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ABSTRACT

Graph Neural Networks (GNNs) have been widely applied to vari-

ous applications across different domains. However, recent studies

have shown that GNNs are susceptible to the membership inference
attacks (MIAs) which aim to infer if some particular data samples

were included in the model’s training data. While most previous

MIAs have focused on inferring the membership of individual nodes

and edges within the training graph, we introduce a novel form

of membership inference attack called the Structure Membership
Inference Attack (SMIA) which aims to determine whether a given

set of nodes corresponds to a particular target structure, such as

a clique or a multi-hop path, within the original training graph.

To address this issue, we present novel black-box SMIA attacks

that leverage the prediction outputs generated by the target GNN

model for inference. Our approach involves training a three-label

classifier, which, in combination with shadow training, aids in en-

abling the inference attack. Our extensive experimental evaluation

of three representative GNN models and three real-world graph

datasets demonstrates that our proposed attacks consistently out-

perform three baseline methods, including the one that employs

the conventional link membership inference attacks to infer the

subgraph structure. Additionally, we design a defense mechanism

that introduces perturbations to the node embeddings thus influ-

encing the corresponding prediction outputs by the target model.

Our defense selectively perturbs dimensions within the node em-

beddings that have the least impact on the model’s accuracy. Our

empirical results demonstrate that the defense effectiveness of our

approach is comparable with two established defense techniques

that employ differential privacy. Moreover, our method achieves a

better trade-off between defense strength and the accuracy of the

target model compared to the two existing defense methods.
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1 INTRODUCTION

In recent years, the proliferation of graph data has led to the wide-

spread adoption of Graph Neural Networks (GNNs) as a powerful

tool for various machine learning tasks [42, 53, 62]. GNNs have
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demonstrated exceptional capabilities inmodeling complex relation-

ships of graph-structured data in various domains and applications

such as social network systems [11, 31], recommendation systems

[13, 14], and biological networks [25, 57].

While GNNs have demonstrated remarkable performance across

diverse applications, recent studies have shown that they are vul-

nerable to various privacy attacks, including attribute inference

attacks [9, 35, 57], property inference attacks [48, 51, 59, 60], and

membership inference attacks [9, 20, 22, 52, 60]. In this paper, we

mainly focus on membership inference attacks (MIAs) targeted at

GNN models.

In general, MIAs against GNNs aim to infer the presence of

specific data objects within the training graphs of the target model.

Many existing MIAs focus on either node-level membership (i.e.,

determining if a particular node exists in the training graph) [22, 36]

or edge-level membership (i.e., establishing a connection between

two nodes in the training graph) [9, 20, 52, 60]. However, none

of these studies have explored structure-level membership, where

structures can be more intricate than mere nodes and edges.

In this paper, we consider two fundamental and critical graph

structures: k-cliques and k-hop paths (𝑘 > 1). A clique represents a

subset of nodes within a network that are more densely intercon-

nected among themselves than with the remaining nodes. Mean-

while, a 𝑘-hop path indicates that two nodes are connected through

𝑘 links in the graph. These two structures have been extensively

used in various applications such as community detection [15, 50],

network measurement [4, 8], and fraud detection [37, 58].

The revelation of the existence of cliques and k-hop paths among

a set of target nodes in the training graph can pose significant pri-

vacy risks to individuals. Let’s consider an online dating network

where edges represent romantic relationships among users as an

example. In this context, an undirected 2-hop path like 𝐴 − 𝐵 −𝐶
involving three users 𝐴, 𝐵, and 𝐶 can potentially reveal sensitive

information. For instance, it may indicate that user 𝐵 is engaged

in or pursuing romantic relationships with both users 𝐴 and 𝐶 — a

detail that user 𝐵 may wish to keep confidential. Similarly, infer-

ring a clique among users could disclose not only their potential

belonging to the same community but also the strength of cohesion

within this group.

Given the extensive application of cliques and k-hop paths in

graph analytics and the importance of their privacy, we introduce

a novel MIA named Structure Membership Inference Attack (SMIA).

Briefly speaking, SMIA aims to discern whether a set of 𝑘 target

nodes, in the training graph of the target GNN model, forms either

a 𝑘-clique or a (k-1)-hop path (i.e., the longest loop-free path).

It is noteworthy that SMIA differentiates from the Subgraph Infer-
ence Attack (SIA) [60], which focuses on establishing the presence
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of a subgraph within the training graph. In contrast, our emphasis

is on determining whether the subgraph formed by the provided

target nodes encompasses either a clique or a 𝑘-hop path. We con-

tend that even the inference of a structure’s existence can divulge

sensitive information. For instance, inferring the presence of amulti-

hop path among professionals employed by rival companies could

raise suspicions, even without identifying the specific professionals

comprising the path. Moreover, it is worth noting that SIA [60]

exclusively considers large subgraphs that constitute a substantial

portion of the target graph. It does not address the inference of

small subgraphs like k-cliques (triangles) and k-hop paths.

Our contributions. To the best of our knowledge, this work rep-

resents the inaugural investigation into the vulnerability of GNN

models to SMIAs. We make the following contributions
1
.

Problem formulation.We formally define the k-SMIA problem

as a three-label classification task that maps a given set of 𝑘 target

nodes, denoted as 𝑉att, into one of three labels. Labels 0 and 1

indicate the presence of a k-clique and a (k-1)-hop path respectively,

among the nodes within 𝑉att in the training graph, while label 2

indicates the absence of either structure in the training graph.

Attack design. We devise the black-box attacks which infer

structure membership using prediction outputs from the target

model. These attacks involve constructing the three-class attack

classifiers via shadow training [44] and extracting attack features

based on the similarity of prediction outputs from the target model.

Furthermore, we extend the black-box SMIAs to white-box ones

which leverage node embeddings for attack inference. We also ex-

tend the scope of SMIAs to encompass SIAs, enabling the inference

of the subgraph structure of the target nodes.

Empirical evaluation. Through extensive empirical assess-

ments involving three representative GNN models and real-world

graph data, we substantiate the effectiveness of SMIA. Notably,

the attack AUC of our attacks can reach up to 0.89 under the non-

transfer setting (where training and shadow graphs originate from

the same dataset), outperforming three baselines. Remarkably, even

in the transfer setting, where shadow and training graphs are drawn

from different domains and data distributions, the attack AUC re-

mains substantial, achieving up to 0.83. Additionally, our proposed

attacks consistently outperform three baseline methods, including

the one that employs the conventional link membership inference

attacks [20, 52] to infer the subgraph structure.

Defense design and evaluation. To mitigate GNNs’ vulnera-

bility to SMIAs, we propose a defense mechanism that introduces

Laplace noise to node embeddings, thereby impacting the posterior

outputs of the target model. Notably, we limit perturbation to em-

bedding dimensions of least significance, minimizing the influence

on target model accuracy. Empirical assessments demonstrate that

our approach achieves defense effectiveness comparable to that of

two existing defense techniques. Moreover, our method achieves a

better trade-off between defense strength and target model accuracy

than the two existing defense methods.

2 PRELIMINARIES

2.1 Subgraph Structures

Essential characteristics of graphs can be discerned through sub-

groups of nodes/edges represented by subgraphs. Within this con-

text, we explore two fundamental subgraph structures: k-hop paths
and k-cliques.
• K-hop paths: A k-hop path denotes a sequence of 𝑘 adjacent

edges connecting distinct nodes. In this paper, we only consider

loop-free k-hop paths.

• K-cliques: k-clique represents a subgraph comprising 𝑘 nodes,

where each node is interconnected with every other node. Note

a 3-clique is occasionally referred to as a triangle. Hence these

two terms will be used interchangeably in the paper.

