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Abstract
We study Bayesian methods for large-scale linear inverse problems, focusing on the
challenging task of hyperparameter estimation. Typical hierarchical Bayesian formu-
lations that follow a Markov Chain Monte Carlo approach are possible for small
problems but are not computationally feasible for problems with a very large num-
ber of unknown inverse parameters. In this work, we describe an empirical Bayes
(EB) method to estimate hyperparameters that maximize the marginal posterior, i.e.,
the probability density of the hyperparameters conditioned on the data, and then we
use the estimated hyperparameters to compute the posterior of the unknown inverse
parameters. For problemswhere the computation of the square root and inverse of prior
covariance matrices are not feasible, we describe an approach based on the general-
ized Golub-Kahan bidiagonalization to approximate the marginal posterior and seek
hyperparameters that minimize the approximate marginal posterior. Numerical results
from seismic and atmospheric tomography demonstrate the accuracy, robustness, and
potential benefits of the proposed approach.
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1 Introduction

Inverse problems arise in many important applications, where the main goal is to infer
some unknown inverse parameters from given observed data. Bayesian approaches
provide a robust framework for tackling such problems, where the posterior distribu-
tion of the unknown parameters combines information provided by the observations
(e.g., the likelihood function) and prior knowledge about the unknown inverse param-
eters (e.g., the prior). However, for problems where the prior and/or the likelihood
contain unspecified hyperparameters, hierarchical Bayesian approaches can be used
such that all parameters (including the inverse parameters and the hyperparameters)
can be inferred from the data in a “fully Bayesian” framework.

There are several challenges, especially for large-scale inverse problems where the
number of unknowns and the size of the observed data sets are large. One of the key
challenges is model specification, whereby appropriate prior distributions (including
hyperpriors) and hyperparameters for each level of the hierarchy must be specified.
It is important to select suitable prior distributions that capture the characteristics of
the problem accurately, but finding informative and realistic priors becomes more
difficult as the complexity and size of the problem increase. Another key challenge of
a fully Bayesian framework is that even for linear-Gaussian inverse problems, where
the forward model is linear and both the prior and error distributions are Gaussian,
the posterior distribution may no longer be Gaussian, making sampling approaches
significantly more challenging. These challenges are compounded by the need to
perform multiple inference runs for multiple parameters, each of which requires an
accurate and efficient solver for the inverse problem.

To circumvent some of the challenges of fully Bayesian approaches, empirical
Bayes (EB) approaches can be used that first estimate the hyperparameters by maxi-
mizing a marginal likelihood function, and then use the estimated hyperparameters to
compute the posterior of the inversion parameters. However, optimization for hyper-
parameters remains a challenging and expensive task (e.g., due to multiple costly
objective function andgradient evaluations, each ofwhich requires accurate inference),
and much less attention in the literature has been given to estimating hyperparameters
that govern prior distributions.

We focus on large-scale linear-Gaussian inverse problems, where the forward and
adjoint models as well as the prior covariance matrix are only accessible via matrix-
vector multiplications. This circumstance may also arise from covariance kernels that
are defined on irregular grids or come from a dictionary collection. Covariance kernels
from the Matérn class will be considered, although various classes of parameterized
covariance kernels could be considered in this framework. For such scenarios, gener-
alized Golub-Kahan (genGK) iterative methods have been proposed for inference [1],
but the estimation of the hyperparameters is much more challenging.
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Overview of Main Contributions
In this paper, we exploit Krylov subspace projections for hyperparameter estimation
using empirical Bayes methods. The main contributions are as follows:

1. We propose an approximation to the marginal posterior objective function and its
gradient using the genGK bidiagonalization. The genGK approach only requires
matrix-vector products (matvecs) involving the forward and adjoint operators, as
well as with the prior covariance matrix. However, it doesn’t require applying
square roots and inverses.

2. We provide a detailed analysis of the computational costs and the resulting error
for the approximations. These approximations and theoretical bounds can be used
for other tasks related to Bayesian inverse problems.

3. We develop methods for monitoring the accuracy of the resulting approximations
and analysis for trace estimators for nonsymmetric matrices.

4. While our proposed approach is general, we show how to significantly accelerate
the estimation of hyperparameters when the noise and prior variance are assumed
to be unknown. This special case is important in many applications.

Other applications of our approach
Although we focus on the empirical Bayes approach, there are numerous scenarios
in large-scale Bayesian inverse problems where the approximations described in this
work can be used to make computational advances. For example,

1. Fully-Bayesian approach: Our approach provides efficient ways to approximate
the objective function (obtained by the negative log-likelihood of themarginal pos-
terior distribution) and its gradient using the genGKapproaches.However, it is easy
to see that the approaches can be easily extended to approximate the marginalized
likelihood (see (2) for a definition). In particular, these approximations can be used
to significantly accelerate Markov Chain Monte Carlo (MCMC) approaches for
exploring the marginal posterior distribution and providing uncertainty estimates
for the hyperparameters.

2. Variational Bayes approach: In this approach, we approximate the marginal pos-
terior distribution byminimizing the distance to another class of distributions (e.g.,
Gaussian). Aswith the empirical Bayes approach, the optimization techniques also
require repeated evaluations of the objective function and its gradient. Therefore,
the computational techniques developed here are also applicable to that setting.

3. Information-theoretic approaches: An alternative approach to estimating the
hyperparameters is to optimize the information gain from the prior distribution
to the posterior. One such metric is the expected Kullback-Liebler divergence,
also known as the D-optimal design criterion, which has a similar form as our
objective function (in fact, it only involves the log-determinant term). Therefore,
the approximation techniques developed here could also be applied to estimate
hyperparameters using information theoretic criteria.

1.1 Related work

Hyperparameter estimation in hierarchical Bayesian problems is an important prob-
lem that has received some attention. In the geostatistical community, an approach
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for estimating hyperparameters is the maximum likelihood and restricted maximum
likelihood approaches [2–4]. However, these approaches are not scalable to large-
scale problems and are different from ours, since we use the MAP estimate of the
marginalized posterior.

In contrast to optimization-based techniques, sampling methods based on MCMC
have been used to estimate the uncertainty in the hyperparameters (see, e.g., [5]).
However, this approach is considerably more expensive since it requires computing
the likelihood thousands of times to get reliable samples from the posterior distri-
bution. Another approach to estimating hyperparameters is using the semivariogram
technique [6], but this is only applicable to estimating the prior hyperparameters.

Our work is close in spirit to [7] which also uses a low-rank approximation to
accelerate the computation of the objective function based on a marginal likelihood;
to find the optimal parameters, they evaluated it over a finite grid of hyperparameters.
Our approach instead uses the marginal posterior to construct the objective function
and uses the genGK iterative method to approximate it. Furthermore, we show how
to approximate the derivatives using the genGK approach and use it in a continuous
optimization approach.

In previous work, we developed a solver called genHyBR, also based on genGK,
for Bayesian inverse problems [1] but it was only capable of estimating a limited set
of hyperparameters (associated with the prior). The authors in [8] also use the genGK
approach in Gaussian processes, similar to ours, to estimate hyperparameters but use
the profile likelihood which is not a Bayesian approach like ours.

1.2 Outline of the paper

The paper is organized as follows. In Section 2, we provide a brief overview of hyper-
parameter estimation, from a hierarchical Bayes formulation to an empirical Bayes
approach.We describe the generalizedGolub-Kahan bidiagonalization process, which
will be used in Section 3. That is, we use elements from the genGK bidiagonalization
to approximate the EB objective function and gradient for optimization and provide an
error analysis for approximations that can be used to monitor the accuracy of approxi-
mations.We demonstrate the performance of our approach onmodel inverse problems
in heat conduction, seismic and atmospheric tomography in Section 4, and conclusions
and future work are provided in Section 5. Theoretical derivations have been relegated
to the Appendix.

2 Background and problem Setup

2.1 Notation

Let m and n be strictly positive integers, and denote the nonnegative reals by R+. In
the following, R

n is the standard n-dimensional Euclidean space with scalar product
(x, y) �→ 〈x, y〉2 = y�x, andMm,n(R) is the normed space of all real-valuedm-by-n
matrices with scalar product (A,B) �→ 〈A,B〉F = tr

(
B�A

)
, where � denotes the

matrix transpose. We write Mm,m(R) ≡ Mm(R). Let A ∈ Mn(R), and let x and
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y be in R
n . If A is symmetric positive definite (SPD), we write 〈x, y〉A ≡ 〈Ax, y〉2

and ‖x‖A ≡ √〈Ax, x〉2, with ‖x‖2 ≡ √〈x, x〉2. We also write ‖A‖F ≡ √〈A,A〉F to
denote the Frobenius norm and ‖A‖2 denotes the spectral or 2-norm.

