the vector
sector can exhibit a gradient instability [36, 50] in which the field amplitude grows expo-
nentially at a rate set by the comoving wavenumber k = |k|. This instability is evident
from the mode equation (3.43): modes with large comoving wavenumber k satisfy

U
W~ =2k, = X < exp [i/ dn’k\/—cg} , (4.4)

8This relation generalizes trivially to higher dimensions as m? > (d — 1)H*(1 — ¢).
9We provide an alternative, more straightforward derivation of this result in appendix B using the

Stueckelberg approach. We note that in previous works [38, 39] using different criteria, a generalized
Higuchi bound was derived for massive gravity and bigravity in the case of two different FRW metrics for
Juv and f,w. In the limit that the two FRW metrics are the same, the authors’ result reduces to the usual
Higuchi bound m? = 2H? with no e correction.
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where c2(n) is the squared sound speed. Note that ¢2 oc m? — A + 3H? + 2a~'H’ may be
either positive or negative, since H' < 0 in an inflationary cosmology. A negative squared
sound speed c¢2(n) < 0, even temporarily, leads to solutions that grow exponentially in time
at a rate controlled by the comoving wavenumber k, such that smaller-scale modes (larger
k) grow more quickly.

The gradient instability is avoided if ¢2(n) > 0 at all times, which implies a constraint
on the mass m? and on the cosmology. If the cosmological medium consists of a perfect
fluid with energy density p(n), pressure p(n), and equation of state w(n) = p(n)/p(n), then
the condition c2(n) > 0 translates to:

m? > w(n) A1) = (o) (BH(n) ~ A). (45)

P
The equation of state is w ~ —1 during the quasi-dS period of inflation and w ~ 0 during
matter domination; at these times eq. (4.5) is satisfied trivially for any non-tachyonic mass.
However, during the radiation-dominated epoch we have w =~ 1/3, and the avoidance of
the instability requires m > H(n), neglecting the cosmological constant term A. Since the
Hubble parameter decreases monotonically with time, the strongest constraint is obtained
at the start of the radiation era, namely the reheating period. The temperature of the
plasma at reheating Tyy is unknown; it can be as large as approximately 10'® GeV without
coming into conflict with the CMB limit on the energy scale of inflation [51], or it can
be as small as about a few MeV without disrupting nucleosynthesis and cosmic neutrino
production [52]. At reheating, the Friedmann equation implies 3MAH2, = m2g. puTiy /30,
where g, ry is the effective number of relativistic species in thermal equilibrium at temper-
ature Try. Thus the condition for avoiding a gradient instability during the radiation era

is expressed in terms of g, ry and Try as

Jx,ru 1/2 Tru 2
m > Hpy ~ (140 GeV) (106.75) <1010 GeV> ) (4.6)

Since we focus on models with m = Hiy¢ to avoid a ghost instability in the scalar sector,
the gradient instability is also avoided since Hi,s > Hgy in general.

4.3 Ghost instability (nonminimally-coupled theory)

The theory of bigravity with a nonminimal coupling to matter also exhibits a ghost insta-
bility in the scalar sector [36]. However, unlike the minimally-coupled theory in which the
instability can be avoided with a judicious choice of parameters (4.2), the ghost instability
in the nonminimally-coupled theory is inevitable for sufficiently high-momentum modes.'°
Consequently, the nonminimally-coupled theory must be understood as an EFT with a UV
cutoff pmax, where p = k/a denotes physical momentum.

10The nonminimally-coupled theory on Minkowski spacetime is known to have a ghost at the scale Az =
(m?>Mp)*/3 [20]. Here we are talking about a lower-scale ghost that is potentially within the regime of
validity of the EFT. Note that the ghost at As does not arise on the FRW background that we study, which
is why it doesn’t appear in our SVT decomposition; see for example ref. [43].
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We are interested in the sign of the time-dependent kinetic term coefficient Kp(n)
in the scalar sector Lagrangian of the nonminimally-coupled theory (3.45). For an FRW
cosmology with H = a~'H' # 0, the factor Kp(n) takes positive values for small p = k/a,
negative values for large p, and vanishes for p = ppax(n) where

3 m2/H2+1v/m2/H2+3+e/m2/H?2+3 — 2¢
4 €
with e = —H /H 2 the first inflationary slow-roll parameter, and assuming all square roots

are positive. Modes with p < pmax(n) have healthy evolution, whereas modes with p >
Pmax(n) are ghostly (Kp < 0), and modes that cross p = pmax(n) hit a singularity in their
evolution. The vanishing of the kinetic term coefficient indicates that the theory becomes
strongly coupled at momenta approaching pmax(n) from below, and thus ppax(n) can be
interpreted as the time-dependent UV cutoff.

The time evolution of pyax(n) depends on the model of inflation, but its limiting behav-
ior is understood as follows. During inflation € < 1 and pmax &~ max(m3, H3;)/eH2; > m
is large and roughly constant. Long after inflation \H | ~ H? < m? and ppax = m3/H? >
m. Generally, pmax (1) reaches a minimum around the end of inflation when |H| ~ H? and

m3
Pmax = O(I:’g) ) (4.8)

assuming m > H,, and H, is the Hubble parameter at the end of inflation.

Modes that are on the Hubble scale at the end of inflation have a comoving wavenumber
of k = acH., which is below the cutoff k/a. = He < pmax for m = O(10H,), and within
the regime of validity of the EFT. Smaller-scale modes with larger p = k/a are above the
cutoff, and cannot be described by the effective theory. In our numerical analysis of CGPP,
we only present spectra corresponding to a range of momenta that are within the EFT at
the end of inflation.

5 Cosmological gravitational particle production

We are interested in the gravitational production of massive spin-2 particles in an infla-
tionary cosmology and its phenomenological implications for dark matter and cosmological
relics. This section begins by introducing the hilltop model of inflation that we study and
by explaining our numerical methods. Then our main results are presented for models of

bigravity with both minimal and nonminimal coupling to matter.

5.1 Hilltop inflation

For numerical studies it is necessary to select a model of inflation to determine the evolution
of the background FRW metric g, (1) and scalar inflaton field ¢(1)). We assume a hilltop
model for two reasons. First, its predictions for cosmological observables (As, ng, and
r) are compatible with current measurements; see ref. [53] for analytic formulas of these
observables in the hilltop model. Second, it requires a hierarchy between the inflaton mass
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and the inflationary Hubble scale, my ~ 29.4H;,¢, which allows us to explore the parameter
space where Hiys < m < mg [54, 55].

The hilltop model of inflation [56, 57] is specified by the scalar potential

_ m2v? 56\ 2
V() = % (1 - f;) (5.1)

where v = Mp/2, and the inflaton mass mg is a free parameter.'t For bigravity with a
minimal coupling to matter, this function is related to the scalar potentials V;, and V;
through the mirroring condition (2.8), and for the nonminimally-coupled theory this is V.
For both theories, V governs the dynamics of the homogeneous background field ¢(n), which
we call the inflaton field; it appears in the background Lagrangian £ via eq. (2.11) and in the
Friedmann equations via eq. (3.2), which determine the cosmic expansion history. In the
inflationary scenario that we consider, ¢ initially takes values in the range 0 < q;(m) < v,
and then it “slowly rolls” toward the potential’s global minimum at v, and oscillates about
this minimum after the end of inflation. During inflation, the first slow-roll parameter is
small and growing, e = —H'/(aH?) < 1, and we define the end of inflation as the time
when € = 1. We denote the scale factor and Hubble rate at the end of inflation by a. and
H., respectively. After the end of inflation the inflaton has a mass \/V"(v) = my.

The single parameter mg is chosen such that our hilltop model predicts an ampli-
tude for the scalar power spectrum that is compatible with measurements of this quantity
inferred from CMB observations by the Planck satellite. A standard calculation [45] in
inflationary cosmology is employed to derive expressions for the energy scale of inflation
H_y,1,, and the amplitude of the scalar power spectrum Ay in terms of the inflaton mass m
and the number of e-foldings N1, between CMB mode crossing and the end of inflation.'?
We take my = 4.14 x 102 GeV and Nepp, = 60 such that our hilltop model predicts an
A at the central value of the Planck measurement In(1094,) = 3.044 + 0.014 [58]. This
implies Hiyf = 1.41 x 10! GeV and H, = 1.33 x 10" GeV such that m, = 29.4H;,r and
Hins = 1.06H.. The requirement that inflation lasts for at least N > Ncyp, e-foldings
imposes a bound on the initial inflaton field excursion 0 < ¢(1;) < Gemp = 0.048Mp. This
bound is compatible with the ¢(n;) < v = O(Mp). Furthermore, we find that our choice
of mg and Ny, yields ng = 0.958 and r = 3.2 x 1077, which are in agreement with Planck
measurements. While changing N1, can shift the value of ng and r outside Planck bounds,
it is possible to shift the these values back into bounds by also changing v. For Ny, = 50
and v = 25Mp, we have ngs = 0.960 and r = 0.02, which are again compatible with Planck
measurements.

"Duye to the scaling property of the mode equations, we expect the GPP predictions in other hilltop
models to differ from that for this model by only O(1) factors, as long as dimensionless parameters m/Hint
and k/(aeHe) are held fixed.