Figure 1 provides illustrative examples of 2-hop and 3-hop paths,

as well as 3-cliques and 4-cliques.

2.2 Graph Neural Network

Graph Neural Networks (GNNs) have been widely used for learning

over graph-structured data. Given a graph 𝐺 (𝑉 , 𝐸,X) where 𝑉 , 𝐸,
and X denote the nodes, edges, and node features, respectively, a

message-passing GNN employs a message-passing mechanism that

involves the exchange of messages amongst nodes and aggregation

of nodes’ neighborhood, which is executed as:

𝑧ℓ+1𝑣 = 𝜙 (𝑧ℓ𝑣,
⊕

𝑣′∈N(𝑣)
𝜓 (𝑧ℓ𝑣, 𝑧ℓ𝑣′)) (1)

where 𝜙 is an update function,𝜓 is a message function, and

⊕
is

an aggregation function (such as sum or max), 𝑧ℓ𝑣 denotes the em-

bedding of node 𝑣 at 𝑙-th iteration, and N(𝑣) denotes the neighbor
nodes of 𝑣 . The initial embeddings are set as the node features.

After 𝑘 iterations, the application of a Readout function aggre-

gates node embeddings for subsequent predictions of downstream

tasks. In the context of node classification, this Readout function,
often implemented as a softmax operation, generates a Posterior

Probability Vector (PPV) for each node, in which the 𝑖-th element

indicates the likelihood that the node belongs to the 𝑖-th class.

In this paper, our focus is on three prominent GNN models:

Graph Convolutional Network (GCN) [26], SAGE [18], and Graph

Attention Network (GAT) [49]. These GNN models employ various

aggregation mechanisms: GCN employs symmetric normalization,

SAGE employs mean aggregation, and GAT employs attention-

based weights for aggregation.

3 PROBLEM FORMULATION

In this section, we define the scope and goal of our problem.

Learning setting. Given the prevalence of GNN models adher-

ing to the transductive paradigm, our study exclusively revolves

around transductive GNN models for which all graph nodes are

available during training [17]. Furthermore, we consider node clas-

sification as the downstream task, where the GNN models output a

Posterior Probability Vector (PPV) for each node.

Attack goal.We concentrate on the Structure Membership Infer-
ence Attacks (SMIAs) against GNNs. These attacks aim to deduce

1
Our code and datasets are available at the link:

https://gitfront.io/r/username/Ww17i3onZ2Ug/SMIA/
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Member (3-clique)

Member (4-clique)

3-SMIA

4-SMIA

Member (2-hop path) Non-member structure

Member (3-hop path) Non-member structure

Figure 1: Member and non-member structures of 3-SMIA and 4-SMIA.

whether a set of nodes (attack target) constitute a particular struc-

ture within the training graph. Our focus centers on two funda-

mental subgraph structures: k-hop paths and k-cliques.
Adversary knowledge. We consider the adversary knowledge

K along two dimensions:

• Shadow graph 𝐺𝑆
: the adversary possesses a shadow graph 𝐺𝑆

which contains its own structure and node features. 𝐺𝑆
might

originate from a distinct domain than𝐺 , featuring different data

distribution as well.

• Target model Φ: we assume the adversary has only black-box

access to Φ, which could be in the form of an API for Machine-

Learning-as-a-Service platforms [40, 44]. The adversary can ac-

cess the posterior classification probabilities of specific nodes

when querying the target model.

It is worth noting that in practice, the adversary might possess

knowledge of a partial graph which is a subset of the training graph

[9, 20, 51]. However, we view this partial graph as a special case

of the shadow graph. Additionally, the adversary might have a

white-box access to GNN models , i.e., the adversary can access the

GNN parameters such as gradients and node embeddings (e.g., in

a Federated setting) [9, 51, 60]. The white-box access enables the

adversary to derive attack features from GNN parameters, such as

node embeddings, as opposed to using posterior probabilities as

in black-box attacks. How to extend our attack to the white-box

setting will be discussed in Section 5.6.

Problem definition. Given a graph 𝐺 (V, E), a GNN model Φ
trained on 𝐺 , a set of 𝑘 target nodes 𝑉att ⊂ V , and the adversary’s

background knowledge K, the adversary’s objective is to infer if

𝑉att forms either a clique or a multi-hop path in 𝐺 . The formal

𝑘-node Structure Membership Inference Attack (k-SMIA) problem is

defined as follows:

Definition 3.1 (K-node structuremembership inference (k-SMIA)).
Given graph 𝐺 (𝑉 , 𝐸), GNN model Φ trained on 𝐺 , and attack tar-

get comprising a 𝑘-node set 𝑉att = {𝑣1, . . . , 𝑣𝑘 |𝑣1, . . . , 𝑣𝑘 ∈ 𝑉 }, the
k-SMIA problem is formulated via the mapping function:

𝑓 : Φ(𝑣1), . . . ,Φ(𝑣𝑘 ),K→ {0, 1, 2}, (2)

where label 0 denotes the absence of both structures within 𝑉att,

label 1 denotes that 𝑉att constitutes a k-clique in 𝐺 , and label 2

denotes that 𝑉att lacks a k-clique but contains a (k-1)-hop path in

𝐺 . Structures containing either a k-clique or a (k-1)-hop path are

termedmember structures, while the rest are labeled as non-member
structures.

We do not assume that the adversary must possess any prior

knowledge of the structure of𝐺 tomake the selection of𝑉𝑎𝑡𝑡 . Figure

1 illustrates member and non-member structures for 3-SMIA and

4-SMIA. It is important to clarify that we exclude the last three

non-member structures of 4-SMIA containing any 3-hop paths, as

our consideration is confined to loop-free k-hop paths.

Notably, we solely infer themembership of the targeted structure,

without delving into the specific subgraph structure composed by

the target nodes within the training graph. As an example, we do

not differentiate between the nine non-member structures within

4-SMIA (Figure 1). The extension from the Structure Membership

Inference Attack (SMIA) to the Structure Inference Attack (SIA)

will be discussed in Section 5.7.

It is noteworthy that both (k-1)-hop paths and k-cliques necessi-

tate the complete utilization of the given 𝑘 nodes. The (k-1)-hop

path signifies the longest loop-free multi-hop path among the 𝑘

nodes, while the k-clique represents the largest clique within these

𝑘 nodes. Notably, we exclude structures with fewer nodes, such

as k’-cliques and (k’-1)-hop paths with any 𝑘 ′ < 𝑘 , as these can

be addressed by launching k’-SMIA, utilizing an input node set

containing 𝑘 ′ < 𝑘 nodes.

4 ATTACK DESIGN

Intuitively, a straightforward approach for performing an SMIA

would involve adapting a link membership inference attack [20, 52]

to deduce the link status for each node pair within the attack target

node set 𝑉att. With the predicted link statuses of all node pairs, it

becomes possible to reconstruct the structure of 𝑉att probabilisti-

cally, allowing the inference of whether a multi-hop path or a clique

is present within the reconstructed structure. While conceptually

sound, this method’s effectiveness, as our empirical study (Section

5) will demonstrate, is limited by the accumulation of uncertainties

of the predicted edges.

Attack overview. The intrinsic message-passing mechanism of

GNN models leads to the nodes’ prediction outputs heavily relying

on their local neighborhoods. Distinct subgraph structures within

these neighborhoods can induce unique behaviors among target

nodes, which the attacks can leverage to differentiate between mem-

ber and non-member structures. Built upon this insight, our SMIAs

are designed to bypass the use of link membership inference attacks

entirely. Instead, these SMIAs directly infer structure membership

from the posterior probabilities of all nodes within the attack target.
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Figure 2: Overview of k-SMIA.

