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Abstract. The presence of axion strings in the Universe after recombination can leave an
imprint on the polarization pattern of the cosmic microwave background radiation through
the phenomenon of axion-string-induced birefringence via the hyperlight axion-like particle’s
coupling to electromagnetism. Across the sky, the polarization rotation angle is expected to
display a patchwork of uniform regions with sharp boundaries that arise as the ‘shadow’ of
axion string loops. The statistics of such a birefringence sky map are therefore necessarily non-
Gaussian. In this article we quantify the non-Gaussianity in axion-string-induced birefringence
using two techniques, kurtosis and bispectrum, which correspond to 4- and 3-point correlation
functions. If anisotropic birefringence were detected in the future, a measurement of its
non-Gaussian properties would facilitate a discrimination across di�erent new physics sources
generally, and in the context of axion strings specifically, it would help to break degeneracies
between the axion-photon coupling and properties of the string network.
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1 Introduction

Observations of the cosmic microwave background (CMB) temperature and polarization
anisotropies have informed our understanding of the composition, structure, and evolution
of the Universe. These precision measurements have also revealed some surprises, such as
the mysterious dark matter and dark energy that permeate the Universe. Ongoing and future
observations, with significantly higher precision, may uncover evidence for additional cosmolog-
ical relics that are currently out of reach [1, 2] such as cosmic axion strings. In this work we seek
to quantify the signatures of axion strings through their non-Gaussian cosmic birefringence.

Cosmic strings, one-dimensional topological defects formed from scalar fields [3], are
predicted to arise in the early universe during phase transitions associated with as-yet
undiscovered new physics. While the new particles and forces may be inaccessible, because
they are too heavy to be produced at high-energy colliders or too feebly coupled to be probed
in the laboratory, the network of cosmic strings can leave a detectable imprint on the CMB
radiation, which is both exquisitely measured and theoretically well understood. For example,
searches for the gravitational influence of cosmic strings on the CMB anisotropies have
already yielded an upper limit on the strings’ tension [4, 5], which translates into a strong
constraint on the scale of new physics. On the other hand, if the string-forming fields couple
non-gravitationally to visible matter and radiation, novel channels for testing these theories
become available. Cosmic strings formed from hyperlight axion-like particles (ALPs) that
couple to electromagnetism provide an especially compelling target, since they are expected
to induce a birefringence of CMB polarization [6].

The phenomenon of axion-induced birefringence has been a subject of great interest for
many years [7–18]. The important aspect of birefringence from axion strings [6] is that the
typical axion field excursion is large �a ¥ 2fifa, thereby evading a suppression factor that ap-
pears for other models, such as axion dark matter. Several recent studies [19–26] have explored
the signatures of axion-string-(and domain wall)-induced birefringence, calculated the angular
power spectrum, and assessed compatibility with the various measurements of CMB birefrin-
gence (including a claimed detection of isotropic birefringence [27–32]). To summarize, these
studies conclude that the current generation of CMB telescopes (Planck, SPTpol, ACTpol,

– 1 –



J
C
A
P
0
9
(
2
0
2
3
)
0
2
4

Figure 1. Left: a simulated map of the birefringence angle –(n̂) for an axion string network. Right:
a simulated map assuming Gaussian statistics with the same power spectrum as the left map. The
disk-like features on the left map are a manifestation of the non-Gaussian nature of the stochastic
variable. The non-Gaussian map is generated using the loop-crossing model with ’0 = ›0 = A = 1; see
section 2 for additional details.

BICEP2/Keck Array, Polarbear) are nearly sensitive enough to probe the most well-
motivated parameter space, and next-generation telescopes will put these theories to the test.

Whereas most of the work on axion-string-induced birefringence has focused thus far
on two-point statistics such as the angular power spectrum, the higher moments contain a
wealth of valuable information that could help to discriminate across di�erent sources of
birefrigence [26] if a detection were made with next-generation surveys [33]. We illustrate
this point in figure 1; the left panel shows a simulated map of the birefringence angle across a
patch of the sky arising from a network of axion strings, and the right panel shows a map
that was simulated using Gaussian statistics with the same angular power spectrum. These
two images can be distinguished easily: the map on the left displays disk-like structures,
corresponding to the imprint of axion string loops. Since these birefringence maps have the
same two-point correlations, the di�erence between them arises from higher-order correlations,
which cannot reduce to two-point correlations for non-Gaussian statistics.

In this work we seek to quantify these non-Gaussian features in axion-string-induced
birefringence using three-point correlations (bispectrum) and four-point correlations (kurtosis),
which are familiar tools from studies of CMB non-Gaussianity [34]. Similar techniques have
been used in the past [35–38] to search for evidence of a cosmic string network’s gravitational
influence of the CMB anisotropies. Our approach is complementary to the one taken in
ref. [26], which contains a related analysis of axion-string-induced birefringence using the
scattering transform.