Given any realization, say δ, of a random variable, we write Xδ to denote said
variable. We also use the notation π [·] to denote an arbitrary probability density.

Let X be a real vector space, f : X → R, and let x ∈ X . Denote by
Argmin f ≡ {

x ∈ X | f (x) = minz∈X f (z)
}
. If Argmin f is single-valued, then we

write that unique element as argminx∈X f .

2.2 Hierarchical Bayes formulation

Let m, n, and K be strictly positive integers with m≤n. We consider a linear inverse
problemof recovering an unknown vector s∈R

n of signals from a noisy vectord ∈ R
m

of data observations. The signals and observations are characterized by the model

d = As + η, (1)

where A ∈ R
m×n represents the forward map and η ∈ R

m is a vector of real-
izations of a random variable Xη ∼ N (0,R(·)). In this setting, we assume that
R : (0,+∞)K → R

m×m, where R(·) is SPD, is uncorrelated; this ensures that
R(·) is a diagonal matrix, so it is easy to invert and compute the square root.

Let θ = (θi )1≤i≤K ∈ (0,+∞)K be a vector of unknown hyperparameters, with
prior density π [θ ]. Following a hierarchical Bayesian approach, we model s | θ as
a realization of a Gaussian random variable Xs | θ ∼ N (μ(θ),Q(θ)), where μ :
(0,+∞)K → R

n,Q : (0,+∞)K → R
n×n, andQ(θ) is SPD, but is computationally

infeasible to compute explicitly; therefore, we do not assume that we have access to
its square root or its inverse. We do, however, assume that the matvecs with Q(θ) can
be performed easily in O(n log n) time by using the fast Fourier Transform (FFT), if
the solution is represented on a uniform equispaced grid [9], or by using hierarchical
matrices [10]; furthermore, O(n) time can be achieved in certain circumstances with
the aid of H2-matrices or the fast multipole method [11].

Using Bayes’ theorem, the posterior density, π [s, θ |d], is characterized by

π [s, θ |d] = π [d | s, θ ]π [s | θ ]π [θ]
π [d] .

In our setting, the posterior is explicitly

π [s, θ |d] ∝
π [θ] exp

(
− 1

2‖d − As‖2R−1(θ)
− 1

2‖s − μ(θ)‖2Q−1(θ)

)

det(R(θ))1/2det(Q(θ))1/2
,

where ∝ denotes the proportionality relation. The marginal posterior density is
obtained by integrating out the unknowns s and can be represented as

π [θ |d] ∝ π [θ]det(Z(θ))−1/2 exp

(
−1

2
‖Aμ(θ) − d‖2Z−1(θ)

)
, (2)
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where Z : (0,+∞)K → R
m×m has the representation

Z(θ) = AQ(θ)A� + R(θ), (3)

see, e.g., [12, 13].
For the case where θ is a fixed, known value, or in the non-hierarchical setting, the

maximum a posteriori estimate spost, which is obtained by minimizing the negative
logarithm of the posterior distribution, i.e., πpost[s |d] ∝ π [s |d]π [s] (see, e.g., [14])
and has the explicit expression

spost = argmins∈Rn (− log πpost[s |d])
= argmins∈Rn

1

2
‖d − As‖2R−1 + 1

2
‖s − μ‖2Q−1 ,

where we have suppressed the arguments containing θ to indicate that these quantities
are fixed. The MAP estimate spost can equivalently be expressed in closed form as

spost = �post(A�R−1d + Q−1μ), (4)

where �post = (A�R−1A + Q−1)−1. For large inverse problems, solving (4) is not
computationally feasible in practice, and several studies provide alternative, iterative
approaches.

2.3 The empirical Bayes method for hyperparameter estimation

The empirical Bayes framework (also known as evidence approximation in the
machine learning literature) allows one to estimate the values of the hyperparam-
eters via the marginal posterior. In doing so, the choice of the hyperparameters is
informed by the model, the data, and any assumptions about the likelihood and prior
formulations. The main idea behind the EB method [15] is to estimate the hyperpa-
rameters θEB and fix the hyperparameters in the posterior distribution. That is, we
set π [s |d] ≈ π [s, θEB |d]. The EB approach has some known drawbacks: first, it
uses the data twice, once to estimate the hyperparameters and second to determine the
unknowns s, second, it ignores the uncertainty in the hyperparameters and, therefore,
underestimates the overall uncertainty. Nevertheless, it remains a popular approach
in statistics, especially for computationally challenging problems, and we adopt this
approach in the present paper.

Specifically, we choose the hyperparameters θEB obtained from the maximum a
posteriori (MAP) estimate of the marginal posterior distribution (2); alternatively, it
can obtained by minimizing the objective function F(θ), defined by

F(θ) = − log π [θ ] + 1

2
logdet(Z(θ)) + 1

2
‖Aμ(θ) − d‖2Z−1(θ)

. (5)

Once the optimal hyperparameters θEB have been estimated, we can obtain the MAP
estimate for s by (4).
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Anticipating that we will use a gradient-based approach for optimizing (5), we
provide an analytical expression for the gradient ∇F = ( ∂F

∂θi
)1≤i≤K ,

(∇F(θ))i = − 1

π [θ ]
∂π [θ ]
∂θi

+ 1

2

〈
Z−1(θ),

∂Z(θ)

∂θi

〉

F

− 1

2

[
Z−1(θ)(Aμ(θ) − d)

]�
[

∂Z(θ)

∂θi
Z−1(θ)(Aμ(θ) − d) − A

∂μ(θ)

∂θi

]
.

(6)

Notice that there are various challenges for optimization. First, the objective func-
tion (F) is nonconvex, with potentially many local minima, so this causes problems
for the optimization algorithms which can be sensitive to the choice of the initial
guess. Second, computing the objective function and the gradient (∇F) for each new
candidate set of hyperparameters θ requires recalculating the log determinant and the
inverse of an m × m matrix; even forming this matrix explicitly is expensive and
should be avoided. This can become computationally prohibitive for problems with
large observational datasets. We focus our attention in this paper on the second chal-
lenge, and in Section 3 propose efficient methods to compute the objective function
and the gradient. Our approach is based on low-rank approximations of the matrix
A, which we achieve using the generalized Golub-Kahan (genGK) bidiagonalization.
This approach is discussed next. The low-rank approximations make it easier to eval-
uate the objective function and the gradient.

2.4 Generalized Golub-Kahan bidiagonalization

The generalized Golub-Kahan (genGK) bidiagonalization was used for efficiently
computing Tikhonov regularized solutions (4) in [1] and for inverse UQ in [16]. How-
ever, in this work, we extend the use of the genGK bidiagonalization process for
efficient hyperparameter estimation following an EB approach. For completeness, we
provide an overview of the genGK process.

Throughout this section, suppose we have some fixed hyperparameters θ̄ ∈ R
K+ .

LetR ≡ R(θ̄), Q ≡ Q(θ̄), and μ = μ(θ̄). Given the matricesA, R, Q and the vector
d (as defined in (1)), with the initialization

β1u1 = d − Aμ α1v1 = A�R−1u1

the j th iteration of the genGK (lower) bidiagonalization process generates vectors
u j+1 and v j+1 such that

β j+1u j+1 = AQv j − α ju j ;
α j+1v j+1 = A�R−1u j+1 − β j+1v j ,
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where, for some natural number i, the scalars (αi , βi ) ∈ R
2+ are chosen such that

‖ui‖R−1 = ‖vi‖Q = 1. At the end of k iterations, we have a lower bidiagonal matrix

Bk =

⎡

⎢
⎢⎢⎢⎢⎢
⎣

α1
β2 α2

β3
. . .

. . . αk

βk+1

⎤

⎥
⎥⎥⎥⎥⎥
⎦

∈ R
(k+1)×k,

and two matricesUk+1 = [u1 | · · · |uk+1] ∈ R
m×(k+1) andVk = [v1 | v2 | · · · | vk] ∈

R
n×k that satisfy the orthogonality relations

U�
k+1R

−1Uk+1 = Ik+1 and V�
k QVk = Ik . (7)

Furthermore, these matrices satisfy the genGK relations

⎧
⎪⎨

⎪⎩

Uk+1β1e1 = d − Aμ

AQVk = Uk+1Bk

A�R−1Uk+1 = VkB�
k + αk+1vk+1e�

k+1.