In particular, we define our attack modelA as a supervised classi-

fier equipped with three labels (label definitions found in Definition

3.1). Training the 3-label classifier A necessitates obtaining labeled

training data – the ground truth of membership of cliques and

multi-hop paths. The primary challenge arises in generating such

attack training data, particularly when the adversary lacks white-

box access to the target GNN model. To address this challenge, we

adopt the widely employed shadow training technique, utilized by

existing link membership inference attacks [20, 44]. This involves

training a set of shadow models to simulate the target model’s be-

havior. It is important to note that, when the adversary possesses

knowledge of a subset of the training graph, the attack model can

be directly trained using the target model’s predictions on those

known samples [33, 34].

Figure 2 illustrates the framework of AṪhe attack is designed

as a three-phase process described as below:

• Shadow model training phase: The adversary trains a set of

shadow models on shadow graphs to mimic the behaviors of the

target model.

• Attackmodel training phase: The adversary generates a train-

ing dataset 𝐴train
from the output of the shadow models on the

shadow graph, and trains an attack classifier A on 𝐴train
.

• Attack inference phase: The adversary employs the trained

classifier A to predict the membership status of the target node

set 𝑉att.

Next, we explain the details of each phase.

Shadow model training phase. In this phase, the adversary

trains multiple shadowmodels, denoted as Φ𝑆
1
, . . . ,Φ𝑆

𝑇
. The training

dataset for each shadowmodel𝐺𝑆
𝑖
is generated by random sampling

a subset of the shadow graph 𝐺𝑆
. To ensure an accurate emulation

of the target model’s behavior, we train the shadow models in the

way that their performance closely matches that of the target model

on the same training dataset. We achieve this by using the output

of the target model as the input of the shadow models.

Attackmodel training phase. In this phase, the adversary con-

structs the attack training dataset, 𝐴train
. The generation of 𝐴train

follows four steps. The pseudo code of generation of 𝐴train
can be

found in Appendix A. First, for each shadow graph 𝐺𝑆
𝑖
, the adver-

sary selects a set of 𝑘-node sets S. Each node set𝑉𝑠 ∈ S comprises 𝑘

nodes randomly selected from𝐺𝑆
𝑖
. Second, for each node set𝑉𝑠 ∈ S,

the adversary obtains the Posterior Probability Vector (PPV) for

each node in𝑉𝑠 output by the shadow model Φ𝑆
𝑖
which was trained

on the shadow graph 𝐺𝑆
𝑖
. There will be 𝑘 PPVs for 𝑉𝑠 . Third, these

𝑘 PPVs are “aggregated” into a single vector which will serve as

the attack feature vector x. Specifically, the adversary measures the

pairwise similarity of the 𝑘 PPVs and obtains

(𝑘
2

)
pairwise similar-

ity values accordingly. Next, the adversary sorts these similarity

values in ascending order, and concatenates the sorted values into

a vector ®𝑣 . We will demonstrate in Appendix B that the time cost

associated with the sorting operation is negligible compared to that

of training the attack classifier. To fully capture the distinction

between different subgraph structures, we consider 𝑑 > 1 multiple

similarity metrics to measure the distance between the PPVs. In this

paper, we consider three similarity metrics (i.e., 𝑑 = 3), namely, Dot
product, Cosine similarity, and Euclidean distance, that have been
widely used for measurement of vector similarity. Therefore, there

will be 𝑑 sorted vectors accordingly, where each vector corresponds

to a similarity metric. These 𝑑 vectors are then concatenated into

one vector, acting as the attack feature x. Therefore, for any given

𝑘-node set 𝑉𝑠 the dimension of its corresponding attack feature

x is

(𝑘
2

)
× 𝑑 , where 𝑑 is the number of similarity metrics. As the

dimension of x is independent of the number of labels, this fea-

ture construction method enables the attack to be launched under

the transfer setting where the shadow graph and the target graph

originating from different domains are associated with different

numbers of labels. After the adversary generates the feature x of

the node set 𝑉𝑠 , he associates x with its label y. In particular, y = 1

if𝑉𝑠 forms a k-clique in the shadow graph𝐺𝑆
𝑖
, y = 2 if𝑉𝑠 contains a

(k-1)-hop path, and y = 0 otherwise. Finally, the adversary adds the

newly formed data sample (x, y) to 𝐴train
. In our empirical study,

we ensure 𝐴train
is balanced, i.e., each class has the same number

of samples.

After 𝐴train
is generated, the adversary proceeds to train the

attack classifier A on 𝐴train
. In this paper, we consider three types

of classifiers, namely Multi-layer Perceptron (MLP), Random For-

est (RF), and Linear Regression (LR). Their performance will be

presented later (Section 5).

Attack inference phase. At inference time, the adversary em-

ploys the same methodology as the generation of training dataset

𝐴train
to derive the feature x𝑎𝑡𝑡 for the target node set𝑉att, utilizing

the same similarity functions. It is important to note that, unlike

the attack features of the training data 𝑉𝑠 that uses the probability

output by the shadow model, the adversary employs the posterior

probability output of 𝑉att by the target model to calculate x𝑎𝑡𝑡 .
Finally, the adversary feeds x𝑎𝑡𝑡 into A to obtain predictions.

The label associated with the highest probability will be selected as

the inference output.
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5 EVALUATION OF ATTACK PERFORMANCE

In this section, we assess the performance of SMIA. For simplicity,

we focus on two specific input configurations of 𝑉att in our experi-

ments: (1) 3-SMIA where 𝑉att comprises three nodes, and the goal

is to infer if 𝑉att forms either a 3-clique (triangle) or a 2-hop path;

(2) 4-SMIA where 𝑉att involves four nodes, intending to infer if

𝑉att constitutes either a 4-clique or a 3-hop path.

5.1 Experimental Setup

All the experiments are executed on NVIDIA A100-PCIE-40GB. All

the algorithms are implemented in Python along with PyTorch.

All the reported results are averaged over 10 repetitions of the

experiments.

Datasets. We use three real-world graph datasets, namely Cite-
seer, Google+, and Lastfm datasets, which are popularly used for

graph learning [29, 53, 56]. Table 1 provides the statistical informa-

tion of these datasets. More details of these datasets can be found

in Appendix C.

Target GNN models. We consider three representative GNN

models, namely GCN [26]
2
, SAGE [18], and GAT [49]

3
. Each model

is equipped with two hidden layers, with each hidden layer con-

taining 64 neurons. We conduct training for 1,500 epochs with the

early stopping tolerance value set as 50.

Shadowgraphs.We consider two different settings of the shadow

graph: (1) Single-dataset setting— both the shadow graph and the

target graph are sampled from the same dataset; (2) Data transfer

setting — the shadow graph and the target graph are drawn from

different datasets, which may possess varying distributions and

domains. For instance, the target dataset might be derived from

the Citeseer dataset, which represents a citation graph, while the

shadow dataset could originate from the Lastfm dataset, character-

izing a social network graph of music users.

Shadowmodels.We consider two settings of the shadowmodel:

(1) Non-transfer setting — both the shadow model and the tar-

get model have the same GNN architecture; (2) Model transfer

setting — the shadow model and the target model have different

architectures. For example, the target model and the shadow GNN

model can be GCN and SAGE, respectively. For each shadow model,

we randomly sampled a subgraph from the shadow graph as its

training data, ensuring the performance of the shadow model is

similar to that of the target model on the same shadow graph.