12For inflationary bigravity with a minimal coupling to matter, there are two inflaton fields ¢, and II,
and their fluctuations both contribute to the curvature perturbations. We have verified that the spectra
are approximately equal, see figure 3, which leads to a doubling of As as compared with the single-field
model. However, we neglect this factor of 2 when selecting my to yield the observed As,.
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5.2 Numerical methods

We adapt standard methods to study cosmological gravitational particle production in our
two theories of bigravity on an FRW background driven by hilltop inflation. In particular,
our method entails the following steps: first, we identify the equations of motion for each
field’s Fourier modes. For the two theories of bigravity discussed in section 3, and for each

of the scalar, vector, and tensor sectors, we write the equations of motion in the form'3

X" (n, k) +wii(n) X(n, k) =0, (5.2)
where the comoving squared angular frequency wz(n) is a function of the comoving wave-
number k, and its time dependence is controlled by the hilltop inflation background. Sec-
ond, we impose the Bunch-Davies initial condition. For an inflationary cosmology, all
Fourier modes are initially inside the horizon (k > aH) and relativistic (kK > am). This
observation motivates the Bunch-Davies initial condition

: ~ _ —ikn

which imposes only the positive-frequency mode to be present at early times. Third, we
solve the mode equations along with the Bunch-Davies initial condition using numerical
methods,'? scanning over values of the comoving wavenumber k. Modes are expected to
evolve nearly adiabatically at early and late times when w% (n) is not changing quickly, but
there may be a departure from adiabaticity at intermediate times, typically when modes
leave the horizon during inflation (k = aH) or near to the end of inflation. Fourth, we
calculate the Bogoliubov coefficient g that links the early-time vacuum state with the late-
time number operator; it corresponds to the amplitude of the negative-frequency mode at
late time. We calculate the Bogoliubov coefficient for modes with comoving wavevector

k = |k| as
2 . Wk 2 1 ~12 1)
=1 — —10 -=]. 5.4
1l = i (FIRI7 + 510X — 5 (5.4)
Note that we normalize the mode functions by imposing x¥0,X* — X*0,X = ¢ such that
X(n, k) is the mode function associated with creation/annihilation operators having canon-
ical commutation relations. Fifth, and finally, we calculate the spectrum of gravitationally
produced particles. The (physical) number density of particles with comoving momentum
p = k is calculated as

3
ny(n) = a(n)‘?’%\ﬂﬁ, (5.5)

and the total number density is n(n) = [;° ng(n) dk/k.

13For the scalar sector of the minimally-coupled theory, presented in section 3.1.3, the inflaton perturba-
tions and massive spin-2 perturbations are mixed. We discuss this case separately below.

14 All mode equations were transformed into their coordinate time versions and numerically integrated in
coordinate time. For producing the spectrum and relic abundance plots, we numerically integrated until
a(n) = 676ae, by which time most of the Bogoliubov coefficients have stabilized, except for some parameter
points with high-k and low-m. Step sizes were chosen adaptively with a relative tolerance of 10~° and zero
absolute tolerance; see chapter I1.4 of ref. [59] for a discussion on adaptive step size. The numerical methods
used include the Adams-Moulton method, the BDF method, and DOPRI5; different methods were chosen
to solve different equations in order to minimize time usage.
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For the scalar sector of the minimally-coupled theory presented in section 3.1.3, the
inflaton perturbations and massive spin-2 perturbations are mixed, and the methods pre-
sented above require the following modifications: the equations of motion for the canoni-
cally-normalized field variables are given by eq. (3.30):

Xt + @itk — 01X + 00Xs = 0

) : ’ A (5.6)
X+ wiXs + 01X + ooxn = 0.

The two mode functions are coupled through the time-dependent mixing parameters o1(n)
and og(n). At early times, the mixing parameters go to zero while w% = w% ~ k?, which
motivates taking a Bunch-Davies initial condition (5.3) for both mode functions. The
evolution equations mix the two mode functions while also mixing the positive and negative
frequency modes. At late times, the mixing parameters again asymptote to zero, and we
evaluate the Bogoliubov coefficients using eq. (5.4) with w? = w¥ and w} as appropriate,
and the number densities follow from eq. (5.5).

5.3 Stability and relic abundance

The gravitational production of massive spin-2 particles during inflation may have various
different phenomenological implications on cosmology and particle physics. If these parti-
cles are unstable, their decay may affect the reheating history of the universe. Depending
on how they decay, they may populate a hidden sector, which could have implications
for the origin of dark matter, dark radiation, or the matter-antimatter asymmetry of the
universe. If these particles are stable, they would survive in the universe today as all or
part of the dark matter [11]. We study the stability of the massive spin-2 field, and report
on our findings in appendix C. In brief, for the theory of bigravity with a minimal cou-
pling to matter, the helicity-0 mode of the massive spin-2 field has trilinear interactions
with the massless graviton and the inflaton perturbations, which can mediate its decay.
If m > myg, decays to inflaton perturbations are kinematically accessible, and despite the
Planck-suppressed couplings these decays are rapid, since we require m > v/2Hi,¢ to avoid
the ghost instability (Higuchi bound). However, such decays are kinematically blocked for
m < mg ~ 29.4H;,¢, which anyway corresponds to most of the parameters presented in
figure 2. If the inflaton were stable, this would ensure the stability of the massive spin-2
particle, but otherwise the issue of stability and the massive spin-2 particle’s lifetime entails
additional model building, which is beyond the scope of our work. In order to connect with
a potential phenomenological implication of our work, in what follows we assume that the
massive spin-2 particle is cosmologically long lived and we calculate its present-day relic
abundance. It is worth remarking that in the theory of bigravity with nonminimal coupling
to matter, the massive spin-2 particle is stable at tree level, and it provides a natural dark
matter candidate.

We calculate the relic abundance Qh? of gravitationally-produced massive spin-2 parti-
cles. First we integrate the spectra in figures 2 and 6, as well as the spectra for other masses
not shown here, to obtain the comoving number densities a®>n for each sector. The relation
to the relic abundance Qh? depends on the reheating history. We assume a late reheating
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scenario [60], meaning that the universe is still in the matter-dominated phase of reheating
at the time when m ~ 3H(n) and the massive spin-2 field becomes non-relativistic. This
assumption implies an upper bound on the plasma temperature at the start of radiation
domination, Ty < (8 x 103 GeV)(m/10™ GeV)'/2, which is easily satisfied for the param-
eters of interest. The relation between comoving number density a3n and relic abundance
Qh? is given by [60, 61]:

H, T a’n
Q2 ~012(— " ) ( ¢ ) ( il > . ,
0 (1010 Gov ) \1000Gev ) \105Gev ) \ a3 H3 (5.7)

Note that the relic abundance is proportional to the reheating temperature Tgy.

Here we have assumed that there is no thermal production contributing to the relic
abundance. This is justified since the mass is large (larger than Hiys to avoid ghost insta-
bilities) and Tgy is much below the mass.

5.4 Minimal matter coupling

For the theory with a minimal coupling to matter, our numerical results are presented in
figure 2. We show the comoving number density spectrum a3n; in units of (a.H.)? such
that a®ny/(acH.)® = 1 corresponds to roughly one particle per Hubble volume at the end
of inflation. The spectrum is expressed as a function of comoving wavenumber k in units
of a.H,, such that k/(acH.) = 1 corresponds to modes that are on the Hubble scale at
the end of inflation. The three panels correspond to the degrees of freedom in the tensor
sector (top), vector sector (middle), and scalar sector (bottom). In each panel, the various
curves correspond to different choices for m, the mass of the spin-2 field, in units of the
inflationary Hubble scale Hi,s ~ 1.1H,, and we take m/ V2Hs > 2 to be well clear of
the scalar-sector ghost instability. For the tensor and vector sectors, we show the number
density per polarization degree of freedom, and the total number density is larger by a
factor of 2.

Let us first discuss features that are universal to the tensor and vector sectors. The
tensor and vector sectors have nearly identical spectra because their equations of motion
coincide for non-relativistic modes; see egs. (3.8) and (3.13). All three spectra display
similar behavior for asymptotically long-wavelength and short-wavelength modes. For long-
wavelength modes with k/(a.H.) < 1, the spectra are blue-tilted power laws, nj oc k™. The
index of the power law is approximately n = 3 for relatively high mass, m = 1.5Hj,¢, and
it decreases as the mass is lowered towards the Higuchi bound at m = v2Hiys ~ 1.4Hiys.
The low-k modes leave the horizon long before the end of inflation and re-enter the horizon
during early matter domination, so such modes are produced primarily acausally. The
evolution of such modes during inflation may be approximated by Hankel functions [62],
and using this approximation in appendix A we show analytically that the low-k behavior
of ny, is a power law. The power-law index is n = 3 —2(9/4 —m?/H2)'/? for m < 3Hiut/2
and the power-law index is n = 3 for m > 3Hj,¢/2, consistent with the behavior we see in
figure 2. It is worth pointing out that the low-k behavior for both the tensor and vector
spectra is similar to that for a gravitationally produced, minimally coupled scalar field;
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Figure 2. The comoving number density spectrum (per spin degree of freedom) a®n;, of gravita-
tionally produced spin-2 particles in a theory of bigravity minimally coupled to matter consisting
of scalars driving hilltop inflation. Dimensionful quantities are normalized using a.H., the FRW
scale factor and Hubble parameter at the end of inflation; i.e., modes with k < a.H. leave the
horizon during inflation, and modes with k& > a.H. remain inside the horizon. The top, middle,
and bottom panels correspond to the tensor sector (helicity +2 modes), vector sector (helicity +1
modes), and the scalar sector (helicity 0 mode). Each panel shows several curves corresponding to
different values of the spin-2 field’s mass m in units of the inflationary Hubble scale Hjs.

after all, the equation of motion for the tensor mode is identical to that of the scalar field.
See appendix A for more details.

For the short-wavelength modes, the spectra exhibit a decreasing power-law envelope
and rapid oscillations. Modes with k/(a.H.) > 1 never leave the horizon during inflation,
and their particle production is most sensitive to the dynamics of the inflaton field at the
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end of inflation. After inflation, the inflaton oscillates about the minimum of its potential
with an angular frequency mg, which imprints oscillatory features onto the spectrum of
the gravitationally produced particles with Ak = O(mgy). In this regime, where particle
production is governed by coherent inflaton field oscillations on a quadratic potential,
gravitational particle production can be described as scattering and annihilation of inflaton
particles [54, 55, 63-65]. For m < mg ~ 30Hys ~ 20v2Hiyy, the channel ¢¢ — xx
dominates, leading to a power-law envelope with ny, o< k~3/2, which is seen in figure 2. For
masses m 2, mg, the leading channel is kinematically blocked, and the next open channel,
PP — x X, dominates for 2m < 3myg, leading to a steeper power-law envelope, ny, o k=972,
The oscillatory features superimposed on the power law are due to interference between
different scattering channels from ¢ to x [65].

