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Abstract. Inverse models arise in various environmental
applications, ranging from atmospheric modeling to geo-
sciences. Inverse models can often incorporate predictor vari-
ables, similar to regression, to help estimate natural processes
or parameters of interest from observed data. Although a
large set of possible predictor variables may be included in
these inverse or regression models, a core challenge is to
identify a small number of predictor variables that are most
informative of the model, given limited observations. This
problem is typically referred to as model selection. A variety
of criterion-based approaches are commonly used for model
selection, but most follow a two-step process: first, select
predictors using some statistical criteria, and second, solve
the inverse or regression problem with these predictor vari-
ables. The first step typically requires comparing all possi-
ble combinations of candidate predictors, which quickly be-
comes computationally prohibitive, especially for large-scale
problems. In this work, we develop a one-step approach for
linear inverse modeling, where model selection and the in-
verse model are performed in tandem. We reformulate the
problem so that the selection of a small number of rele-
vant predictor variables is achieved via a sparsity-promoting
prior. Then, we describe hybrid iterative projection methods
based on flexible Krylov subspace methods for efficient op-
timization. These approaches are well-suited for large-scale
problems with many candidate predictor variables. We evalu-
ate our results against traditional, criteria-based approaches.
We also demonstrate the applicability and potential benefits
of our approach using examples from atmospheric inverse

modeling based on NASA’s Orbiting Carbon Observatory-2
(OCO-2) satellite.

1 Introduction

Inverse modeling is used across the Earth sciences, engineer-
ing, and medicine to estimate a quantity of interest when
there are no direct observations of that quantity, but rather,
there are only observations of related quantities (e.g., Taran-
tola, 2005; Nakamura and Potthast, 2015). For example, in-
verse modeling is used in contaminant source identification
to estimate the sources of pollution when the only observa-
tions available are downwind or downstream measurements
of pollution concentrations. In hydrology, inverse modeling
can be used to estimate hydraulic conductivity and storativ-
ity using pumping tests. Similarly, seismic tomography is an
inverse modeling technique for understanding the subsurface
of the Earth using seismic waves. In this paper, we consider
applications from atmospheric inverse modeling, but the ap-
proaches we discuss are applicable across the environmental
sciences.

In many applications of inverse modeling, multiple data
sources can be used as prior knowledge to help predict the
unknown quantity. For example, in environmental inverse
problems, there are increasing numbers of satellite sensors
that provide detailed data on both the built and natural envi-
ronment and can serve as predictors of pollution emissions,
or there may be multiple models that provide different pre-
dictions of the unknown quantity. However, the increasing

Published by Copernicus Publications on behalf of the European Geosciences Union.



8854 M. Sabaté Landman et al.: Large-scale model selection

availability of prior information or predictor variables for in-
verse modeling can be both a blessing and a curse. On one
hand, the existence of more predictor variables can help in-
crease the accuracy of the posterior estimate. On the other
hand, the existence of so many predictor variables or prior
information can necessitate difficult choices about which to
include or exclude from the inverse model.

Throughout this paper, we draw upon case studies from
atmospheric inverse modeling (AIM) to highlight the chal-
lenges of handling multiple predictor variables. In AIM, the
primary goal is to estimate surface fluxes of a greenhouse
gas or air pollutant using observations of gas mixing ratios
in the atmosphere collected from airplanes, TV towers, or
satellites. A model of atmospheric winds is usually required
to quantitatively link surface fluxes with downwind observa-
tions in the atmosphere (e.g., Brasseur and Jacob, 2017; Ent-
ing, 2002). AIM epitomizes the challenges posed by numer-
ous predictor variables since there is a wide range of avail-
able data from multiple sources that can be used as predic-
tors. A common choice is to use a biogeochemical, process-
based, or inventory model of the fluxes. For some air pol-
lutants or greenhouse gases, there is a plethora of available
models to choose from. For example, the most recent Global
Carbon Project report on the global CO2 cycle includes CO2
flux predictions from 16 biogeochemical flux models, and the
most recent methane (CH4) report includes 16 biogeochem-
ical models of CH4 fluxes from global wetlands (Saunois
et al., 2020; Friedlingstein et al., 2022). In theory, any of
these models could be used within the prior to help predict
either CO2 or CH4 fluxes using AIM. In some studies, rather
than using a biogeochemical model prediction of fluxes, the
authors use environmental variables to predict natural CO2
and CH4 fluxes, including estimates of soil moisture and air
temperature (e.g., Gourdji et al., 2008, 2012; Miller et al.,
2014, 2016; Randazzo et al., 2021; Chen et al., 2021a, b).
This approach is often referred to in the AIM literature as
geostatistical inverse modeling (Michalak et al., 2004). Some
modelers also use remote sensing products like indicators of
vegetation greenness and estimates of soil inundation (e.g.,
Shiga et al., 2018a, b; Zhang et al., 2023). Modelers have
further used this approach as a means to evaluate the rela-
tionships between these environmental variables and CO2
or CH4 fluxes (e.g., Fang and Michalak, 2015; Chen et al.,
2021b; Randazzo et al., 2021).

One solution to this challenge is to choose a single predic-
tor variable or a single biogeochemical model to construct
the prior of the inverse model, as is common in the existing
inverse modeling literature (e.g., Brasseur and Jacob, 2017;
Tarantola, 2005). The choice of predictor variable might be
based on the modeler’s expert knowledge or personal pref-
erence. Geostatistical studies, by contrast, often assimilate
multiple predictor variables simultaneously to predict the un-
known quantity of interest. Suppose that one has identified a
set of p predictor variables or covariates that may help pre-
dict the quantity of interest (s), and these covariates have

been assembled into a matrix X 2 Rn⇥p where each column
contains a different predictor variable (e.g., Kitanidis and
VoMvoris, 1983; Michalak et al., 2004). That is, we consider
the model,

s = X� + ⇣ , (1)

where s 2 Rn is a vector representing the unknown quantity
of interest (e.g., spatial or spatiotemporal maps of emissions
of pollution), n indicates the total number of unknowns to
estimate (e.g., at different locations and at different times),
and ⇣ 2 Rn is referred to here as the stochastic component.
It captures variability in the unknown quantity that is not de-
scribed by the predictor variables. In this setup, the stochas-
tic component is estimated as part of the inverse model along
with the set of coefficients or scaling factors � 2 Rp that de-
scribe the relationships between the predictor variables and
the quantity of interest (s). We use the formulation in Eq. (1)
throughout this paper because it affords more flexibility to
incorporate a greater number of predictor variables.

This framework facilitates the use of more than one pre-
dictor variable, but the inclusion of all possible predictors
within an inverse model has numerous pitfalls. First, many
of the biogeochemical models or environmental variables
described above are colinear, meaning that they are highly
correlated with one another. Colinearity can cause numer-
ous problems in linear modeling because the model has diffi-
culty determining how to weight very similar or non-unique
predictor variables (e.g., Kutner et al., 2004). There are sev-
eral available metrics to identify colinear variables; one can
examine the correlations between pairs of predictors or cal-
culate variance inflation factors, among other metrics (e.g.,
Kutner et al., 2004). Second, the inclusion of all available
predictors can cause the inverse model to over-fit available
observations. The inclusion of more predictor variables in a
linear model will always improve the model–data fit. In fact,
one can perfectly predict n observations by using n predic-
tor variables, yielding a model–data fit of R2 = 1, but there
are dangers of including too many predictors or covariates in
linear modeling. The problem of over-fitting is reviewed in
Zucchini (2000).

Model selection techniques have been considered for ob-
taining important and relevant predictors in inverse prob-
lems. These techniques include the partial F test and
Bayesian information criterion (BIC), among other model se-
lection methods (see Sect. 2; e.g., Gourdji et al., 2008, 2012;
Yadav et al., 2016). However, these approaches can be com-
putationally expensive, especially for large-scale problems
with many candidate predictors.