(8)

Here, e j represents the j th column of the identity matrix of appropriate size.
In floating point arithmetic, these relations are typically accurate to machine preci-

sion. However, the matrices Uk and Vk tend to lose orthogonality with respect to the
appropriate inner products; therefore, in practice, we use complete reorthogonaliza-
tion to mitigate this loss in accuracy. The above process is summarized in Algorithm
1.

Algorithm 1 genGK bidiagonalization. Call as [Uk+1,Vk+1,Bk] =
genGK(A,R,Q,μ,d, k).
Require: Matrices A, R, and Q; vectors μ and d.

1: β1 = ‖d − Aμ‖R−1 ;
2: u1 = d−Aμ

β1
;

3: α1 = ‖A�R−1u1‖Q;
4: v1 = A�R−1u1

α1
;

5: for j = 1, 2, . . . , k do
6: β j+1 = ‖AQv j − α ju j‖R−1 ;
7: u j+1 = AQv j−α ju j

β j+1
;

8: α j+1 = ‖A�R−1u j+1 − β j+1v j‖Q;
9: v j+1 = A�R−1u j+1−β j+1vi

α j+1
;

10: end for
11: return Matrices Uk+1,Vk+1,Bk .
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Low-rank approximation
We can reinterpret the genGK relations through the lens of projectors which leads us
to a low-rank approximation of A. The low-rank approximation of A will be critical
in developing efficient approaches in Section 3. Define the following projectors:

PVk = VkV�
k Q; PUk+1 = Uk+1U�

k+1R
−1. (9)

Then orthogonality relations in (7) imply that PVk and PUk+1 are oblique projectors.
Using this insight, we can rewrite (8) as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Uk+1β1e1 = PUk+1(d − Aμ)

AP�
Vk

= Uk+1BkV�
k

A�P�
Uk+1

= Vk+1

[
B�
k

αk+1e�
k+1

]

U�
k+1.

(10)

This reinterpretation of the genGK relations in (8) using projectors suggests a natural
low-rank approximation for A:

A ≈ Ãk = AP�
Vk

= Uk+1BkV�
k . (11)

In the next section, we will use this low-rank approximation to approximate the objec-
tive function (5) and the gradient (6) for EB hyperparameter estimation. Moreover,
the projection-based viewpoint of the low-rank approximation will be useful for error
analysis.

3 Efficient hyperparameter estimation

The main goal of this section is to solve the optimization problem involving (5) by
exploiting the genGK bidiagonalization. Consider minimizing the marginal posterior,

min
θ∈RK+

F(θ) (12)

whereF(θ) is defined in (5). First, we use the genGKbidiagonalization to approximate
the objective function and gradient, so that evaluations during optimization can be done
efficiently. Then, we provide an error analysis to quantify the errors between F and
its approximations, which will be used for monitoring the convergence of the genGK
process.

3.1 Approximations using genGK

As before, we assume that we have a fixed θ̄, and for ease of exposition, we suppress
the dependence on θ̄ . For any differentiable mapping T : R

K+ → R
m×n, we write for
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brevity

∂θi T = ∂T (θ)

∂θi

∣∣∣
∣
θ=θ̄

1 ≤ i ≤ K .

The objective function F̄ ≡ F(θ̄) takes the form

F̄ ≡ − log π + 1

2
logdet(Z) + 1

2
‖Aμ − d‖2Z−1 , (13)

and the gradient ∇F = (∂θiF)1≤i≤K ∈ R
K takes the form (for 1 ≤ i ≤ k)

∂θiF = − 1

π [θ̄]
∂π [θ̄]
∂θi

+ 1

2

〈
Z−1, ∂θiZ(θ̄)

〉

F

− 1

2

〈
(∂θiZ)Z−1(Aμ − d) − A∂θi μ(θ̄),Z−1(Aμ − d)

〉

2
.

The matrix Z was defined in (3).

Approximation to the objective function
We can approximate F̄ by substituting our low-rank approximation Ãk for A in (11)
(with the exception of one term). Along with the use of the Sherman–Morrisson–
Woodbury formula, yields the following formulas for Z and Z−1 :

Z ≈ Z̃k = Uk+1Bk(Uk+1Bk)
� + R (14)

Z−1 ≈ Z̃−1
k = R−1 − R−1Uk+1Bk(Ik + B�

k Bk)
−1(Uk+1Bk)

�R−1. (15)

Set�k = Ik+1+BkB�
k ,whichwenote is positive definite. Therefore, usingSylvester’s

determinant identity, we approximate logdet(Z) as

logdet(Z) ≈ logdet(Z̃k) = logdet(R) + logdet(�k).

Additionally, using (8), we can approximate

‖Aμ − d‖2Z−1 = ‖Uk+1β1e1‖2Z−1 ≈ ‖Uk+1β1e1‖2Z̃−1
k

= ‖β1e1‖2
�−1

k
.

Putting everything together, our approximation of F̄ , denoted by F̃k, is

F̃k ≡ − log π + 1

2
logdet(R) + 1

2
logdet(�k) + 1

2
‖β1e1‖2

�−1
k

. (16)

We observed that forming �k explicitly caused numerical issues while evaluating
the log determinant term. Therefore, we instead computed this term by computing
the singular values of Bk , denoted {σ j (Bk)}kj=1, and then computing logdet(�k) =
∑k

j=1 log(1 + σ j (Bk)
2).
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Approximation to gradient
We can, similarly, approximate our expression for the gradient when it is evaluated at
the point θ̄ . By utilizing (11), we have

∂θiZ ≈ ∂̃θiZk ≡ Ãk∂θiQÃ�
k + ∂θiR, 1 ≤ i ≤ K . (17)

In view of (15), our approximation to ∂θiF, denoted by ∂̃θiFk, is

∂̃θiFk = − 1

π [θ̄]
∂π [θ̄]
∂θi

+ 1

2

〈
Z̃−1
k , ∂̃θiZk

〉

F

− 1

2

〈
(∂̃θiZk)Z̃

−1
k (Aμ − d) − A∂θi μ, Z̃−1

k (Aμ − d)
〉

2
, 1 ≤ i ≤ K .

(18)
The approximation of the gradient ∇F is denoted by ∇̃Fk . In the form written, it is
not clear how the approximations lead to improved computational benefits. However,
we can derive an equivalent but alternative expression that is more computationally
efficient to evaluate and that is what we implement in practice. To this end, define the
matrices

�
Q
i = V�

k ∂θiQVk, �R
i = U�

k+1R
−1(∂θiR)R−1Uk+1 1 ≤ i ≤ K , (19)

and the matrix Tk = B�
k Bk . With these definitions, we can show (see Appendix A)

〈
Z̃−1
k , ∂̃θiZk

〉

F
=
〈
�

Q
i ,Tk(I + Tk)

−1
〉

F
+
〈
∂θiR,R−1

〉

F
−
〈
B�
k �R

i Bk, (I + Tk)
−1
〉

F
.

(20)
The details of computing the estimates of the objective function and the gradient are
given in Algorithm 2. In Section 3.2, we will derive computational costs and provide
an error analysis.

Algorithm 2 Computing approximations to the objective function and gradient based
on genGK
Require: Parameter θ , matrix A, parameter k, and data d
1: Compute matrices R,Q and vector μ corresponding to the parameter θ

2: [Uk+1,Vk+1,Bk ] =genGK(A,R,Q,μ, d, k);
3: {Step 1: Estimating the objective function}
4: Compute �k = Ik+1 + BkB�

k and Tk = B�
k Bk

5: Compute F̃k using (16).
6: {Step 2: Estimating the gradient}
7: Compute rk = Z̃−1

k (Aμ − d) using (15)
8: for i = 1,…, K do
9: Compute �

Q
i and �R

i as in (19)

10: Compute
〈
Z̃−1
k , ∂̃θiZk

〉

F
using (20)

11: Compute ∂̃θiZkrk = Uk+1Bk�
Q
i (Uk+1Bk )

�rk + ∂θ iRrk by exploiting the low-rank structure
12: end for
13: return Approximations F̃k in (16) and (∂̃θiF)Ki=1 in (18) .
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Table 1 Computational costs associated with Algorithm 1, F̃k , and ∂̃Fk

genGK F̃k ∂̃Fk

Involving A 2(k + 1)TA 0 0

Involving Q (and derivatives) (2k + 1)TQ 0 kKTQ
Additional O(k(m + n)) O(k) O(k2(m + n) + k3))

Here TA and TQ model the costs associated with computing matrix-vector products withA andQ (or ∂θiQ)
respectively

3.2 Computational cost

To derive an estimate of the computational cost, we have to make certain assump-
tions. First, assume that the computational cost associated with computing the forward
operator or its adjoint,Ax orA�y respectively (where (x, y) ∈ R

n×R
m), can bemod-

eled by TA.Additionally, assume that the cost associated with computingQx or ∂θiQx
for any 1 ≤ i ≤ K is TQ. Finally, we take R to be a diagonal matrix which assumes
that the noise is uncorrelated.

