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The cores of dense stars are a powerful laboratory for studying feebly coupled particles such as axions.
Some of the strongest constraints on axionlike particles and their couplings to ordinary matter derive from
considerations of stellar axion emission. In this work we study the radiation of axionlike particles from
degenerate neutron star matter via a lepton-flavor-violating coupling that leads to muon-electron
conversion when an axion is emitted. We calculate the axion emission rate per unit volume (emissivity)
and by comparing with the rate of neutrino emission, we infer upper limits on the lepton-flavor-violating
coupling that are at the level of jgaeμj ≲ 10−6. For the hotter environment of a supernova, such as SN
1987A, the axion emission rate is enhanced and the limit is stronger, at the level of jgaeμj ≲ 10−11,
competitive with laboratory limits. Interestingly, our derivation of the axion emissivity reveals that axion
emission via the lepton-flavor-violating coupling is suppressed relative to the familiar lepton-flavor-
preserving channels by the square of the plasma temperature to muon mass ratio, which is responsible for
the relatively weaker limits.
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I. INTRODUCTION

Axions are pseudo-Goldstone bosons associated with a
spontaneously broken global symmetry that is anomalous
to the standard model (SM) gauge couplings [1]. Initially
proposed as a natural solution to explain the absence of the
neutron electric dipole moment [2–4], a QCD axion is
characterized by its decay constant fa [5–8] and its mass is
determined by ma ≈ 5.7 μeVð1012 GeV=faÞ [9,10]. Apart
from the QCD axion, axionlike particles have also been
extensively studied in string theory [11–13] and dark matter
physics [14–18]. For recent reviews, refer to [19–22].
Due to their weak interactions with SM particles,

detecting axions in terrestrial experiments is challenging.
Therefore, it is motivated to search for evidence of axions in
astrophysical systems where their feeble couplings are par-
tially compensated by high temperatures and densities [23].
For instance, probing axion emission from the white dwarf
luminosity function [24–27] places a stringent limit on
the axion-electron coupling at the level of gaee ≲ 10−13.
Additionally, the axion’s interaction with nucleons is
probed by neutron star (NS) cooling [28–30] and supernova

neutrino emission [31–38], which imply tight upper limits
at the level of gaNN ≲ 10−10.
As an extension of the SM, there is no strong reason for

the ultraviolet theory of axions to respect lepton flavor
conservation since it is an accidental symmetry of the SM
broken by tiny neutrino masses. The axions whose ultra-
violet theory is responsible for the breaking of the flavor
symmetry are known as flavons or familons [39–43], which
can also explain the strong CP problem if they have a
coupling to gluons [44,45]. Even if the underlying theory
preserves lepton flavor, lepton-flavor-violating (LFV)
effects can arise from radiative corrections [46–49]. It
has been shown that LFV interactions can account for the
production of dark matter through thermal freeze-in [50].
Tests of lepton flavor conservation thus provide important
information about new physics.
Laboratory tests of lepton-flavor violation serve as an

indirect probe of the axion’s LFV interactions. Notably,
charged lepton flavor violation would lead to rare lepton
decays [51]. If the axion were heavier than the muon,
an effective field theory approach could be used to study
decays such as μ → eγ, μ → 3e and μ − e conversion,
being the best process to detect LFV in the eμ sector.1 For
lighter axions, μ → ea could be the dominating channel
and the current limit on Brðμ → eaÞ is of order 10−6 [56]
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1In the SM, LFV decays are suppressed by the neutrino
mass-squared difference and Brðμ → eγÞ ∼ Brðμ → 3eÞ ∼ 10−54

[51–53], far below the current experimental limits Brðμ → eγÞ <
4.2 × 10−13 [54] and Brðμ → 3eÞ < 1.0 × 10−12 [55].

PHYSICAL REVIEW D 109, 103005 (2024)

2470-0010=2024=109(10)=103005(14) 103005-1 Published by the American Physical Society

https://orcid.org/0000-0003-4176-5707
https://orcid.org/0000-0003-0985-5809
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.103005&domain=pdf&date_stamp=2024-05-06
https://doi.org/10.1103/PhysRevD.109.103005
https://doi.org/10.1103/PhysRevD.109.103005
https://doi.org/10.1103/PhysRevD.109.103005
https://doi.org/10.1103/PhysRevD.109.103005
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


or 10−5 [57] depending on the axion mass and chirality of
the interaction. The limit will be improved in the future
experiments MEG II [58,59] and Mu3e [60] by up to two
orders of magnitude [61].
In this work, we aim to establish an astrophysical limit

on the axion’s LFV interactions based on NS cooling
arguments, as a complement to current lab limits. The basic
idea is illustrated in Fig. 1; if axions are produced in NS
cores, they must not carry energy out of the star more
efficiently than standard neutrino-mediated cooling chan-
nels [23]. In a NS core, unlike nondegenerate stars or even
white dwarf stars, the particle densities are so high that the
electron Fermi energy exceeds the muon mass, and an
appreciable population of muons is present [62]. As such,
NSs provide a unique opportunity to probe the axion’s LFV
coupling with muons and electrons.

II. AXIONS WITH LFV COUPLINGS

We consider a LFV coupling among the electron, muon,
and axion, which is expressed as

L LFV ¼
gaeμ

me þmμ
Ψ̄eγργ5Ψμ∂ρaþ H:c:; ð1Þ

where ΨeðxÞ is the electron field, ΨμðxÞ is the muon field,
aðxÞ is the axion field, me ≈ 0.511 MeV is the electron
mass, mμ ≈ 106 MeV is the muon mass, and gaeμ is the
axion’s LFV coupling. The coupling may also be written
in terms of the axion decay constant fa as gaeμ ¼
Caeμðme þmμÞ=ð2faÞ. This interaction can naturally arise,
e.g., in the models of the LFV QCD axion [7,8], the LFV
axiflavon [44,45,63], the leptonic familon [64–66] and the
Majoron [67,68] (also see Ref. [61] for a summary of
constraints). Past studies of charged lepton flavor violation,
from both terrestrial experiments and cosmological/
astrophysical observations, furnish constraints on the axion
LFV coupling gaeμ, which we summarize here.