Summary of challenges and contributions

Making an informed decision about which predictor vari-
ables or prior information to incorporate or discard in the
inverse model is important yet very challenging, as it is often
not straightforward to distinguish between informative and
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non-informative variables. In addition, choosing a subset of
q predictor variables out of p possible available variables can
involve (pq) comparisons, which is computationally challeng-
ing even for modest values of p and q.

In this study, we develop a new approach for incorporating
prior information in an inverse model using predictor vari-
ables, while simultaneously selecting the relevant predictor
variables for the estimation of the unknown quantity of inter-
est. Following a Bayesian approach, we focus on efficiently
computing the maximum a posteriori (MAP) estimate of the
posterior distribution for the unknown quantity of interest as
well as the predictor coefficients (�). Note that this algorithm
can also be applied to spatial interpolation problems where
there are multiple predictor variables (i.e., universal krig-
ing), and we describe the implementation for kriging prob-
lems where applicable throughout the paper. Overall, this ap-
proach has three main contributions.

– We develop a more comprehensive statistical model, a
joint model for the unknown quantity of interest (s) and
the predictor coefficients (�), with sparsity-promoting
priors on the coefficients �, that enables model selec-
tion.

– We adapt an iterative algorithm developed by Chung
et al. (2023) to simultaneously estimate both s and �.
This algorithm requires only a “single step” to select
a set of predictors and solve the inverse problem (i.e.,
compute estimates for s and �). The proposed algorithm
also automatically selects the regularization parameters
on the fly.

– We evaluate this algorithm using several examples from
AIM, including examples drawn from NASA’s Orbiting
Carbon Observatory-2 (OCO-2) satellite, and compare
against existing model selection techniques on small
and moderate-sized problems. For the largest problem
we consider, existing model selection techniques can-
not be run in a reasonable amount of time.

The paper is organized as follows. In Sect. 2 we describe pre-
viously used strategies for model selection in the context of
inverse problems, highlighting their different uses and pit-
falls. In Sect. 3 we present the new proposed strategy, pro-
viding a detailed explanation of the hierarchical Bayesian
model used for the problem defined in Eqs. (2) and (1),
as well as a description of the optimization strategy used
to compute the MAP estimator and the subsequent algo-
rithm. Numerical results are provided in Sect. 4, and con-
clusions and future work are described in Sect. 5. The pro-
posed method, msHyBR, has been implemented and tested in
MATLAB. Related codes and software are available (Land-
man et al., 2024), and future versions of the codes will
be available at https://github.com/Inverse-Modeling (last ac-
cess: 12 June 2024).

Details on notation are provided in the Appendix. Unless
otherwise specified, vectors are denoted with boldfaced italic

lowercase letters (e.g., x), matrices are denoted with bold-
faced capital letters (e.g., A), subscripts are used to index
columns of matrices or iteration count, and > denotes the
transpose operation.

2 Existing strategies for model selection in inverse
problems

There are different strategies to decide which predictor vari-
ables or prior information to include within this inverse (or
kriging) model, operating under the assumptions described
in Eqs. (1) and (2). The first approach is to choose predictor
variables or prior information based on expert judgment. For
example, perhaps a modeler trusts one biogeochemical CO2
or CH4 model more than others – based on either previous
analysis or existing literature. A downside of this approach
is that it often necessitates making subjective decisions that
are not necessarily based on the available atmospheric CO2
or CH4 observations.

The second approach used in several inverse studies is
model selection. This class of methods is also frequently used
in regression analysis and linear modeling (e.g., Ramsey and
Schafer, 2013). This approach requires a two-step process.
The first step is to run model selection to decide on a set
of predictor variables, and the second step is to incorporate
those variables into the inverse model and estimate the un-
known quantity (s). Usually, the goal is to identify a small set
of predictor variables that have the greatest power to predict
the observations (z). Specifically, consider a linear inverse
problem of the form (e.g., Brasseur and Jacob, 2017)

z = Hs + ✏, (2)

where z 2 Rm is a vector of observations so that the variable
m indicates the total number of available observations. Here,
H 2 Rm⇥n represents a physical model that relates the un-
known quantity to the observations, and ✏ 2 Rm represents
noise or errors, including errors in the observations z and in
the physical model H. In the present study, as is the preva-
lent approach, we model this error as normally distributed
with zero mean and covariance matrix R 2 Rm⇥m. Note that
for the kriging case, H contains a single value of 1 in each
row; this entry links the observation associated with that row
to the column that corresponds to the matching location in
the unknown space. All remaining elements of H are set to
0. Given these relationships, the goal of model selection is
to find a set of predictor variables (X, Eq. 1) that best im-
proves the fit of s against available observations z. Specifi-
cally, model selection will typically reward combinations of
predictor variables that are a better fit against available obser-
vations and penalize models for increasing complexity (i.e.,
for increasing numbers of predictor variables).

Existing model selection methods usually determine this
fit using the weighted sum of square residuals (WSS) (e.g.,
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Kitanidis, 1997; Gourdji et al., 2008):

WSS(S) = z>
✓

9�1 � 9�1HXS
⇣

X>
SH>9�1HXS

⌘�1

X>
SH>9�1

⌘
z,

(3)

where S indicates a subset of predictor variables from the full
list of possible variables. Specifically, S ⇢ {1, . . .,p}, and |S|
denotes the total number of predictor variables in the subset.
For example, if p = 25, S = {1,4,7} is a subset of {1, . . .,25}
with a total number of variables |S| = 3. Then we define XS
as a matrix of size n ⇥ |S| which contains columns from X
corresponding to the set S . Furthermore, 9 = HQH> + R,
and Q is a covariance matrix defined by the modeler that de-
scribes the spatial and/or temporal properties of the stochas-
tic component (⇣ ) in Eq. (1). In writing expressions such as
Eq. (3), we assume that 9 is positive-definite and HXS has
full column rank.

Common model selection methods include the partial
F test (also called the variance ratio test), the Akaike infor-
mation criterion (AIC), and the Bayesian information crite-
rion (BIC). The partial F test can only be used to compare
two candidate models at a time: a model with a smaller num-
ber of predictor variables, S with |S| = q, and a model with
a larger number of predictor variables, T with |T | = q + t

(e.g., Ramsey and Schafer, 2013). The smaller model typi-
cally needs to be a subset of the larger model, which is ar-
guably a limitation of this approach because one often needs
to evaluate many different pairs of larger and smaller models
(S and T ) to determine an optimal set of predictor variables.
For example, the larger model commonly has one additional
predictor variable but is otherwise the same as the smaller
model. The outcome of this statistical test is determined by a
p value; if this value is below a certain threshold (typically a
p value < 0.05), then it is advisable to keep the larger model
over the smaller model (e.g., Ramsey and Schafer, 2013). As
part of these calculations, the partial F test entails comput-
ing the WSS for S and T to quantify how well each model
matches available observations, as in Eq. (3). The improve-
ment in model fit is evaluated using

⌫(S,T ) = (WSS(S) � WSS(T ))/t

WSS(T )/(p � (q + t))
, (4)

where the level of significance is quantified using an F dis-
tribution with q and p � (q + t) degrees of freedom. A small
p value indicates that WSS(T ) and WSS(S) are significantly
different, and the larger model T is preferable to the smaller
model S .