2 Kurtosis

We denote the birefringence map by –̂(n) where n is a unit vector, indicating a direction on
the sky, and –̂ is the birefringence angle, corresponding to the rotation of the polarization axis.
We use hats to denote random variables and angled brackets to denote ensemble averaging.
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The birefringence map admits a multipole expansion:

–̂(n) =
Œÿ

¸=0

ÿ̧

m=≠¸

–̂¸mY¸m(n) (2.1)

where –̂¸m are called the multipole moment coe�cients and Y¸m(n) are the spherical harmonics;
we use the standard normalization

s
d2n |Y¸m(n)|2 = 1. Since the birefringence map is real

–̂(n)ú = –̂(n), the complex multipole moment coe�cients obey –̂
ú
¸m = (≠1)m

–̂¸≠m.
Kurtosis is a convenient measure of non-Gaussianity that is both easy to calculate and

intuitive to understand. The kurtosis of the (complex) multipole moment coe�cients is given by

Ÿ¸m =
+--–̂¸m ≠ È–̂¸mÍ

--4,

+--–̂¸m ≠ È–̂¸mÍ
--2,2

=
+--–̂¸m

--4,

+--–̂¸m
--2,2

, (2.2)

where the first equality is the general definition, and the second equality holds for axion-string-
induced birefringence that has vanishing 1-point functions È–̂¸mÍ = 0. If the real and imaginary
parts of the multipole moment coe�cients were i.i.d. Gaussian random variables, then Isserlis’s
theorem (Wick’s theorem) would reduce the 4-point functions to products of 2-point functions.
For modes with m = 0 the reality condition forces –̂¸0 to be real implying Ÿ¸m = 3, whereas
for m ”= 0 the complex –̂¸m would have Ÿ¸m = 2 instead.1 We define the excess kurtosis

�Ÿ¸m =
I

Ÿ¸0 ≠ 3 , for m = 0
Ÿ¸m ≠ 2 , for m ”= 0

, (2.3)

which vanishes for Gaussian statistics. A positive excess kurtosis �Ÿ¸m > 0 corresponds to a
distribution with a tighter center and broader tails than a Gaussian having the same mean and
variance. In this way, kurtosis provides an intuitive measure of the departure from Gaussianity.

We seek to employ kurtosis as a measure of non-Gaussianity in axion-string-induced
birefringence maps. To that end, we simulate birefringence maps using the loop-crossing
model (LCM), as described in refs. [21, 24]. The LCM is informed by simulations of axion
string networks including refs. [39–55]. In this model, the string network is approximated as a
collection of circular planar loops with a statistically homogeneous distribution through space
and a statistically isotropic orientation. On cosmological time scales, the number density
of loops decreases and the length of loops grows so as to track the cosmological expansion.
Specifically, the number density of loops at time t is n(t) = ›0H(t)3

/2fi’0 and the radius of
loops at time t is ’0/H(t) where H(t) is the Hubble parameter. The dimensionless coe�cients,
›0 and ’0, are two model parameters, and string network simulations motivate values around
›0 = 1-10 and ’0 = 0.1-1. As a photon propagates through the string network, from the CMB
to a detector on Earth, birefringence accumulates each time the photon passes through the disk
bounded by a string loop. The birefringence induced by each loop crossing is ±A–em where
the dimensionless anomaly coe�cient A = 0.1-1 is another model parameter, –em ƒ 1/137 is
the electromagnetic fine structure constant, and the two equally-probable signs ±1 depend
on the relative orientation of the loop and the photon’s propagation direction. The signal of
axion-string-induced birefringence also depends upon the axion mass scale ma, since the string

1For a single Gaussian random variable x̂ with Èx̂Í = 0, one finds Èx̂4Í = 3Èx̂2Í2 and the kurtosis is
Èx̂4Í/Èx̂2Í2 = 3. For a complex random variable X̂ = x̂ + iŷ with statistically independent real and imaginary
parts Èx̂ŷÍ = 0, one finds instead È|X̂|4Í = È(x̂2 + ŷ2)2Í = 3Èx̂2Í2 + 2Èx̂2ÍÈŷ2Í + 3Èŷ2Í2 and È|X̂|2Í2 =
Èx̂2Í2 + 2Èx̂2ÍÈŷ2Í + Èŷ2Í2, and the kurtosis is È|X̂|4Í/È|X̂|2Í2 = 2 for Èx̂2Í = Èŷ2Í.
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network forms domain walls when the Hubble parameter is comparable to the axion mass scale,
possibly suppressing the signal of axion-string-induced birefringence [24]. In this work, we
assume that the axion mass is smaller than the Hubble scale today ma . 3H0 and the string
network survives until present times, allowing for an unsuppressed birefringence signal. We
implement the loop-crossing model in a Python code that interfaces with HEALPix [56, 57]
taking Nside = 128 or 512 for di�erent studies in this work. With a large number of simulated
birefringence maps we calculate sample means to estimate ensemble averages and thereby
evaluate the kurtosis of the multipole moment coe�cients.

Using the loop-crossing model, we obtain more than 60,000 simulated realizations (up to
150,000) of the axion-string-induced birefringence map. For each map we extract the multipole
moment coe�cients –̂¸m. To assess the departure from Gaussianity, we show in figure 2 the
distributions over Re –̂¸m for the lowest several multipole moments. The distributions over
Im –̂¸m (not shown) are similar. We only show multipole moments with m > 0 since the
reality condition imposes Re –̂¸m = (≠1)m Re –̂¸≠m. We give values of the sample mean µ̂¸m,
sample standard deviation ‡̂¸m, and sample excess kurtosis �Ÿ̂¸m that were inferred from the
suite of simulations. To highlight the departure of these distributions from Gaussianity, we
show a normal distribution (dashed line) with the same mean and variance as each histogram.
The histograms are approximately symmetric and centered close to zero, since each loop
crossing shifts the birefringence by ±A–em with equal probability.