The LFV interaction opens an exotic decay channel
for the muon μ → ea, as long as the axion mass is not too
large ma < mμ −me. The branching ratio is predicted
to be [69]

Brðμ → eaÞ ≈ Γðμ → eaÞ
Γðμ → eνν̄Þ

¼ 7.0 × 1015g2aeμ: ð2Þ

Initial searches for the two-body muon decay were per-
formed by Derenzo using a magnetic spectrometer, result-
ing in an upper limit on the branching ratio of 2 × 10−4 for
the mass range 98.1–103.5 MeV [70]. Jodidio et al. con-
strained the branching ratio for a massless familon to be
<2.6 × 10−6, which was later extended to massive particles
up to ∼10 MeV [61]. Bryman and Clifford analyzed data
of muon and tauon decays obtained from NaI(Tl)
and magnetic spectrometers, concluding an upper limit
of 3 × 10−4 for masses less than 104MeV [71]. Bilger et al.
studied muon decay in the mass range 103–105 MeVusing
a high purity germanium detector and established a limit of
5.7 × 10−4 [72], while the PIENU Collaboration improved
the limit in the mass range 87.0–95.1 MeV [73]. The
TWIST experiment performed a broader search for masses
up to ∼80 MeV by accommodating nonzero anisotropies,
resulting in an upper limit of 2.1 × 10−5 for massless
axions [57]. These constraints on Brðμ → eaÞ translate
into upper limits on the LFV coupling gaeμ, and we
summarize the current status in Table I.
Apart from terrestrial experiments, cosmological and

astrophysical observations also constrain the axion’s LFV
interaction. If this interaction were too strong, relativistic
axions would be produced thermally in the early Universe;
however, the presence of a dark radiation in the Universe is
incompatible with observations of the cosmic microwave
background anisotropies. Constraints on dark radiation
are typically expressed in terms of a parameter Neff called
the effective number of neutrino species. A recent study
of flavor-violating axions in the early Universe finds that
current observational limits on Neff require the LFV
coupling to obey j2fa=Caeμj > 2.5 × 108 GeV [74]. Astro-
physical probes of the axion’s LFV interaction have not
been extensively explored. Calibbi et al. considered the
bound on Brðμ → eaÞ from SN 1987A associated with the
cooling of the proto-NS [61]. Assuming that the dominant
energy loss channel is free muon decay μ → ea, they derive
an upper limit on the branching ratio at the level of
4 × 10−3. We find that a stronger constraint is obtained
from the 2-to-3 scattering channels, such as μp → epa, and
we discuss this result further below.
To provide a comprehensive overview, we also introduce

the constraints on LFV couplings involving τ leptons.
Currently, laboratory limits on the branching ratios of rare
tauon decays are Brðτ → eaÞ < 2.7 × 10−3 and Brðτ →
μaÞ < 4.5 × 10−3 [61,75]. Constraints from Neff are more

FIG. 1. If axions are produced in neutron star cores, they will
carry energy out of the star and make the neutron star cool down
more efficiently than expected.
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stringent, Brðτ → eaÞ≲ 3 × 10−4 and Brðτ → μaÞ≲ 5 ×
10−4 [74]. Each of these limits is expected to improve
significantly, by up to three orders of magnitude, in the
future Belle II [61,76] and CMB-S4 experiment [74,77,78].
However, it remains challenging to impose constraints on τ
leptons from astrophysical systems due to their consider-
able mass of 1.8 GeV, which far exceeds stellar core
temperatures.

III. AXION EMISSION VIA LFV COUPLINGS

The emission of axions from NS matter via the LFV
interaction can proceed through various channels. One
might expect the dominant channel to be the decay of free
muons μ → ea; however, since the electrons in NS matter
are degenerate, this channel is Pauli blocked, and its rate is
suppressed in comparison with scattering channels. Since
NSmatter consists of degenerate electrons, muons, protons,
and neutrons, various scattering channels are available. We
denote these collectively as2

lþ f → l0 þ f þ a; ð3Þ

where a lepton l ¼ e, μ is converted to another l0 ¼ μ, e
with the spectator particle f ¼ p, e, μ. We consider
channels in which the NS’s muon is present in the initial
state, and channels in which muons are created thanks to
the large electron Fermi momentum. The scattering is
mediated by the electromagnetic interaction (photon
exchange), and channels involving neutrons are neglected.
Assuming that all particles are degenerate, scattering pre-
dominantly happens for particles at the Fermi surface.
These processes are kinematically allowed if jpF;l − pF;fj <
pF;l0 þ pF;f and jpF;l0 − pF;fj < pF;l þ pF;f, implying

the existence of a threshold momentum of the spectator
particle,

pF;f > ðpF;e − pF;μÞ=2: ð4Þ

Here we have introduced the Fermi momentum pF;i of the
particle species i.
The quantities of interest are the axion emissivities εðlfÞa ,

which corresponds to the energy released in axions per unit
volume per unit time through the channel lf → l0fa. We
assign ðE1; p1Þ and ðE0

1; p
0
1Þ for the initial and final four-

momenta of the converting leptons l and l0, ðE2; p2Þ and
ðE0

2; p
0
2Þ for the spectator f, and ðE0

3; p
0
3Þ for the axion. Then

the axion emissivity is calculated as

εðlfÞa ¼ ð2πÞ4

S

Z Y2

i¼1

gdpi

Y3

j¼1

gdp0
j

X

spin

jMðlfÞj2

× δð4Þ
!
p1 þ p2 − p0

1 − p0
2 − p0

3

"

× E0
3f1f2ð1 − f01Þð1 − f02Þ; ð5Þ

where S is the symmetry factor accounting for identical
initial and final state particles, MðlfÞ is the Lorentz
invariant matrix element, fi and f0i are the Fermi-Dirac
distribution functions, the factor ð1 − f0iÞ takes into account
the Pauli blocking due to particle degeneracy, and fdp≡
d3p=½ð2πÞ32E& is the Lorentz-invariant differential phase
space element. We do not include a factor of ð1þ f03Þ, since
f03 ≪ 1 and there is no Bose enhancement for axion
production since NSs are essentially transparent to axions
for the currently allowed parameter space.
Calculating the emissivity (5) requires evaluating the 15

momentum integrals along with the four constraints from
energy and momentum conservation. We evaluate all but
two of these integrals analytically using the Fermi surface

TABLE I. Summary of constraints on the axion’s LFV coupling in the e–μ sector, where stronger constraints are presented at the
bottom. See the main text for more detailed descriptions. For the NS cooling limit, we calculate the axion emissivity via lþ f →
l0 þ f þ a and compare with the neutrino emissivity via Murca channels. For the SN 1987A limit, we compare with the upper bound on
energy loss rate.

jgaeμj 2fa
Caeμ

½GeV& Brðμ → eaÞ ma ½MeV& Experiment Reference

<3.0 × 10−6 >3.5 × 104 <1.0 ≲1 NS cooling This work
≲8 × 10−10 ≳1 × 108 ≲4 × 10−3 ≲50 SN 1987A, μ → ea [61]
<4.2 × 10−10 >2.5 × 108 <1.3 × 10−3 ≲10−7 Cosmology, ΔNeff [74]
<2.9 × 10−10 >3.7 × 108 <5.7 × 10−4 103–105 Rare muon decay [72]
≲2 × 10−10 ≳5 × 108 ≲3 × 10−4 <104 Rare muon decay [71]
<2 × 10−10 >6 × 108 <2 × 10−4 98.1–103.5 Rare muon decay [70]
<1 × 10−10 >9 × 108 <1 × 10−4 47.8–95.1 Rare muon decay (PIENU)a [73]
<5.5 × 10−11 >1.9 × 109 <2.1 × 10−5 <13 Rare muon decay (TWIST) [57]
≲4 × 10−11 ≳3 × 109 ≲9 × 10−6 ≲50 SN 1987A, lf → l0fa This work
<1.9 × 10−11 >5.5 × 109 <2.6 × 10−6 ≲10 Rare muon decay [56,61]

aThe PIENU Collaboration obtained upper limits on the branching ratio from 10−4 to 10−5 for the considered mass range.