The AIC and BIC, by contrast, operate on a different prin-
ciple (Bozdogan, 1987; Schwarz, 1978). A modeler will of-
ten calculate an AIC or BIC score for every possible com-
bination of predictor variables (Gourdji et al., 2012; Miller

et al., 2013):

AIC(S) = ln |9| + WSS(S) + |S|, (5)
BIC(S) = ln |9| + WSS(S) + |S| ln(m), (6)

where S is a subset of {1, . . .,p}, ln refers to the natural log-
arithm (with base e), and |9| denotes the determinant of the
matrix 9. The combination of predictor variables with the
lowest AIC or BIC score is deemed the best model. Note that
these two approaches are conceptually similar but have dif-
ferent penalty terms for model complexity: the penalty in the
BIC depends on the number of observations (m), while the
AIC penalty does not.

An upside of statistical model selection is objectivity; this
approach can be used to choose predictor variables that are
best able to reproduce the observations without over-fitting
those observations. There are several downsides to this ap-
proach. First, it requires multiple steps – the user needs to
run model selection to identify the predictor variables and
then subsequently solve the inverse problem to estimate the
unknowns s. Second, there are often computational compro-
mises required to implement model selection. If there are
p possible predictor variables, there are 2p different com-
binations to evaluate that range in size from 0 to p total
predictor variables. One possible way to reduce the size of
this search space is to implement the partial F test using
forward, backward, or stepwise selection (e.g., Ramsey and
Schafer, 2013; Gourdji et al., 2008). In forward selection, one
would start without any predictor variables in the model and
progressively try to add more predictor variables. In back-
ward selection, one would start with all predictor variables
and progressively try to remove individual variables from
the model (i.e., progressively remove variables for which the
p value > 0.05). Stepwise selection, by contrast, alternates
between forward and backward selection at each iteration.
These strategies reduce the number of candidate model com-
binations to evaluate, but these three strategies are not guar-
anteed to converge on the same final result. Beyond the par-
tial F test, existing studies have also laid out strategies to
narrow the number of combinations that need to be evaluated
when implementing the AIC or BIC; these strategies, known
as branch and bound algorithms, attempt to eliminate mul-
tiple related combinations or branches with each calculated
BIC score (e.g., Yadav et al., 2013).

Third, existing approaches to model selection may not
work at all for very large inverse problems due to compu-
tational limitations. For example, existing inverse modeling
and kriging studies that implement model selection do so by
calculating WSS for different combinations of predictor vari-
ables as defined in Eq. (3). This equation requires formulat-
ing and inverting 9, a task that is not computationally feasi-
ble for many large inverse problems or for problems where
H is not explicitly available as a matrix but rather where only
the outputs of forward and adjoint models are available. More
recently, a handful of studies have replaced 9�1 with an ap-
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proximate diagonal matrix (Miller et al., 2018, 2020a; Chen
et al., 2021a, b; Zhang et al., 2023). This compromise makes
it possible to estimate WSS, but a downside is that this ap-
proximation for 9�1 does not match the actual values of R
and Q that are used in solving the inverse problem.

3 Proposed approach: msHyBR

In this study, we develop a new approach, msHyBR, for in-
corporating prior information or predictor variables into an
inverse model. This approach directly addresses several of
the challenges described above. First, it is computationally
efficient, even for very large inverse problems with many ob-
servations and/or unknowns where it is not possible to com-
pute 9�1 (or more appropriately, solve linear systems with
9) and for problems where an explicit H matrix is not avail-
able. Second, the computational cost of this approach does
not scale exponentially with the number of predictor vari-
ables p (in contrast with other methods that scale with the
number of combinations, i.e., 2p). Third, the proposed ap-
proach will determine a set of predictor variables and solve
for the unknown quantity s in a single step, as opposed to
the two-step process required for existing model selection al-
gorithms. Overall, the proposed approach opens the door for
assimilating large amounts of prior information or numbers
of predictor variables within an inverse model. We argue that
this capability is important, particularly as the number of en-
vironmental, Earth science, and remote sensing datasets con-
tinues to grow.

3.1 Model structure and assumptions

A key aspect of this work is proposing a more comprehen-
sive statistical modeling of the problem defined by Eqs. (1)
and (2). Recall that s is the unknown quantity of interest in
the inverse problem in Eq. (2), and several predictor vari-
ables are used in the estimation of this quantity, as stated in
Eq. (1). In this work, we model the coefficients of the pre-
dictors (�) as random instead of deterministic variables, a
contrast to many existing inverse modeling studies (e.g., Ki-
tanidis and VoMvoris, 1983; Michalak et al., 2004). Previ-
ous works assume p ⌧ n and include standard assumptions
for coefficients in � such as an improper hyperprior (Miller
et al., 2020a; Saibaba and Kitanidis, 2015) or a Gaussian dis-
tribution (Cho et al., 2022). However, there are many sce-
narios where p may be large, and we propose a new model
suitable for these cases, imposing a sparsity-promoting prior
on �. The sparsity, in turn, determines which entries of �
(and corresponding predictor variables or columns of X) are
meaningful. The proposed model has the following hierar-
chical form:

s = X� + ⇣ , ⇣ ⇠ N (0,��2Q), �j ⇠ Laplace(0,2↵�2)

for 1  j  p, (7)

where the predictor coefficients �j are components of the
vector � and follow a Laplace (also known as double ex-
ponential) distribution that promotes sparsity. The parameter
↵ controls the shape of that distribution. Note that we also
include a regularization parameter (�) that scales the covari-
ance matrix (Q) such that the overall inverse model is con-
sistent with the actual model–observation residuals. Finally,
note that the overall model structure with this regularization
parameter can be reformulated more compactly as follows:

s | � ⇠ N (X�,��2Q). (8)

Assuming Eqs. (2) and (7) and according to Bayes’ theorem,
the density function of the joint posterior probability of s and
� is
⇡post(s,� | z) / ⇡(z | s,�)⇡(s | �)⇡(�)

/ exp
✓

�1
2
kz � Hsk2

R�1 � �2

2
ks � X�k2

Q�1

�↵2

2
k�k1

◆
.

(9)

Here, all terms in the exponent are vector norms, and, in par-
ticular, k xk2

L = x>Lx for any symmetric positive-definite
(SPD) matrix L. Further, the symbol / denotes proportion-
ality. Note that the joint posterior probability for s and � is
not Gaussian; however, the MAP estimate can be computed
by solving the following optimization problem,

min
s,�

⇢
1
2
kz � Hsk2

R�1 + �2

2
ks � X�k2

Q�1 + ↵2

2
k�k1

�
. (10)

Other Bayesian models can be used for sparsity promotion;
see, e.g., Calvetti et al. (2020). Our approach is analogous to
the use of `1 norms in regression and can be seen as an ex-
tension of the Bayesian LASSO (Park and Casella, 2008) to
large-scale inverse modeling. Moreover, potential limitations
of the Laplace prior have been studied, and other Bayesian
models can be used for sparsity promotion; see, e.g., Calvetti
et al. (2020), Carvalho et al. (2010), and Piironen and Ve-
htari (2017). Changing the modeling assumptions may lead
to different model selection techniques.

The remainder of this section is dedicated to describing a
computationally efficient algorithm called msHyBR to solve
Eq. (10), i.e., to estimate s and � simultaneously. msHyBR
is an iterative procedure that takes as input both the problem
inputs and the set of predictor variables in X. At each itera-
tion, a projected problem is solved and the solution subspace
is expanded until some stopping criteria are satisfied. Recon-
structed estimates of s and � are the outputs of the algorithm,
and subsequent thresholding of � can be done, e.g., to iden-
tify important predictor variables. A general overview of the
approach is provided in Fig. 1.