Now we focus our attention on the scalar sector. The scalar sector of the minimally-
coupled theory contains two degrees of freedom that experience a time-dependent mixing,
and we show the spectra for the field variables that diagonalize the system at late times. The
massive spin-2 scalar degree of freedom B is shown on figure 2 and the inflaton-like degree of
freedom IT is shown on figure 3. Note that we only show spectra for m//2Hi,s > 2, since the
system of equations has a ghost instability (Higuchi bound) for m/v/2Hi,s < 1. Comparing
the three panels of figure 2 reveals that the helicity-0 mode of the massive spin-2 field is
produced more copiously than the +2 or 41 polarization modes; similar behavior has been
noted previously for spin-1 fields [66]. Consequently, the gravitationally-produced massive
spin-2 particles are predominantly longitudinally polarized. Figure 3 shows the spectrum
of perturbations in the inflaton-like fields, which displays the usual quasi-scale-invariant
spectrum toward low k and which is insensitive to the spin-2 mass m. The enhancement
around k/(aeH,) ~ 10 and subsequent harmonic progression of peaks can be understood
to arise from parametric resonance associated with the inflaton’s non-gravitational self-

interaction [67], i.e. m2;(n) = V"(¢(n)), which is absent for the other degrees of freedom.

Numerical results for the relic abundance Qh? are presented in figure 4 for each of
the three sectors as a function of the spin-2 mass m. For this plot we have taken Tyy =
10° GeV, and the relic abundance for other values of the reheating temperature is obtained
by the scaling relation Qh? oc Ty from eq. (5.7). Models with m > /2Hyy,s are perfectly
healthy, whereas models with m < +/2Hi,s have a ghost instability in the scalar sector.
Nevertheless, even for the ghostly models, it is illuminating to investigate gravitational
particle production in the tensor and vector sectors, since the analytic scaling behavior
as m — 0 is known, and its numerical evaluation provides a check of our methods. In
the tensor sector, the relic abundance goes as Qh%? x m toward asymptotically small
masses, m < Hiyt, matching known results for a scalar field minimally coupled to gravity;
the same behavior occurs in the vector sector, but this cannot be seen from the range
of masses shown on the figure. For intermediate masses with V2Hp < m < me, the
relic abundance rises linearly with mass, Qh? o m!. This behavior is understood by
recalling from figure 2 that the spectra peak at k =~ 50a.H,, corresponding to sub-Hubble-
scale modes for which gravitational particle production can be described by a scattering
¢ — xx. For m < mgy the cross section is insensitive to the mass m, implying an oc m?

and Qh? oc m! [54], which agrees with the behavior seen in figure 4. For large spin-2 masses
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Figure 3. The spectrum of perturbation in the inflaton fields. The notation here is identical to
figure 2.

with mg < m, the ¢¢ — xx channel is kinematically blocked, and the relic abundance is
abruptly suppressed. Comparing the three sectors, we see that most particle production
occurs in the scalar sector.

Finally we summarize our results on massive spin-2 dark matter in figure 5, which shows
the two-dimensional parameter space consisting of the spin-2 mass m and the reheating
temperature Ty;. The present-day relic abundance of cold dark matter is Qpyh? = 0.12 +
0.0012 [58]. Assuming that the massive spin-2 particles are cosmologically long-lived, we
sum the three polarization sectors and require Qh? < Qpuh? to avoid conflict with the
measured dark matter abundance. Along the red curve on figure 5, the massive spin-2
particles can make up all of the dark matter. The gray shaded region implies an over-
production of dark matter, and it is excluded; the unshaded region is viable, and the
massive spin-2 particles are a sub-dominant component of the dark matter.

5.5 Nonminimal matter coupling

For the theory with a nonminimal coupling to matter, we perform the same analysis that
was presented in section 5.5 for the minimally-coupled theory. Our numerical results appear
in figure 6 that shows the spectra, figure 7 that shows the relic abundance, and figure 8
that shows the parameter space constraints. In the remainder of this subsection we discuss
each plot in turn.

The spectra appearing in figure 6 for the nonminimally-coupled theory are the analogs
of figure 2 for the minimally-coupled theory. Similar to the case of the minimally-coupled
theory, the spectra of long-wavelength (low-k) modes in the nonminimally-coupled theory
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Figure 4. Relic abundance of gravitationally produced spin-2 particles as a function of the spin-2
mass m for the theory of bigravity with a minimal coupling to matter. We take Ty = 10° GeV and
for other values of the reheating temperature one can rescale our numerical results using Qh? o< Tyy.
The three curves correspond to the different polarization sectors: tensor (blue), vector (orange),
and scalar (green). The red dashed line indicates the inflaton mass m = mg ~ 30Hys.

are blue-tilted power laws, which go as a®n; o< k% for all three sectors (tensor, vector,
scalar) and a broad range of spin-2 masses. In fact, whereas for the minimally-coupled
theory the spectra flatten for small masses with m < 1.5H;,¢, this flattening is not seen
in the nonminimally-coupled theory where instead the k® power law persists (not shown
on the figure). We also derive this power law analytically by approximating the modes
with Hankel functions during inflation; see appendix A for details of the derivation. The
short-wavelength (high-%k) modes display the same features that were noted previously in
the minimally-coupled theory: the spectrum oscillates under a power-law envelope that
transitions from ang o< k=3/2 for smaller masses m < mg to the steeper adny o< k792 for
larger masses m > mg where the annihilation channel ¢¢ — xx is kinematically blocked.

As we discussed in section 4.2, the nonminimally-coupled theory may exhibit a gradient
instability in the vector sector, and we have explored this phenomenon with our numerical
studies. Recall that the modes in the vector sector evolve in response to a time-dependent
effective squared sound speed c2(n), and if there is a period of time during which ¢2(n) < 0,
the mode equations admit an exponential growth leading to a UV-sensitive spectrum,

and ng < exp{2 [ k|cs|dn}. In the hilltop model of inflation that we study we find that

2

m 2 1.46H,s ensures c;

(n) > 0 at all times, and the gradient instability is avoided.
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Figure 5. Relic abundance constraints on the parameter space for the theory of bigravity with
a minimal coupling to matter. For parameter points lying on the red curve, the predicted relic
abundance of gravitationally produced massive spin-2 particles matches the observed cold dark
matter relic abundance Qh? = 0.12. The gray-shaded region above the red curve is excluded due
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to over-production of massive spin-2 particles. To avoid a ghost instability, we require the mass m
to be above the Higuchi bound m = v/2Hjys.

Lowering m toward this threshold leads to an enhancement of particle production in the
vector sector, which is seen in figure 6 as the m/v/2Hj,; = 2 curve (blue) in the vector
sector panel (middle). This can be understood in the following way. For large k, the mode
equation (3.43) is approximately " + c?k‘2 ¥ = 0, and particle production is enhanced
when (c2)’/c? is largest. For models with m close to the threshold ~ 1.46 Hyys, there is a
time at which ¢2 drops close to zero from above, and an even smaller m puts c2 closer to
zero. In this sense, the large amplitude for the vector sector spectrum at m/ V2Hs = 2
in figure 6 foreshadows the onset of the gradient instability. We have also checked that for
m < 1.46 Hy,¢, exponentially growing mode functions are obtained, although these results
do not appear in figure 6.

For the scalar sector, a ghost instability prevents us from solving the mode equation
when the physical momentum p is above the UV cutoff pmax; see section 4.3. Since p =
k/a > pmax at sufficiently early times for any fixed k, all k& modes necessarily activate
a ghost instability early during inflation. Nevertheless, we can impose the Bunch-Davies
initial condition at a late enough time when the ghost instability is avoided, and study
only the k£ modes for which there is no ghost instability in all subsequent evolution. Using
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Figure 6. The comoving number density spectrum a®n;, of gravitationally produced spin-2 particles
in the theory of bigravity with a nonminimal coupling to matter. The notation here is identical to
figure 2.

eq. (4.8), we find a cutoff kpax such that the IR modes with k < knax are well-behaved,
whereas the UV modes with k > kpax run into a singularity during their evolution. For
our model of hilltop inflation, the cutoff is kmax/(acH.) =~ 0.45(m/Hint)>Mp. In figure 7,
we only present spectra for m > 7\/§Hinf, corresponding to kmax 2 1025 ae.H,, such that
all the modes shown on the figure have k < kpax. For this range of masses, the spectrum
peaks at a wavenumber that is well below the cutoff kn.x, and we evaluate the total
particle number by integrating k& up to the cutoff. For smaller masses the cutoff drops
below the scale at which the spectrum peaks, and the EFT is inapplicable for the study of
gravitational particle production.
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Figure 7. Relic abundance of gravitationally produced spin-2 particles versus spin-2 mass m for
the nonminimally-coupled theory. The notation here is identical to figure 4.
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By integrating the spectra and using eq. (5.7), we evaluate the relic abundance Qh2.
Unlike the minimally-coupled theory, the massive spin-2 in the nonminimally-coupled the-
ory is stable, and provides a viable dark matter candidate; see appendix C. Figure 7 shows
the relic abundance Qh? as a function of the spin-2 mass m for the tensor, vector and
scalar sectors at reheating temperature Ty = 10° GeV. In the tensor sector, at interme-
diate masses 3Hyy < m < 20H,,¢, the relic abundance is increasing linearly Qh2? oc m!,
which is the same behavior observed previously in the minimally-coupled theory. In the
vector sector, the relic abundance grows toward smaller m, foreshadowing the onset of the
gradient instability at the threshold m =~ 1.46 Hj,¢. In the scalar sector, we only calculate
the relic abundance for m > 7v/2Hi,s where the ghost instability is avoided. In all three
sectors, the relic abundance decreases toward large m, and there is a break at m = my,
where the channel ¢¢ — xx is kinematically blocked. Finally, we note the vector sector
dominates the relic abundance for most of the masses shown.

Our constraints on the parameter space of the nonminimally-coupled theory are sum-
marized in figure 8. We sum the relic abundances in the three sectors and compare the
predicted Qh? against the measured cold dark matter relic abundance Qpuh? =~ 0.12. Note
that we only show results for large values of the spin-2 mass, m 2 9Hj,; for smaller masses
the scalar sector has a ghost instability at the modes that would contribute predominantly
to the total particle number. Along the red curve, the massive spin-2 particles can make up
all of the dark matter, whereas in the gray shaded region, there is an over-abundance, and
in the white region the spin-2 particles make up a sub-dominant component of dark matter.
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Figure 8. Counstraints on the (m, Tyy) parameter space for the nonminimally-coupled theory. The
notation here is identical to figure 5.