Attack classifier setup. In our experiments, we employ three

types of distinct attack classifiers: Multi-layer Perceptron (MLP),
Random Forest (RF), and Support Vector Machine (SVM). The MLP

model comprises three hidden layers, each consisting of 64, 32, and

16 neurons, respectively. We employ the Rectified Linear Unit (Relu)

as the activation function for the hidden layers, while the Sigmoid

function governs the output layer. Our training regimen spans

1,000 epochs, employing a learning rate of 0.001, the cross-entropy

loss, and the Adam optimizer. For the RF classifier, we cap the

maximumdepth at 150. For the SVM classifier, we leverage the radial

basis function (RBF) kernel that is coupled with a regularization

parameter set to 1. Additionally, we set the degree of the polynomial

2
We use the implementation of GCN available at https://github.com/tkipf/pygcn

3
We use the implementation of both SAGE and GAT available at

https://github.com/dmlc/dgl

kernel to three, and set the kernel coefficient𝛾 as 1.We implemented

the three classifiers using the sklearn package
4
, a toolkit that is

widely utilized for machine learning.

Attack training and testing data. First, we create a data pool

that contains the labeled data samples. The data samples of each

class are generated as follows:

Non-member samples (Class 0): We randomly sample a set of

node sets from the given dataset, where each sampled node set

includes neither a clique nor a (𝑘 − 1)-hop path (𝑘 = 3 for 3-SMIA

and 𝑘 = 4 for 4-SMIA). These node sets are associated with the

label 0 and are included in the data pool.

Member samples (Classes 1 and 2): We randomly sample a num-

ber of node sets (triples for 3-SMIA and quadruples for 4-SMIA)

from the training graph, where each node set is either a clique or a

𝑘-hop path. Each node set is labeled with 1 if it is a clique in the

training graph and 2 otherwise. These node sets are added to the

data pool.

Once the data pool is constructed, we divide it into the attack

training dataset 𝐴train
and the attack testing data set 𝐴test

, using

a 7:3 split ratio. We ensure that both 𝐴train
and 𝐴test

are balanced,

with an equal number of samples in all classes. Additionally, we

guarantee an equal number of samples for all non-member struc-

tures in both 𝐴train
and 𝐴test

.

Metrics. Regarding the target model performance, we utilize

the Area Under the Curve (AUC) for node classification.

As for assessing the attack’s effectiveness, we employ the fol-

lowing three metrics to evaluate the performance of the attack

classifier: (1) Balanced accuracy (BA): BA is a well-known metric

for multi-class classification. It is computed as the average of re-

calls of all the classes. Given our balanced testing data, BA tends to

align closely with the classification accuracy, which is the ratio of

correctly predicted samples to the total number of tested samples.

(2) Area Under the Curve (AUC): The AUC metric is measured over

various threshold settings of the attack classifier, using the true

positive rate (TPR) and false positive rate (FPR). (3) True-Positive
Rate at False-Positive Rates (TPR@FPR): This metric, as introduced

in [6], measures the true positive rate when the false positive rate

is set at a specific value. In our experiments, we set the FPR at 1%.

It is worth noting that our evaluation goes beyond the overall per-

formance of the attack classifier; we also measure the performance

of each individual class.

Baselines. We consider three baseline methods for comparison

with our approach:

• Baseline-1 (Ensemble of sub-attacks with single similar-

ity metric). This baseline employees an ensemble of three sub-
attack classifiers, each utilizing a single similarity metric. The

sub-attack features are derived from one of the three similarity

metrics (Dot product similarity, Cosine similarity, and Euclidean

distance) that are used by our approach. The prediction label for

each testing sample is determined by majority voting among the

labels generated by the three sub-attack classifiers.

• Baseline-2 (Concatenation of posterior vectors). In this base-

line, the attack features are obtained by directly concatenating

the posterior vectors of the nodes, rather than concatenating the

similarity of posterior vectors as in our approach.

4
https://scikit-learn.org/
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Dataset Domain Nodes Edges Classes 2-hop paths 3-cliques 3-hop paths 4-cliques

Google+ Social network 4,417 119,582 2 16,670,586 1,551,859 32,468,232 15,388,770

Lastfm Social network 7,624 27,806 18 679,080 40,433 1,201,750 65,442

Citeseer Citation network 3,312 4,732 7 27,174 1,547 185,706 514

Table 1: Description of datasets

• Baseline-3 (Link inference attack). Intuitively, whether a

subgraph exists in the training graph can be accomplished by

reconstructing the subgraph structure. As a subgraph can be

reconstructed by inferring all of its links, we design Baseline 3

which employs a Link Inference Attack (LMIA) [21] for subgraph

reconstruction. Specifically, first, we construct all the “possible

worlds” of the subgraphs that can be constituted from the nodes

in 𝑉att. Each possible world𝑊 is constructed by randomly as-

signing a 0 or 1 value to each node pair 𝑣𝑖 , 𝑣𝑖 ∈ 𝑉att, where 1
indicates that 𝑣𝑖 and 𝑣 𝑗 are linked in𝑊 (denoted as (𝑣𝑖 , 𝑣 𝑗 ) ∈𝑊 ),

and 0 otherwise (denoted as (𝑣𝑖 , 𝑣 𝑗 ) ∉𝑊 ). Then for each possible

world𝑊 of the subgraph, we compute its probability 𝑃𝑟𝑜𝑏 as:

𝑃𝑟𝑜𝑏 = Π (𝑣𝑖 ,𝑣𝑗 ) ∈𝑊 𝑝𝑖, 𝑗 × Π (𝑣𝑖 ,𝑣𝑖 )∉𝑊 (1 − 𝑝𝑖, 𝑗 ),
where 𝑝𝑖, 𝑗 is the link prediction probability inferred by LMIA

[21]. After we compute the probability of all the possible worlds,

we pick the one with the highest probability as the inferred

structure, and assign the membership label (0, 1, or 2) based on

the structure of the picked one.

Attack setup. Among the three categories of attack classifiers

explored in our experiments (MLP, SVM, RF), we observed that

the MLP attack consistently exhibits the highest attack accuracy

across most settings. Therefore, we primarily showcase the results

obtained using theMLP attack classifier in the following discussions.

The details regarding the performance of the three attack classifiers

can be found in Appendix D.1.

Additionally, as we observed that the attacks leveraging the con-

catenation of all three similarity metrics (Cosine similarity, Dot

Product, and Euclidean distance) outperform those employing ei-

ther a single metric or the combination of any two metrics, we

present the results of the attacks that concatenate the three similar-

ity metrics in the following discussions. More details can be found

in Appendix D.2.

We also observed that the number of shadow models does not

impact the attack accuracy. Therefore, we used only one shadow

model in the experiments. The results of attack performance for

various number of shadow models can be found in Appendix D.3.

5.2 Attack Effectiveness

Before initiating the attacks, we assess the performance of the

GNN models to confirm their suitability as targets. The outcomes

reveal the strong performance of the three GNN models, with their

AUC values ranging from 0.73 to 0.95. Detailed results are available

in Appendix E. With the GNN models demonstrating satisfactory

performance, they are deemed suitable for the ensuing attacks.

5.2.1 Non-transfer Setting. In this section, we present the attack

performance for the non-transfer setting.

Overall attack performance. Figure 3 (a) - (c) presents the

balanced accuracy (BA) of 3-SMIA. A glance at the results shows

that the attack accuracy falls in the range [0.52, 0.75], which is

substantially above the random guessing threshold of 0.33 across

all settings. This demonstrates the efficacy of 3-SMIA against GNNs.