3.2 Methodology and algorithm

To handle the computational burden of computing the in-
verse or square root of the covariance matrix (Q), we begin
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Figure 1. General approach for simultaneous model selection and inversion. Given both problem inputs and predictor variables, msHyBR is
an iterative procedure that solves a projected problem (with automatic estimation of parameters � and ↵) and expands the solution subspace
until some stopping criteria are satisfied. Reconstructed estimates of s and � can be used for further analysis, i.e., to identify important
predictor variables XS , where S is the set of selected indices.

by transforming the inverse problem in Eq. (10), following
Chung et al. (2023) and Chung and Saibaba (2017). This
transformation is crucial for many high-dimensional prob-
lems where Q can only be accessed through matrix–vector
products. Let

g = Q�1(s � X�) (11)

so that the solution of the problem defined in Eq. (10) can
subsequently be obtained by solving the following optimiza-

tion problem:

min
g,�

(
1
2

����z �
⇥
HQ HX

⇤
g
�

�����
2

R�1
+ �2

2
kgk2

Q + ↵2

2
k�k1

)

. (12)

Solving such optimization problems can be challenging, and
Krylov subspace methods, which are iterative approaches
based on Krylov subspace projections, are ideal for working
in subspaces for large-scale problems. For problems where it
is assumed that the predictor coefficients � follow a Gaus-
sian distribution, generalized hybrid projection methods are
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described in Cho et al. (2022). However, solving Eq. (12) is
more difficult due to the `1 regularizer, which is not differ-
entiable at the origin. Several techniques have been devised
to approximate the solution of similar inverse problems. One
approach is to use nonlinear optimization methods, partic-
ularly iterative shrinkage algorithms such as FISTA (Beck
and Teboulle, 2009) or separable approximations such as
SPARSA (Wright et al., 2008).

Alternately, one can use a majorization–minimization
(MM) approach, which involves successively minimizing a
sequence of quadratic tangent majorants of the original func-
tional centered at each approximation of the solution. For ex-
ample, methods based on iterative schemes that approximate
the `1-norm regularization term by a sequence of weighted `2
terms, and in combination with Krylov methods, are usually
referred to as iterative re-weighted norm (IRN) schemes (Ro-
dríguez and Wohlberg, 2008; Daubechies et al., 2010). In this
paper, we build on this strategy. In particular, for Eq. (12),
and given an initial guess (g(0),�(0)), we can solve a se-
quence of re-weighted least-squares problems of the form

(g(k+1),�(k+1)) = argmin
g,�

(
1
2

����z �
⇥
HQ HX

⇤
g
�

�����
2

R�1

+�2

2
kgk2

Q + ↵2

2
kD(�(k))�k2

2

�
, (13)

where D(�) is an invertible diagonal matrix constructed such
that

D(�) = diag
✓h

2
q

�2
j + ✏

i�1/2◆p

j=1

and

k �k1 k D(�(k))�k2
2 + C,

with a positive constant C independent of �. Here, �j cor-
responds to components of �. Then, each step of the MM
approach consists of solving Eq. (13). For high-dimensional
problems, it is unfeasible to solve Eq. (13) directly, but an
iterative method such as the generalized hybrid method de-
scribed in Cho et al. (2022) could be used. However, this
strategy has two main disadvantages: (1) using an iterative
method yields an inner–outer optimization scheme, which
can be very computationally expensive, and (2) the regular-
ization parameters � and ↵ in Eq. (13) cannot be selected in-
dependently since previous algorithms require assuming that
↵ = ⌧� for some known ⌧ > 0 (even if ↵ can be computed
automatically).

To overcome these shortcomings, we use flexible Krylov
methods, which use iteration-dependent preconditioning to
build a suitable basis for the solution and have been shown
to be very competitive to solve problems involving `1-norm
regularization in other contexts (see, e.g., Chung and Gaz-
zola, 2019; Gazzola et al., 2021). In particular, flexible
Krylov methods are iterative hybrid projection schemes, so

they are characterized by two main components: the (single)
solution subspace that is generated and the optimality condi-
tions that are imposed to compute an approximate solution at
each iteration.

Note that since we are considering a joint model, we need
to build a solution space for both the variable g, which is
related to the unknown quantity of interest (s) through the
efficient change of variables defined in Eq. (11), and the pre-
dictor coefficients (�). Leveraging flexible Krylov methods
in a similar fashion to Chung et al. (2023), we use the flexi-
ble generalized Golub–Kahan (FGGK) process to generate a
basis for the solution, which is augmented with a new basis
vector at each iteration.

3.2.1 Flexible generalized Golub–Kahan (FGGK)
iterative process

The FGGK process is an iterative procedure that constructs a
basis for [g>,�>]> and where each basis vector is stored as
columns of Zk . First, the initialization step consists of com-
puting m1,1 =k zkR�1 , u1 = z/m1,1, v1 = H>R�1u1, and
t1,1 =k v1kQ. At each iteration k, the FGGK process gen-
erates vectors zk, vk , and uk+1 by updating the following
relation:

mk+1,kuk+1 = HQvk + HXD�1
k X>vk �

kX

j=1
mj,kuj , (14)

tk+1,k+1vk+1 = H>R�1uk+1 �
kX

j=1
tj,kvj , (15)

where mk+1,k and tk+1,k+1 are normalization scalars. See Al-
gorithm 1. Generally, this process involves constructing new
direction vectors and orthonormalizing them using appropri-
ate inner products. In particular, uk+1 is constructed con-
sidering u = (HQ+HD�1

k X>)vk , orthogonalizing u against
the previous basis vectors u1, . . .,uk using the inner product
defined by Q, and normalizing this using the corresponding
norm induced by this inner product. The analogous process is
used to construct vk+1, where v = H>R�1uk+1 is orthonor-
malized with respect to the previous vectors v1, . . .,vk using
the inner product defined by R�1.

Equivalently, we can consider the matrices
Uk+1 =

⇥
u1 . . . uk+1

⇤
2 Rm⇥(k+1) and Vk+1 =⇥

v1 . . . vk+1
⇤
2 Rn⇥(k+1) so that, by construction,

U>
k+1R�1Uk+1 = Ik+1 and V>

k+1QVk+1 = Ik+1 (16)

in exact arithmetic. Moreover, one can define the following
augmented matrices:

bH =
⇥
H HX

⇤
2 Rm⇥(n+p) and

bQ =


Q
I

�
2 R(n+p)⇥(n+p) (17)
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so that Eqs. (14) and (15) can be expressed more compactly
as

bHbQZk = Uk+1Mk and H>R�1Uk+1 = Vk+1Tk+1. (18)

Here, Mk 2 R(k+1)⇥k is upper Hessenberg with ele-
ments mi,j for i = 1, . . .,k + 1 and j = 1, . . .,k, Tk+1 2
R(k+1)⇥(k+1) is upper triangular with elements ti,j , and the
solution space for [g>,�>]> is spanned by the columns of
Zk , and it is defined as

Zk =
⇥
z1 . . . zk

⇤
=


v1 . . . vk

w1 . . . wk

�

=


Vk

Wk

�
2 R(n+p)⇥k. (19)

3.2.2 Computation of the solution

After a new basis vector is included in the solution space, one
needs to (partially) solve a subproblem as defined in Eq. (13).
That is, at each iteration, we solve a small projected least-
squares problem to approximate the solution of Eq. (13) in a
space of increasing dimension. In particular, using the rela-
tions in Eqs. (16) and (18) obtained using the FGGK process,
at each iteration k we solve

min
g=Vkf ,�=Wkf

k HQg+HX��zk2
R�1 +�2 k gk2

Q+↵2 k �k2
2

(20)

for gk and �k or, equivalently, gk = Vkf k and �k = Wkf k ,
where

f k = arg min
f 2Rk

k Mkf � m1,1e1k2
2 + �2 k f k2

2 + ↵2 k Wkf k2
2. (21)

Finally, we need to undo the change of variables defined in
Eq. (11) so that the solution of the original problem in Eq. (2)
is approximated at each iteration by sk = Qgk + X�k . Note
that, to simplify the notation when deriving the model, we
assumed that the regularization parameters � and ↵ are fixed,
but these can be automatically updated at each iteration so
that, effectively, � = �k and ↵ = ↵k in Eq. (21). This proce-
dure will be explained in the following section. The pseudo-
code for the new model selection HyBR method (msHyBR)
can be found in Algorithm 1.