6 Summary and conclusion

We have studied the phenomenon of gravitational particle production for massive spin-2
particles using the framework of bigravity in the context of hilltop inflation. We studied
two theories of ghost-free bigravity that are distinguished by the coupling of their metrics
to matter. The first theory entails two matter sectors with ‘mirrored’ particle content
coupling to each metric, while the second theory consists of a single matter sector coupled
to a composite metric. The first theory can be viewed as a ‘minimal’ coupling of bigravity
to matter, as it reproduces expected results for massive gravity, such as the de Sitter limit;
the second ‘nonminimal’ theory leads to exotic relations.

By expanding the actions on a time-dependent FRW background, we isolate the degrees
of freedom that transform as scalars, vectors, and tensors under the residual symmetries
of spatial translations and rotations. We derive the equations of motion for these mode
functions. In the next few paragraphs, we offer a brief overview of that procedure.

The starting point in the minimally-coupled model is two metrics g,,, and f,,, and two
scalar matter fields ¢ and ¢4 (eq. (2.1) with £, = 0). The desired final configuration is
a massless graviton (2 degrees of freedom), a massive spin-2 field (5 degrees of freedom),
and 2 additional scalar degrees of freedom arising from the two scalar matter fields, for a
total of 9 degrees of freedom.

The journey from the starting point to the final configuration involves quite a few
twists and turns. We start by expanding the metrics and scalar fields about backgrounds
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in a mirrored manner: the backgrounds for g,, and f,, are identical, and the backgrounds
for ¢, and ¢ are proportional, eq. (2.7b). We construct new fields u,, and v, describing
massless and massive metric perturbations, respectively. With the construction (2.14)
the massive and massive spin-2 sectors decouple. We perform a similar combination of
¢y and ¢, in terms of ¢4 and ¢ in eq. (2.15). The massless state u,, only propagates
two tensor degrees of freedom. After removing non-propagating fields, the standard SVT
decomposition of the massive state v, yields two tensor degrees of freedom corresponding
to the usual +, x degrees of freedom associated with the +2-polarization modes (eq. (3.8)
for the mode equation) and two vector degrees of freedom that can be identified with the
+1-polarization states of v, (eq. (3.13) for the mode equation). The surviving scalar
degrees of freedom associated with the 0-polarization state are comprised of one state from
the SVT decomposition [B in eq. (3.16)], and one state which is a linear combination of ¢,
and one state A from the SVT decomposition [the combination of A and ¢, is denoted as
¢y in eq. (3.15)]. The total scalar Lagrangian consists of (3.16) with mixed terms involving
B and ¢,, and also (2.16d) describing the scalar field from the massless sector [,5023%.
From (3.16) we see that ¢, and B have kinetic mixing and mass mixing. We define new
fields II and B in terms of ¢, and B to eliminate kinetic mixing. The parameter that
determines the mixing is defined in eq. (3.20) and presented in graphical form in figure 1.
The resulting scalar field Lagrangian is given by eq. (3.21). One final change of field
variables to xr and xp results in canonical kinetic terms with scalar Lagrangian (3.28)
and mode equations (3.30). At late times the mode equations for xr and xp decouple,
which allows the identification of xq as the inflaton and x5 as the massive scalar produced
by CGGP.

Performing the bookkeeping for the total number of degrees of freedom, we have 2
tensor degrees of freedom for the massless graviton and 2 tensor degrees of freedom for the
massive spin-2; 2 vector degrees of freedom from the massive spin-2; and 3 scalar degrees
of freedom arising from the scalar perturbations ¢, B, and II, for the expected 9 degrees
of freedom. In figure 2 we show the spectrum of perturbations for the massive tensor and
vector states, along with the scalar state B. The spectrum of perturbations for ¢, and 11
are presented in figure 3. Assuming the massive spin-2 is stable, in figure 4 we show the
relative contribution of the tensor, vector, and scalar modes to Qh? for a representative
value of the reheat temperature, Tgy = 10° GeV. Finally, in figure 5 we show the relic
abundance constraints on Tgy as a function of mass.

For the nonminimally-coupled theory we start with eq. (2.1) with £, = L = 0, expand
the metrics g, and f,,, around equal backgrounds as in the minimally-coupled theory, and
then form massless states u,, and massive states v,,. The composite metric (g4).. is
expressed in terms of the background g, wu,, and v,,; see eq. (2.20). The single scalar
field ¢, is expanded about a background field with perturbation ¢,. Performing a SVT
decomposition on the massive state we find the Lagrangian for the canonically-normalized
tensor field in eq. (3.33) with mode equations in eq. (3.34). The Lagrangian for the vector
sector resulting from the SVT decomposition is given in eq. (3.35). After eliminating the
nondynamical variable and canonically normalizing the kinetic term leads to the vector
Lagrangian in Fourier space given by eq. (3.40) with mode equation (3.43). Since ¢, does

— 37 —



not couple to v,, in the nonminimally-coupled model at the level of the quadratic action
there is only one propagating degree of freedom in the scalar sector, B. A new field x
is defined in terms of B with Lagrangian in Fourier space given by eq. (3.48) with mode
equation eq. (3.50). The spectra for the tensor, vector, and scalar modes is presented in
figure 6. Assuming the particle is stable, the relic abundance is presented in figure 7, again
assuming Tsy = 10° GeV. In figure 8 we show the relic abundance constraints on Tyy as a
function of mass. The nonminimally-coupled model propagates the expected 5 degrees of
freedom from the massive sector: 2 each in the tensor and vector sector and a single one
in the scalar sector. The model also has 3 degrees of freedom in the massless sector, for a
total of 8.

Through the procedures described above, we arrive at the equations of motion for the
scalar-, vector-, and tensor-sector mode functions in both theories of bigravity. For the
first theory of bigravity with a minimal coupling to matter, the scalar mode equations
admit a ghost instability. We derive a condition on the spin-2 mass and Hubble parameter
for the avoidance of this ghost (4.2): m? > 2H?(1 — €) where ¢ = —H'/(aH?) is the first
slow-roll parameter. This inequality is an FRW-generalization of the Higuchi bound for
massive gravity in de Sitter spacetime, and it represents one of the main results of our
work. In the de Sitter limit, our bound reproduces the usual Higuchi bound m? > 2H?;
however, after inflation is ended ¢ > 1, and we find that the spin-2 mass bound becomes

2 > 0. Many studies of massive gravity and bigravity consider values for the

trivial, m
Fierz-Pauli mass m that are comparable to the scale of the dark energy cosmological
constant Ae. ~ (10733eV)2. Our FRW-Higuchi bound implies that the cutoff of such
effective theories must fall below the inflationary Hubble scale, to avoid activating the
ghost instability during inflation.

To investigate cosmological gravitational particle production, we employed a hilltop
model of inflation that reproduces cosmological observables. We numerically solved the
mode equations on this background along with Bunch-Davies initial conditions. Special
care was taken to treat the scalar sector of the minimally-coupled theory, which includes
a mixing of the inflaton perturbations and the scalar perturbations of the massive spin-2
field. From the late-time solutions of the mode equations, we infered the spectrum and
cosmological abundance of gravitationally produced massive spin-2 particles in the two
theories of bigravity and for each of three sectors (tensor, vector, scalar). We developed
an analytical understanding of the numerical results, particularly the power law behavior
observed in the spectra, and the relations with gradient and ghost instabilities.

The gravitational production of massive spin-2 particles may have various phenomeno-
logical implications for reheating, dark matter, and other cosmological relics. If these
particles are cosmologically long-lived, they provide phenomenologically unique and the-
oretically compelling candidates for the cold dark matter, which is only known to have
gravitational interactions. In the minimally-coupled theory, the massive spin-2 may decay
via the inflaton, and its stability is a model-dependent issue; whereas, for the nonminimally-
coupled theory the massive spin-2 is stable at tree level. Assuming that the massive
spin-2 particles are cosmologically long lived, we calculate their relic abundance today
and compare with the observed abundance of cold dark matter. For the minimally-
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coupled theory, we find that GPP can be responsible for generating all of the dark mat-
ter if the spin-2 mass is O(1) < m/Hipr S O(10) and the reheating temperature is
0(102GeV) < Ty < O(10°GeV); see figure 5. For the nonminimally-coupled theory,
the avoidance of a ghost instability restricts 10 < m/Hiy,s; see figure 8.

We have focused on studying the production of spin-2 dark matter during inflation and
at the end of inflation, and our work leaves open several avenues for further investigation.
In our minimally-coupled theory of bigravity, the stability and lifetime of the massive spin-
2 particles depends on additional model building that was deemed beyond the scope of our
work. It would be interesting to explore what kind of reheating sector (i.e., coupling of
radiation to the inflaton) would allow for a cosmologically long-lived massive spin-2. Along
the same line, when the thermal bath is taken into account, another channel opens for
gravitational particle production through gravity-mediated thermal freeze in [68, 69]. If
these particles are not cosmologically long-lived, they would not provide a candidate for the
dark matter, but their out-of-equilibrium decay could be associated with the production of
other relics, such as the matter-antimatter asymmetry. We have focused on two theories
of bigravity that admit equal backgrounds for the two metrics, but other non-proportional
solutions are available. A calculation of CGPP in such spacetimes may also furnish an
explanation for the origin of massive spin-2 particles. Finally, if the massive spin-2 particle
were to leave its imprint on cosmological spectra such as CMB non-gaussianity [70] (i.e.,
the “cosmological collider” program), this information would provide a powerful new tool
for testing these theories.
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A Behavior of long-wavelength modes

In figure 2 and figure 6 of section 5, we see that the number density spectra of long-
wavelength (low-k) modes exhibit power law behavior. In this appendix, we give a deriva-
tion of this power law behavior by studying the evolution of the mode functions ¥ during
inflation.