2We neglect the Compton process for axions, since the number
density of photons is low compared to other particles.
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approximation, and we calculate the last two integrals using
numerical techniques. The Fermi surface approximation
assumes that the integrals are dominated by momenta near
the Fermi surface jpj ≈ pF; smaller and larger momenta do
not contribute because of Pauli blocking or Boltzmann
suppression. We find the axion emissivity of the lf → l0fa
channel to be

εðlfÞa ¼
328π2α2g2aeμ

945m4
μ

βF;lE3
F;e

β2F;fp
2
F;f

FðlfÞT8; ð6Þ

where α ≈ 1=137 is the electromagnetic fine-structure
constant, EF;i is the Fermi energy, βF;i ≡ pF;i=EF;i is the
Fermi velocity, T is the plasma temperature, and FðlfÞ is a
factor depending on both the specific process and the Fermi
velocity of the scattering particles. To derive (6), we have
assumed that the axion mass is small compared to the NS
temperature ma ≪ T, muons and electrons are in the beta
equilibrium (i.e., EF;e ≈ EF;μ), electrons are ultra relativ-
istic but muons are not (i.e., pF;μ ≲mμ), and T ≪ m2

μ=EF;e.
Our derivation of (6) can be found in Appendix A. In
addition, we evaluate the emissivity fully numerically using
Monte Carlo integration methods to estimate the integrals
in (5) without employing the Fermi surface approximation.
In the regime of interest, the two methods agree very
well. The impact of an axion mass ma ≳ T is discussed in
Appendix C.
The temperature dependence of the axion emissivity (6)

is especially interesting and important for understanding
the limits from NS cooling. For comparison, note that
axion bremstrahlung via lepton-flavor-preserving (LFP)
interactions (such as ep → epa or μp → μpa) goes as
εa ∝ T6. In other words, the LFV interaction leads to
an emissivity that’s suppressed by an additional factor
of T2E2

F;e=ðm2
μ −m2

eÞ2 ∼ T2=m2
μ, which is of order

ð100 keV=100 MeVÞ2 ∼ 10−6 for T ∼ 109 K. A detailed
discussion appears in Appendix A, but the essential idea
can be understood as follows. The phase-space integrals
over momenta can be converted to energy integrals,
and each integral for degenerate leptons and protons is
restricted to the Fermi surface of thickness ∼T, giving a
factor of T4. The phase-space integral of axions (i.e.,
d3p0

3=E
0
3) gives a factor of T2. The axions are emitted

thermally and have an energy ∼T. The energy conservation
delta function gives T−1. The squared matrix element has a
temperature dependence T2. Putting all these together, we
see that the emissivity is proportional to T8. In comparison,
the squared matrix element for the LFP interactions has
no temperature dependence since one power of T from
the coupling vertex is canceled by T−1 from the lepton
propagator.
We numerically evaluate the axion emissivities (6)

and present these results in Fig. 2 for the six channels
lf → l0fa, where the effective mass of protons is taken to

be 0.8mp (see Ref. [79] and references therein).3 Using the
strong degeneracy of particles and the beta equilibrium
condition EF;e ≈ EF;μ, one can show that the emissivities
are equal for the channels ef → μfa and μf → efa. Thus,
the plot only shows three curves corresponding to in-states
consisting of a muon and a spectator particle f ¼ p, e, μ.
The channels with a spectator proton (f ¼ p) have the
largest emissivity across the range of muon Fermi momenta
shown here; this is a consequence of the enhanced matrix
element and the larger available phase space for these
scatterings. For the channels with a spectator muon
(f ¼ μ), the emissivity drops to zero below βF;μ ≈ 0.34;
this corresponds to a violation of the kinematic threshold
in (4). For all channels, the emissivity decreases with
decreasing muon Fermi velocity due to the reduced
kinematically allowed phase space. On the other hand,
for larger muon Fermi velocity, the channels with spectator
electrons and muons coincide, since both particles can be
regarded as massless. For the top axis in Fig. 1, we show the
corresponding mass density of a NS assuming the npeμ
model; see Appendix B for more details.
The total axion emissivity is obtained by summing over

the six channels. For this estimate we set βF;μ ¼ 0.84. We
find the axion emissivity via LFV interactions to be

εLFVa ≃ 4.8 × 1032g2aeμT8
9 erg cm−3 s−1; ð7Þ

where T9 ≡ T=ð109 KÞ and 109 K ≈ 86.2 keV.

0.0 0.2 0.4 0.6 0.8

106

107

108

109

1010

4.6 5 6 8 10 15 25

FIG. 2. Axion emissivities εðlfÞa for the LFV process
lþ f → l0 þ f þ a, given by Eq. (6), as a function of the muon
Fermi velocity βF;μ. The top axis, in a nonlinear scale, represents
the corresponding mass density of a NS assuming the npeμ
matter. Here we take gaeμ ¼ 10−11 and T ¼ 109 K, and more

generally εðlfÞa ∝ g2aeμT8.

3Using electric charge neutrality and the beta equilibrium
condition EF;e ≈ EF;μ, the emissivity is fully determined given
the effective proton mass and βF;μ.
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IV. IMPLICATIONS FOR NS COOLING

In low-mass NSs, slow cooling could occur via neutrino
emission by the modified Urca (Murca) processes
nn → npeν̄, npe → nnν or slightly less efficient processes
such as the nucleon bremsstrahlung [80,81]. At the density
ρ ¼ 6ρ0, where ρ0 ¼ 2.5 × 1014 g cm−3 is the nuclear
saturation density [82], and with the effective nucleon
mass taken to be 0.8mN [79], the emissivity of the Murca
process is given by εν ¼ 4.4 × 1021T8

9 erg cm−3 s−1 [83].
Comparing this rate with (7), one finds that the axion
emission from LFV couplings dominates the neutrino
emission unless

jgaeμj≲ 3.0 × 10−6; ð8Þ

which is consistent with existing constraints. In heavier
NSs, the LFV emission of axions tends to have a less
significant impact. This is because fast neutrino emission
could occur via the direct Urca processes [84]. In the
presence of superfluidity, the formation of Cooper pairs can
dominate over the Murca process [85,86], further dimin-
ishing the role of LFV axion emission. Medium effects for
neutrino emission processes are discussed in [81,87,88].
Axions are predominantly produced in NSs through the

nucleon bremsstrahlung process nn → nna. At the same
core conditions, its emissivity is given by εðnnÞa ≃ 2.8 ×
1038g2annT6