Note that Eq. (21) is a standard least-squares problem with
two Tikhonov regularization terms, and the coefficient ma-
trix is of size (k + 1) ⇥ k, so the solution can be computed
efficiently (Björck, 1996). Efficient QR updates for Wk are
considered in Chung et al. (2023).

Each iteration of msHyBR requires one matrix–vector
multiplication with H and its adjoint (let TH denote the cost
one matrix–vector product with H or its adjoint), two matrix–
vector multiplications with X and one with its adjoint (sim-
ilarly, denoted as TX), two matrix–vector products with Q

(denoted as TQ), one matrix–vector product with R�1 (de-
noted as TR�1 ), one matrix–vector product with D�1

k (de-
noted as TD�1

k
), and the inversion of a diagonal matrix D�1

k

that is O(p) floating point operations (flops) and an addi-
tional O(k(m + n)) flops for the summation calculation in
Eqs. (14) and (15). To compute the solution of the projected
problem (21), the cost is O(k3) flops, since Mk is upper Hes-
senberg. And the cost of forming g and � to obtain sk is
O(k(n + p)). Since p,k ⌧ m and p,k ⌧ n, TX ⌧ TH and
TD�1

k
⌧ TQ. The overall cost of the msHyBR algorithm is

TmsHyBR = 2kTH+2kTQ+kTR�1 +O(k2(m+n)) flops. (22)

It is important to note that the projected problem in Eq. (21)
for msHyBR is much cheaper to solve than Eq. (13) within
each MM iteration due to its optimization over a lower-
dimensional space.

3.2.3 Regularization parameter choice

One of the benefits of the proposed method is that it con-
veniently allows us to automatically estimate � and ↵ in
Eq. (21) throughout the iterations. This feature is common
in hybrid projection methods for a single parameter and
more recently has been extended to several parameters (e.g.,
Chung et al., 2023). The overall aim is to find a good reg-
ularization parameter for each of the projected subproblems
defined in Eq. (21) so that, in practice, � = �k and ↵ = ↵k .
Let us then consider the unknown quantity of interest at each
iteration as a function of the regularization parameters, i.e.,
sk(�k,↵k).

To validate the potential of the method independently of
the regularization parameter choice criteria, we first con-
sider the optimal regularization parameters with respect to
the residual norm – that is,

{�k,↵k} = argmin
�,↵

k sk(�,↵) � sk2
2. (23)

Note that this is of course unfeasible for real problems where
the solution is unknown. In that case, one can use many
different regularization parameter choice criteria; see, e.g.,
Kilmer and O’Leary (2001), Bauer and Lukas (2011), Gaz-
zola and Sabaté Landman (2020), and Chung and Gazzola
(2024). In this paper, we focus on the discrepancy princi-
ple (DP), since it is an established criterion. This consists of
choosing � and ↵ such that

{�k,↵k} = argmin
�,↵

| k Hsk(�,↵) � zk2
R�1 � ⌧DPm|

= argmin
�,↵

| k Mkf k(�,↵) � m1,1e1k2
2 � ⌧DPm|,

(24)

where ⌧DP is a predetermined parameter.
Moreover, note that other regularization parameter choices

can be used seamlessly using an analogous approach; for ex-
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Algorithm 1 Hybrid method for model selection (msHyBR).

Require: Matrix H 2 Rm⇥n, positive-definite matrices Q 2 Rn⇥n and R 2 Rm⇥m, vector z 2 Rm,X 2 Rn⇥p . Invertible matrix D1 = Ip 2
Rp⇥p .

1: Initialize u1 = z/m1,1, where m1,1 =k zkR�1 and v1 = 0,k = 1.
2: while stopping criteria are not satisfied do
3: h = H>R�1uk , tj,k = h>Qvj for j = 1, . . .,k � 1
4: h = h � Pk�1

j=1tj,kvj , tk,k =k hkQ, vk = h/tk,k

5: zk =

vk

wk

�
, Vk =

⇥
v1 . . . vk

⇤
, Wk =

⇥
w1 . . . wk

⇤
, where wk = D�1

k X>vk .

6: h = H(Qvk + Xwk), mj,k = h>R�1uj for j = 1, . . .,k

7: h = h � Pk
j=1mj,kuj , mk+1,k =k hkR�1 , uk+1 = h/mk+1,k

8: Update QR factorization to obtain Wk+1 = Qk+1Rk+1
9: Solve Eq. (21) to get f k(�k,↵k) with selected regularization parameters �k,↵k .

10: sk = XWkf k + QVkf k
11: Dk+1 = D(Wkf k)

12: k = k + 1
13: end while
14: return Approximations sk and �k

ample, a few standard choices are described in Chung et al.
(2023) for the two variable cases.

4 Numerical experiments

In this section, we present three examples to evaluate the
proposed approach msHyBR for model selection in inverse
problems. First, we present a small one-dimensional signal
deblurring example to compare the proposed method with
existing model selection approaches and other inverse meth-
ods that assume different priors. Second, we develop a hy-
pothetical AIM example featuring a real forward model but
synthetic data where the mean and subsequently the predic-
tor variables are constructed using a zonation model. Third,
we present a case study on estimating CO2 sources and sinks
(i.e., CO2 fluxes) across North America using a year of syn-
thetic CO2 observations from NASA’s OCO-2 satellite. In
this final case study, we use the proposed algorithm to predict
synthetic CO2 fluxes using numerous meteorological and en-
vironmental predictor variables.

We discuss three different methods for model selection.

1. Bayesian approaches. This includes the proposed
msHyBR approach, which performs model selection in
a one-step manner.

(a) The genHyBR approach, proposed in Chung and
Saibaba (2017), corresponds to the known mean
case (which we assume to be zero).

(b) The genHyBRmean approach, proposed in Cho
et al. (2020, Algorithm B1), estimates the mean
coefficients � using a Gaussian prior – that is, no
sparsity is imposed. This method requires estimat-
ing two parameters � and ↵, but it requires taking

↵ = ⌧�, where ⌧ is a fixed parameter for a specific
application.

Strictly speaking, the latter two methods do not perform
model selection but we include them for comparison.
If the prior precision �2 is estimated using the relative
reconstruction error in the solution we denote this as
“opt”; if it is estimated using the discrepancy principle,
this is denoted as “dp”.

2. Exhaustive selection. We use the AIC and BIC criteria
with exhaustive search (denoted as “exh” in the results).

3. Forward selection. Since the variance ratio test is based
on a pairwise comparison, an exhaustive search would
require implementing the test 2p�1! times, which is in-
feasible to calculate for large p (e.g., for p = 7, we re-
quire 64! ⇡ 1089 evaluations). Therefore, we perform
the variance ratio test with a forward selection method.
For comparison, we also include AIC and BIC with for-
ward selection (denoted as “fwd” in the results).

4.1 One-dimensional deblurring example

The first case study discussed here is a simple 1-D inverse
modeling example where the solution is a combination of
several polynomial functions. We use this hypothetical case
study to examine the basic behavior of different model selec-
tion algorithms, including the proposed msHyBR algorithm
and exhaustive combinatorial search for the optimal solution.
We apply these algorithms to more complicated and chal-
lenging problems in subsequent case studies.

More specifically, this example concerns an application
in 1-D signal deblurring, involving a Gaussian blur with
blurring parameter � = 1. The elements in the matrix H 2

https://doi.org/10.5194/gmd-17-8853-2024 Geosci. Model Dev., 17, 8853–8872, 2024



8862 M. Sabaté Landman et al.: Large-scale model selection

R100⇥100 representing the forward model are defined as

Hij = 1p
2⇡� 2

exp
✓

� (i � j)2

2� 2

◆
1  i,j  100.