In section 3, we presented the equations of motion for all sectors (except for the
scalar sector of the minimally-coupled theory) in terms of mode functions X(n,k) and
time-dependent effective frequency w,%. The frequencies w,% are functions of background

quantities such as a(n), H(n), H'(n), etc. During inflation, the background spacetime is
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kja > (m, Hint) | k/a < (m, Hinf)
Sector
o 0 o o
Minimal, tensor -2 0 -2 0
Minimal, vector —6 0 -2 w2
Nonminimal, tensor | 1 0 1 0
Nonminimal, vector | —3 0 1 1/(3+4 p?)
Nonminimal, scalar | —5 0 1 4/(9+3u?)

Table 1. Coeflicients for eq. (A.1) during inflation. p = m/Hiys.

quasi-de-Sitter, and the effective frequencies have simple limiting forms. In fact, the fre-
quencies w,% are approximately constant during inflation, except for a possible jump at the
horizon-crossing time k& = aH. The frequencies w% during inflation are summarized by

the formula
wi & (1 —0)k* + a*(m* + aHy) (A1)

and table 1. Here, 6 and « are constants of order unity, and é may depend on p = m/Hjys.

At sufficiently early times, k/a > (m, Hiyt) is satisfied, and table 1 tells us that § =0
and w,% ~ k? for all 5 listed sectors. This means the mode functions in all 5 sectors should
be given the Bunch-Davies initial condition x(n) = e~"*7/v/2k, as expected. If k < a.H,,
then there is also a period during inflation such that k/a < (m, Hi,¢), namely the period
after the mode left the horizon; the coefficients é and o change when this period is entered.
Note that the coefficients in table 1 for k/a > (m, Hiys) are true even for k > a.H,.

To understand the behavior of long-wavelength modes, we now solve for x(7) under
the assumption that 6 and « are fixed during inflation. We take a(n) = —1/(Hinm),
n € (—00,0), then eq. (A.1) becomes:

1
wi e (1—0)k? + ﬁ(;ﬁ +a). (A.2)

The general solution x(n) for the above effective frequency is given by Hankel functions:

W) = v=n (CLHY (<knV1=38) + CoHP) (~knv1=75))

1
where v = 19 p. (A.3)

The solution satisfying the Bunch-Davies initial condition with appropriate normalization is

() = ei’é(%)\/j\/fn HY (—km/l - 5) . (A.4)

If v is real, then the exponential factor in the front is a merely a phase; if v is imaginary
with Im[v] > 0, then the exponential factor contributes to the magnitude of x (7).
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We now discuss the low-k (k < a.H.) behavior of the solutions. After horizon crossing,
we have —kn = k/(aHiys) < 1. If we rename the argument of the Hankel function by
z = —knv1—0, then z < 1 after horizon crossing, and the solution is approximately:

() ~ 13 fr[ i )( ) T W) (;)] | (A5)

If v > 0, then z27% dominates over z”, and we have:

b/ Ly=irw) (kml‘) (A.6)

Note from above that x(n) ~ k~%. If v is imaginary and Im[v] > 0, then the solution is

X(n)

CB
w\:

approximated by:

~ Z(—|v|-1: 1 |v . ilv|In(z . —i|v|In(z
() ~ ez (V=3 ),/E\/fn[e VID(—i|w|)elvI B2 4 (i]p))e i nd /2)} , (A7)

Note that now x does not have a power law dependence on k, but rather an oscillatory
dependence on In(z/2) ~ In(k).

Finally, the approximate solutions above inform us about the low-k behavior of the
number density spectrum, ng. Since the long-wavelength modes are frozen outside the hori-
zon and experience negligible particle production after they re-enter the horizon, we expect
the Bogoliubov coefficients |3y|? for these modes at late times to track the corresponding
values during inflation. From eq. (5.4), we see that |Bx|?> ~ |¢|?. For v > 0, we have
1Be|? ~ k72¥, so the power law for the particle number density is ny ~ k3|Bk|> ~ k372",
For imaginary v, we have |3|? ~ k% and ng ~ k3|8x|? ~ k3; moreover, due to the interfer-

+ilv|In(z/2)

ence between the e factors in ¥, we expect to see oscillations in |3;|? as a function

of In(k). These phenomena are shown in figure 2 and figure 6 and discussed in section 5.

B Stueckelberg derivation of FRW Higuchi bound

Here we provide an alternative derivation of the FRW-generalized Higuchi bound that
appears in eq. (4.2). For the theory of bigravity with a minimal coupling to matter, recall
eq. (2.17), i.e

1 1
‘Cr(iz)isswe - *iv)\vuuvkv'wj + VHUVAV,,U“)\ — v/ﬂ)'u’yv,ﬂ} + §VHUV‘“U
. . 2
a a 1
+<a+@”4%J<W%W‘2“)
1
_ §m2 (U'uV'U‘u,y _ U2) (Bl)

+ Mp! [(V,u(;;vyg@v + VooV ) (v’“’ - ;g%> - V’(&)cpvv]

1 1 -
= 5 VupViou = SV ()¢5
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gives the quadratic action for a massive spin-2 field v,, on an FRW background sourced
by a scalar field with background value ¢ and perturbation ¢,: for convenience we define

Ry

R ]\;]Ez’ v#évu(lg = (Z + (D - 2) 2)9#1/ - ((D - 1)H2 + H)guu (B'2)

Sl =

gp,u ) <B3)

where D is the number of spacetime dimensions. We perform the usual Stueckelberg trick,
followed by the standard conformal transformation used in massive gravity (see, e.g., [72]):

V= UV + Vu Ay + VA, +2V,V, @ + D5

m2gu,® . (B.4)

We focus on the scalar sector and write every term that contains a ®:

D -1 D [D-1 R
LI(I?;SSiVQ ) 72m2 |:D2m2.g/J«V - R,u,l/:| V“@VV@ + 2m 4D 9 lmmz - D] (1)2
D—-1 ,_ D-1 R
—4m’ {D_szg,w RW} ANV D + 2m? leZ - D] v® (B.5)
2m? om? D
— VoV, @ — —— ———Tp 0, P

Mp D —2

There are also @2, v? and vy, terms but they are not relevant as the kinetic terms are
already diagonal in this language.

Note that setting m = 0 causes the ® field to drop out of the Lagrangian entirely, as
expected from the enhanced gauge symmetry. However, even for m # 0 time derivatives
of @ are absent from the Lagrangian at a time when

% m? oo — Roo =0, (B.6)

or equivalently
m? = (D —2)(H*+ H) = (D —2)H*(1 —¢), (B.7)
where we have written the first slow-roll parameter as ¢ = —H/H? = —H’/aH?. For

D = 4 spacetime dimensions, eq. (B.7) is precisely the Higuchi bound from eq. (4.2) that
we found using the SVT analysis. Unlike m = 0 there is no gauge symmetry at eq. (B.7)
since ® and its spatial derivatives don’t drop out of the Lagrangian. Instead, this is just a
point where the kinetic term of ® passes through zero.

Alternatively, the gradient terms for ® as well as many non-derivative terms containing
® vanish at a time when

m —;:0, (B.8)
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or, written equivalently, when

2 2 €
=(D—-2)H=(1- . B.9
m? = (D=1 (1- ) (B.9)
When e = 0, this coincides with (B.7) and the usual Higuchi bound as expected. We note
that this latter expression (B.9) doesn’t indicate a bound on a tachyonic instability, since
the mixing between ® and ¢, doesn’t also vanish for non-zero e.

C Stability of massive spin-2 particles

In order for the massive spin-2 particle in our theories of bigravity to serve as a dark-
matter candidate, it must be stable or at least cosmologically long-lived. In this appendix,
we address the issue of stability. Terms in the Lagrangian that are linear in the massive
spin-2 field v, could potentially mediate its decay (via tree-level Feynman graphs), and
our task is to identify whether such terms are present.

First, we neglect the matter sectors and consider only the bigravity Lagrangian, i.e.,
the first line of eq. (2.1), since both the minimally-coupled and nonminimally-coupled
theories share these terms. The action can be written using the massless spin-2 field u,,,
and the massive spin-2 field v, via egs. (2.7) and (2.14). Interactions that would mediate
the decay v — uu can take the form vuu (or v — uuu via or vuuu). However, we find that
the bigravity Lagrangian does not contain any terms that are linear in v, for our choice
of parameters:

6 (Mg M; 272
5 <2‘(]\/—9R[9] + 5 VR = m M =gV (X /J’n)>
Qv v=0

_ (M3 09,0 6y=gRlg] M7 SVIRIS] 5 20V=gV(XiBa)

2 v, 09y, 2 v, 0fy, * 0y, 0
_((Mi2br  MPaML o) 0V=GRIG] 5 50y /=gV (5 f)

2 MZ 2 MF)% %7 T 4G, T Su,, .
eV )

O, Vo
=0.
(C.1)

Going from the second to third line, we used g, = G,, + (QM*/MQQ)UW and f,, =
G — (ZM*/M]%)UW where G, = g, + (2/Mp)u,,. The expression on the fourth line
vanishes upon setting Ay/M, 3 =As /M]%, which is necessary for a proportional background;
see egs. (2.8) and (2.19). It follows that the bigravity Lagrangian doesn’t contain any
terms that are linear in v,,,, and it cannot mediate tree-level decays. See also eq. (4.12)
of ref. [73] for complete list of trilinear terms in the bigravity Lagrangian on a Minkowski

background.

43 —



We now turn our attention to the matter couplings, beginning with the nonminimally-
coupled theory. The matter action appears in the last term of eq. (2.1). Varying with
respect to the massive metric perturbation v, yields:

%(\/—79*5*(9*,@)) IO (V=0x Li(gs,04))|  =0. (C.2)

p vmo OV 0(94)g, v=0

In the last equality we have used eq. (2.20), which follows from our choice of parameters
in eq. (2.19). Evidently the matter action of the nonminimally-coupled theory does not

contain terms that are linear in the massive spin-2 field v ,,, and it cannot mediate the

v
(tree-level) decay of the massive spin-2 particle. Note that tF}Lﬁs argument generalizes to an
arbitrary matter sector, containing any number of matter fields, such as the Standard Model
particle content. Our calculation shows that the absence of tree level v, decay channels
is an essential feature of the nonminimally-coupled theory; this result was stressed upon
in ref. [43]. Also see eq. (4.59) of [73] that provides the v¢, ¢, operator coefficient without
imposing eq. (2.19).