Furthermore, 3-SMIA outperforms all three baseline methods in

terms of BA across all settings. Notably, it significantly surpasses

Baseline-3, whose BA ranges from 0.25 to 0.37, a largely unaccept-

able range. This provides strong evidence that the link membership

inference attacks cannot be directly employed to handle SMIA. We

attribute the suboptimal performance of Baseline-3 to its inability to

effectively capture the high-order connectivity among nodes. While

link membership inference attacks can infer first-order connectivity

between nodes, extending this inference to higher-order connec-

tivity proves challenging. The straightforward multiplication of

link inference probabilities exacerbates the uncertainty inherent

in first-order connectivity inference, resulting in significant errors

when inferring the membership of subgraphs.

It is worth noting that even though the superiority of 3-SMIA

over Baseline-1 and Baseline-2 in terms of attack performance is

marginal, 3-SMIA still holds distinct advantages over both. First,

Baseline-1 is more time-consuming than ours as it requires the

training of three sub-attack classifiers, while ours only requires

one. Furthermore, unlike our method, Baseline-2 cannot be applied

in the transfer setting. This limitation arises because the features

of the attack training dataset and attack testing dataset would

have different dimensions if the target and shadow graphs have a

different number of class labels.

Figures 3 (d) - (f) present the BA of 4-SMIA. Similar to 3-SMIA,

4-SMIA demonstrates considerable effectiveness, maintaining a BA

range of 0.46 to 0.6, well above the random guessing threshold

(0.33) in all scenarios. Moreover, 4-SMIA outperforms the three

baseline methods in terms of attack accuracy in most of the settings,

particularly excelling in comparison to Baseline-3.

Beyond BA, we measure both AUC and TPR@1%FPR of 3-SMIA

and 4-SMIA. Further details can be found in Appendix F.1. We

observe that both AUC and TPR@1%FPR results are remarkably

high. For instance, the AUC of 3-SMIA falls within the range of 0.67

to 0.89, significantly surpassing the AUC of random guessing (0.5).

Furthermore, both 3-SMIA and 4-SMIA consistently outperform the

baseline in terms of both AUC and TPR@1%FPR across all settings.

Attack performance of individual classes. So far we have

demonstrated the overall performance of the attack classifiers. Next,

we take a closer look of the attack performance by assess the accu-

racy of individual classes.

Table 2 presents the balanced attack accuracy (BA) of both 3-

SMIA and 4-SMIA for each class. We have the following observa-

tions.

2-hop path members: The 2-hop path class obtains the lowest

accuracy for 3-SMIA. This can be attributed to the fact that when

two out of the three given nodes are connected, they are likely to

have similar prediction outputs, resulting in the third node being
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Figure 3: Balanced attack accuracy of 3-SMIA and 4-SMIA (Non-transfer setting).

Class

Lastfm Google+

GCN SAGE GAT GCN SAGE GAT

3-clique 0.67 0.61 0.64 0.59 0.52 0.68

2-hop path 0.37 0.44 0.35 0.36 0.39 0.5

Non-member 0.73 0.79 0.67 0.63 0.53 0.69

Class

Lastfm Google+

GCN SAGE GAT GCN SAGE GAT

4-clique 0.8 0.68 0.75 0.72 0.82 0.6

3-hop path 0.62 0.43 0.51 0.49 0.42 0.49

Non-member 0.35 0.42 0.4 0.38 0.39 0.37

(a) 3-SMIA (b) 4-SMIA

Table 2: Balanced attack accuracy of individual classes (non-transfer setting). The highest and lowest attack accuracy for each

GNN model and each class is marked with olive color and orange color respectively.

perceived as similar to both. This phenomenon reduces the accuracy

of the 2-hop path class in 3-SMIA.

4-Clique members: The 4-clique class exhibits the highest accu-

racy for the 4-SMIA attack. This is because 4-cliques require all

nodes to be connected, leading to the high similarity among all

node pairs. Consequently, 4-cliques are more distinguishable and

recognizable by 4-SMIA compared to the other two classes.

Non-members: The non-member class exhibits the highest ac-

curacy for 3-SMIA across all the settings. However, it receives the

lowest accuracy for 4-SMIA. This difference in behavior is likely due

to the characteristics of the non-member structures for both attacks.

In 3-SMIA, the non-member structures have at most one edge (and

thus one pair of nodes with higher similarity), making them distin-

guishable from member structures. In 4-SMIA, some non-member

structures have the same number of edges as member structures,

making them less distinguishable from member structures based

on the similarity of node pairs.

Beyond BA, we measure both AUC and TPR@1%FPR of member

classes. In line with the results from BA, both 3-SMIA and 4-SMIA

demonstrate superior AUC and TPR@1%FPR performance on k-

cliques compared to k-hop paths. Further details and discussions

can be found in Appendix F.1.

5.2.2 Transfer Setting. We consider two different transfer settings:

(1) the database transfer setting where the target data and the

shadow data are sampled from different datasets; and (2) themodel

transfer setting where the target model and shadow model are of

different architecture. We report the attack performance for both

transfer settings below.

Dataset transfer setting. Figure 4 (a) - (c) present the attack

performance of 3-SMIA under the dataset transfer setting. The

results of 4-SMIA under the dataset transfer setting can be found

in Appendix F.2. The results demonstrate the attack’s continued

effectiveness under the data transfer setting. For instance, the attack

AUC of 3-SMIA spans a range of 0.62 to 0.89 when the shadow graph

is different from the target graph. Notably, even in scenarios where

the target graph and the shadow graph originate from different

domains, such as the target graph sampled from the Citeseer dataset

and the shadow graph sampled from the Lastfm dataset, the AUC

of 3-SMIA can be up to 0.83 (Figure 4 (a)). This demonstrates that

3-SMIA can learn the knowledge of distinguish member and non-

member structures from the shadow graph and effectively transfer

this acquired knowledge to the target graph.
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Figure 4: Attack AUC of 3-SMIA under dataset and model transfer setting.
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Figure 5: Imapct of GNN model complexity on attack accu-

racy of 3-SMIA and 4-SMIA (Lastfm dataset).

Model transfer setting. Figure 4 (d) - (f) illustrate the attack

performance of 3-SMIA in the context of model transfer. Addition-

ally, the results of 4-SMIA under the model transfer scenario can

be found in Appendix F.2. Our observations indicate that the attack

AUC of 3-SMIA varies from 0.61 to 0.83 when the shadow model

differs from the target model across all the settings. These findings

serve to highlight the continued effectiveness of our attack under

the model transfer setting.

5.3 Impact of Model Complexity on Attack

Performance

Given that message-passing GNNs capture information from neigh-

boring nodes up to a maximum of 𝐾 hops, where 𝐾 corresponds

to the number of GNN layers, an important question arises: Does
SMIA’s performance vary with the number of GNN layers, given that
subgraph membership inference essentially involves inferring neigh-
borhoods within a specific number of hops? To address this question,

we deploy GNNs with varying levels of architectural complexity

(i.e., different numbers of layers) and assess the attack performance

of k-SMIA for these GNNs. We manipulate the number of hidden

layers from 1 to 4, with each layer containing 64 neurons.

Figure 5 illustrates the attack accuracy for GNN models with

different complexities. For both 3-SMIA and 4-SMIA, the attack

accuracy of GCN and SAGE undergoes a sharp increase as the

number of layers goes from one to two. This is attributed to the fact

that 2-layer GNN models encode the 2-hop neighborhood, enabling

the attack classifiers to better distinguish between 2-hop paths

and non-member structures. A similar trend of increasing attack

accuracy persists when the number of layers increases from two to

three, as it becomes more accurate at inferring 3-cliques. However,

this trend stabilizes when the number of layers exceeds three.

Nevertheless, this pattern is not observed for the GAT model.