With these assumptions in place, the total cost associated with executing
Algorithm 1 is

2(k + 1)TA + (2k + 1)TQ + O(k(m + n)) flops,

where “flops” refers to floating point operations. This represents the dominant cost of
our approach.

Once the genGKmatrices have been computed, it is straightforward to compute the
objective function and the gradient. For the objective function, we need to compute
the SVD of Bk , so the additional cost of computing F̃k is O(k3) flops. The cost of
computing the gradient is additionally K (kTQ + O(k2(m + n) + k3)) flops.

We summarize these results in Table 1.

3.3 Error analysis of genGK approximations

The following two propositions quantify the errors betweenF and an approximation of
F when the approximation is generated by a low-rank representation of the matrix Z.

These results provide insight into the accuracy of the genGK process and help develop
an a posteriori error estimator to monitor the error in Fk . Let σ1(Â) ≥ σ2(Â) ≥
· · · ≥ σr (Â) > σr+1(Â) = · · · = σmin {m,n}(Â) = 0 be the singular values of Â
and r = rank(Â). Let Âk = U�kV� be the k-rank approximation of the matrix
Â = R−1/2AQ1/2 for 1 ≤ k < r . The singular values of Â are also the generalized
singular values of the matrix A in the sense of [17, Definition 3] with the matrix pair
(R,Q). The matrices U ∈ R

m×k and V ∈ R
n×k contain the left and right singular

vectors respectively.

Proposition 3.1 Define the approximation to F̄ using the truncated SVD of Â as

F̂k = − log π [θ̄] + 1

2
logdet (Zk) + 1

2
‖Aμ − d‖2

Z−1
k

, (21)
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with Zk = R1/2
[
ÂkÂ�

k + Im
]
R1/2. Then

|F̄ − F̂k | ≤ 1

2

r∑

i=k+1

log (1 + σ 2
i (Â)) + 1

2
β2
1

(
σ 2
k+1(Â)

1 + σ 2
k+1(Â)

)

, (22)

where β1 = ‖Aμ − d‖R−1 .

Proof See Appendix B.1. ��
This proposition says that if the singular values of Â (alternatively, generalized sin-

gular values of A) decay rapidly, then the low-rank approximation Âk obtained using
the truncated SVD results in an accurate approximation of the objective function.
Indeed, if rank(Â) = k, then F̂k = F . However, repeated computation of the trun-
cated SVD of Â at each optimization step is computationally expensive. As numerical
experiments will demonstrate, the low-rank approximation obtained using genGK is
accurate and is also computationally efficient. The next result derives an error esti-
mate for the absolute error in the approximation of the objective function, where the
approximation is computed using genGK.

Proposition 3.2 Consider F̄ and F̃k as defined in (13) and (16) respectively. Define
the orthogonal projector, �Vk ≡ Q1/2Vk(Q1/2Vk)

� and let HQ ≡ Q1/2HQ1/2 with

H = A�R−1A and H(k)
Q = �VkHQ�Vk . Then the absolute error in the objective

function satisfies

|F̄ − F̃k | ≤ 1

2

[
ξk + β2

1

(
ξk

1 + ξk

)]
, (23)

where ξk = tr
(
HQ
)− tr

(
H(k)

Q

)
, and β1 = ‖d − Aμ‖R−1 .

Proof See Appendix B.2. ��
By [16], we have the following recurrence for ξk = tr

(
HQ − H(k)

Q

)
. For any

k < min{m, n} − 1, ξk satisfies

ξk+1 = ξk − (α2
k+1 + β2

k+2).

This shows that the term ξk ismonotonically nonincreasing. Therefore, Proposition 3.2
says that the absolute error can be bounded by amonotonically nonincreasing function.
Furthermore, this proposition gives us a way to monitor the accuracy of the objective
function and determine a suitable stopping criterion for terminating the iterations. This
is discussed next.

3.4 Monitoring convergence of genGK

As mentioned earlier, an important issue that needs to be addressed is a stopping
criterion to determine the value of k with which to approximate the objective function
and the gradient.
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Proposition 3.2 can be converted to a stopping criterion to monitor convergence,
but the issue is that the initial iterate ξ0 = tr(HQ) cannot be computed efficiently in
a matrix-free fashion. To address this issue we use a combination of the Monte Carlo
trace estimator and the genGK recurrence to monitor ξk ; then in combination with the
upper bound in Proposition 3.2 we can monitor the convergence.

Monte Carlo estimator
First, we describe the Monte Carlo estimators for the trace of a matrix. LetK ∈ R

n×n

be a square matrix and suppose we are interested in estimating its trace using matrix-
free techniques. Letω ∈ R

n be a randomvectorwithmean zero and identity covariance
matrix. Then note that

E[ω�Kω] = E[tr(ω�Kω)] = tr(KE[ωω�]) = tr(K),

where we have used the cyclic property of trace. Therefore, based on this identity, we
can use a Monte Carlo estimator for tr(K) as

tr(K) ≈ 1

nmc

nmc∑

j=1

ω�
j Kω j = 1

nmc
tr(
�K
) ≡ t̃r(K),

where ω j for 1 ≤ j ≤ nmc are independent random vectors from the distribution of
ω and 
 = [

ω1 . . . ωnmc

]
.

This next result analyzes the error in the trace estimator applied to the matrix HQ.
Note that applying the Monte Carlo trace estimator toHQ only requires matvecs with
H and Q; in contrast, applying it to HQ is not practical since it requires matvecs with
Q1/2.

Proposition 3.3 Letωk ∈ R
n for 1 ≤ k ≤ N be random vectors with independent sub-

Gaussian entries that have zero mean and max j‖(ωk) j‖ψ2 ≤ Kψ (see [18, Section
2.5.2] for a definition of the norm ‖ · ‖ψ2). The error in the trace estimator satisfies
the probabilistic bound

P
{|t̃r(HQ) − tr(HQ)| ≥ t

} ≤ 2 exp

(

−CHWN min

{
t2

K 4
ψ‖HQ‖2F

,
t

K 2
ψ‖HQ‖2

})

,

(24)
where CHW is an absolute constant. Furthermore, let ε > 0 be the desired relative
error and 0 < δ < 1 the desired failure probability. Then, with probability at least
1 − δ, the number of samples Nsamp must satisfy

Nsamp ≥ K 2
ψ log(2/δ)

CHWε2

(
K 2

ψ‖HQ‖2F
tr(HQ)2

+ ε‖HQ‖2
tr(HQ)

)

to ensure |t̃r(HQ) − tr(HQ)| ≤ ε|tr(HQ)|.
Proof See Appendix C. ��
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The novelty in this result is that it does not require K to be symmetric or positive
semidefinite as is the standard assumption (see, e.g., [19] and references within).

In practice, we take 
 to be a standard Gaussian random matrix, i.e., with inde-
pendent and identically distributed entries drawn from N (0, 1). Another option is to
choose the entries of the random matrix to be independent Rademacher random vari-
ables (entries ±1 with equal probability). The analysis in Proposition 3.3 applies to
both distributions since both distributions are sub-Gaussian with sub-Gaussian norm
Kψ = O(1).

Algorithm 3Monitoring accuracy of the genGK approximations
Require: Matrices H, Q, Vk , Tk . Integers kmax, nmc.
1: Draw 
 ∈ R

n×nmc with i.i.d. entries fromN (0, 1)
2: Compute Y = HQ


3: for k = 1, . . . , kmax do
4: Compute Yk = Y − VkTkV�

k Q


5: Estimate ξ̃k = tr(
�Yk )/nmc
6: end for
7: return Estimate {̃ξk }kmax

k=1 .