9 erg cm−3 s−1 [89,90]. The nucleon bremsstrah-
lung process dominate the LFV processes if

jgaeμj≲ 7.6 × 102jgannjT−1
9 : ð9Þ

The current best constraint on the axion-neutron coupling is
jgannj≲ 2.8 × 10−10 [29]. Therefore, it is unlikely for the
LFV couplings to play a significant role in NSs with an age
≳1 yr, where the temperature has cooled to 109 K [91].
These limits on the axion’s LFV coupling are relatively

weak, and this is a consequence of the εLFVa ∝ T8 scaling,
which is suppressed compared to LFP channels by a factor
of ðT=mμÞ2, which is tiny in old NSs. However, in the

proto-NS that forms just after a supernova, this ratio can
be order one, which suggests that stronger limits can be
obtained by considering the effect of axion emission on
supernova rather than NSs. Since our analysis has focused
on NS environments, adapting our results to the more
complex proto-NS system requires some extrapolation.
We estimate the axion emissivity from a supernova by
extrapolating (7) to high temperatures. By imposing the
bound on the energy loss of SN 1987A, εa=ρ≲
1019 erg g−1 s−1 [23], one finds that at a typical core condi-
tion ρ ∼ 8 × 1014 g cm−3,

jgaeμj≲ 4 × 10−11
#
50 MeV

T

$
4

; ð10Þ

which is to be evaluated at T ∼ ð30–60Þ MeV. This
constraint is more stringent than that obtained from con-
sidering μ → ea in a supernova and is comparable to the
current best terrestrial limit.
One should note that at typical core conditions of a

proto-NS, nucleons and muons are at the borderline
between degeneracy and nondegeneracy where electro-
magnetic field screening effects become significant. In
Appendix C, we discuss the effect of electromagnetic field
screening due to the presence of a degenerate plasma with
charged constituents on the axion emissivity. We then
account for this effect in our numerical code by introducing
an effective mass for photon propagators of order the
Thomas-Fermi wavenumber kTF.

4 Using Monte Carlo inte-
gration we evaluate the axion emissivity up to temperatures
of 100 MeV and find that extrapolating the degenerate rate
tends to overestimate the emissivity by a factor of ∼10,
leading to a weaker supernova constraint by a factor ∼3.

FIG. 3. Summary of constraints on the axion’s LFV coupling in the e–μ sector. The constraints labeled with “Calibbi et al.” and “This
work” are astrophysical and the others are lab limits obtained by measuring rare muon decay rates. The weaker constraint we derive from
NS cooling and the cosmological constraint inferred from the ΔNeff observation, shown in Table I, do not appear on this part of
parameter space. For the region labeled with “This work”, we assume a supernova core temperature T ¼ 30 MeV and a higher
temperature T ¼ 50 MeV would expand the exclusion region into that enclosed by the black dashed line.

4While this methodology is not apt for strongly coupled
plasmas like NSs and white dwarfs, it does furnish reasonably
accurate estimates of the screening effect in axion bremsstrahlung
processes within white dwarfs [23].
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V. DISCUSSION

In this article, we study the astrophysical signatures of an
axionlike particle’s LFV coupling with muons and elec-
trons. We focus on axion emission from NS cores, where
the electron Fermi energy is large enough to maintain a
high abundance of muons. Our limits on the LFV coupling
gaeμ derive from comparing the axion emission rate with the
energy loss rate due to neutrino emission, since excessively
strong axion emission would conflict with the observations
of old NSs and SN 1987A. The summary of current
constraints is shown in Fig. 3.
Further research is needed to assess the impact of axion’s

LFV interactions on the entire cooling history of the star,
including a careful treatment of equations of state and
nuclear interactions. Stronger nuclear interactions would
result in higher number densities of protons and muons at
the same mass density, thereby enhancing the rate of the
LFV interactions. Such an analysis is particularly motivated
for axion emission from proto-NSs formed after type-II
supernovae, where the transition from nondegenerate to
degenerate matter and the creation of the muon population
could impact axion emissivities. Our work highlights the
importance of assessing both the free muon decay channel
μ → ea as well as scattering channels lf → l0fa in such
studies.
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APPENDIX A: CALCULATION OF AXION
EMISSIVITY

In this section, we implement the Fermi surface approxi-
mation and evaluate the axion emissivity from the process
lþ f → l0 þ f þ a, where a lepton l ¼ e, μ is converted to
another l0 ¼ μ, e with the spectator particle f being one of
p, e, μ. This approximation was also used in the calculation
of neutrino emissivities [83,92] and axion emissivities for
the bremsstrahlung process by nucleons [89,90,93,94]. The
metric signature is ð−;þ;þ;þÞ.
The axion emissivity is calculated as

εðlfÞa ¼ 1

S

Z
d3p1

ð2πÞ3
1

2E1

d3p2

ð2πÞ3
1

2E2

d3p0
1

ð2πÞ3
1

2E0
1

d3p0
2

ð2πÞ3
1

2E0
2

d3p0
3

ð2πÞ3

×
1

2E0
3

X

spin

jMðlfÞj2ð2πÞδ
!
E1 þ E2 − E0

1 − E0
2 − E0

3

"

× ð2πÞ3δð3Þ
!
p1 þ p2 − p01 − p02 − p03

"

× E0
3f1f2ð1 − f01Þð1 − f02Þ; ðA1Þ

whereMðlfÞ is the Lorentz-invariant matrix element for the
scattering lþ f → l0 þ f þ a. The symmetry factor S is
needed to avoid double counting of identical particles if l
or l0 ¼ f. The energies Ei are determined by the on shell
conditions; Ei ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpij2 þm2

i

p
for i ¼ 1; 2; 10; 20; 30. The

thermal factors f1f2ð1 − f01Þð1 − f02Þ restrict the fermion
particle energies (E1, E2, E0

1, and E0
2) to be near their

respective Fermi energies EF;i within a narrow range of
order temperature T ≪ EF;i. This observation motivates the
Fermi surface approximation, by which the emissivity is
factorized into angular integrals with momenta restricted to
the Fermi surface and energy integrals. To implement the
Fermi surface approximation we introduce Dirac delta
functions that fix the magnitude of the fermion 3-momenta
to equal their respective Fermi momenta, and we promote
the fermion energies to integration variables via the
prescription:

d3p → d3p
Z

E
pF

δðp − pFÞdE: ðA2Þ

This approximation allows the emissivity to be written as

εðlfÞa ¼ 1

25ð2πÞ11pF;1pF;2pF;10pF;20S
JA; ðA3Þ

which splits the calculation into two parts: an angular
integral A and an energy integral J, defined by