Next we consider interactions with matter in the minimally-coupled theory, corre-
sponding to the fourth and fifth terms in eq. (2.1). Interactions with the inflaton fields ¢,
and ¢, include terms such as

L, decay — MEQ [2vyyuuu(v)\@v)(v)\q§) - 41)Wu”)\(V“gE)(V)‘<pv)
+ QUUNV(V‘M@E)(VZ’@U) - 4v;wuy)\(v>\§5)(v#(pv) + 2vyuuuy@vvl(§g)}
+ Mlgl {271“,/ (VM(PU>(VV4PU) - U(V#(puxvu@v) - ’USOUQP”UV”((E)}

+ (vpypy terms),
(C.3)

where ¢ is the inflaton background and where ¢, and ¢, are the scalar field perturbations.
Terms of the form vuy, and vy, e, could mediate the massive spin-2 particle’s decay. For
m > 2my, the decay v — @y, is kinematically allowed, see figure 9, and we estimate its
rate as

m2\? 1 m3
T~ ) =~ C4

Since the avoidance of a ghost instability during inflation requires m 2 Hi,s (Higuchi

bound), the rate is bounded from below as I' > H3./M3. Despite the Planck suppression,
this large rate would correspond to a decay in the early universe (unless Hi, were very
small, but then CGPP would also be suppressed). For a smaller mass my < m < 2my the
decay to two inflatons is kinematically blocked, but the decay channel v — uy, may still
occur, although the rate depends on V¢ or V' ((5), which are small at late times. For an
even smaller mass, m < mg, decays to on-shell inflatons are kinematically blocked. Decays
via off-shell inflatons into other matter fields may still occur, see figure 9, although the rate

for these channels is subject to additional model dependence.
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Figure 9. Direct and indirect decay of v,,,, in the minimally-coupled theory.

Additionally, for the theory of bigravity with a minimal coupling to matter, the massive
spin-2 field interacts with the same matter sectors as the massless spin-2 field (graviton).
Consequently, v, may decay directly to Standard Model particles. Since the Higuchi
bound requires m 2> Hiys and since Hijys is much larger than the Standard Model mass
scales, these decay channels cannot be blocked by kinematics. For the sake of illustration,
consider a scalar matter-sector field xy with matter action

_ 12M,
—V/=gg"VINVIx = —/=g <1 + 532 0" v + O(v)2> (Vx)?. (C.5)
g

Note that the coupling of the vy vertex is proportional to M, /Mg2 = a/Mp where a =
My /My, and the full decay rate can be estimated as I' ~ (a/Mp)?m3. These parametric
relations are consistent with earlier work [11] that studied this scenario in more detail and
related the decay of massive spin-2 particles to that of Kaluza-Klein modes [74].

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP? supports
the goals of the International Year of Basic Sciences for Sustainable Development.

References

[1] D. Baumann, Cosmology, Cambridge University Press (2022) [DOI:10.1017/9781108937092].

[2] E.D. Schiappacasse and L.H. Ford, Graviton Creation by Small Scale Factor Oscillations in
an Ezpanding Universe, Phys. Rev. D 94 (2016) 084030 [arXiv:1602.08416] [INSPIRE].

[3] L. Parker, Quantized fields and particle creation in expanding universes. Part 1, Phys. Rev.
183 (1969) 1057 [InSPIRE].

[4] L. Parker, Quantized fields and particle creation in expanding universes. Part 2, Phys. Rev.
D 3 (1971) 346 [nSPIRE].

[5] L.H. Ford, Cosmological particle production: a review, Rept. Prog. Phys. 84 (2021) 116901
[arXiv:2112.02444] [NSPIRE].

45 —


https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/9781108937092
https://doi.org/10.1103/PhysRevD.94.084030
https://arxiv.org/abs/1602.08416
https://inspirehep.net/literature/1424518
https://doi.org/10.1103/PhysRev.183.1057
https://doi.org/10.1103/PhysRev.183.1057
https://inspirehep.net/literature/55157
https://doi.org/10.1103/PhysRevD.3.346
https://doi.org/10.1103/PhysRevD.3.346
https://inspirehep.net/literature/68226
https://doi.org/10.1088/1361-6633/ac1b23
https://arxiv.org/abs/2112.02444
https://inspirehep.net/literature/1984597

[6] D.J.H. Chung, E.W. Kolb and A. Riotto, Superheavy dark matter, Phys. Rev. D 59 (1998)
023501 [hep-ph/9802238] [INSPIRE].

[7] D.J.H. Chung, E.W. Kolb and A. Riotto, Nonthermal supermassive dark matter, Phys. Rev.
Lett. 81 (1998) 4048 [hep-ph/9805473] [INSPIRE].

[8] S. Alexander, L. Jenks and E. McDonough, Higher spin dark matter, Phys. Lett. B 819
(2021) 136436 [arXiv:2010.15125] [INSPIRE].

[9] K. Aoki and K.-i. Maeda, Dark matter in ghost-free bigravity theory: From a galazy scale to
the universe, Phys. Rev. D 90 (2014) 124089 [arXiv:1409.0202] [INSPIRE].

[10] K. Aoki and S. Mukohyama, Massive gravitons as dark matter and gravitational waves, Phys.
Rev. D 94 (2016) 024001 [arXiv:1604.06704] [INSPIRE].

[11] E. Babichev et al., Heavy spin-2 Dark Matter, JCAP 09 (2016) 016 [arXiv:1607.03497]
[INSPIRE].

[12] L. Marzola, M. Raidal and F.R. Urban, Oscillating Spin-2 Dark Matter, Phys. Rev. D 97
(2018) 024010 [arXiv:1708.04253] [INSPIRE].

[13] N.L. Gonzalez Albornoz, A. Schmidt-May and M. von Strauss, Dark matter scenarios with
multiple spin-2 fields, JCAP 01 (2018) 014 [arXiv:1709.05128] [INSPIRE].

[14] J.M. Armaleo, D. Lépez Nacir and F.R. Urban, Binary pulsars as probes for spin-2 ultralight
dark matter, JCAP 01 (2020) 053 [arXiv:1909.13814] [INSPIRE].

[15] J.M. Armaleo, D. Lépez Nacir and F.R. Urban, Pulsar timing array constraints on spin-2
ULDM, JCAP 09 (2020) 031 [arXiv:2005.03731] [INSPIRE].

[16] Y. Manita, K. Aoki, T. Fujita and S. Mukohyama, Spin-2 dark matter from anisotropic
Universe in bigravity, arXiv:2211.15873 [DOI:10.48550/arXiv.2211.15873].

[17] M. Fierz and W. Pauli, On relativistic wave equations for particles of arbitrary spin in an
electromagnetic field, Proc. Roy. Soc. Lond. Ser. A 173 (1939) 211.

[18] D.G. Boulware and S. Deser, Can gravitation have a finite range?, Phys. Rev. D 6 (1972)
3368 [INSPIRE].

[19] S.F. Hassan and R.A. Rosen, Bimetric Gravity from Ghost-free Massive Gravity, JHEP 02
(2012) 126 [arXiv:1109.3515] [INSPIRE].

[20] C. de Rham, L. Heisenberg and R.H. Ribeiro, On couplings to matter in massive (bi-)gravity,
Class. Quant. Grav. 32 (2015) 035022 [arXiv:1408.1678] INSPIRE].

[21] A. De Felice, A.E. Giimriik¢iioglu, C. Lin and S. Mukohyama, On the cosmology of massive
gravity, Class. Quant. Grav. 30 (2013) 184004 [arXiv:1304.0484] InSPIRE].

[22] C. de Rham, Massive Gravity, Living Rev. Rel. 17 (2014) 7 [arXiv:1401.4173] [INSPIRE].

[23] M.S. Volkov, Cosmological solutions with massive gravitons in the bigravity theory, JHEP 01
(2012) 035 [arXiv:1110.6153] [INSPIRE].

[24] M. von Strauss, A. Schmidt-May, J. Enander, E. Mortsell and S.F. Hassan, Cosmological
Solutions in Bimetric Gravity and their Observational Tests, JCAP 03 (2012) 042
[arXiv:1111.1655] [INSPIRE].

[25] D. Comelli, M. Crisostomi, F. Nesti and L. Pilo, FRW Cosmology in Ghost Free Massive
Gravity, JHEP 03 (2012) 067 [Erratum ibid. 06 (2012) 020] [arXiv:1111.1983] [INSPIRE].

— 46 —


https://doi.org/10.1103/PhysRevD.59.023501
https://doi.org/10.1103/PhysRevD.59.023501
https://arxiv.org/abs/hep-ph/9802238
https://inspirehep.net/literature/466858
https://doi.org/10.1103/PhysRevLett.81.4048
https://doi.org/10.1103/PhysRevLett.81.4048
https://arxiv.org/abs/hep-ph/9805473
https://inspirehep.net/literature/471013
https://doi.org/10.1016/j.physletb.2021.136436
https://doi.org/10.1016/j.physletb.2021.136436
https://arxiv.org/abs/2010.15125
https://inspirehep.net/literature/1826794
https://doi.org/10.1103/PhysRevD.90.124089
https://arxiv.org/abs/1409.0202
https://inspirehep.net/literature/1313080
https://doi.org/10.1103/PhysRevD.94.024001
https://doi.org/10.1103/PhysRevD.94.024001
https://arxiv.org/abs/1604.06704
https://inspirehep.net/literature/1451625
https://doi.org/10.1088/1475-7516/2016/09/016
https://arxiv.org/abs/1607.03497
https://inspirehep.net/literature/1475431
https://doi.org/10.1103/PhysRevD.97.024010
https://doi.org/10.1103/PhysRevD.97.024010
https://arxiv.org/abs/1708.04253
https://inspirehep.net/literature/1616058
https://doi.org/10.1088/1475-7516/2018/01/014
https://arxiv.org/abs/1709.05128
https://inspirehep.net/literature/1623883
https://doi.org/10.1088/1475-7516/2020/01/053
https://arxiv.org/abs/1909.13814
https://inspirehep.net/literature/1756807
https://doi.org/10.1088/1475-7516/2020/09/031
https://arxiv.org/abs/2005.03731
https://inspirehep.net/literature/1794977
https://arxiv.org/abs/2211.15873
https://doi.org/10.48550/arXiv.2211.15873
https://doi.org/10.1098/rspa.1939.0140
https://doi.org/10.1103/PhysRevD.6.3368
https://doi.org/10.1103/PhysRevD.6.3368
https://inspirehep.net/literature/82660
https://doi.org/10.1007/JHEP02(2012)126
https://doi.org/10.1007/JHEP02(2012)126
https://arxiv.org/abs/1109.3515
https://inspirehep.net/literature/927704
https://doi.org/10.1088/0264-9381/32/3/035022
https://arxiv.org/abs/1408.1678
https://inspirehep.net/literature/1310101
https://doi.org/10.1088/0264-9381/30/18/184004
https://arxiv.org/abs/1304.0484
https://inspirehep.net/literature/1226187
https://doi.org/10.12942/lrr-2014-7
https://arxiv.org/abs/1401.4173
https://inspirehep.net/literature/1278081
https://doi.org/10.1007/JHEP01(2012)035
https://doi.org/10.1007/JHEP01(2012)035
https://arxiv.org/abs/1110.6153
https://inspirehep.net/literature/943354
https://doi.org/10.1088/1475-7516/2012/03/042
https://arxiv.org/abs/1111.1655
https://inspirehep.net/literature/944719
https://doi.org/10.1007/JHEP03(2012)067
https://arxiv.org/abs/1111.1983
https://inspirehep.net/literature/945023