Monitoring error
Next, we explain how to estimate ξk using the Monte Carlo trace estimator. First
consider ξk , which can be written using the cyclic property of the trace as

ξk = tr(HQ) − tr(H(k)
Q ) = tr(HQ − VkTkV�

k Q).

Note that in this formulation, we do not need to work with the square roots of Q.
Applying the Monte Carlo trace estimator with 
 as a standard Gaussian random
matrix, we can estimate ξk as

ξ̃k := 1

nmc
tr(
�(HQ − VkTkV�

k Q)
).

Note that this algorithm only requires matrix-vector products with H and Q and the
genGK relationships. The details and efficient implementation of this estimator are
given in Algorithm 3. In practice, we take the number of Monte Carlo samples nmc =
10. Finally, we use the estimator

errmc := 1

2

[
ξ̃k + β2

1
ξ̃k

1 + ξ̃k

]
,

to estimate the error in the objective function. Note that while the upper bound in
Proposition 3.2 no longer holds with the Monte Carlo estimators, it can still be used
to monitor the accuracy as an error indicator.
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4 Numerical experiments

In the following, we outline experiments corresponding to problems in one and two
dimensions that arise in inverse problems. Using our approach, we demonstrate that
approximations to both the objective functionF and its gradient∇F using the genGK
relations can lead to hyperparameter estimates that result in accurate reconstructions.
We also show that one can effectively inform the selection of the bidiagonalization
parameter k using the error bounds derived above. Tests of robustness are presented,
and for the one-dimensional case, illustrations for the computational need for a frame-
work such as ours are provided.

All experiments are performed using MATLAB, with optimizations done via
fmincon with an interior point method [20–22]. A MATLAB implementation of
the algorithms can be found in https://github.com/Inverse-Modeling/EB_genGK.

Choice of priors and hyperpriors
Although our approach is general, for concreteness we assume that the dimensionality
of our hyperparameter space is three (i.e., K = 3). The first hyperparameter controls
the variance of the noise. We assume that the noise is Gaussian, with zero mean and
covariance R(θ) = θ1Im . We model the prior covariance matrix using the Matérn
covariance family. This is a flexible family of covariance kernels that can be used to
model a wide range of behaviors with a relatively few set of parameters. The kernel
is isotropic and is defined using the covariance function

Mν,σ 2,
(r) ≡ σ 2

2ν−1�(ν)

(√
2ν

r




)ν

Kν

(√
2ν

r




)

where � is the gamma function, Kν is the modified Bessel function of the second
kind, and the positive parameters ν, σ 2, 
 represent the smoothness of the process, the
prior variance, and the correlation length respectively. Given the covariance function
Mν,σ 2,
(r), the covariance kernel is given by κ(x, y) = Mν,σ 2,
(‖x − y‖2). Given a
set of points {x j }nj=1 the covariance matrix Q(θ) can be constructed entrywise as

[Q(θ)]i, j = Mν,θ22 ,θ3
(‖xi − x j‖2) 1 ≤ i, j ≤ n.

Therefore, θ2 and θ3 represent the prior standard deviation and the correlation length.
We do not estimate the smoothness ν as a part of the estimation process but assume that
it is fixed. We also assume the prior mean μ(θ) = 0. In all the numerical experiments,
we use the FFT-based technique to compute matvecs in O(n log n) [9].

For the hyperpriors, following [5],we report experimentswith twodifferent choices:
(P1) is the improper prior chosen as π(θ) ∝ 1; and (P2) is a Gamma prior with

π(θ) ∝ exp

⎛

⎝−
K∑

j=1

γ θi

⎞

⎠ θi > 0, 1 ≤ i ≤ K . (25)
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The parameter γ is set to be 10−4 and chosen such that the probability density function
is relatively flat over the parameter space. We experimented with other hyperpriors
and obtained similar results.

Experimental setup
To generate the noise we adopt the following procedure. A linear forward operator
A along with some exact true signal s is constructed so that the uncorrupted data,
d∗, is d∗ = As. Then we generate a realization, ε, of a Gaussian random vector
Xε ∼ N (0, Im). Next, we set

η = ε
λnoise‖d∗‖2

‖ε‖2 ,

where λnoise ∈ (0,∞) represents a noise level parameter; by construction, it is such
that ‖η‖2 = λnoise‖d∗‖2. Finally, we generate a vector of noisy data observations via
d = d∗ + η.

We compare the accuracy in terms of relative reconstruction error norms, defined
as

RE = ‖s − s̃‖2
‖s‖2 ,

where s is the true solution and s̃ is the approximation. The timing computations were
performed on North Carolina State University’s High Performance Computing cluster
‘Hazel’ using MATLAB R2023a. Specifically, our computing resource utilized an
Intel Xeon Gold 6226 microprocessor with 188 GB of RAM, 2 sockets, and 32 cores
per socket.

4.1 Application 1: inverse heat transfer

Our first experiment corresponds to a one-dimensional problem in heat conduction,
the details of which are outlined in [23–27]. Let L, κ > 0, and define

K : [0, L] × [0, L] → R : (t, s) �→ 1√
4πκ2

(s − t)−3/2 exp

(
−1

4
(s − t)−1

)
,

(26)

and for any t ∈ [0, L], define the integral operator

(Tϕ)(t) =
∫ t

0
K (t, s)ϕ(s) ds. (27)

with the parameter κ = 1. The parameter κ controls the degree of ill-posedness of the
problem; here, κ = 1 yields an ill-posed problem, whereas κ = 5 gives a well-posed
problem. The inverse problem consists of determining a function f such that T f = g,
where g is known.

Using the Regularization Tools package [24], a discretization of the operator T , in
the domain � = [0, 1], is generated. We denote the discretized representation of T

123



  118 Page 18 of 33 K.A. Hall-Hooper et al.

as A ∈ R
n×n and the approximation s for the function f . For the prior covariance,

we choose the Matérn covariance with ν = 3/2 and for the hyperpriors, we used the
improper prior (P1). The measurements were corrupted with 2% additive Gaussian
noise.

Experiment 1: Accuracy of objective function
In this experiment, we investigate the accuracy of the genGK estimates in computing
the objective function at the optimal value θ∗ (this will be discussed in Experiment 2).
In the left plot of Fig. 1, we plot the relative error of F̃k for various k (blue, solid line)
and compare it against the estimated bound derived using Monte Carlo techniques
with nmc = 10 (red, dashed line).

We see from Fig. 1 (left panel) that the computable bound reasonably tracks the
observed errors over a large range of k values. To investigate further, we separated the
main contributions to the objective function: the log-determinant term 1

2 logdet(Z(θ))

and the quadratic term 1
2‖Aμ(θ) − d‖2Z(θ)−1 . The relative errors in these terms are

defined as

RElogdet = |logdet(Z)−logdet(Z̃k)|
|logdet(Z)| REquad=

|‖Aμ− d‖2Z−1 − ‖Aμ − d‖2
Z̃−1
k

|
‖Aμ − d‖2Z−1

.

In the above expressions, we have suppressed the dependence on θ . Correspondingly

the appropriate computable bounds are CBlogdet = ξ̂k
2F and CBquad = β2

1 ξ̂k

2F(1+ξ̂k)
; see

Section 3.4. From the middle and right plots of Fig. 1, we observe that the bound for
the log determinant term is better than for the quadratic term. This is explored further
in Experiment 2.

Moreover, we observe that the errors in the objective function approximations
exhibit sharp decay with increasing values of k. To explain this behavior, we plot
the generalized singular values of the operator. We can observe that the rank-k SVD
approximation produces comparable results to the genGK approximation. Note that
the errors using these approaches are not guaranteed to be monotonically decreasing.
Nevertheless, the sharp decay in the error can be understood by considering the decay
in the generalized singular values in Fig. 2.

Fig. 1 1D Heat: Relative errors and corresponding bounds. The left panel compares the overall accuracy of
the objective function; the middle and right panels compare the errors of two components of the objective
function: the log determinant and the quadratic terms respectively
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Fig. 2 1D Heat: (left) Relative error in the objective function using genGK and GSVD, and (right) plot of
singular values of Â

The blue star in the left plot denotes the k value that is used in our subsequent
numerical experiments (k = 22). The relative error of the objective function at this
point is approximately 10−4, with the relative error in the quadratic term being approx-
imately 10−11. An empirical justification for this choice is illustrated in the following
sections.