The discrepancymay be attributed to the fundamental distinction in

the neighborhood aggregation mechanism of GAT compared to the

other two GNNmodels. While GCN and SAGE employ MEAN oper-

ations for neighborhood aggregation, GAT employs attention-based

weights for aggregation. This attention-based mechanism reduces

the accumulation effects of large neighborhoods, contributing to

the differing behavior observed in the GAT model.

5.4 Impact of Node Importance on Attack

Performance

Thus far, we have effectively demonstrated the efficacy of both

3-SMIA and 4-SMIA across all attack targets present in the testing

data. However, are these attacks more accurate if the adversary

has some prior knowledge of the target graph and thus targets

specific nodes, such as those of higher importance (e.g., nodes of
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Figure 6: Impact of node degree, node closeness, betweenness centrality, and node feature similarity on attack accuracy of

3-SMIA and 4-SMIA (GCN, Lastfm dataset). "LO", "ML", "ME", "MH", "HI" represent the node group of low, medium low, medium,

medium high, and high average node degree/closeness/betweenness centrality/feature similarity respectively.

high degrees), compared to nodes of lesser significance? In this part

of experiments, we will investigate if our attacks have disparate

performance of the target node sets that have distinct properties in

their structure and features.

Node importance. We consider three metrics that are com-

monly employed for gauging node importance in graph analytics:

• Node degree: This metric quantifies the number of edges con-

nected to a node.

• Node closeness centrality: This metric quantifies the number

of the shortest paths that traverse through the node. Nodes with

a higher closeness centrality score exhibit shorter distances to

other nodes.

• Node betweenness centrality: This metric computes the re-

ciprocal of the sum of shortest path lengths between the node

in question and all other nodes in the graph. Nodes with higher

betweenness centrality wield more control over the network, as

more information passes through them.

Importance score of target node set. Given a node set𝑉att, we

measure its importance score by four distinct metrics: node degree
importance, node closeness centrality importance, node betweenness
centrality importance, and feature similarity importance. The first
three types of importance scores are measured as the average of

the node degree, node closeness centrality, and node betweenness

centrality of all nodes in 𝑉att, and feature similarity importance

score is measured as the average of the cosine similarity of node

features for all node pairs in 𝑉att.

In our assessment, we determine the importance score of each

node set in 𝐴test
. Then we rank the node sets within 𝐴test

in as-

cending order of their importance scores and evenly partition these

ranked samples into five distinct groups: Low (LO), Medium Low
(ML), Medium (ME), Medium High (MH), and High (HI). For each

group, we measure its attack accuracy as the average of the attack

accuracy of all samples within the group.

Figure 6 illustrates the influence of four types of importance

scores on the attack accuracy of 3-SMIA and 4-SMIA against the

GCN model trained on the Lastfm dataset. Detailed outcomes for

other settings can be found in Appendix F.3. We have several note-

worthy observations. First, the accuracy of clique inference (triangle

and 4-cliques) consistently increases for targets of higher impor-

tance scores for all the four types of importance. This signifies that

SMIAs yield greater success when inferring cliques among nodes

Dataset

6-SMIA 10-SMIA

GCN SAGE GAT GCN SAGE GAT

Lastfm 0.54 0.52 0.48 0.49 0.45 0.44

Google+ 0.51 0.48 0.50 0.47 0.46 0.45

Table 3: Balanced attack accuracy of 6-SMIA and 10-SMIA

under Setting 1 (non-transfer setting). The balanced attack

accuracy for random guess is 0.33.

of heightened significance. This phenomenon is likely attributable

to the target model’s tendency to memorize more information from

the more pivotal nodes, owing to the message-passing and neigh-

borhood aggregationmechanisms intrinsic to GNNs. However, such

a trend does not manifest for 𝑘-hop path inference. We guess that

it is because the presence of disconnected node pairs within 𝑉att
introduces additional uncertainty into attack inference, potentially

explaining the lack of a uniform pattern.

5.5 Inference of Large Subgraphs

In this section, we assess the effectiveness of our attack on

larger subgraphs, namely 6-SMIA and 10-SMIA whose attack tar-

get contains six and ten nodes, respectively. The three class labels

of 6-SMIA correspond to a 6-clique, a 5-hop path, and any other

structure, respectively, while the three class labels for 10-SMIA

correspond to a 10-clique, a 9-hop path, and any other structure,

respectively. The experimental setup is the same as that of 3-SMIA

and 4-SMIA (Section 5.1).

Table 3 reports the balanced accuracy (BA) of 6-SMIA and 10-

SMIA under the non-transfer setting. The results show that our

attacks remain highly effective in inferring these larger subgraphs,

achieving an attack accuracy ranging from 0.48 to 0.54 for 6-SMIA

and between 0.44 and 0.49 for 10-SMIA. These results significantly

outperform the baseline accuracy of 0.33, which represents a ran-

dom guess scenario. This underscores the capability of our attack

to successfully infer large subgraphs.

5.6 Extension to White-box Attacks

In this part of the empirical study, we expand the scope of SMIAs

to the white-box setting, wherein the adversary can access the

architecture and internal parameters of the target model. Unlike

the black-box setting where the attack features are derived from the
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Dataset

3-SMIA 4-SMIA

GCN SAGE GAT GCN SAGE GAT

Lastfm 0.64 0.62 0.61 0.64 0.57 0.67

Google+ 0.73 0.61 0.62 0.55 0.55 0.56

Citeseer 0.79 0.68 0.72 0.62 0.59 0.58

Table 4: Balanced attack accuracy of white-box attacks under

Setting 1 (non-transfer setting).

posterior probabilities, the attack features of the white-box attack

will be derived from node embeddings.

Attack design. As the adversary under the white-box setting

has direct access to the parameters of the target model, there is no

need to utilize shadowmodels. Consequently, the white-box attacks

involve only two primary phases: attack model training and attack
inference. Both phases closely resemble the phases of attack model

training and attack inference of our black-box approach (Section 4)

with a minor modification: the attack features are now derived from

the similarity of final node embeddings instead of the similarity

of posterior outputs. Specifically, for a given similarity metric, the

pairwise similarity values of all pairs of the nodes in the sampled

graph are sorted in ascending order. There will be 𝑑 sorted lists for

𝑑 metrics. These 𝑑 vectors are then concatenated into one vector,

acting as the attack feature x. We use the same three similarity

metrics (Cosine similarity, Dot product, and Euclidean distance) as

the black-box setting.

Evaluation. Table 4 presents the balanced attack accuracy of the

white-box attack under Setting 1 (non-transfer setting). The results

reveal that the accuracy of thewhite-box attack surpasses that of the

black-box attack (Figure 3). For instance, when considering SAGE

as the target model and utilizing the Citeseer dataset as the training

data, the black-box 3-SMIA attack achieves an attack accuracy of up

to 0.65 (Figure 3 (b)), while the white-box attack achieves an even

higher attack accuracy of 0.68 (Table 4). The higher accuracy of

the white-box attack is anticipated, as the attack can extract more

information from the original training data through their access to

node embeddings.

Beyond the non-transfer setting, we measure the attack AUC of

the white-box attack under both data transfer and model transfer

settings. The results can be found in Appendix F.4.