A≡
Z

d3p1d3p2d3p0
1d

3p0
2d

2Ω0
3δðp1 − pF;1Þδðp2 − pF;2Þ

× δðp0
1 − pF;10Þδðp0

2 − pF;20Þδ3ðp1 þ p2 − p01 − p02Þ

×

P
spinjMðlfÞj2Fermi

E0
3
n ; ðA4Þ

J ≡
Z

dE1dE2dE0
1dE

0
2dE

0
3δ
!
E1 þ E2 − E0

1 − E0
2 − E0

3

"

× f1f2ð1 − f01Þð1 − f02ÞE0
3
nþ2: ðA5Þ

The matrix element jMðlfÞjFermi is evaluated with fermion
3-momenta and energies fixed to the respective Fermi
momenta and Fermi energies. The exponent n is chosen
such that E0−n

3

P
spin jMðlfÞj2Fermi is independent of E

0
3. We

have neglected the axion momentum in the momentum
conservation delta function since p0

3 ∼ T ≪ pF;μ. The mass
dimension of J and A is 6þ n and 3 − n, and that of
jMðlfÞj2 is −2. For the LFV channels considered in this
work, we note that pF;2 ¼ pF;20 , n ¼ 2, and S ¼ 1 for f
being a proton and S ¼ 2 otherwise.
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1. Energy integral

The energy integral can be written as

J ≈
Z

∞

−∞
dx1

Z
∞

−∞
dx2

Z
∞

−∞
dx01

Z
∞

−∞
dx02

Z
∞

0
dz

T6þnz2þnδðx1 þ x2 þ x01 þ x02 − zÞ
ðex1 þ 1Þðex2 þ 1Þðex01 þ 1Þðex02 þ 1Þ

¼ T6þn

6

Z
∞

0
dz

z3þnðz2 þ 4π2Þ
ez − 1

; ðA6Þ

where xi ≡ ðEi − EF;iÞ=T, x0i ≡ ðE0
F;i − E0

iÞ=T, and z≡ E0
3=T. The approximation symbols arise from extending the limits

of integration to infinity. The second equality is derived using the technique in [95]. For n ¼ 2, we obtain

J ¼ 164π8

945
T8: ðA7Þ

2. Angular integral

For the angular integral, we first integrate d3p0
2 with the momentum delta function and dp1; dp2; dp0

1 with the Fermi
surface delta function. It is convenient to align all angles with respect to p1, so

R
d2Ω1 simply gives 4π. The angular integral

A becomes

A ¼ 4πp2
F;1p

2
F;2p

2
F;10

Z
1

−1
dc12

Z
1

−1
dc110

Z
1

−1
dc130

Z
2π

0
dφ12

Z
2π

0
dφ110

Z
2π

0
dφ130δðp0

2 − pF;20ÞE0−n
3

X

spin

jMðlfÞj2Fermi;

¼ 32π3p2
F;1p

2
F;2p

2
F;10

Z
1

−1
dc12

Z
1

−1
dc110

Z
1

−1
dc130

Z
π

0
dvφδðp0

2 − pF;20Þ
&
E0−n
3

X

spin

jMðlfÞj2Fermi

'

φ130

; ðA8Þ

where cij denotes the cosine of the angle between pi and pj, uφ ≡ φ110 þ φ12, vφ ≡ φ110 − φ12, and h' ' 'iφ130
stands for an

average over φ130. To obtain the second equality, we have assumed that hE0−n
3

P
spin jMj2Fermiiφ130

and δðp0
2 − pF;20Þ do not

depend on uφ, and may rely on vφ only through cos vφ.
To simplify the expression further, we note that 2 and 20 represent identical particle species whereas 1 and 10 represent

different particle species, and either pF;2 ≥ pF;1; pF;10 or pF;2 < pF;1; pF;10. The delta function then becomes

δðp0
2 − pF;20Þ ¼

δðvφ − vφ;0Þ

pF;10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − c2110Þð1 − c212Þð1 − cos2 vφ;0Þ

q ; ðA9Þ

where

vφ;0 ¼ arccos
(
p2
F;1 þ p2

F;10 − 2pF;1pF;10c110 þ 2pF;2ðpF;1 − pF;10c110Þc12

2pF;10pF;2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − c2110Þð1 − c212Þ

q
)
: ðA10Þ

To have a real-valued vφ;0 within the range from 0 to π, we must require cos2 vφ;0 < 1. This restricts the range of dc110 and
dc12 integrals to be within,

c−110 < c110 < cþ110 ; c−12 < c12 < cþ12; ðA11Þ

where

c(110 ¼
ðpF;1 þ pF;2c12Þðp2

F;1 þ p2
F;10 þ 2pF;1pF;2c12Þ

2pF;10ðp2
F;1 þ p2

F;2 þ 2pF;1pF;2c12Þ
(
pF;2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc212 − 1Þ½ðp2

F;1 − p2
F;10 þ 2pF;1pF;2c12Þ2 − ð2pF;2pF;10Þ2&

q

2pF;10ðp2
F;1 þ p2

F;2 þ 2pF;1pF;2c12Þ
;

ðA12Þ

NEUTRON STAR COOLING WITH LEPTON-FLAVOR-VIOLATING … PHYS. REV. D 109, 103005 (2024)

103005-7



and

cþ12 ¼ min
(
1;
p2
F;10 − p2

F;1 þ 2pF;2pF;10

2pF;1pF;2

)
;

c−12 ¼ max
(
−1;

p2
F;10 − p2

F;1 − 2pF;2pF;10

2pF;1pF;2

)
: ðA13Þ

Combining Eqs. (A8)–(A13), we find

A ¼ 32π3p2
F;1p

2
F;2pF;10

Z
cþ
12

c−12

dc12

Z
cþ
110

c−
110

dc110
Z

1

−1
dc130

×
hE0−n

3

P
spinjMðlfÞj2Fermiiφ130 ;vφ¼vφ;0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − c2110Þð1 − c212Þð1 − cos2vφ;0Þ
q : ðA14Þ

We need to calculate the matrix element at the Fermi
surface to evaluate this integral.