Figure 2 displays a departure from Gaussianity for multipole moments with small index ¸.
For ¸ = 0 and 2, the distinction between the histogram and the normal distribution is clearly
evident. One can easily see that the histogram is tighter and taller around –̂¸m = 0, and
close inspection reveals that it also has wider tails. In general such features correspond to a
positive excess kurtosis. For the monopole we find the excess kurtosis to be �Ÿ̂0,0 ¥ 1.51; for
the quadrupole it is �Ÿ̂2,m ¥ 0.4; and for ¸ = 8 is it �Ÿ̂8,m ¥ 0.06. For a given ¸ we find that
each m has a similar distribution, which is consistent with the underlying statistical isotropy
of the loop-crossing model. These examples illustrate that the excess kurtosis decreases as
the multipole index ¸ increases.

We are interested in how the kurtosis varies across angular scales, and specifically how
quickly the excess kurtosis decreases for higher multipole moments. Since the loop-crossing
model generates a statistically isotropic birefringence map, we expect that �Ÿ̂¸m should only
depend on the index ¸. This observation motivates us to define the ‘angle-averaged’ excess
kurtosis

�Ÿ̂¸ © 1
¸

ÿ̧

m=1

�Ÿ̂¸m , (2.4)

for ¸ > 0. In figure 3 we show the average excess kurtosis across a range of angular scales
corresponding to multipole moment indices ¸ = 1 to 100. We obtain these numerical results
from simulated birefringence maps obtained through the loop-crossing model with four values
of the dimensionless loop-length parameter: ’0 = 10 corresponding to ten-times Hubble
scale loops, ’0 = 1 corresponding to Hubble scale loops, ’0 = 10≠0.5 ¥ 0.316, and ’0 = 0.1
corresponding to loops that are a tenth of the Hubble scale. Kurtosis is independent of the
parameter A, since –̂¸m Ã A and this factor cancels when calculating kurtosis as a ratio of
multipole moment coe�cients through eq. (2.2).

Figure 3 exhibits several notable features. We observe that: (1) the excess kurtosis is
positive across this range of multipoles and for this set of model parameters; (2) the excess
kurtosis is ¥ 0.1-10 at low multipoles, and its value goes inversely with ’0; and (3) the excess
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Figure 2. Histogram showing distributions over the real part of the multipole moment coe�cients –̂¸m

for axion-string-induced birefringence. These distributions were generated using 150,000 realizations of
birefringence maps simulated in the loop-crossing model with ’0 = 1, ›0 = 1, and A = 1. In each panel
the x-axis is the value of Re –̂lm in degrees, µ̂¸m and ‡̂¸m are the sample mean and standard deviation
of Re –̂¸m, and �Ÿ̂¸m is the excess kurtosis of –̂¸m through eqs. (2.2) and (2.3). Black dashed curves
show a Gaussian distribution with the same mean and variance as the histogram.
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Figure 3. Excess kurtosis of axion-string-induced birefringence for a range of multipole moments.
We show the average excess kurtosis �Ÿ̂¸ for multipole moments with index ¸ ranging from 1 to
100. The excess kurtosis is calculated from simulated birefringence maps that were created using the
loop-crossing model with ›0 = 1, A = 1, and three values of the loop-length parameter ’0. The number
of realizations is 150,000 for ’0 = 1, 40,000 for ’0 = 0.316, 62,000 for ’0 = 0.1, and 150,000 for ’0 = 10.
The curves approximately follow broken power law scalings for small and large multipoles.

kurtosis decreases with increasing multipole index ¸ in a (statistically) monotonic way, and it
approximately follows a broken power law scaling. These features can be loosely understood
as follows. For ’0 = 1 the string network contains only one or two loops at the largest angular
scales (smallest ¸), and the statistics of the birefringence map should also be order one numbers
implying Ÿ̂¸m ¥ 1 and �Ÿ̂¸ ¥ 1. Increasing ¸ corresponds to decreasing the angular scale of
interest, and the network contains more loops at smaller scales on average. As the number of
loops increases, their imprint on the birefringence map corresponds to many overlapping disks
and ellipses that each contribute ±A–em. Since each loop’s contribution can be either positive
or negative (with equal probability, associated with the random orientation of the loop), the
net birefringence grows like a random walk with a random number of steps. By the central
limit theorem, the statistics of this quantity converge to Gaussian in the limit of many loops.
Consequently, one expects an increasingly Gaussian birefringence map on smaller angular scales,
corresponding to an inverse relationship between ¸ and �Ÿ̂¸, such as the one seen in figure 3.
Furthermore, one expects the excess kurtosis to be positive, because the non-Gaussianity is
primarily driven by the fact that there are few large loops. These rare outliers boost the tails
of the –̂¸m distribution at values that are relatively large compared to the standard deviation;
such features are characteristic of a distribution with positive excess kurtosis.