We assume that the covariates involve seven predictor vari-
ables corresponding to the discretized representations of the
first five Chebyshev polynomial basis functions of the first
kind and two mirrored Heaviside functions with a jump at
0.5 evaluated on a grid with 100 equispaced points between
0 and 1. The columns of X 2 R100⇥7 are displayed in Fig. 2a.
Moreover, the covariance matrix Qs 2 R100⇥100 is con-
structed using a Matérn covariance kernel (see, e.g., Chung
and Saibaba, 2017), with parameters ⌫ = 0.5 and ` = 1.
For this example, the exact solution has been created us-
ing a realization of the model in Eq. (7), with the parame-
ter ��2 = 0.01. The sparse true coefficients � 2 R7 are dis-
played in Fig. 4. Last, the covariance of the additive noise is
R = 0.12 · I 2 R100⇥100. The measurements z 2 R100, along
with their noiseless counterpart, are displayed in Fig. 2b,
while Fig. 2c shows the true solution as well as the contri-
butions corresponding to the mean and the stochastic com-
ponent. Note that for this specific noise realization, the noise
level � =k ✏k2/ k Hsk2 is 0.08.

We use the msHyBR approach to compute the reconstruc-
tions of s and �. Note that the estimated coefficients, �, can
be used for model selection by selecting the columns cor-
responding to the coefficients of � whose absolute value is
higher than a chosen threshold. Also note that for the two-
stage methods based on model selection, the inverse problem
is solved only using the subset of selected covariates XS de-
fined in Sect. 2. This gives rise to a vector of coefficients �S ,
which is of smaller or equal dimension to �, since it corre-
sponds only to the coefficients associated with the previously
selected columns. To compare the estimated and true coeffi-
cients, and as observed in Fig. 4, the vectors �S have been
augmented with zeroes on the coefficients whose indices are
not in the set of selected indices S .

4.1.1 Comparison of the reconstructions

For this example, the new method msHyBR is competitive
in terms of the quality of the reconstructions of s and the
coefficients � as displayed in Figs. 3 and 4, respectively.
The three panels correspond to Bayesian methods (a), ex-
haustive selection methods (b), and forward selection meth-
ods (c). For the comparison with Bayesian models, we ob-
serve from Fig. 3a that genHyBR produces an oscillatory so-
lution, which can be attributed to the stochastic component
(⇣ ), since the mean X� = 0 in Eq. (1). By contrast, the gen-
HyBRmean reconstruction is smoother than the genHyBR
reconstruction, which highlights the importance of including
adept predictor variables. The genHyBRmean reconstruction
is similar to but not as accurate as the proposed msHyBR
algorithm, which is evident in the relative reconstruction er-
ror norms computed as ksk�sk2

ksk2
, where s is the true solution

Table 1. Confusion matrix for the one-dimensional deblurring ex-
ample: true positive (TP), false positive (FP), true negative (TN),
and false negative (FN). The F1 score is defined in Eq. (25). The
best-performing methods for each category are marked in boldface.

TP FP TN FN F1

msHyBR 3 0 4 0 1
exh BIC 3 0 4 0 1
exh AIC 3 0 4 0 1
fwd F test 3 1 3 0 0.86
fwd BIC 3 1 3 0 0.86
fwd AIC 3 1 3 0 0.86
genHyBRmean 3 2 2 0 0.75

and sk is the reconstruction at the kth iteration. These val-
ues are provided as a function of the iteration in Fig. 5. This
improvement can be attributed to msHyBR’s superior recon-
struction of the coefficients in �; see Fig. 4a. Recall that gen-
HyBRmean assumes a Gaussian distribution on �, and this
assumption has a smoothing effect on the computed �, caus-
ing it to deviate from the true �.

We observe that the msHyBR reconstruction of s is sim-
ilar to those corresponding to the exhaustive selection and
the forward selection approaches. However, from the recon-
structions of � provided in Fig. 4b and c, we observe that
msHyBR identifies appropriate weights for the fourth and
sixth coefficients. Next, we compare the performance of the
methods for model selection by including standard quantita-
tive measures for the evaluation of binary classifiers.

4.1.2 Comparison of the model selection

We show the different elements in the confusion matrix as
well as the F1 score, defined as

F1 = 2TP
2TP + FP + FN

, (25)

where TP and FP are true positive and false positive, respec-
tively, and FN is false negative. Note that F1 can take values
between 0 and 1, with 1 corresponding to a perfect classi-
fication. Note that the score F1 in Eq. (25) corresponds to
the harmonic mean of the positive predictive value or pre-
cision (fraction of the selected columns that are in the true
set) and the sensitivity or recall (fraction of true set of rel-
evant columns that is identified by the method). The results
are provided in Table 1, where the best-performing algorithm
for each of the categories is highlighted in boldface. For this
example, msHyBR performs competitively. It is also inter-
esting to note that, as expected theoretically, genHyBRmean
tends to produce false positives due to the smoothing effect
on the coefficients �.

The aim of this example was to evaluate the proposed ap-
proach in comparison to existing model selection approaches
for a small problem. Note that all the regularization param-
eters used to compute the solution of the inverse problem
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Figure 2. For the one-dimensional deblurring example, p = 7 predictor variables (or columns of X), measurements with and without noise,
and the true solution are provided. The x axis denotes the domain where the signal and measurements are defined.

Figure 3. Reconstructed quantity of interest (s) for the one-dimensional deblurring example with p = 7 predictor variables described in
Sect. 4.1 compared to the true solution s.

(regardless of whether this is done in one or two steps) are
chosen to be optimal with respect to the relative reconstruc-
tion error norm. We consider more realistic case studies and
parameter choice methods in the upcoming sections.

4.2 Hypothetical atmospheric inverse modeling (AIM)
problem

This experiment concerns a synthetic inverse modeling prob-
lem where the true solution features distinct blocks of emis-
sions in different regions of North America (i.e., a zonation
model; see Fig. 6a). This case study is hypothetical, where
the ground truth is known. The goal of this case study is
to examine the performance of the new msHyBR method
compared to a two-step process where the relevant predic-
tor variables are chosen first (using standard model selec-
tion techniques) and then the solution of the inverse model
is computed. The true emissions in this case study have rela-
tively simple geographic patterns, much simpler than most
real air pollutant or greenhouse gas emissions. With that
said, this case study provides a clear-cut test for evaluating
the algorithms developed here; model selection should iden-
tify predictor variables (i.e., columns of X) corresponding
to the large emissions blocks in the true solution (Fig. 6)
and should not select predictor variables in other subregions

with small or non-existent emissions. Overall, this example
demonstrates that msHyBR can achieve similar reconstruc-
tion quality as a two-step approach and can also alleviate
some of the computational challenges with model selection
for larger problems.

In this experiment, we consider a synthetic atmospheric
transport problem aimed at estimating the fluxes of an atmo-
spheric tracer across North America, with a spatial resolution
of 1° ⇥ 1°. For this example, we generated synthetic fluxes
by only placing nonzero fluxes in a limited number of re-
gions. These fluxes vary spatially but not temporally. We use
a zonation model to build the predictor variables – that is, we
divide North America into 78 regions where the inner bound-
aries correspond to a grid of 10° longitude and 7° latitude, as
can be observed in Fig. 6a. Each column of X corresponds to
an indicator function for each of the subregions on the grid.
Specifically, each column of X consists of ones and zeros:
ones for all model grid boxes that fall within a specific sub-
region and zero for all other grid boxes. The coefficients �
determine the weights of each basis vector, and for this ex-
ample, we use the true values of � given in Fig. 7b; the cor-
responding mean image X� is provided in Fig. 6c. The true
emissions in Fig. 6b were generated as s = X� + ⇣ , where ⇣
is a realization of N (0,��2Q), with Q representing a Matérn
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Figure 4. Reconstructed predictor coefficients (�) for the one-dimensional deblurring example with p = 7 predictor variables described in
Sect. 4.1 compared to the true �.