3. Matrix element

Now we evaluate the matrix element. It is convenient to
use the LFV coupling,

LLFV ¼ −igaeμaðΨ̄eγ5Ψμ þ Ψ̄μγ5ΨeÞ; ðA15Þ

which is equivalent to the use of the pseudovector (deriva-
tive) form written in the main text if each fermion line is
attached to at most one axion line [96]. Given the two
Feynman diagrams in Fig. 4, the matrix elements are

iMð1Þ ¼ (e2gaeμ

(
ū01γ

μ −=rþm0
1

r2 þm02
1

γ5u1

)
−gμν
k2

½ū02γνu2&;

ðA16Þ

iMð2Þ ¼ (e2gaeμ

(
ū01γ5

−=sþm1

s2 þm2
1

γμu1

)
−gμν
k2

½ū02γνu2&;

ðA17Þ

where k≡ p2 − p0
2, r≡ p1 − p0

3, s≡ p0
1 þ p0

3 and( refers
to the sign of the spectator particle’s electric charge. In
NSs we have jm2

1 −m02
1 j ≈m2

μ ≫ EFE0
3, thus r2 þm02

1 ≈
−m2

1 þm02
1 and s2 þm2

1 ≈ −m02
1 þm2

1. The matrix element
for exchange diagrams can be obtained by ð1 ↔ 2Þ or
ð10 ↔ 20Þ, with an additional factor of −1 included.
The spin-summed squared matrix element is

X

spin

**MðlpÞ
**2 ¼ −

128g2aeμe4

ðp2 − p0
2Þ4

×
ðp1 · p0

1 þm1m0
1Þðp2 · p0

3Þðp0
2 · p

0
3Þ

ðm2
1 −m02

1 Þ2
;

ðA18Þ

X

spin

**MðllÞ
**2 ¼

X

spin

**MðlpÞ
**2 þ ð1 ↔ 2Þ þ T ðllÞ; ðA19Þ

X

spin

**Mðll0Þ
**2 ¼

X

spin

**MðlpÞ
**2 þ ð10 ↔ 20Þ þ T ðll0Þ; ðA20Þ

where l ¼ e, μ and l0 ¼ μ, e. The second term in (A19) and
(A20) is the contribution solely from the exchange dia-
grams given by the first term but with ð1 ↔ 2Þ. The third
term in (A19) is the interference between prototype and
exchange diagrams given by

T ðllÞ ¼
64g2aeμe4

ðp1 − p0
2Þ2ðp2 − p0

2Þ2
p0
2 · p

0
3

ðm2
1 −m02

1 Þ2

×
+
ðp2 · p0

1 þm1m0
1Þðp1 · p0

3Þ
þ ðp1 · p0

1 þm1m0
1Þðp2 · p0

3Þ
− ðp1 · p2 þm2

1Þðp0
1 · p

0
3Þ
,
; ðA21Þ

and Tðll0Þ in (A20) by T ðllÞ but with ð1 ↔ 10Þ and ð2 ↔ 20Þ.
Here we evaluate the traces of products of gamma matrices
and spinors with the help of the Mathematica package
FeynCalc [97].
At the Fermi surface, the spin-summed squared matrix

element becomes

X

spin

**MðlfÞ
**2
Fermi ¼

32e4g2aeμE0
3
2

E2
F;1E

2
F;2β

4
2ðβ21 − β021 Þ2

GðlfÞ; ðA22Þ

where f ¼ p, e, μ. The GðlfÞ factor is found to be

FIG. 4. Feynman diagrams for the LFV process
lþ f → l0 þ f þ a. If f is a lepton, there occur two more graphs
which can be obtained by exchanging ð1 ↔ 2Þ for f being
identical to l or ð10 ↔ 20Þ for f being identical to l0.
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GðlpÞ ¼
ð1 − βF;2c230Þð1 − βF;2c2030Þð1 − βF;1βF;10c110Þ

ð1 − c220Þ2
;

ðA23Þ

GðllÞ ¼ GðlpÞ þ ð1 ↔ 2Þ þHðllÞ; ðA24Þ

Gðll0Þ ¼ GðlpÞ þ ð10 ↔ 20Þ þHðll0Þ; ðA25Þ

where we have assumed that electrons are ultra relativistic
so βF;e ¼ 1. The second term in (A24) and (A25) is the
contribution solely from the exchange diagrams given by
the first term but with ð1 ↔ 2Þ. The third term in (A24) is
the interference between prototype and exchange diagrams
given by

HðllÞ ¼
ð1− βF;1c2030Þ

2ð1− c120Þð1− c220Þ
+
βF;1

!
c130 þ c230 þ βF;1ð1− c12Þ

þ βF;10ðc110 þ c210Þþ βF;1βF;10ðc12c1030 − c110c230

− c130c210 − c1030Þ
"
− 2

,
; ðA26Þ

andHðll0Þ in (A25) byHðllÞ but with ð1 ↔ 10Þ and ð2 ↔ 20Þ.

4. Axion emissivity

In summary, the axion emissivity is given by

εðlfÞa ¼
328π2α2g2aeμ

945m4
μ

βF;1E3
F;1

β2F;2p
2
F;2

FðlfÞT8; ðA27Þ

FðlfÞ ≡ 1

8S

Z
cþ
12

c−12

dc12

Z
cþ
110

c−
110

dc110
Z

1

−1
dc130

×
hGðlfÞiφ130 ;vφ¼vφ;0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − c2110Þð1 − c212Þð1 − cos2vφ;0Þ
q : ðA28Þ

The dc130 integral can be evaluated analytically. We
calculate the other integrals using numerical techniques

and present the result for FðlfÞ in Fig. 5. In the left panel
we vary the muon Fermi velocity βF;μ ¼ pF;μ=EF;μ. From
the right panel we see that FðlpÞ is not sensitive to βF;p if
protons are nonrelativistic, i.e., βF;p ≲ 0.5, which is
expected in NSs. Therefore, we use the values of FðlfÞ

shown in the left panel to calculate the emissivity shown in
the main text.

5. Different temperature dependence from LFV
and LFP interactions

In the main text we contrast the temperature dependence
of the axion emissivity for LFV and LFP interactions.
The LFP interaction leads to axion emission via channels
such as lþ f → lþ f þ a with an emissivity that scales
as εa ∝ T6 (similar for nn → nna [23]). By considering
the LFV interaction here, we find that channels such as
lþ f → l0 þ f þ a lead to an emissivity εa ∝ T8 instead.
This different scaling may be understood by inspecting the
form of the matrix element. Consider the Feynman diagram
in the left panel of Fig. 4. The fermion propagator and the
axion vertex contribute factors of

E0
3

ðp1 − p0
3Þ2 þm02

1

¼ E0
3

m02
1 −m2

1 þ 2E0
3ðE1 − 2jp1jc130Þ

;

ðA29Þ

in the ð−;þ;þ;þÞ metric signature and neglecting the
axion mass E0

3 ¼ jp03j. The axion energy E0
3 in the numer-

ator arises from the derivative nature of the axion inter-
action. The temperature dependence enters via the typical
axion energy, E0

3 ∼ T. For LFP channels such as μp→ μpa,
we have m0

1 ¼ m1, the E0
3 ∼ T factor in the numerator is

canceled by the factor in the denominator, and conse-
quently the squared matrix element is insensitive to the
temperature. On the other hand, for the LFV channels, the
m02

1 −m2
1 term dominates in the denominator. Consequently,

the LFV axion emissivity is suppressed relative to the LFP

0.0 0.2 0.4 0.6 0.8
0.01

0.10

1

10

100

0.01 0.05 0.10 0.50

60

70

80

FIG. 5. The factor FðlfÞ as a function of the Fermi velocity of muons (left) and protons (right). Here we have set βF;p ¼ 0.3 and
βF;μ ¼ 0.8 for the left and right panels respectively for the f ¼ p processes.
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calculation by a factor of order T2E2
F;e=ðm2

μ −m2
eÞ2 ∼

T2=m2
μ ∼ 7 × 10−7T2

9.