[26] M.S. Volkov, Ezact self-accelerating cosmologies in the ghost-free bigravity and massive
gravity, Phys. Rev. D 86 (2012) 061502 [arXiv:1205.5713] [InSPIRE].

[27] Y. Akrami, T.S. Koivisto and M. Sandstad, Accelerated expansion from ghost-free bigravity:
a statistical analysis with improved generality, JHEP 03 (2013) 099 [arXiv:1209.0457]
[INSPIRE].

[28] F. Koennig, A. Patil and L. Amendola, Viable cosmological solutions in massive bimetric
gravity, JCAP 03 (2014) 029 [arXiv:1312.3208] INSPIRE].

[29] D. Comelli, M. Crisostomi and L. Pilo, Perturbations in Massive Gravity Cosmology, JHEP
06 (2012) 085 [arXiv:1202.1986] [INSPIRE].

[30] F. Koennig, Y. Akrami, L. Amendola, M. Motta and A.R. Solomon, Stable and unstable
cosmological models in bimetric massive gravity, Phys. Rev. D 90 (2014) 124014
[arXiv:1407.4331] [INSPIRE].

. Lagos and P.G. Ferreira, Cosmological perturbations in massive bigravity,
31 M. L d P.G. Ferreira, C! logical bati } we bigravity, JCAP 12
(2014) 026 [arXiv:1410.0207] [INSPIRE].

[32] Y. Akrami, S.F. Hassan, F. Konnig, A. Schmidt-May and A.R. Solomon, Bimetric gravity is
cosmologically viable, Phys. Lett. B 748 (2015) 37 [arXiv:1503.07521] INSPIRE].

[33] D. Comelli, M. Crisostomi and L. Pilo, FRW Cosmological Perturbations in Massive
Bigravity, Phys. Rev. D 90 (2014) 084003 [arXiv:1403.5679] [INSPIRE].

[34] J. Enander, A.R. Solomon, Y. Akrami and E. Mortsell, Cosmic expansion histories in
massive bigravity with symmetric matter coupling, JCAP 01 (2015) 006 [arXiv:1409.2860]
[INSPIRE].

[35] A. Emir Giimriik¢iioglu, L. Heisenberg and S. Mukohyama, Cosmological perturbations in
massive gravity with doubly coupled matter, JCAP 02 (2015) 022 [arXiv:1409.7260]
[INSPIRE].

.E. Gumrukcuoglu, L. Heisenberg, S. Mukohyama and N. Tanahashi, Cosmology in

36] A.E. G ki lu, L. Heisenb S. Mukoh d N. Tanahashi, C l }
bimetric theory with an effective composite coupling to matter, JCAP 04 (2015) 008
[arXiv:1501.02790] [INSPIRE].

[37] A. Higuchi, Forbidden Mass Range for Spin-2 Field Theory in de Sitter Space-time, Nucl.
Phys. B 282 (1987) 397 INSPIRE].

[38] M. Fasiello and A.J. Tolley, Cosmological perturbations in Massive Gravity and the Higuchi
bound, JCAP 11 (2012) 035 [arXiv:1206.3852] INSPIRE].

[39] M. Fasiello and A.J. Tolley, Cosmological Stability Bound in Massive Gravity and Bigravity,
JCAP 12 (2013) 002 [arXiv:1308.1647] [INSPIRE].

[40] C. de Rham, G. Gabadadze and A.J. Tolley, Resummation of Massive Gravity, Phys. Rev.
Lett. 106 (2011) 231101 [arXiv:1011.1232] [INSPIRE].

[41] C.W. Misner, K.S. Thorne and J.A. Wheeler, Gravitation, W.H. Freeman and Company, San
Francisco, CA, U.S.A. (1973).

[42] S.F. Hassan and R.A. Rosen, Resolving the Ghost Problem in non-Linear Massive Gravity,
Phys. Rev. Lett. 108 (2012) 041101 [arXiv:1106.3344| [INSPIRE].

[43] A. Schmidt-May, Mass eigenstates in bimetric theory with matter coupling, JCAP 01 (2015)
039 [arXiv:1409.3146] [INSPIRE].

47 —


https://doi.org/10.1103/PhysRevD.86.061502
https://arxiv.org/abs/1205.5713
https://inspirehep.net/literature/1116173
https://doi.org/10.1007/JHEP03(2013)099
https://arxiv.org/abs/1209.0457
https://inspirehep.net/literature/1184269
https://doi.org/10.1088/1475-7516/2014/03/029
https://arxiv.org/abs/1312.3208
https://inspirehep.net/literature/1268780
https://doi.org/10.1007/JHEP06(2012)085
https://doi.org/10.1007/JHEP06(2012)085
https://arxiv.org/abs/1202.1986
https://inspirehep.net/literature/1088597
https://doi.org/10.1103/PhysRevD.90.124014
https://arxiv.org/abs/1407.4331
https://inspirehep.net/literature/1306601
https://doi.org/10.1088/1475-7516/2014/12/026
https://doi.org/10.1088/1475-7516/2014/12/026
https://arxiv.org/abs/1410.0207
https://inspirehep.net/literature/1319615
https://doi.org/10.1016/j.physletb.2015.06.062
https://arxiv.org/abs/1503.07521
https://inspirehep.net/literature/1356228
https://doi.org/10.1103/PhysRevD.90.084003
https://arxiv.org/abs/1403.5679
https://inspirehep.net/literature/1286845
https://doi.org/10.1088/1475-7516/2015/01/006
https://arxiv.org/abs/1409.2860
https://inspirehep.net/literature/1315675
https://doi.org/10.1088/1475-7516/2015/02/022
https://arxiv.org/abs/1409.7260
https://inspirehep.net/literature/1318925
https://doi.org/10.1088/1475-7516/2015/04/008
https://arxiv.org/abs/1501.02790
https://inspirehep.net/literature/1338337
https://doi.org/10.1016/0550-3213(87)90691-2
https://doi.org/10.1016/0550-3213(87)90691-2
https://inspirehep.net/literature/228338
https://doi.org/10.1088/1475-7516/2012/11/035
https://arxiv.org/abs/1206.3852
https://inspirehep.net/literature/1118524
https://doi.org/10.1088/1475-7516/2013/12/002
https://arxiv.org/abs/1308.1647
https://inspirehep.net/literature/1246930
https://doi.org/10.1103/PhysRevLett.106.231101
https://doi.org/10.1103/PhysRevLett.106.231101
https://arxiv.org/abs/1011.1232
https://inspirehep.net/literature/875509
https://doi.org/10.1103/PhysRevLett.108.041101
https://arxiv.org/abs/1106.3344
https://inspirehep.net/literature/914096
https://doi.org/10.1088/1475-7516/2015/01/039
https://doi.org/10.1088/1475-7516/2015/01/039
https://arxiv.org/abs/1409.3146
https://inspirehep.net/literature/1315805

[44] V. Mukhanov, Physical Foundations of Cosmology, Cambridge University Press, Cambridge,
U.K. (2005) [D0OI:10.1017/CB09780511790553] [INSPIRE].

[45] D. Baumann, Inflation, in proceedings of the Theoretical Advanced Study Institute in
Elementary Particle Physics: Physics of the Large and the Small, Boulder, CO, U.S.A., 1-26
June 2009, pp. 523-686 [arXiv:0907.5424] [DOI:10.48550/arXiv.0907.5424] [INSPIRE].

[46] F. Hasegawa, K. Mukaida, K. Nakayama, T. Terada and Y. Yamada, Gravitino Problem in
Minimal Supergravity Inflation, Phys. Lett. B 767 (2017) 392 [arXiv:1701.03106] [INSPIRE].

[47] E.W. Kolb, A.J. Long and E. McDonough, Catastrophic production of slow gravitinos, Phys.
Rev. D 104 (2021) 075015 [arXiv:2102.10113] [INnSPIRE].

[48] S. Deser and R.I. Nepomechie, Gauge Invariance Versus Masslessness in de Sitter Space,
Annals Phys. 154 (1984) 396 [INnSPIRE].

[49] S. Deser and R.I. Nepomechie, Anomalous Propagation of Gauge Fields in Conformally Flat
Spaces, Phys. Lett. B 132 (1983) 321 nSPIRE].

[50] D. Comelli, M. Crisostomi, K. Koyama, L. Pilo and G. Tasinato, Cosmology of bigravity with
doubly coupled matter, JCAP 04 (2015) 026 [arXiv:1501.00864] [INSPIRE].

[61] J.L. Cook, E. Dimastrogiovanni, D.A. Easson and L.M. Krauss, Reheating predictions in
single field inflation, JCAP 04 (2015) 047 [arXiv:1502.04673] [INSPIRE].

[52] P.F. de Salas, M. Lattanzi, G. Mangano, G. Miele, S. Pastor and O. Pisanti, Bounds on very
low reheating scenarios after Planck, Phys. Rev. D 92 (2015) 123534 [arXiv:1511.00672]
[INSPIRE].