Experiment 2: Recovery and accuracy along optimization trajectory
In this experiment, we discuss the performance of the optimization solver, the recovery,
and the accuracy of the objective function along the optimization trajectory. We use
the same setup as before and fix the number of genGK iterations to k = 22.

In Fig. 3(a), we plot the data without noise and with added noise of 2%. In Fig. 3(b),
we plot a reconstruction alongside the true solution. The optimizer took 29 iterations
to converge with 69 function and gradient evaluations (i.e., funcCount = 69) and
the optimal solution was found to be

θ∗ = (8.73 × 10−7, 0.2562, 0.0566)�.

(a) Noisy data with 2% noise (b) Reconstructed solution

Fig. 3 1D Heat: On the left, we provide the observations (with and without noise). On the right, we provide
the reconstruction, along with the true solution
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Fig. 4 1D Heat: Relative errors and corresponding bounds along the optimization trajectory for k = 22 and
nmc = 10. The left panel compares the overall accuracy in the objective function, and the middle and right
panels compare the errors of the log determinant and the quadratic term respectively

The relative reconstruction error is found to be about 15.46% at the optimal value of
θ∗.

Next, we investigate the accuracy of the objective function along the optimiza-
tion trajectory and provide relative errors in Fig. 4. We first observe that the relative
error in the objective function shows a steady increase until about 10 iterations after
which it plateaus. The computable bound tracks the error well until about 10 iterations
after which it shows poor quantitative behavior, although appears to be qualitatively
good. We plot in the middle and right panels the error in the log determinant and
quadratic terms respectively, with computable bounds provided. We observe that the
log-determinant term dominates the error and shows similar behavior as the over-
all error. Also, the bound for the log-determinant term is quantitatively informative,
whereas the bound for the quadratic term is poor, which explainswhy the overall bound
is poor close to the optimal solution. We conclude by emphasizing two observations:
the overall error estimate is reasonable, and the bound for the log-determinant term is
reasonable, so this approach can be used as an error indicator.

In Fig. 5, we consider the error in the gradients. In the left plot, we plot the relative
error (in the∞ norm) in the gradient of the objective functionF , the gradient of the log-
determinant term 1

2 logdet(Z), and the gradient of the quadratic term 1
2‖Aμ − b‖2Z−1 .

As in the case of the error in the objective function, the error in the gradient increases
close to the optimal solution and the relative error in the gradient of the quadratic term
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Fig. 5 1D Heat: Relative errors of the gradient. The left panel compares the overall accuracy in the gradient
and its individual contributions from the log-determinant and quadratic terms, and the right panel compares
the error with the number of genGK iterations k
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is smaller than the error in the gradient of the log-determinant term. Note here, that
the number of iterations k for genGK is kept at 22. In the right panel, we also plot
the relative error in the gradient with increasing k at the optimal point θ∗. Like the
objective function, the relative error exhibits fast decay with k.

We also investigated the robustness of the optimization procedure by choosing 100
different values of the initial guess θ0. The initial guesses are generated randomly by
perturbing each coordinate uniformly at random by 50% of the optimal parameter.
Once the initial guesses are determined, the optimization problem is solved for both
the “exact” case (usingF) and the approximate case (using F̃k) with the value k = 22.
We find that the optimization solutions converge to the same optimal solution with
the relative error in the resulting images between 14 − 15% thus demonstrating the
robustness of the genGK approximations.
Experiment 3: Computational time

To demonstrate the computational efficiency of our approach, we compute the
CPU time required to compute the objective function and the gradient with increasing
numbers of unknowns n. In Fig. 6, we provide the wall clock time needed to compute
the objective function-gradient pair for both the exact and approximate cases. For the
case n = 8192, the genGK approximation provides an approximation faster than the
“full” case by a factor of 81.

4.2 Application 2: seismic tomography

This experiment corresponds to a two-dimensional problem in seismic travel-time
tomography. Typically, this class of problems simulates geophysical situations in
which measurements of the travel time of seismic waves are recorded between a
collection of sources and detectors. Utilizing these measurements, one can recon-

Fig. 6 1D Heat: Wall clock time to compute the objective function and gradient pair versus the problem
size n
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Fig. 7 Seismic tomography: Relative errors and corresponding bounds for the objective function (left), log
determinant term (middle), and quadratic term (right)

struct an image associated with the waves in some specified domain � = [0, 1]2.
We use the IR Tools [28] package to generate the test problem. Using the
[A, d, s, info] = PRseismic(n, options) command from the pack-
age, we obtain a forward operator, A, a true solution, s, and a right-hand-side of
true observations, d. For the experiments below (via the input options), we use
the following settings: phantomImage = ‘smooth’, wavemodel = ‘ray’,
s = 32, andp = 45. This setup yields a forward operatorwith 1440measurements.
As before, 2% noise is added to the data to simulate measurement error. Additionally,

we choose the hyperprior (P2), π [θ ] ∝ exp
(
−γ

∑3
i=1 θi

)
with γ = 10−4, and the

covariance matrix is constructed using theMatérn kernel with ν = 3/2.We begin with
a similar set of experiments to the first application. We take the number of unknowns
to be 4096 since it is easier to compare the accuracy against the true objective function
for a smaller problem. Contrary to application 1, this application is a significantly
under-determined system. Moreover, in Section 4.3 we see how a 2-hyperparameter
setting can be used for this problem.

Experiment 1: Accuracy of objective function
In Fig. 7, we plot the relative error of the objective function at a point θ∗ in blue

and its estimated bound in red with nmc = 10. Similar to the 1D Heat example and
as suggested by the decay of the singular values in Fig. 8, the relative errors exhibit a
sharp decay with k; however, we see that the bound, while qualitatively good, is not
accurate. By examining separately the two components, we observe that the bound
for the log-determinant term is quite good while the bound for the quadratic term is

Fig. 8 Seismic tomography: (left) Relative error in the objective function using genGK and GSVD, and
(right) plot of singular values of Â
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Fig. 9 Seismic tomography: True solution and reconstruction obtained with computed hyperparameters

not great. In subsequent numerical experiments, we used k = 200 at which point the
error in the objective function is about 10−5.

Experiment 2: Reconstruction and accuracy along optimal trajectories
The optimization procedure for estimating the hyperparameters took 23 iterations and
the number of objective function evaluations was 61. The true and reconstructed solu-
tions are provided in Fig. 9. The recovered image has about 3% relative reconstruction
error and similar qualitative features to the true solution.

The previous experiment only considered approximations at a single set of param-
eter values for θ . In Fig. 10 we plot the relative errors of the objective function as
well as the two components, log-determinant and quadratic, along the optimization
trajectory. As before, we see that the relative error is consistently good throughout
the optimization trajectory. Looking more closely, we see that the relative error in the
quadratic component is much smaller than the log determinant term (in fact, it is close
to machine precision), suggesting that the genGK approximation is much better at
approximating the quadratic term. Now considering the bounds, we see that the bound
for the log determinant is very good both qualitatively and quantitatively, and as before
the bound for the quadratic term is very poor. Therefore, we can use the bound for the
log determinant as an indicator for the error in the objective function and the gradient.

Fig. 10 Seismic tomography: Relative errors and corresponding bounds along the optimal trajectory for
k = 200 and nmc = 100 samples. The left panel compares the overall accuracy of the objective function,
and themiddle and right panels compare the errors of the log determinant and the quadratic term respectively
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Fig. 11 Seismic tomography:
Wall clock time to compute the
objective function and gradient
for two different values of m:
1440 and 6400

Experiment 3: Computational time
In Fig. 11 we compare the computational time of our approach against the full
approach.Wechoose twovalues ofm, namely 1440 and6400 (withs=64 andp=100).
As before, we present the time to compute the objective function and the gradient for
various numbers of unknowns n from 28 to 216. We see that for both sets of measure-
ments, the proposed approach that uses genGK (“Approximate”) is much faster than
the full (“Exact”) approach. The difference is more pronounced for a larger number
of measurements m = 6400.

4.3 Two-hyperparameter setting

In the previous examples, the parameter θ1 is related to the variance of the noise, the
parameter θ2 is related to the variance of the prior, and θ3 is the correlation length of
the prior covariance. Consider the setting where η ∼ N (0, θ1Im) , s ∼ N

(
μ, θ22Q0

)
,

andQ0 ∈ R
n×n . In this setting, one has access to a reliable estimate for θ3, resulting in

a fixed prior covariance matrixQ0 and wishes to simply optimize over the parameters
θ = (θ1, θ2) ∈ R

2+. At first glance, it appears to be a special case of our approach, but
this special case is of interest for two reasons: first, it allows us to compare against
existing parameter selection methods that can recover a ratio of these parameters;
and second, the computational cost of the optimization problem can be substantially
lowered since the genGKrelations can be precomputed in an offline stage.Weelaborate
on both points below.