The preceding loose argument can be formulated more concretely for the monopole –̂00,
which is proportional to the sky-average birefringence angle. This analysis is presented in
appendix A. We find that the excess kurtosis in the monopole is inversely proportional to
the average number of loops, �Ÿ̂0 = 1/N̄loops. Extending this scaling to the higher multipole
moments suggests the relationship �Ÿ̂¸ ≥ 1/N̄¸, where N̄¸ is the average number of loops at
a given angular scale ≥ fi/¸. By evaluating the average number of loops as a function of ¸

and the string network model parameters, ’0 and ›0, we obtain an analytical estimate of the
excess kurtosis

�Ÿ̂¸ ≥ ’0

8›0

3
1 + fi

⁄’0¸

42

. (2.5)

Here ⁄ ¥ 0.3 is a constant numerical factor. See appendix A for the derivation of eq. (2.5).
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The analytical formula in eq. (2.5) agrees well with the numerical results presented in
figure 3. Eq. (2.5) implies that �Ÿ̂¸ should scale like ¸

≠2 for ¸ π fi/(⁄ ’0) ¥ 10/’0 and like ¸
0

for larger ¸. Similarly, figure 3 shows an ¸
≠2 scaling for small values of ¸, and a flattening (in

the ’0 = 10, 1, and 0.316 curves) for larger values of ¸ approaching ¸ = 100. Additionally,
the angular scale dividing these two regimes is well approximated by 10/’0. For the ’0 = 0.1
curve, the flattening is not seen, and this is compatible with the analytical model since the
transition scale 10/’0 ¥ 100, and the full plot range from ¸ = 1 to 100 is in the ¸

≠2 regime.
Eq. (2.5) also predicts a scaling with the model parameters (’0, ›0, and A) that agrees well
with figure 3. For low multipoles, the formula implies �Ÿ̂¸ Ã 1/’0, which is consistent with the
numerical results in the figure insofar as lowering ’0 increases the excess kurtosis for ¸ . 30.
For high multipoles, the formula implies �Ÿ̂¸ Ã ’0, indicating a reversal of the scaling with
’0. The same reversal is seen on the figure, although the linear Ã ’0 scaling is not observed.
This is possibly because we only show multipoles up to ¸ = 100, whereas larger values of ¸ are
required to exhibit the linear scaling. Additionally, eq. (2.5) implies the relation �Ÿ̂¸ Ã ›

≠1

0
,

which we have also verified with numerical simulations taking A = ’0 = 1 and ›0 = 0.1, 1,
and 10 (results not shown here). Eq. (2.5) implies that �Ÿ̂¸ is independent of A, and this is
because A does not impact the average number of loops N̄¸; more generally, A cancels from
the kurtosis calculation entirely.

To conclude, let us address the issues of observability and cosmic variance. For a single
realization of the CMB sky, one can measure the excess kurtosis using an unbiased kurtosis
estimator. We consider a simple excess kurtosis estimator defined by

�Ÿ̂
(1)

¸ = 1
¸

ÿ̧

m=1

|–̂¸m|4

(C––
¸ )2

≠ 2 , (2.6)

which is motivated by the assumption that the birefringence power spectrum is measured
well enough that the true power spectrum C

––
¸ is approximately well known. One can

apply �Ÿ̂
(1)

¸ to a measurement of anisotropic CMB birefringence to estimate the excess
kurtosis. If the moments –̂¸m were a Gaussian random field, then the mean of this estimator
would vanish (Gaussian variables have zero kurtosis), and the standard deviation would be
StDev �Ÿ̂

(1)

¸ =


20/¸. This spread in the estimator, even for Gaussian statistics, is a form of
cosmic variance. To assess whether the excess kurtosis would be observable for a given model,
we can compare the predicted excess kurtosis from eq. (2.5) with the typical variation


20/¸.

For the parameters shown in figure 3, the predicted excess kurtosis typically falls below the
cosmic variance across a wide range of multipoles. On the other hand, in models with small
values of ’0 and ›0, the predicted kurtosis can be larger, especially at low multipoles.

3 Bispectrum

A widely-used measure of non-Gaussianity in studies of CMB temperature and polarization
anisotropies is the bispectrum, and here we turn our attention to the birefringence bispectrum.
We denote the first few moments of the multipole moment coe�cients –̂¸m as

–̄¸1m1 = È–̂¸1m1Í (3.1a)
P¸1m1¸2m2 = È–̂¸1m1–̂¸2m2Í (3.1b)

B¸1m1¸2m2¸3m3 = È–̂¸1m1–̂¸2m2–̂¸3m3Í . (3.1c)

– 7 –
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For axion-string-induced birefringence, the 1-point functions vanish –̄¸m = 0. If the map is
statistically isotropic and parity invariant, the 2-point and 3-point functions can be written
in terms of the angular power spectrum C¸ and the reduced bispectrum b¸1¸2¸3 through the
relations [58, 59]

P¸1m1¸2m2 = (≠1)≠m2”¸1¸2”m1≠m2C¸1 (3.2a)

B¸1m1¸2m2¸3m3 = h¸1¸2¸3

A
¸1 ¸2 ¸3

m1 m2 m3

B

b¸1¸2¸3 , (3.2b)

where h¸1¸2¸3 is a geometrical factor given by

h¸1¸2¸3 =

Û
(2¸1 + 1)(2¸2 + 1)(2¸3 + 1)

4fi

A
¸1 ¸2 ¸3

0 0 0

B

, (3.3)

and where the second factor is a Wigner 3-j symbol. The 3-j symbols vanish unless the
multipole moment indices obey the triangle inequality |¸1 ≠ ¸2| Æ ¸3 Æ ¸1 + ¸2 (and similarly
for the other two index permutations), implying that one can think of ¸1, ¸2, and ¸3 as the
lengths of the legs of a triangle. Additionally parity invariance requires the bispectrum to
vanish unless ¸1 + ¸2 + ¸3 is an even integer, and this parity condition is enforced by the
geometrical factor h¸1¸2¸3 . It is useful to define the random variables [58]:

Ĉ¸ = (2¸ + 1)≠1
ÿ̧

m=≠¸

–̂¸m–̂
ú
¸m (3.4a)

b̂¸1¸2¸3 = h
≠1

¸1¸2¸3

¸1ÿ

m1=≠¸1

¸2ÿ

m2=≠¸2

¸3ÿ

m3=≠¸3

A
¸1 ¸2 ¸3

m1 m2 m3

B

–̂¸1m1–̂¸2m2–̂¸3m3 , (3.4b)

which are unbiased estimators of the angular power spectrum and reduced bispectrum in the
sense that ÈĈ¸Í = C¸ and Èb̂¸1¸2¸3Í = b¸1¸2¸3 .

The bispectrum is a measure of the non-Gaussianity in the birefringence map. This
can be understood as follows. If the –̂¸m were independent Gaussian random variables, then
higher-point functions could be reduced to 1- and 2-point functions by applying Isserlis’s
theorem (Wick’s theorem). Since the 1-point functions vanish, one would expect the 3-point
functions to vanish as well implying b¸1¸2¸3 = 0 for a Gaussian birefringence map. Conversely,
the presence of non-Gaussianity allows the bispectrum to be nonzero, b¸1¸2¸3 ”= 0. However,
this need not be the case, and it is possible for a non-Gaussian birefringence map to have
a vanishing bispectrum b¸1¸2¸3 = 0, and the non-Gaussianity only manifests itself in higher
order moments such as the 4-point functions (trispectrum, kurtosis). In particular, although
axion-string-induced birefringence is non-Gaussian, we nevertheless expect the bispectrum to
vanish. This is because any configuration of loops that would give rise to a nonzero 3-point
function has an equiprobable ‘opposite’ with all loop orientations reversed, which cancels this
contribution in the ensemble average. However, it’s important to bear in mind that although
the bispectrum may vanish as an ensemble average b¸1¸2¸3 = 0, its estimator must be nonzero
for any given realization b̂¸1¸2¸3 ”= 0. Here we are primarily interested in evaluating the typical
size of the bispectrum estimator, quantified through its standard deviation StDev[b̂¸1¸2¸3 ].

To assess the typical bispectrum arising from axion-string-induced birefringence, we
have used the loop-crossing model to simulate a single realization of the birefingence map
and calculate the bispectrum estimator b̂¸1¸2¸3 . These results are presented in figure 4. On
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Figure 4. A single realization of the bispectrum estimator b̂¸1¸2¸3 calculated from a simulated
birefringence map using the loop-crossing model with parameters ’0 = ›0 = A = 1. For other values of
A the bispectrum estimator would scale as Ã A3. Left: colored dots indicate values of the bispectrum
estimator for multipole moment indices ¸1, ¸2, ¸3 ranging from 0 to 100 in steps of 10. Right: values of
the bispectrum estimator along the edge of the tetrahedron where ¸1 = ¸2 and ¸3 = 0 corresponding to
a ‘squeezed’ triangle (cross markers) and along the main diagonal where ¸1 = ¸2 = ¸3 corresponding to
an ‘equilateral’ triangle (square markers).

the left we show a visualization of b̂¸1¸2¸3 where the multipole moment indices (¸1, ¸2, ¸3) are
mapped to points in a three-dimensional volume. Colored dots indicate the value of the
bispectrum estimator on a log scale, and smaller values are rendered as semi-transparent
to enhance visibility. The tetrahedral shape is a consequence of the triangle inequalities
(|¸1 ≠ ¸2| Æ ¸3 Æ ¸1 + ¸2 and permutations), since the bispectrum estimator vanishes outside
of this region due to geometrical constraints imposed by the 3-j symbols. Additionally the
parity condition requires ¸1 + ¸2 + ¸3 to be an even integer, which further causes many
b̂¸1¸2¸3 to vanish. The right panel plots the bispectrum estimator along two rays through
the tetrahedron. These rays correspond to (1) the main diagonal of the tetrahedron along
which ¸1 = ¸2 = ¸3, corresponding to the equilateral triangle form; and (2) the edge of the
tetrahedron along which ¸1 = ¸2 and ¸3 = 0, corresponding to the squeezed triangle form. Due
to the symmetry properties of the 3-j symbols, the values of b̂¸1¸2¸3 along the three tetrahedral
edges are identical.

Several qualitative features of figure 4 are easily understood. Since the bispectrum b¸1¸2¸3
is expected to vanish for axion-string-induced birefringence, it is not surprising to see that
the bispectrum estimator b̂¸1¸2¸3 evaluates to a scatter of positive and negative values. For
¸1 = ¸2 = ¸3 = 0 the bispectrum estimator is simply the cube of the monopole multipole
moment coe�cient b̂000 =

Ô
4fi(–̂00)3, and using –̂00 ≥ 0.5 deg from figure 2 (same simulation

parameters) gives b̂000 ≥ 0.4 deg3, which is compatible with the figure. Moving to larger ¸, the
bispectrum estimator tends to decrease in magnitude for higher multipoles, and we quantify
and discuss this behavior further below. For this realization the bispectrum estimator is
positive along the three tetrahedral edges, corresponding to the squeezed triangle form, but
for other realizations they may be negative. The sign of b̂¸1¸2¸3 along these rays are correlated
with the random sign of the monopole –̂00. One can prove this using identities of the Wigner
3-j symbols, but heuristically the relation is b̂¸¸0 ≥ È|–̂¸m|2–̂00Í.