APPENDIX B: THE npeμ MATTER

At typical NS densities ∼1015 g cm−3, the equilibrium
composition involves neutrons, protons, electrons, muons
and other exotic matter states such as hyperons. Neglecting
the exotic matter, equations of state for a NS are relatively
easy to calculate [98]. Thermal equilibrium and conserva-
tion of the baryon number and electric charge impose [62]

EF;μ ¼ EF;e; EF;n ¼ EF;p þ EF;e; np ¼ ne þ nμ;

ðB1Þ

where we have approximated the chemical potential with
the Fermi energy. We also have the Fermi energy E2

F;i ¼
m2

i þ p2
F;i, the number density ni ¼ p3

F;i=3π
2, and the mass

density ρ ¼
P

i mini. If one of ρ; nn; np; ne; nμ is fixed,
the other quantities can be fully determined. For this work,
we have taken 0.8mN ≈ 750 MeV for the mass of nucleons
to account for their nuclear interactions. At ρ ¼ 6ρ0 ≈
1.5 × 1015 g cm−3, we find

pF;n ≃ 624 MeV; pF;p ≃ 226 MeV;

pF;e ≃ 193 MeV; pF;μ ≃ 162 MeV; ðB2Þ

corresponding to βF;p ≃ 0.29 and βF;μ ≃ 0.84.

APPENDIX C: NUMERICAL INTEGRATION

1. Numerical integrator

In this section we discuss the numerical method used to
evaluate (A1). To prepare the integrand for numerical
integration we simplify it by using the Dirac deltas to
perform four integrals analytically. We use the momentum
conserving Dirac delta to carry out the d3p0

2 integrals which
enforces p02 ¼ p1 þ p2 − p01 − p03. Next, we rewrite the
momentum integrals in spherical coordinates by making
the replacements d3p → jpj2djpjd cos θdϕ where θ and ϕ
give the polar and azimuthal angles of p in the rest frame of
the NS. The coordinate system is oriented so that the z-axis
points in the same direction as p03 so that the d cos θ03dϕ

0
3

integral yields a trivial factor of 4π. We then change
variables from momentum magnitudes jpj to energies by
using the relation E2 ¼ jpj2 þm2 to write EdE ¼ jpjdjpj.
Finally, the energy Dirac delta is used to fix jp03j so that,
assuming the axion is massless (m0

3 ¼ 0),

E1 þ E2 − E0
1 − E0

2 − E0
3 ¼ E1 þ E2 − E0

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp1 þ p2 − p01 − p03j2 þm02

2

q
− jp03j

¼ E1 þ E2 − E0
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jPj2 − 2Pzjp03jþ jp03j2 þm02

2

q
− jp03j ¼ 0; ðC1Þ

where P≡ p1 þ p2 − p01 − p03. This adds a factor of j1þ ðjp03j − PzÞ=E2j−1 to the integrand since δ½fðxÞ& ¼ δðx − x)Þ=
jf0ðx)Þjwhere x) is the root of fðxÞ. In practice, (C1) is enforced by using Newton-Raphson iteration to find the value of jp03j
which is a root of this equation when the integration variables E1; E2; E0

1; cos θ1; cos θ2; cos θ
0
1;ϕ1;ϕ2, and ϕ0

1 are fixed. All
together, this rewrites the integral (A1) as

εðlfÞa ¼ 4π
25ð2πÞ11

1

S

Z
dE1d cos θ1dϕ1dE2d cos θ2dϕ2dE0

1d cos θ
0
1dϕ

0
1

×
jp1jjp2jjp01jjp03j

E0
2j1þ ðE0

3 − PzÞ=E0
2j
X

spin

**MðlfÞ
**2E0

3f1f2ð1 − f01Þð1 − f02Þ; ðC2Þ

where the matrix element is given by (A18)–(A20). We
evaluate the integral in this form using the Vegas package in
Python which performs Monte Carlo integration using two
adaptive strategies: importance sampling, and stratified
sampling, to improve convergence [99]. We choose to
use this Monte Carlo integrator because of its flexibility and
ease of use. The integral is evaluated by passing the
integrand as an explicit function of the nine integration
variables ðE1; E2; E0

1; cos θ1; cos θ2; cos θ
0
1;ϕ1;ϕ2;ϕ0

1Þ to
an instance of the vegas.Integrator class. We split
the calculation of the integral into two steps. First, we adapt
the vegas.Integrator object to the integrand by

calling it with the parameters nitn ¼ 10, neval ¼
5 × 107, and alpha ¼ 0.1. These parameters control
the number of iterations used to adapt the integrator; the
number of points on the integration domain where the
integrand is evaluated; and the sensitivity of the adaptation
algorithms, respectively. We then discard the results ob-
tained from the first run but keep the adapted integrator
and call it again with the same parameter choices except
with alpha = 0 so that there is no further adaptation. The
value of the integral and the errors we report below are
taken as the mean and sdev attributes of the second run
vegas.Integrator object. The mean is a weighted
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average of the results of each of the nitn = 10 iterations
of the Vegas algorithm, where the weights are the inverse
variance in each iteration. The uncertainty, sdev is the
square root of the variance of the weighted average
assuming the sample average in each iteration is approx-
imately normally distributed—this is a good approximation
if neval is sufficiently large.
In principle the energy integrals over E1, E2, E0

1 should
be over the domain Ei ∈ ½mi;∞Þ but in practice we can only
integrate over a finite window. The thermal factors in (C2)
provide support only in a window around the Fermi level
EF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
F þm2

p
whose width is of order ∼T. This

motivates integrating E1, E2, E0
1 over the finite window

Ei ∈ ½maxðmi; EF;i − nTÞ; EF;i þ nT& with a value of n
sufficiently large that the integral is insensitive to its exact
value. We find n ¼ 10 to be large enough that the integral is
independent of n, but small enough that Monte Carlo
convergence is not too slow. The n-independence is
demonstrated for the process ep → μpa for βF;μ ¼ 0.84,
T ¼ 109 K and ma ¼ 0 in Fig. 6. Note how as n increases,
the emissivity approaches a constant value of approxi-
mately 1.8 × 1010 erg cm−3 s−1, which corresponds to the
blue data point at βF;μ ≈ 0.84 in Fig. 7.