Figure 5. Relative reconstruction error norm history (in logarith-
mic scale) for the one-dimensional deblurring example with p = 7
predictor variables described in Sect. 4.1.

kernel with parameters ⌫ = 2.5, ` = 0.05, and ��2 = 0.3; the
same covariance model was used in Chung et al. (2023).

The forward model represented by H 2 R98 880⇥3222 is
taken from NOAA’s CarbonTracker-Lagrange project (Miller
et al., 2020a; Liu et al., 2021) and is produced through
the Weather Research and Forecasting (WRF) Stochastic
Time-Inverted Lagrangian Transport (STILT) model system
(Lin et al., 2003; Nehrkorn et al., 2010). The observations
z 2 R98 880 were simulated based on the spatial and tempo-
ral coordinates of OCO-2 observations from July through
mid-August 2015 with additive noise following Eq. (2), with
R = (0.183 ppm)2 · I corresponding to � = 0.04. Given ob-
servations in z, forward model H, and predictors X, the goal
of AIM is to estimate s.

In a standard two-step approach, the first step is to select a
set of important predictors (e.g., columns of X). Exhaustive
model selection methods are infeasible for this problem be-
cause there are more combinations of predictor variables than
we can reasonably compute BIC scores for. Thus, we use
a forward selection strategy with the BIC to select the pre-

dictor variables. For this example, the set of relevant covari-
ates as determined by forward BIC consisted of the follow-
ing columns: S = {55, 56, 64, 65, 66, 75}. Then with XS ,
we solve the inverse problem using genHyBRmean.

The two-step approach has difficulties in regions with a
smaller (but still positive) mean. This approach does not se-
lect predictor variables in these regions, though these fea-
tures are broadly captured in the stochastic component. The
reconstructions of the coefficients � are provided in Fig. 7b,
where we have augmented with zeroes the coefficients whose
indices are not in S . Furthermore, the relative reconstruction
error norms per iteration of genHyBRmean are provided in
Fig. 7a, and the reconstructions for the two-step approach are
provided in the bottom row of Fig. 8.

In contrast to the two-step results described above, the
msHyBR method selects covariates in all regions that cor-
respond to the true solution. For the msHyBR method, we
allow the algorithm to simultaneously estimate the predictor
variables for the mean, along with the stochastic component.
The reconstructions of the emissions s, along with the com-
puted mean and stochastic component using msHyBR, can
be found in the top row of Fig. 8. The corresponding recon-
structions for the two-step approach are provided for compar-
ison. Note that the basis vector representation is constructed
via thresholding of the reconstructed �, which is provided
in Fig. 7b. The msHyBR method inherently performs model
selection by incorporating a sparsity-promoting prior on �,

which results in many reconstructed values close to zero. The
relative reconstruction error norms per iteration of msHyBR
provided in Fig. 7a show similar (and even slightly better)
reconstruction quality compared with the two-step approach.
Note that the msHyBR method achieves a similar reconstruc-
tion of the edges surrounding the regions with positive mean
emissions compared to the two-step approach.

For all of the reconstructions, we used the DP to compute
the regularization parameter(s), and we take Q to represent
a Matérn kernel with parameters ⌫ = 0.5 and ` = 0.5. We
remark that one of the advantages of msHyBR is that the co-
variance scaling factor � in the model (see Eq. 7) can be es-
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Figure 6. Synthetic data used in the atmospheric inverse modeling (AIM) described in Sect. 4.2. An illustration of the zonation model is
provided in (a): the predictor variables (columns of X) correspond to indicator functions in each of the delimited areas evaluated on the grid.
The image of true emissions in (b) is a sum of the true mean image in (c) and the true stochastic component in (d).

Figure 7. (a) Relative reconstruction error norms per iteration of msHyBR and the two-step approach (forward BIC + genHyBRmean).
(b) Predictor coefficients (�) for the hypothetical AIM problem.

timated automatically as part of the reconstruction process.
However, for the two-step process, an estimate of � is re-
quired for both the model selection process and reconstruc-
tion. For the two-step process, we used ��2 = 0.3 in the first
step since the parameter choice has a big impact on the num-
ber of selected covariates, and for the second step, we used
the DP within genHyBRmean.

4.3 Biospheric CO2 flux example

This AIM case study focuses on CO2 fluxes across North
America using synthetic observations based on NASA’s
OCO-2 satellite. In this case study, the true solution is based
on CO2 fluxes in space and time from NOAA’s Carbon-
Tracker v2022 product (CT2022) (Jacobson et al., 2023).
For illustrative purposes, the true fluxes that have been av-
eraged over time are provided in Fig. 9. This product is esti-
mated using in situ CO2 observations and is commonly used
across the CO2 community. Unlike the previous hypotheti-
cal case study, the fluxes in this example vary every 3 h (at
a 1° ⇥ 1° spatial resolution), covering a full calendar year
(September 2014–August 2015). Thus, the total number of
unknowns for this example is n = 9.4 ⇥ 106. Like the pre-
vious example, forward model simulations are from STILT

simulations generated as part of NOAA’s CarbonTracker-
Lagrange project, where the total number of synthetic ob-
servations is m = 9.9 ⇥ 104. We remark that this is a signifi-
cantly more challenging test case because the problem size is
so large that we cannot run comparisons with existing model
selection methods (e.g., AIC or BIC). However, we include
this example to highlight the applicability of our approach
with very large datasets.

For the predictors of CO2 fluxes, we use a combination of
variables, including meteorological variables, in an approach
similar to many existing AIM studies of CO2 fluxes (e.g.,
Gourdji et al., 2008, 2012; Shiga et al., 2018a, b; Randazzo
et al., 2021; Chen et al., 2021a, b; Zhang et al., 2023). The
first 12 columns of X correspond to different spatially con-
stant vectors of ones, each representing 1 month. The inclu-
sion of these constant columns is common in the AIM stud-
ies cited above, and they help account for the fact that CO2
fluxes have a strong seasonal cycle with very different mean
fluxes from month to month. Next, we include meteorologi-
cal variables from the European Centre for Medium-Range
Weather Forecasts (ECMWF) Reanalysis v5.1 (ERA-5.1)
product (Hersbach et al., 2020) because ERA is also used
to help generate CO2 fluxes as part of the CarbonTracker
modeling platform (Jacobson et al., 2023). These 13 vari-
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Figure 8. Reconstructions for the hypothetical AIM example corresponding to msHyBR in the top row and a two-step approach in the
bottom row. On the left are basis vector representations obtained using selected predictor variables (thresholded for msHyBR). Although the
reconstructions of s in both cases are similar, the forward BIC approach selects fewer predictor variables, and hence the stochastic component
must resolve the difference, whereas the msHyBR approach simultaneously estimates 78 predictor coefficients (many of which are small)
and can estimate a smooth stochastic component (similar to the true images in Fig. 9).

Figure 9. True solution representing average CO2 fluxes for the
AIM problem based on NASA’s OCO-2 satellite observations.

ables include temperature at 2 m above the ground, evapora-
tion, mean evaporation rate, mean surface downward short-
wave radiation flux, potential evaporation, soil temperature
at two different soil levels, total cloud cover, total precipita-
tion, volumetric soil water at two different soil levels, relative
humidity, and specific humidity. Several of these variables
are highly correlated, and we have included these variables
on purpose to examine how the proposed algorithm handles
colinearity. In addition to the predictor variables described
above, we include 10 Gaussian random vectors as predictor
variables (i.e., as columns of X). These random columns do
not have any physical meaning as such but are meant to test

the capabilities of the inverse modeling algorithm msHyBR.
Specifically, these vectors should have little to no ability to
predict CO2 fluxes, and an interpretable result would be one
in which the inverse models either do not select these predic-
tors or estimate the corresponding coefficients (�) to be close
to zero.