– 9 –



J
C
A
P
0
9
(
2
0
2
3
)
0
2
4

�0.5 0.0 0.5
0

5

10

15

(0, 0, 0)

�0.2 0.0 0.2
0

10

20

30

40

50 (2, 2, 2)

�5 0 5
�10�7

0

1

2

3

4

5

6
�106

(100, 100, 100)

b̂�1�2�3

Figure 5. Distributions of bispectrum estimators for ¸1 = ¸2 = ¸3 = 0 (left), 2 (middle), and 100
(right). We have used 5,000 simulations of the loop-crossing model with parameters ’0 = ›0 = A = 1.
For other values of A the bispectrum estimator would scale as Ã A3.

Repeating these simulations 5,000 times with the same LCM model parameters (’0 = ›0 =
A = 1), we evalaute the bispectrum estimator for each realization and present a sample of these
results in figure 5. We show histograms over the bispectrum estimator for ¸1 = ¸2 = ¸3 = 0, 2,
and 100, which are normalized so that their integral equals 1. These distributions appear to
be centered at b̂¸1¸2¸3 = 0, and they are approximately symmetric. Moreover, we have verified
that the sample mean falls like 1/

Ô
Nsims, as one expects for a random variable with vanishing

mean. The distributions in figure 5 appear visibly non-Gaussian for ¸ = 0 and 2, but this
is not evidence of non-Gaussianity, since the product b̂¸1¸2¸3 ≥ –̂

3

¸1¸2¸3 would be non-Gaussian
even if the individual factors –̂¸1¸2¸3 were Gaussian. For ¸ = 100 the distribution appears
Gaussian, and this can be understood from the central limit theorem: since the bispectrum
estimator is a sum over many terms b̂¸1¸2¸3 ≥

q
–̂

3, see eq. (3.4), we expect that b̂¸¸¸ should be
approximately normally distributed at high ¸ since b̂¸¸¸ is a linear combination of many i.i.d.
random variables. The width of the histogram decreases for increasing multipole moment
index ¸, which is compatible with the trend seen already in figure 4.

Although the bispectrum vanishes upon ensemble averaging, it is nonzero for each
realization. Such fluctuations could still impact CMB polarization data, where only one
realization is available. This observation motivates us to evaluate the standard deviation of
the bispectrum estimator StDev[b̂¸1¸2¸3 ] = [Èb̂2

¸1¸2¸3Í ≠ Èb̂¸1¸2¸3Í2]1/2. If the birefringence map
were Gaussian, the 6-point function Èb̂2

¸1¸2¸3Í ≥ È–̂6

¸mÍ could be reduced to products of 2-point
functions using Isserlis’s theorem. By doing so we find

StDev
#
b̂¸1¸2¸3

$
if –̂¸m are Gaussian

= |h¸1¸2¸3 |≠1

Ò
C¸1C¸2C¸3

◊
Ë
1 + 2”¸1¸2”¸2¸3 + ”¸2¸3 + ”¸1¸2 + ”¸3¸1 + 6 ”¸10 ”¸20 ”¸30

+ (2¸1 + 1) ”¸1¸2 ”¸30 + (2¸2 + 1) ”¸2¸3 ”¸10 + (2¸3 + 1) ”¸3¸1 ”¸30

È1/2

,

(3.5)

where C¸ is the angular power spectrum, and we assumed that the multipole indices obey the
triangle inequality and parity condition; variations of this formula (bispectrum covariance)
appear in refs. [60–63]. For a scale-invariant power spectrum ¸(¸ + 1)C¸ is independent of ¸,
and one expects to find StDev[b̂¸1¸2¸3 ] Ã ¸

≠7/2 in the equilateral configuration and a larger
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Figure 6. Top: standard deviation of the birefringence bispectrum estimator StDev[b̂¸1¸2¸3 ]. We show
all values that are nonzero for ¸ Æ 20; no binning was performed. Purple markers denote results from
axion-string-induced birefringence, calculated as the sample average of 5,000 LCM simulations for the
model with parameters ’0 = ›0 = A = 1. Crossed markers correspond to the squeezed triangle form
with ¸1 = ¸2, ¸3 = 0, and square markers correspond to the equilateral triangle with ¸1 = ¸2 = ¸3.
Black dots indicate the expected bispectrum standard deviation for Gaussian birefringence, given
by eq. (3.5). Bottom: the fractional di�erence between the bispectrum standard deviation and the
expectation for Gaussian statistics.

¸
≠2 in the squeezed configuration. We are interested in whether departures from this scaling

can arise from the inherent non-Gaussianity of axion-string-induced birefringence.
In figure 6 we show the sample standard deviation of the bispectrum estimator

StDev[b̂¸1¸2¸3 ], calculated using the same loop-crossing model parameters as in the previ-
ous figure, ’0 = ›0 = A = 1. The purple crosses and boxes correspond to axion-string-induced
birefringence, and they were calculated using our simulations; the black dots correspond to
Gaussian birefringence, and they were calculated using eq. (3.5). To evaluate C¸ in (3.5) we
performed 1,000 LCM simulations and averaged over the power spectrum estimator Ĉ¸ for
each realization, which is approximately scale invariant for ¸ . 100. From the figure, it can be
seen that the standard deviation of the bispectrum tends to track closely to the expectation
for Gaussian birefringence, particularly at higher multipoles with ¸ & 5. This explains why the
bispectrum tends to be larger for the squeezed configuration as compared with the equilateral
configuration, and why they decrease toward larger ¸ while approximately tracking power
laws. For low multipoles ¸ . 4 the di�erence between the bispectrum standard deviation
and the Gaussian expectation can be significant, reaching a maximum fractional di�erence of
approximately 80% for ¸1 = ¸2 = 1 and ¸3 = 0. Since the bispectrum tends to be larger than
the Gaussian expectation across a range of low multipoles, correlated measurements could be
used to search for evidence of non-Gaussian axion-string-induced birefringence.