Table 2 Comparison of the regularization parameter λ or 1/θ2 after optimizing over a two-dimensional
hyperparameter space

Our Approach “Optimal” WGCV DP

θ2 or 1/λ 0.49 0.46 0.09 0.27

Rel. Err. 2.48% 2.44% 4.59% 3.41%

Iterations (MAP estimate) 150 43 58 18
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To explain the first point, in [1] the genHyBR approach was considered for com-
puting the MAP estimate

min
s∈Rn

‖d − As‖2R−1 + λ2‖s − μ‖2
Q−1
0

,

with methods to automatically estimate the regularization parameter λ, e.g., using the
Generalized Cross Validation (GCV) method, the Unbiased Predictive Risk Estimate
(UPRE), the Discrepancy Principle, etc. The connection between this formulation and
the present approach is that λ2 = 1/θ22 . A key distinction of our approach presented
here is that we can recover both θ1 and θ2, whereas genHyBR can recover only the
ratio

√
θ1/θ2 (assuming that θ1 is known a priori). We will present a comparison with

genHyBR below.
To expand on the second point,we argue that the genGKprocess needs to be run only

once, and the computedmatrices canbe reusedduring the optimization process. That is,
we run Algorithm 1 as genGK(A, I,Q0,μ,d, k) to obtain the matrices Ûk+1, B̂k , and
V̂k that satisfyA ≈ Ûk+1B̂kV̂�

k with theorthogonality relations Û�
k+1Uk+1 = Ik+1 and

V̂�
k Q0V̂k = Ik . To obtain the genGK relations for any particular value of θ = (θ1, θ2)

one simply has to perform the change of variables

Uk+1 = √
θ1Ûk+1, Vk = θ−1

2 V̂k, Bk = θ2√
θ1
B̂k .

This gives the genGK iterations at the new optimization point that satisfies A ≈
Ûk+1B̂kV̂�

k = Uk+1BkV�
k with the new orthogonality relations

U�
k+1(θ1Im)−1Uk+1 = Ik+1 V�

k (θ22Q0)Vk = Ik .

These new genGK relations can be used in conjunction with the approximations devel-
oped in Section 3.1. More specifically, the computational cost at each iteration to
determine the objective function and the gradient is O(k(m + n) + k3) flops. The
important point is that each iteration does not require applying the forward operator,
and the optimization procedure is very efficient since the (expensive) genGK step is
precomputed.

Application to Seismic Tomography
Consider the seismic tomography problem (Section 4.2) with the same settings except
we take A ∈ R

1440×65536 and the number of genGK iterations to be 150. The
value of θ3 was chosen based on the optimal value from the previous experiments
and was set to θ∗

3 = 0.90216. Using our approach we obtained the optimal value

θ∗ = (
1.07 × 10−4, 0.49

)�
. Additionally, in Table 2, we provide the values of the reg-

ularization parameter computed using genHyBR for comparison [1]. Since genHyBR
can only estimate the parameter λ, rather than θ1 and θ2 separately, we fixed the value
of the noise variance to be θ1 = 1.07 × 10−4. Then, we compute at each iteration
the optimal regularization parameter λopt and denoted “Optimal”, which minimizes
the 2-norm of the error between the reconstruction and the truth. We also consider
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the parameter selection techniques using the weighted generalized cross-validation
approach (WGCV) and the discrepancy principle (DP). The details are given in [1].

Table 2 lists the value of θ2 (which is also the inverse regularization parameter)
obtained using the different techniques. Our approach which optimizes over θ1 and θ2
has a comparable relative error to the “Optimal” approachwhich assumesknowledgeof
θ1 and the true solution. Our approach also does better thanWGCVandDP approaches
in terms of relative error. In summary, the proposed approach is more general and
compares favorably against existing special-purpose parameter selection techniques.

4.4 Atmospheric tomography

In this last numerical experiment, we illustrate our methodology on an atmospheric
inverse modeling example [29], where the data vector d represents noisy satellite
observations of a hypothetical atmospheric trace gas. The matrix A represents a for-
ward atmospheric model that will transport this gas based on estimated atmospheric
winds and simulate satellite observations. Specifically, A is generated from atmo-
spheric model runs conducted as part of NOAA’s CarbonTracker-Lagrange Project
[30, 31]. The true solution is generated from a truncated Karhunen-Loéve expansion
with the Matérn covariance kernel with ν = 5/2, 
 = 0.05 and 20 terms in the
expansion. An illustration of the true solution is given in the left panel of Fig. 12.

We generate a synthetic atmospheric transport problem where A ∈ R
98880×3222

and d ∈ R
98880, and the goal is to reconstruct the unknown set of states or trace

gas fluxes across North America, where the spatial resolution is 1◦ × 1◦. Although
the unknown parameters are over land, to exploit the advantages of the fast Fourier
transform, we treat the unknowns on a regular grid and then incorporate a masking
operator in the definition of A. More specifically, the “unknown” vector s is provided
in Fig. 12(a) and is an image generated using a truncated Karhunen-Loéve expansion
generated with a Matérn kernel with parameters ν = 2.5 and 
 = 0.05 followed by a
land mask. The observed data d were obtained by applying the atmospheric forward
model A and corrupting it with 2% noise to simulate measurement noise. Note that in

(a) True Emissions (b) Reconstruction

Fig. 12 Atmospheric tomography: (left) True synthetic emissions pattern, and (right) reconstruction with
estimated hyperparameters
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actual applications, the noise level is much higher (e.g., 50%). For additional details,
we refer the reader to [29, 30, 32].

For the hyperparameter estimation and reconstruction, we take Q defined by a
Matérn kernel with ν = 3/2. For the hyperprior, we used a noninformative prior (P1),
and for genGK, we used k = 250 iterations. For the initial guess, we used an estimate
of the noise variance θ1 and the length scale θ3 = 0.075 (the length scale is based on
a domain of length 1; we used a random guess for θ2. The optimizer took 19 iterations
and 94 number of function evaluations. The optimal value of θ was found to be

θ∗ =
(
8.51 × 10−5, 1.068, 0.0135

)
.

The reconstruction is provided in Fig. 12(b), where the resulting relative reconstruction
error norm was approximately 11.2%. The optimization procedure took about 54
minutes in wall clock time.

5 Conclusions

This paper describes an efficient approach for hyperparameter estimation that
combines an empirical Bayes approach with the generalized Golub-Kahan bidiag-
onalization process for large-scale linear inverse problems. We consider the marginal
posterior distribution and derive efficient algorithms for computing the MAP estimate
of themarginalized posterior.We derive an approximation to the objective function and
its gradient, where the approximation is computed using information from the genGK
bidiagonalization, and several results quantifying the accuracy of the approximations
are provided. We also have a method to estimate and track the error in the approxi-
mations. We demonstrated the performance of our approach on model problems from
inverse heat equation (1D), seismic and atmospheric tomography (2D). While our
approach is fairly general, in numerical experiments we only considered the Matérn
covariance models with a small number of hyperparameters. Similarly, while we only
considered the empirical Bayes method here, the approximations that we derive are
useful in other formulations such as fully Bayesian and variational Bayes.

In future work, we will consider more robust methods for estimating the hyper-
parameters that do not rely solely on low-rank approximations of A. Another aspect
worth exploring is whether we can improve the bound for the quadratic term. We will
also consider extensions to more realistic time-dependent inverse problems, such as
from atmospheric and dynamic tomography problems, where low-rank structures or
sparsity patterns in the temporal direction may be exploited. Such problems come
with additional computational challenges, including more hyperparameters to esti-
mate and larger numbers of unknowns (e.g., corresponding to finer spatiotemporal
discretizations).
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Appendix A: Details of a derivation

We show how to derive (20). Using the Sherman–Morrison–Woodbury formula, we
have Z̃−1

k =(Uk+1BkB�
k U

�
k+1 + R)−1=R−1− R−1Uk+1Bk

(
Ik + B�

k Bk
)−1

B�
k U

�
k+1R

−1.