[53] Y. Ema, K. Mukaida and K. Nakayama, Electroweak Vacuum Metastability and Low-scale
Inflation, JCAP 12 (2017) 030 [arXiv:1706.08920] [INSPIRE].

[54] Y. Ema, K. Nakayama and Y. Tang, Production of Purely Gravitational Dark Matter, JHEP
09 (2018) 135 [arXiv:1804.07471] [INSPIRE].

[65] E.E. Basso and D.J.H. Chung, Computation of gravitational particle production using
adiabatic invariants, JHEP 11 (2021) 146 [arXiv:2108.01653] [INSPIRE].

[56] K. Kumekawa, T. Moroi and T. Yanagida, Flat potential for inflaton with a discrete R
invariance in supergravity, Prog. Theor. Phys. 92 (1994) 437 [hep-ph/9405337] [INSPIRE].

57] K.-i. Izawa and T. Yanagida, Natural new inflation in broken supergravity, Phys. Lett. B 393
g
(1997) 331 [hep-ph/9608359] [INSPIRE].

[68] PLANCK collaboration, Planck 2018 results. Part VI. Cosmological parameters, Astron.
Astrophys. 641 (2020) A6 [Erratum ibid. 652 (2021) C4] [arXiv:1807.06209] [InSPIRE].

[59] E. Hairer, S.P. Norsett and G. Wanner, Solving ordinary differential equations. Part I.
Nonstiff problems, Springer (2009).

[60] E.W. Kolb and A.J. Long, Completely dark photons from gravitational particle production
during the inflationary era, JHEP 03 (2021) 283 [arXiv:2009.03828] [INSPIRE].

[61] S. Ling and A.J. Long, Superheavy scalar dark matter from gravitational particle production
in a-attractor models of inflation, Phys. Rev. D 103 (2021) 103532 [arXiv:2101.11621]
[INSPIRE].

[62] D.J.H. Chung, E.-W. Kolb, A. Riotto and L. Senatore, Isocurvature constraints on
gravitationally produced superheavy dark matter, Phys. Rev. D 72 (2005) 023511
[astro-ph/0411468] [INSPIRE].

48 —


https://doi.org/10.1017/CBO9780511790553
https://inspirehep.net/literature/706151
https://arxiv.org/abs/0907.5424
https://doi.org/10.48550/arXiv.0907.5424
https://inspirehep.net/literature/827549
https://doi.org/10.1016/j.physletb.2017.02.030
https://arxiv.org/abs/1701.03106
https://inspirehep.net/literature/1508818
https://doi.org/10.1103/PhysRevD.104.075015
https://doi.org/10.1103/PhysRevD.104.075015
https://arxiv.org/abs/2102.10113
https://inspirehep.net/literature/1847862
https://doi.org/10.1016/0003-4916(84)90156-8
https://inspirehep.net/literature/13830
https://doi.org/10.1016/0370-2693(83)90317-9
https://inspirehep.net/literature/13936
https://doi.org/10.1088/1475-7516/2015/04/026
https://arxiv.org/abs/1501.00864
https://inspirehep.net/literature/1336311
https://doi.org/10.1088/1475-7516/2015/04/047
https://arxiv.org/abs/1502.04673
https://inspirehep.net/literature/1345001
https://doi.org/10.1103/PhysRevD.92.123534
https://arxiv.org/abs/1511.00672
https://inspirehep.net/literature/1402296
https://doi.org/10.1088/1475-7516/2017/12/030
https://arxiv.org/abs/1706.08920
https://inspirehep.net/literature/1607778
https://doi.org/10.1007/JHEP09(2018)135
https://doi.org/10.1007/JHEP09(2018)135
https://arxiv.org/abs/1804.07471
https://inspirehep.net/literature/1669302
https://doi.org/10.1007/JHEP11(2021)146
https://arxiv.org/abs/2108.01653
https://inspirehep.net/literature/1898375
https://doi.org/10.1143/PTP.92.437
https://arxiv.org/abs/hep-ph/9405337
https://inspirehep.net/literature/373494
https://doi.org/10.1016/S0370-2693(96)01638-3
https://doi.org/10.1016/S0370-2693(96)01638-3
https://arxiv.org/abs/hep-ph/9608359
https://inspirehep.net/literature/422268
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910
https://arxiv.org/abs/1807.06209
https://inspirehep.net/literature/1682902
https://doi.org/10.1007/JHEP03(2021)283
https://arxiv.org/abs/2009.03828
https://inspirehep.net/literature/1815658
https://doi.org/10.1103/PhysRevD.103.103532
https://arxiv.org/abs/2101.11621
https://inspirehep.net/literature/1843188
https://doi.org/10.1103/PhysRevD.72.023511
https://arxiv.org/abs/astro-ph/0411468
https://inspirehep.net/literature/664609

[63]

[64]

[65]

[66]

[67]

[68]

D.J.H. Chung, E.W. Kolb and A.J. Long, Gravitational production of super-Hubble-mass
particles: an analytic approach, JHEP 01 (2019) 189 [arXiv:1812.00211] INSPIRE].

K. Kaneta, S.M. Lee and K.-y. Oda, Boltzmann or Bogoliubov? Approaches compared in
gravitational particle production, JCAP 09 (2022) 018 [arXiv:2206.10929] [INSPIRE].

E. Basso, D.J.H. Chung, E.W. Kolb and A.J. Long, Quantum interference in gravitational
particle production, JHEP 12 (2022) 108 [arXiv:2209.01713] [INSPIRE].

P.W. Graham, J. Mardon and S. Rajendran, Vector Dark Matter from Inflationary
Fluctuations, Phys. Rev. D 93 (2016) 103520 [arXiv:1504.02102] [INSPIRE].

M.A. Amin, M.P. Hertzberg, D.I. Kaiser and J. Karouby, Nonperturbative Dynamics Of
Reheating After Inflation: A Review, Int. J. Mod. Phys. D 24 (2014) 1530003
[arXiv:1410.3808] [INSPIRE].

M. Garny, M.C. Sandora and M.S. Sloth, Planckian Interacting Massive Particles as Dark
Matter, Phys. Rev. Lett. 116 (2016) 101302 [arXiv:1511.03278] [INSPIRE].

N. Bernal, M. Dutra, Y. Mambrini, K. Olive, M. Peloso and M. Pierre, Spin-2 Portal Dark
Matter, Phys. Rev. D 97 (2018) 115020 [arXiv:1803.01866] INSPIRE].

E. Dimastrogiovanni, M. Fasiello and G. Tasinato, Probing the inflationary particle content:
extra spin-2 field, JCAP 08 (2018) 016 [arXiv:1806.00850] [INSPIRE].

D. Brizuela, J.M. Martin-Garcia and G.A. Mena Marugan, zPert: Computer algebra for
metric perturbation theory, Gen. Rel. Grav. 41 (2009) 2415 [arXiv:0807.0824] [INSPIRE].

K. Hinterbichler, Theoretical Aspects of Massive Gravity, Rev. Mod. Phys. 84 (2012) 671
[arXiv:1105.3735] [INSPIRE].

J. Bonifacio, K. Hinterbichler, A. Joyce and R.A. Rosen, Massive and Massless Spin-2
Scattering and Asymptotic Superluminality, JHEP 06 (2018) 075 [arXiv:1712.10020]
[INSPIRE].

T. Han, J.D. Lykken and R.-J. Zhang, On Kaluza-Klein states from large extra dimensions,
Phys. Rev. D 59 (1999) 105006 [hep-ph/9811350] [INSPIRE].

— 49 —


https://doi.org/10.1007/JHEP01(2019)189
https://arxiv.org/abs/1812.00211
https://inspirehep.net/literature/1706238
https://doi.org/10.1088/1475-7516/2022/09/018
https://arxiv.org/abs/2206.10929
https://inspirehep.net/literature/2099465
https://doi.org/10.1007/JHEP12(2022)108
https://arxiv.org/abs/2209.01713
https://inspirehep.net/literature/2147110
https://doi.org/10.1103/PhysRevD.93.103520
https://arxiv.org/abs/1504.02102
https://inspirehep.net/literature/1358647
https://doi.org/10.1142/S0218271815300037
https://arxiv.org/abs/1410.3808
https://inspirehep.net/literature/1322078
https://doi.org/10.1103/PhysRevLett.116.101302
https://arxiv.org/abs/1511.03278
https://inspirehep.net/literature/1403955
https://doi.org/10.1103/PhysRevD.97.115020
https://arxiv.org/abs/1803.01866
https://inspirehep.net/literature/1658774
https://doi.org/10.1088/1475-7516/2018/08/016
https://arxiv.org/abs/1806.00850
https://inspirehep.net/literature/1676239
https://doi.org/10.1007/s10714-009-0773-2
https://arxiv.org/abs/0807.0824
https://inspirehep.net/literature/790000
https://doi.org/10.1103/RevModPhys.84.671
https://arxiv.org/abs/1105.3735
https://inspirehep.net/literature/900692
https://doi.org/10.1007/JHEP06(2018)075
https://arxiv.org/abs/1712.10020
https://inspirehep.net/literature/1645440
https://doi.org/10.1103/PhysRevD.59.105006
https://arxiv.org/abs/hep-ph/9811350
https://inspirehep.net/literature/479359

	Introduction
	Massive spin-2 fields in an FRW background
	Ghost-free bigravity
	Minimal matter coupling
	Nonminimal matter coupling

	Cosmological perturbations
	Minimal matter coupling
	Tensor sector
	Vector sector
	Scalar sector

	Nonminimal matter coupling
	Tensor sector
	Vector sector
	Scalar sector


	Instabilities
	Ghost instability and FRW-generalized Higuchi bound (minimally-coupled theory)
	Gradient instability (nonminimally-coupled theory)
	Ghost instability (nonminimally-coupled theory)

	Cosmological gravitational particle production
	Hilltop inflation
	Numerical methods
	Stability and relic abundance
	Minimal matter coupling
	Nonminimal matter coupling

	Summary and conclusion
	Behavior of long-wavelength modes
	Stueckelberg derivation of FRW Higuchi bound
	Stability of massive spin-2 particles