4 Conclusion

If a network of axion strings is present in the Universe after recombination, then a coupling of
the axion-like particles to electromagnetism will induce anisotropic cosmic birefringence. The
birefringence angle will vary across the sky tracing the ‘shadow’ of the cosmic string network
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with sharp edges and loop-like features. The statistics of this birefringence map are therefore
non-Gaussian, since a Gaussian random field would resemble featureless noise. In this work
we have used two familiar measures of non-Gaussianity, kurtosis and bispectrum, to quantify
the departure from Gaussian statistics.

Kurtosis is calculated from the fourth moment of the birefringence rotation angle; roughly
Ÿ ≥ È–̂4Í/È–̂2Í2. For Gaussian statistics, four-point functions are equal to products of two-
point functions, and we define the excess kurtosis �Ÿ̂¸ to measure the deviation from Gaussian
statistics. We use a combination of numerical simulation, in a phenomenological framework
called the loop-crossing model, and analytical approximation to evaluate the excess kurtosis
across a range of angular scales (with multiple index ¸ = 0 to 100) and for a range of string
network model parameters (’0, ›0, and A). We find that excess kurtosis tends to be positive,
order 0.1 to 10 at the largest angular scales (depending on model parameters), and decreasing
toward smaller angular scales. To understand how the excess kurtosis varies with ¸ and
depends on the model parameters, we have developed a simplified analytical model that leads
to the approximation for �Ÿ̂¸ provided in eq. (2.5). This formula agrees remarkably well with
the scaling relations inferred from simulations. To assess observability, we have calculated the
cosmic variance of an excess kurtosis estimator assuming –̂ to be a Gaussian random field
and perfect knowledge of the power spectrum C

––
¸ . For small values of ’0 and ›0, the excess

kurtosis arising from axion-string induced birefringence can be larger, on average, than the
uncertainty from cosmic variance. These estimates indicate that the signal is detectable in
principle, but likely challenging in practice.

The bispectrum is defined as the third moment of the birefringence rotation angle at
di�erent angular scales; roughly b ≥ È–̂1–̂2–̂3Í. For axion-string-induced birefringence we
expect the bispectrum to vanish as an ensemble average, but it must be nonzero in any given
realization, and our analysis focuses on calculating its standard deviation. Using numerical
simulations of the loop-crossing model, we evaluate the reduced bispectrum b̂¸1¸2¸3 for a
range of angular scales from ¸i = 0 to 100. We find that the bispectrum tends to be largest
for the ‘squeezed’ triangle form (¸1 = 0, ¸2 = ¸3 and permutations) and relatively smaller
in the ‘equilateral’ triangle form (¸1 = ¸2 = ¸3). For both cases the typical bispectrum
decreases toward larger ¸i, approximately tracking a power law. We discuss how these general
trends would arise even if the birefringence rotation angle followed Gaussian statistics. For
the model parameters that we explored numerically here (’0 = ›0 = A = 1), the typical
bispectrum tracks the Gaussian expectation, and the largest di�erence occurs for ¸1 = ¸2 = 1
and ¸3 = 0 (and permutations) where the fractional di�erence is approximately 80%. This
deviation suggests that an anomalously large bispectrum would be consistent with axion-
strings, although additional information such as a measurement of the power spectrum would
be needed to claim evidence of axion strings from CMB polarization.

The work presented here serves to better characterize the cosmological signatures of an
axion string network present in the Universe after recombination. If evidence for anisotropic
birefringence is detected in CMB polarization measurements using two-point statistics, such
as EB cross-correlation, the higher-moment statistics studied here will prove valuable to
discriminate across di�erent possible new physics sources of birefringence. For instance, at
the level of the power spectrum the parameters of axion-string-induced birefringence exhibit
a degeneracy; the signal is proportional to A2

›0 where the anomaly coe�cient A quantifies
the strength of the axion-photon coupling, and the loop density parameter ›0 controls the
number of axion string loops per Hubble volume. A detection of anisotropic birefringence and
a measurement of its power spectrum would not provide su�cient information to discriminate
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between A and ›0. However, in general this degeneracy can be broken by higher-point
statistics [26]. For example, eq. (2.5) reveals that the excess kurtosis �Ÿ̂¸ is insensitive to A
and goes inversely with ›0. Consequently, with su�cient information it becomes possible to
independently determine the properties of the axion string network, parametrized here by ’0

and ›0, and the fundamental parameters of the new physics, parametrized by the anomaly
coe�cient A as well as the axion mass ma.
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A Analytical analysis for kurtosis

To develop an analytical understanding of the kurtosis arising in axion-string-induced birefrin-
gence, we provide here a simplified description that is analytically tractable. We first consider
the monopole –̂00 and then extend this analysis to higher multipoles with ¸ > 0.