2. Numerical validation of Fermi surface
approximation

The results of our numerical evaluations of (C2) for the
various axion emission channels are shown in Fig. 7. The
numerical results (dots and squares) agree very well with
the analytical results (lines) for a wide range of βF;μ. For
small βF;μ the numerical results tend to diverge from the
analytical results, which is expected because in this regime
the number density of muons is small, which means that the
degenerate matter approximation breaks down. In addition,
we observe that for βF;μ ≳ 0.1 the emissivities are paired by

channel such that εðlfÞa ≈ εðl
0fÞ

a . This is a consequence of the
strong particle degeneracy and the beta equilibrium con-
dition EF;e ≈ EF;μ. We have verified this numerically and
analytically by imposing the relation EF;e ¼ EF;μ þ Δ and
observing that the difference between emissivities for
the channels ef → μfa and μf → efa grows with Δ
but is only significant if Δ≳ T. For Δ > 0 the electron’s
Fermi energy is larger than the muon’s which allows for
electrons with energies below the Fermi level to also

0 2 4 6 8 10 12 14
1! 108

5! 108
1! 109

5! 109
1! 1010

5! 1010

FIG. 6. Axion emissivity for the ep → μpa channel vs energy integration domain Ei ∈ ½EF;i − nT; EF;i þ nT& parametrized by n. The
gray dashed line is the constant 1.85 × 1010 erg cm−3 s−1, which is the value to which the integral converges. For these calculations we
have fixed βF;μ ¼ 0.836788, gaeμ ¼ 10−11, and T ¼ 109 K. As n increases, the value of the emissivity integral converges to a constant
value of ≈1.8 × 1010 erg cm−3 s−1.

FIG. 7. Axion emissivity computed using the Monte Carlo
integration method (dots and squares) vs Fermi surface approxi-
mation (lines). The results agree well for βF;μ ≳ 0.1 and the
agreement is good within about 10% at βF;μ ≈ 0.8. At small
βF;μ ≲ 0.1, the Fermi surface approximation underestimates the
emissivity for the μp, μe channels and overestimates it for the ep
and ee channels. To make this plot, we choose gaeμ ¼ 10−11 and
T ¼ 109 K to be consistent with the parameters in Fig. 2 of the
main text.
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convert into muons, enhancing the emissivity of this
channel. Conversely, for muon to electron conversion,
the emissivity is exponentially suppressed since the muons’
energies are below the electrons’ energies.

3. Effect of temperature on axion emissivity

In addition to verifying that numerically evaluating the
axion emissivity at T ¼ 109 K agrees with the analytical
approximation, we also numerically computed the axion
emissivity as a function of temperature while fixing βF;μ ¼
0.836788 and ma ¼ 0. We are motivated to do this for two
reasons. The first is to confirm the T8 scaling of the
emissivity at low temperatures, i.e. Eq. (A27). The second
is to calculate the emissivity for larger temperatures such
as T ∼ 50 MeV, the scale of supernovae; allowing us to
comment on constraints imposed on axion LFV interactions
by supernovae observations.
In degenerate NS matter, there is a screening of electro-

magnetic fields due to the presence of a degenerate plasma
with charged constituents. To estimate this effect, we
replace the photon propagator k−2 in the matrix element
by ðk2 þ k2TFÞ−1 [100], where k2TF ¼

P
i 4αpF;iEF;i=π is the

Thomas-Fermi screening scale which receives contribu-
tions from electrons, muons and protons. Noting that k2 ∼
ðpF;e − pF;μÞ2 ∼ E2

F;eð1 − βF;μÞ2 at low temperatures, the
screening effect is insignificant if βF;μ ≲ 1 − kTF=EF;e,
which becomes βF;μ ≲ 0.75 at the core condition given
by (B2). Therefore, for mildly relativistic muons with
βF;μ ∼ 0.8, the emissivity of LFV axions without including
the screening effect is subject to Oð1Þ corrections. On the
other hand, incorporating the screening effect in axion
emissivities is important at high temperatures since k2TF
dominates over k2, especially near the pole k2 ¼ 0.
The temperature dependence of the axion emissivity is

presented in Fig. 8 for 10−3 MeV ≤ T ≤ 100 MeV. Since
we expect the emissivity to scale as εðlfÞ ∝ T8 for low
temperatures we normalize the emissivity by T8 so that a T8

scaling would be a constant line in this figure. The figure
displays several interesting features; (1) At temperatures
below T ∼ 10 MeV, the emissivity is seen to scale like
εðlfÞ ∝ T8 [up to Oð1Þ factors], which confirms the pre-
diction from the Fermi surface approximation; (2) The
emissivity tends to decrease relative to T8 for all six
channels at temperatures T ≳ 10 MeV. (3) For lower
temperatures, the emissivities are paired by channel such
that εðlfÞa ≈ εðl

0fÞ
a ; however, at higher temperatures these

relations do not hold. This is expected since the Fermi
surface approximation, one of the assumptions needed to
show that εðlfÞa and εðl

0fÞ
a coincide, breaks down in this

regime. The significance of T ¼ 10 MeV can be under-
stood as follows; at low temperatures the thermal factors
lead to a strong suppression of the integrand away from the

Fermi surface. As we lift the temperature the accessible
phase space broadens and the pole becomes significant.

4. Effect of axion mass on emissivity

In previous results we assumed axions were massless.
Here, we use our numerical integration method to explore
the effect of raising the axion mass on the emissivity. To do
this we must modify (C1) to accommodate a massive axion
by replacing E0

3 ¼ jp03j with E0
3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp03j2 þm2

a

p
so that

energy conservation imposes the following constraint on jp03j,

FIG. 8. Numerically evaluated axion emissivity vs temperature,
calculated using (C2) with matrix elements given by (A18)–(A20).
To generate these data we fixed βF;μ ¼ 0.836788, ma ¼ 0, and
gaeμ ¼ 10−11. The data presented here were computed with
neval ¼ 5 × 107. The error bars are typically between 100 to
10,000 times smaller the mean values.

FIG. 9. Numerically evaluated axion emissivity vs axion mass,
calculated using (C2) with matrix elements given by (A18)–(A20).
To generate these data we fixed βF;μ ¼ 0.836788, T ¼ 109 K,
and gaeμ ¼ 10−11. For large masses the emissivity falls off with an
exponential tail (compare with black dashed line). The data
presented here were computed with neval ¼ 106.
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E1 þ E2 − E0
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jPj2 − 2Pzjp03jþ jp03j2 þm02

2

q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp03j2 þm2

a

q
¼ 0: ðC3Þ

In principle, we must also account for the axion’s mass in
the matrix element since (A18)–(A20) were derived assum-
ing ma ¼ 0. However, we argue that the most important
contribution of the mass to the emissivity is an exponential

suppression arising from the thermal factors and therefore
report results obtained using the “massless” matrix element
of (A18)–(A20). We set the temperature T to a fiducial
value of 109 K and fix βF;μ ¼ 0.836788 and calculate the
emissivity for a range of masses satisfying 0 ≤ ma=T ≤ 50.
The emissivities calculated are presented in Fig. 9. We
find that the emissivity is approximately constant for
ma=T ≤ 10, after which point the emissivity is exponen-
tially suppressed.
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