Plugging in the expression for Z̃−1
k and using the linearity of trace

〈
Z̃−1
k , ∂̃θiZk

〉

F
= tr

(
Z̃−1
k ∂̃θiZk

)

= tr
([

R−1 − R−1Uk+1Bk (Ik + Tk)
−1 B�

k U
�
k+1R

−1
] [

Ãk∂θiQÃ�
k + ∂θiR

])

= tr
(
R−1Ãk∂θiQÃ�

k

)
+ tr

(
R−1∂θiR

)

− tr
(
R−1Uk+1Bk (Ik + Tk)

−1 B�
k U

�
k+1R

−1Ãk∂θiQÃ�
k

)

− tr

(

R−1Uk+1Bk (Ik + Tk)
−1 B�

k U
�
k+1R

−1 ∂R(θ̄)

∂θi

)

.

We plug in the expansion for Ãk = Uk+1BkV�
k , use the cyclic property of the trace,

and identify the matrices �
Q
i and �R

i to get
〈
Z̃−1
k , ∂̃θiZk

〉

F
= tr

(
Tk�

Q
i

)
+ tr

(
R−1∂θiR

)

− tr
(
(Ik + Tk)

−1 Tk�
Q
i Tk

)
− tr

(
(Ik + Tk)

−1 B�
k �R

i Bk

)
.

In deriving theseexpressionswehave alsoused theorthogonality relationsU�
k+1R

−1Uk+1

= Ik+1. Finally, we can use I− (Ik +Tk)
−1Tk = (Ik +Tk)

−1 to obtain the simplified
expression (20).

Appendix B: Error analysis in the objective function

B.1 Proof of Proposition 3.1

Consider the absolute error

F̄ − F̂k = 1

2
T1 + 1

2
T2, (B1)

where T1 ≡ |logdet(Z) − logdet(Zk)| and T2 ≡ ‖Aμ − d‖2Z−1 − ‖Aμ − d‖2
Z−1
k

. We

bound each of these terms separately.
For T1, first note

T1 = |logdet(Z) − logdet(Zk)| = |logdet(Im + ÂÂ�) − logdet(Im + ÂkÂ�
k )|.

Next notice that ÂÂ� � ÂkÂ�
k ; apply both parts of [33, Lemma 9] to get

T1 = logdet(Im + ÂÂ�) − logdet(Im + ÂkÂ�
k ) ≤ logdet(Im + ÂÂ� − ÂkÂ�

k ).
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Plug in the SVD of Â and simplify to obtain T1 ≤ ∑
j>k log(1 + σ 2

j (Â)).

For T2, let r = R−1/2(Aμ − d) so that

T2 = ‖Aμ − d‖2Z−1 − ‖Aμ − d‖2
Z−1
k

= r�((Im + ÂÂ)−1 − (Im + ÂkÂ�
k )−1)r.

Applying Cauchy-Schwartz inequality followed by submultiplicativity, we get

T2 ≤ β2
1‖(Im + ÂÂ)−1 − (Im + ÂkÂ�

k )−1‖2.

Apply [34, Lemma X.1.4] and simplify to get T2 ≤ β2
1σ

2
k+1(Â)/(1 + σ 2

k+1(Â)).
The proof is complete by plugging in the bounds for T1 and T2 into (B1).

B.2 Proof of Proposition 3.2

As in the proof of Proposition 3.1, write

F̄ − F̃k = 1

2
T1 + 1

2
T2, (B2)

where T1 ≡ logdet(Z) − logdet(Z̃k) and T2 ≡ ‖Aμ − d‖2Z−1 − ‖Aμ − d‖2
Z̃−1
k

. We

bound each of these terms separately.
Let us first consider T1. Set Â = R−1/2AQ1/2. By Sylvester’s determinant identity,

logdet(Z) = logdet(R) + logdet(Im + ÂÂ�). (B3)

We can write ÃkQÃ�
k in terms of the projector �Vk as

ÃkQÃ�
k = AP�

QQ(AP�
Q)� = AQ1/2�Vk (AQ

1/2)�,

we can assert that Z̃k = R1/2
[
Â�Vk Â

� + Im
]
R1/2. Hence,

logdet(Z̃k) = logdet(R) + logdet(Im + Â�Vk Â
�) (B4)

Set M = ÂÂ� and N = Â�Vk Â
�. Since the orthogonal projector �Vk � In then

N � M and, by [33, Lemma 9]

0 ≤ T1 ≤ logdet(Im + M − N)

≤ tr(M − N) = tr(HQ) − tr(Ĥ(k)
Q ) ≡ ξk,

where in the second step we have used logdet(X) ≤ tr(X − Im) for any positive
semidefinite matrix X ∈ Mm(R) and in the last step we have used the cyclic and
linearity properties of the trace operator.
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Next, consider T2. Set r = R−1/2(Aμ − d) and recall that ‖r‖2 = β1 in (10). We
can rewrite

‖Aμ − d‖2Z−1 =
〈
(Im + ÂÂ�)−1r, r

〉

2
=
〈
f (ÂÂ�)r, r

〉

2
,

where f : R+ → R : x �→ 1−(1+x)−1. Then using the Cauchy-Schwartz inequality

T2 =
〈
f (ÂÂ�) − f (Â�Vk Â

�)r, r
〉

2

≤
∥∥∥ f (ÂÂ�) − f (Â�Vk Â

�)

∥∥∥β2
1 .

Since f (x) is operator monotone (see, for example, [34, Exercise V.1.10 (ii)]) and
f (0) = 0. Hence, by [34, Theorem X.1.1],

T2 ≤
∥∥∥ f (ÂÂ�) − f (Â�Vk Â

�)

∥∥∥
2
β2
1

≤ β2
1 f
(∥∥
∥Â
[
In − �Vk

]
Â�
∥∥
∥
2

)
= β2

1

∥∥Â
[
In − �Vk

]
Â�∥∥

2

1 + ∥∥Â [In − �Vk

]
Â�∥∥

2

.

Since In − �Vk is an orthogonal projector, it is idempotent and its 2-norm is at most
1; using these two facts

∥∥
∥Â
[
In − �Vk

]
Â�
∥∥
∥
2

=
∥∥
∥
[
In − �Vk

]
Â�Â

[
In − �Vk

]∥∥
∥
2

≤ ∥∥[In − �Vk

]
HQ
∥∥
2 ≤ |tr([In − �Vk ]HQ)| = ξk .

Hence, T2 ≤ β2
1 ξk

1+ξk
. Combine the two bounds as |F − F̃k | = |T1 + T2| ≤ ξk + β2

1 ξk
1+ξk

.

This completes the proof.

Appendix C: Error analysis of trace estimator

To recap the setup: LetH andQ be two symmetric positive semidefinite n×nmatrices,
with Q positive definite. Let ωk ∈ R

n for 1 ≤ k ≤ N be random vectors with
independent entries that have zero mean and max j‖(ωk) j‖ψ2 ≤ Kψ . Define the trace
estimator

t̃r(HQ) ≡ 1

N

N∑

k=1

ω�
j HQω j .

Proof of Proposition 3.3 By the Hanson-Wright inequality [18, Theorem 6.2.1], for
a matrix K and a vector x with independent mean zero subgaussian entries with
subgaussian norm, at most Kψ

P

{
|x�Kx − E(x�Kx)| ≥ t

}
≤ 2 exp

(

−CHWN min

{
t2

K 4
ψ‖K‖2F

,
t

K 2
ψ‖K‖2

})

.

(C5)
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Apply this result with K = 1
N diag(HQ, . . . ,HQ) and x = [

w�
1 . . . w�

N

]�
. Note that

x�Kx = t̃r(HQ) and

E(x�Kx) = tr(K) = tr(HQ) = tr(HQ)

by the cyclic property of trace, ‖K‖F = ‖HQ‖F/
√
N , and ‖K‖2 = ‖HQ‖2/N . Plug

these identities into (C5) to obtain (24).
For the second result, the tail bound in (24) can be bounded as

2 exp

(

−CHWN min

{
t2

K 4‖K‖2F
,

t

K 2
ψ‖K‖2

})

≤2 exp

(

−CHWN
t2

t‖HQ‖2 + K 2
ψ‖HQ‖2F

)

.

where we have used the inequality min{x, y} ≥ xy/(x + y) for x, y ≥ 0. Set
t = εtr(HQ), the upper bound to δ and solve for N . Finally, note that tr(HQ) = tr(HQ)

is nonnegative. ��
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