To produce more realistic scenarios and evaluate the per-
formance of the new algorithm under noisy data, we add
randomly generated Gaussian noise to the synthetic obser-
vations. The setup allows us to evaluate how the perfor-
mance of the proposed inverse modeling approach changes
as the noise or error levels change. Note that for a given
realization of the noise ✏, we define the noise level to be
� =k ✏k2/ k Hsk2 = 0.1 and 0.5, corresponding to noise lev-
els of 10 % (low noise) and 50 % (high noise), respectively.
For the covariance matrix Qs , we use parameters from exist-
ing studies that employed this same case study (Miller et al.,
2020a; Liu et al., 2021; Cho et al., 2022). Specifically, we
use a spherical covariance model with a decorrelation length
of 586 km and a decorrelation time of 12 d. The diagonal ele-
ments of Q vary by month and have values ranging from (6.6)
to (102 µmolm�2 s�1)2 (as in Miller et al., 2020a). Note that
within the inverse model, these values are ultimately scaled
by the estimated regularization parameter (�).

Relative reconstruction error norms per iteration are pro-
vided in Fig. 10a. All results correspond to using the DP to
select the regularization parameter. We observe that for both
noise levels, reconstruction error norms for msHyBR follow
the expected behavior (Fig. 7a), with slightly smaller errors
for the smaller noise level.

The estimated values of � using msHyBR for the 10% and
50% noise levels are provided in Fig. 10b and c, respectively.
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Figure 10. (a) Relative reconstruction error norm histories for the AIM problem based on NASA’s OCO-2 satellite observations with 10 %
and 50 % noise. Reconstructions of the coefficients � for 10 % (middle panel) and 50 % (right panel). These results correspond to using the
regularization parameters selected by the DP.

Figure 11. Reconstructions of the unknown quantities using the new model selection HyBR for the AIM problem based on NASA’s OCO-
2 satellite observations in the high-noise scenario with 10 % and 50 % noise. Here one can observe the full reconstruction s (left), the
reconstruction of the mean X� (middle), and the reconstruction of the stochastic component ⇣ (right). These results correspond to using the
regularization parameters selected by the DP.

The dotted lines separate the coefficients corresponding to
predictor variables of different natures. The first 12 dots (in
blue) represent the seasonality of the mean reconstruction.
These estimated coefficients (�) are roughly constant and
bounded away from zero. Interestingly, these coefficients do
not describe any seasonal variability in the estimated CO2
fluxes, which was one of the original motives for allowing
the coefficients to vary by season. Rather, the seasonal vari-
ability is entirely captured by the meteorological variables
and stochastic component. With that said, these coefficients

appear to describe a seasonally averaged mean behavior in
the solution.

The second set of coefficients (in red) represents the mixed
and potentially collinear set of 13 meteorological variables.
We observe that msHyBR can identify which of these coeffi-
cients are important and which should be dampened (i.e., cor-
responding to coefficients close to 0). For different noise lev-
els, we observe that different meteorological variables may
be picked up in msHyBR. For the last set of 10 predictor
variables that represent spurious and unimportant random
vectors, msHyBR successfully damps these coefficients at
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both the noise levels. This result demonstrates msHyBR’s
ability to perform reasonable model selection via a sparsity-
promoting prior on �.

Moreover, the CO2 reconstructions averaged over time can
be observed in Fig. 11 using msHyBR for both noise levels.
Is it interesting to note that, in the low-level scenario, the
stochastic component captures more of the variability and
therefore has a strong similarity to the final reconstruction,
while in the high-noise-level case, most of the information
of the total reconstruction comes from the mean (i.e., from
the predictor variables). At higher noise levels, the inverse
model makes less detailed adjustments to the CO2 fluxes via
the stochastic component. By contrast, at lower noise levels,
the inverse model interprets the observations as being more
trustworthy or informative, and the inverse model thus esti-
mates a stochastic component with more spatial variability.

5 Conclusion

This paper presents a set of computationally efficient al-
gorithms for model selection for large-scale inverse prob-
lems. Specifically, we describe one-step approaches that use
a sparsity-promoting prior for covariate selection and hybrid
iterative projection methods for large-scale optimization. A
main advantage over existing approaches is that both the re-
construction (s) and the predictor coefficients (�) can be es-
timated simultaneously. The proposed iterative approaches
can take advantage of efficient matrix–vector multiplications
(with the forward model and the prior covariance matrix) and
estimate regularization parameters automatically during the
inversion process.

Numerical experiments show that the performance of
our methods is competitive with widely used two-step ap-
proaches that first identify a small number of important pre-
dictor variables and then perform the inversion. The pro-
posed approach is cheaper (since it avoids expensive eval-
uations of all possible combinations of candidate predictors),
which makes it superior for problems with many candidate
variables (i.e., a large number of columns of X) and limited
observations.

Future work includes subsequent uncertainty quantifica-
tion (UQ) and analysis for the hierarchical model (Eq. 7),
which will likely have increased variances due to additional
unknown parameters. Efficient UQ approaches will require
Markov chain Monte Carlo sampling techniques due to the
Laplace assumption; see, e.g., Park and Casella (2008). How-
ever, it may be possible to use Gaussian approximations and
exploit low-rank structure from the FGGK process, similar
to what was done in Cho et al. (2022) for Gaussian distribu-
tions.

Overall, we anticipate that algorithms like msHyBR will
have increasing utility given the plethora of prior informa-
tion that is often available for inverse modeling and given the

computational need for inverse models that can ingest larger
and larger satellite datasets.

Appendix A: Notation details

To help with readability, especially for readers not so
familiar with mathematical terminology, we provide the
following list of terms and notation details.

z Vector of observations that are to be fitted by
the inversion.

m Number of observations (dimensionality of z).
s Vector of quantities to be estimated by the in-

version.
n Number of quantities to be estimated (dimen-

sionality of s).
� Vector of contributions from each of the can-

didate models. Model selection is achieved
by promoting sparsity in �, effectively set-
ting contributions from some components �j

to zero.
p Number of candidate predictors or models (di-

mensionality of �).
X Mapping from � to s, whose columns may

contain candidate models.
⇣ Stochastic component of s, assumed to be dis-

tributed as zero mean multivariate Gaussian
with covariance matrix Q.

✏ Error component of z, assumed to be dis-
tributed as zero mean multivariate Gaussian
with covariance matrix R.

H Forward mapping from s to observations z.
� Regularization parameter, estimated as part of

the inversion, applied as a scale factor of Q.
↵ Regularization parameter, estimated as part of

the inversion, controls the model selection.
g Transformation to avoid inverting Q so Q only

needs to be accessed via matrix–vector prod-
ucts.

k Iteration count, which also corresponds to the
dimension of the Krylov subspace at that iter-
ation.

vk,wk Additions to the solution subspace at step k.
sk,�k Computed approximations to s and � at step k.
I Identity matrix with first column e1

Code and data availability. The MATLAB codes that were
used to generate the results in Sect. 4 are available at
https://doi.org/10.5281/zenodo.11164245 (Landman et al.,
2024). Current and future versions of the codes will also be
available at https://github.com/Inverse-Modeling (last access:
12 June 2024). The input files for the case study are available on
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Zenodo at https://doi.org/10.5281/zenodo.3241466 (Miller et al.,
2019).
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