5.7 Extension to Structure Inference Attack

(SIA)

Up to this point, we have demonstrated the effectiveness of our

k-SMIA approaches in inferring whether the given target nodes

contain a clique or a multi-hop path (for instance, whether there

exists a multi-hop path among the nodes 𝑉𝐴 , 𝑉𝐵 , 𝑉𝐶 ). However, in

some cases, the adversary might seek to discover specific details

of the structure itself (for example, whether the multi-hop path is

structured as 𝑉𝐴 −𝑉𝐵 −𝑉𝐶 or 𝑉𝐶 −𝑉𝐴 −𝑉𝐵 ).
Unfortunately, the existing subgraph inference attack [60] cannot

be directly applied to our setting as it utilizes the graph embedding

(i.e., the embedding of the whole graph) but not posteriors of indi-

vidual nodes to derive attack features. Thus, we extend the scope of

SMIAs to the Structure Inference Attacks (SIAs), which aim to infer

the subgraph formed by the target nodes in the training graph.

Attack design. Our SIA attack consists of two major steps:

Dataset

3-SIA 4-SIA

GCN SAGE GAT GCN SAGE GAT

Lastfm 0.41 0.44 0.4 0.2 0.23 0.19

Google+ 0.36 0.42 0.34 0.19 0.18 0.18

Citeseer 0.41 0.43 0.42 0.21 0.26 0.23

Table 5: Balanced attack accuracy of the Structure Inference

Attack (SIA).

• Inference of number of edges: the adversary first infers the

number of edges in the subgraph of 𝑉att.

• Inference of edges: based on the inferred number of edges, the

adversary further infers the edges (and thus the structure) of

𝑉att.

Next, we describe the details of each step.

Inference of number of edges. Intuitively, given 𝑘 target nodes,

there are

(𝑘
2

)
+ 1 possibilities of the number of edges among them.

Thus, we build a ℓ-class classifier to predict the number of edges

among the given target nodes, where ℓ =
(𝑘
2

)
+ 1. This way, the

3-label classifier of k-SMIA can be easily extended to k-SIA. The

training data 𝐴train
will be reconstructed to accommodate

(𝑘
2

)
+ 1

classes for k-SIA, while the features remain the same as k-SMIA.

Inference of edges. Building upon the inferred number of edges

from Step 1, the adversary proceeds to identify these edges. Specif-

ically, for each node pair (𝑣𝑖 , 𝑣 𝑗 ) of 𝑉att, the adversary computes

the similarity between the posterior probability vectors of 𝑣𝑖 and

𝑣 𝑗 using a distance function. We use three distance functions (Dot

product similarity, Cosine similarity, and Euclidean distance), which

are the same ones used by SMIA. These node pairs are then ranked

based on their similarity scores, and the top-𝑡 node pairs with the

highest similarity values are selected, where 𝑡 is the number of

edges estimated by Step 1.

Compare with the link membership inference attack (LMIA) [20],

our SIA attack is fundamentally different from [20]. First, LMIA

and SIA have different attack goals. While LMIA aims to infer

if two nodes were connected in the training graph, SIA aims to

infer the specific structure among a set of 𝑘 > 2 nodes. Second,

the design of LMIA and SIA differs fundamentally. LMIA trains a

binary classifier using features derived from the similarity between

the posteriors of nodes for inference. In contrast, SIA follows a

different approach: it first infers the number of edges 𝑡 among the 𝑘

target nodes and then selects the top 𝑡 node pairs from the 𝑘 nodes

with the highest similarity between their posteriors as these edges,

thereby constructing the inferred subgraph structure.

Empirical evaluation. Similar to SMIA, we investigate two

variants of the SIA attacks: 3-SIA and 4-SIA which differ in the

number of target nodes (3 or 4). We evaluate the performance using

three distance functions: Dot product similarity, Cosine similarity,

and Euclidean distance for Step 2. And we observe Cosine similarity

yields the best attack performance among these functions. Hence

we only report the results of using Cosine similarity. The training

and testing data for the white-box attacks are generated in a similar

way as to the black-box attacks, ensuring balance and a 7:3 split

ratio between 𝐴train
and 𝐴test

.

Table 5 displays the attack accuracy of 3-SIA and 4-SIA. No-

tably, both attacks showcase substantial effectiveness, with attack

accuracy ranging from [0.36, 0.44] for 3-SIA and [0.18, 0.26] for
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4-SIA. These values are significantly higher than the random guess.

Furthermore, SIAs demonstrate lower attack accuracy compared

to SMIAs across all settings, as SIAs have to explicitly identify the

subgraph structure itself, rather than inferring the inclusion of a

structure only.

6 A POSSIBLE DEFENSE

To enhance the privacy of GNN models, a potential solution is

to introduce noise into the models. Existing defense mechanisms

against the link-level MIAs against GNNs typically inject noise into

GNN parameters [1], or embeddings [43, 60], or posteriors [20].

However, our empirical evaluation (will be present in Section 6.3)

demonstrates that these methods suffer from significant accuracy

degradation in node classification tasks.

To address this challenge, we propose a novel noise mechanism

to defend against SMIA. At a high level, our approach introduces

noise into the final node embeddings generated by the target model.

However, unlike existing methods that add noise across all dimen-

sions of node embeddings [43, 60], our approach selectively adds

noise only to dimensions of node embeddings that are considered

least significant for the downstream task (node classification). By

introducing noise selectively, our approach strikes a balance be-

tween maintaining target model accuracy and ensuring privacy

protection against SMIAs.

In the following, we present the details of the defense. We begin

with the measurement of feature importance (Section 6.1), followed

by the discussion of our defense mechanism (Section 6.2). The

results of the defense mechanism will be presented in Section 6.3.

6.1 SHAP-based Feature Importance

Measurement

To measure the importance of embedding dimensions, we utilize

Interpretable Machine Learning (IML) methods [2, 5, 12, 16, 30, 32]

which can offer insights into the relevance of features for a model’s

performance. In our approach, we specifically employ the SHapley
Additive exPlanations (SHAP) value-based method [30] to measure

the importance of embedding dimensions.

SHAP is a technique used to interpret and explain predictions

of individual data samples by quantifying the contribution of each

feature to the predictions. The computed feature importance takes

the form of Shapley values [30], where higher values indicate greater
contribution (i.e., importance) to the model’s output.

To employ SHAP for computing the importance of individual

features in node embeddings, we treat the final node embeddings

generated by the target model as the underlying features for the

downstream task (i.e., node classification). We calculate the Shapley

value for each dimension of the node embeddings and identify the

dimensions with the top-ℓ lowest Shapley values as the least im-
portant dimensions of the node embeddings. In our empirical study,

we experiment with different values of ℓ (in the format of perturba-

tion ratio) and analyze their impact on defense performance. More

details can be found in Section 6.3.

6.2 Details of Defense

Intuitively, while injecting noise into node embeddings (and thus

the posterior probabilities) can deter SMIA’s attack capabilities, ran-

dom noise injection may lead to significant accuracy loss in GNN

models. Therefore, the primary aim of our defense mechanism is

to provide effective protection against SMIA while preserving the

accuracy of the target model. To achieve this objective, we pro-

pose a perturbation-based strategy that introduces noise to the

node embeddings, thereby altering the posterior probabilities and

subsequently the attack features derived from these probabilities.

However, indiscriminately adding noise to all dimensions of the

node embeddings could result in a substantial loss in model accu-

racy. To mitigate this, we suggest adding noise only to the least

important dimensions of the node embeddings. Even with noise

introduced in these less important dimensions, node embeddings

and their posterior probabilities can still undergo alteration. As

will be demonstrated in our empirical study, these modifications

can change the distribution of attack features between members

and non-members, making them less distinguishable. Furthermore,

targeting a subset of dimensions for noise injection helps minimize

the degradation in model accuracy.