A.1 Monopole

Consider the monopole of the birefringence map

–̂00 =
⁄

d2
n Y

ú
00(n) –̂(n) = 1Ô

4fi

⁄
d2

n –̂(n) . (A.1)

In the loop-crossing model, the birefringence map –̂(n) is built up from random overlapping
string loops of di�erent sizes and orientations, distributed isotropically across the sky. Photons
propagating through the disk encircled by a loop experience a random birefringence, which
accumulates with multiple loop crossings. For simplicity we suppose here that every loop
crossing leads to a statistically equivalent shift in the monopole, �–̂00 = +C or ≠C with
equal probability. More realistically in the loop-crossing model, larger loops contribute more
and smaller loops less, and the loop’s orientation a�ects the solid angle it spans on the sky,
but these e�ects are ignored for this simplified analysis. Note that the location of the loops on
the sky is irrelevant for the monopole. We also suppose that the number of loops giving this
contribution, denoted as N̂loops is random and Poisson distributed with intensity parameter
N̄loops. The quantity N̄loops is calculable within the loop-crossing model in terms of the
properties of the string network. These simplifications allow the monopole to be written as

–̂00 = C

N̂loopsÿ

i=1

Ŵi

Ŵi ≥ ≠1 or 1 with equal probability
N̂loops ≥ Poisson(N̄loops) .

(A.2)

This is an example of a hierarchical random model, where the number of random variables
(loop crossings) is itself a random variable.
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We are interested in the moments of –̂00, which give the kurtosis. It is useful to
recognize that (Ŵi + 1)/2 is a Bernoulli(1/2) random variable, taking values 0 and 1 with
equal probability. The sum over a sequence of n i.i.d. Bernoulli(1/2) random variables is
a binomial(n, 1/2) random variable. This motivates us to define Ŷn =

qn
i=1(Ŵi + 1)/2 and

write the monopole as

–̂00 = C

1
2ŶN̂loops

≠ N̂loops

2
. (A.3)

This expression can be used to calculate the kurtosis of –̂00 analytically using the fact that
for any two random variables x̂ and ŷ, expectation values can be calculated as [64]

E(x̂) = E
#
E(x̂|ŷ)

$
(A.4)

so long as the expectation values exist. For example, the first moment is calculated as follows:

1
C

E(–̂00) = 2 E
#
ŶN̂loops

$
≠ E(N̂loops)

= 2 E
#
E(ŶN̂loops

|N̂loops)
$

≠ N̄loops

= 2 E
#
N̂loops/2

$
≠ N̄loops

= 0 .

(A.5)

Repeating this procedure for E(–̂2
00), and E(–̂4

00) we find

E(–̂2

00) = C
2

N̄loops (A.6)

E(–̂4

00) = C
4

Ë
3N̄

2

loops + N̄loops

È
. (A.7)

The corresponding excess kurtosis is

�Ÿ0 = Ÿ00 ≠ 3 = E(â4
00)

E(â2
00

)2
≠ 3 = 1/N̄loops , (A.8)

which is the result quoted in the main text.

A.2 Higher multipoles

We suppose that the monopole relation in eq. (A.8) extends to higher multipoles as

�Ÿ¸ ≥ 1/N̄¸ , (A.9)

where N̄¸ denotes the average number of loops on an angular scale ≥ fi/¸. By calculating N̄¸

in the loop-crossing model, we obtain an expression for the angle-averaged excess kurtosis
�Ÿ¸ in terms of the multipole index ¸ and the string network model parameters.

First, in the loop-crossing model, the typical length of loops in the network grows with
time to track the growing Hubble scale. At redshift z, the typical angular scale of the loops
is [21]

”◊ ≥ fi/¸ ≥ 2⁄’0

a(z)H(z)s(z) , (A.10)

where ⁄ = 0.3 accounts for the random orientation of the loops, and in a matter-dominated
cosmology: a(z) Ã (1 + z)≠1 is the scale factor, H(z) Ã (1 + z)≠3/2 is the Hubble parameter,
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and s(z) =
s z

0
dz

Õ
/a0H(zÕ) is the comoving distance to redshift z. Solving this relation for z

gives

z¸ ≥ ⁄’0¸(2fi + ⁄’0¸)
fi2

, (A.11)

which represents the redshift at which loops with angular scale fi/¸ were present in the network.
In the loop-crossing model, the average comoving number density of loops in the network at
redshift z is taken to be

n̄(z) = ›0a(z)3
H(z)3

2fi’0

. (A.12)

Integrating over a spherical shell of redshifts z¸ < z < z¸ + �z gives

N̄¸ =
⁄ z¸+�z

z¸

dz 4fis
2(z)ds

dz
n̄(z)

¥ �z 4fis
2(z¸)

1
a0H(z¸)

›0a(z¸)3
H(z¸)3

2fi’0

≥ 8⁄
2
’0›0¸

2�z

(fi + ⁄’0¸)2
,

(A.13)

which represents the average number of loops with angular extent fi/¸. If the excess angle-
averaged kurtosis can be estimated as �Ÿ¸ ≥ 1/N̄¸, then we have

�Ÿ¸ ≥ ’0

8 ›0

3
1 + fi

⁄’0¸

42

(A.14)

where we have taken �z = 1. This expression matches the result quoted in the main text.
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