Our defense mechanism follows a three-step process. In Step 1,

we compute the importance of each embedding dimension using

SHAP (Section 6.1). We assume that the defender, possibly the

model owner, has knowledge of the downstream task for conducting

SHAP-based evaluation of dimension importance. Step 2 involves

ranking the embedding dimensions in ascending order based on

their SHAP values and selecting the top-ℓ dimensions from this

ranking. Here, ℓ = [𝑑 × 𝑟 ], where 𝑑 is the number of dimensions in

the embedding and 𝑟 ∈ (0, 1] is the perturbation ratio. Increasing 𝑟
perturbs more dimensions, resulting in a higher accuracy loss for

the target model. In Step 3, we add noise to the dimensions chosen

by Step 2. Specifically, we follow [43, 61] and introduce noise 𝑠 that

follows the Laplace distribution:

𝑠 =
1

2𝑏
𝑒−

𝑥−𝜇
𝑏 . (3)

Here, 𝑏 represents the noise scale, and 𝜇 is the location parameter

of the Laplace distribution. A larger 𝑏 signifies a more potent noise

scale, leading to increased defense against SMIAs.

Unfortunately, our method cannot offer a formal privacy guar-

antee like Differential Privacy (DP) [10], as it does not utilize the

concept of adjacency between datasets to determine the amounts

of noise. Thus instead of theoretical analysis, we will empirically

assess the defense effectiveness of our method. Our aim is to illus-

trate that our approach can provide comparable level of defense

power to DP while minimizing the loss in model accuracy.

An alternative perturbation scheme is to add Gaussian noise

instead of Laplace noise on the embeddings [39]. We assess both the

defense effectiveness and model accuracy of the two noise schemes

and found that both schemes have similar defense performance.

The detailed results can be found in Appendix G.1. Therefore, we

mainly employ Laplace noise in our paper.

6.3 Performance of Defense

In this section, we provide an assessment of the performance of our

defense mechanism. We use the same GNN models and datasets as

those for the attack evaluation (Section 5).

Setup.We configure the perturbation ratio 𝑟 = {0.2, 0.4, 0.6, 0.8}
and noise scale 𝑏 = {0.01, 0.05, 0.1, 0.5, 1, 5, 10} in our experiments.

Larger values of 𝑟 and 𝑏 indicate stronger privacy protection.
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Figure 7: Defense performance (GAT, Citeseer dataset). The solid and dotted lines in (b) and (c) denote the defense effectiveness

and node classification AUC respectively.

Dataset

3-SMIA 4-SMIA

GCN SAGE GAT GCN SAGE GAT

Ours NP DP Ours NP DP Ours NP DP Ours NP DP Ours NP DP Ours NP DP

Lastfm 0.21 0.16 0.15 0.18 0.15 0.14 0.23 0.19 0.17 0.18 0.15 0.13 0.17 0.13 0.13 0.21 0.19 0.17

Google+ 0.22 0.19 0.12 0.24 0.22 0.17 0.21 0.17 0.12 0.21 0.2 0.13 0.23 0.21 0.18 0.22 0.17 0.14

Citeseer 0.28 0.24 0.18 0.23 0.22 0.18 0.26 0.2 0.15 0.26 0.22 0.19 0.24 0.19 0.16 0.25 0.2 0.16

Table 6: Trade-off between defense effectiveness and the accuracy of the target model measured as the AUC of the defense-utility

ROC curve. The best trade-off for each GNN model and each dataset is marked with olive color.

Metrics. We quantify the defense effectiveness as the percentage
reduction in attack AUC achieved by the defense mechanism:

Defense effectiveness =
𝐴𝑈𝐶

before
−𝐴𝑈𝐶

after

𝐴𝑈𝐶
before

(4)

Here,𝐴𝑈𝐶
before

and𝐴𝑈𝐶
after

represent the attack AUC before and

after applying the defense, respectively. A higher reduction in attack

AUC indicates stronger defense.

For the target model, we assess its accuracy using the AUC

of node classification (Section 5.1). A higher AUC implies better

accuracy for the target model.

Baselines. For comparative analysis, we compare our defense

mechanism with the following two baselines:

• Baseline-1: Differential privacy (DP).We adopt DP-SGD, a

state-of-the-art differentially private deep learning method [1],

as our first baseline. To ensure a fair comparison between DP-

SGD and our defense mechanism, we introduce Laplace noise to

the gradients during each iteration, where the noise follows the

same distribution as our defense mechanism (Eqn. (3)).

• Baseline-2: Noisy posteriors (NP). Since attack features stem

from the target model’s posteriors, we consider the defense

method [20, 60] that introduces noise to the posterior probabili-

ties as our second baseline. Specifically, for any given node and

its associated posterior probability vector output by the target

model, we incorporate Laplace noise into each posterior in the

vector, using the same distribution as ours (Eqn. (3)) for the noise

distribution.

Defense effectiveness. Figure 7 (a) (the y-axis at left) presents

the attack AUC after the deployment of our defense mechanism

with various perturbation ratios when GAT is used as the target

model. The performance results for the other GNN models can

be found in Appendix G.2. We did not compare our method with

the two baselines as they have a fixed perturbation ratio of 1 (i.e.,

perturbation on all dimensions). We observe that our defense can

effectively reduce the attack AUC. Remarkably, even with the per-

turbation ratio as small as 0.2 (i.e., 20% of embedding dimensions

are perturbed), the accuracy of 3-SMIA is reduced by 14.3% (Figure

7 (a)). The defense power becomes stronger as the perturbation

ratio 𝑟 increases.

Why adding noise only to the less important dimensions of node

embeddings still enable effective privacy protection? To answer this

question, we visualize the distribution of attack features for each

class before and after applying our defense method by using the

t-SNE projection. The results are presented in Appendix G.3. We

notice a significant increase in the indistinguishability of the three

classes after introducing noise to the embedding. This observation

highlights that, despite being added solely to the least important

dimensions of the embedding, the noise has led to alterations in the

posterior probabilities and their corresponding similarities. Conse-

quently, it has effectivelymodified the distribution of attack features

across all classes, thereby reducing the accuracy of the attack.

Next, we compare the performance of our defense method with

the two baselines under various noise scales (𝑏), and present the

results in Figure 7 (b) & (c) (y-axis at right). First, the defense effec-

tiveness of our method increases with a higher noise scale value. As

the noise scale becomes as large as 10, our approach exhibits compa-

rable defense effectiveness to NP. This observation aligns with our

expectations, as the NP defense technique directly introduces noise
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to the posteriors, while ourmethod adds noise selectively to a subset

of dimensions of the embeddings. Second, our approach showcases

the capability to surpass the DP baseline in terms of defense effec-

tiveness, as illustrated in Figure 7 (b). This can be attributed to the

fact that, although Laplace noise is integrated into the gradient, the

DP baseline continues to employ the unaltered adjacency matrix

during node embedding computations. Consequently, GNN models

still encapsulate some underlying structural information within

node representations and the subsequent posteriors. This explains

why our method can outperform the DP baseline, despite solely

introducing noise to a subset of embedding dimensions.

Model accuracy. Figure 7 (a) (the y-axis at right) presents the

model accuracy (node classification AUC) under various perturba-

tion ratios. We observe an insignificant amounts of model accuracy

loss (up to 0.04%) even when the perturbation ratio increases to

0.8. Furthermore, Figure 7 (b) & (c) (the y-axis at right) compare

the model accuracy of our defense solution and the two baselines

when the noise scale 𝑏 increases. Our method outperforms both

baselines in terms of model accuracy when 𝑏 exceeds 0.1.

defense-utility trade-off. To assess the trade-off between de-

fense effectiveness and target model accuracy, we establish a range

of settings that utilizes a consistent perturbation ratio (𝑟 = 0.4) and

varying noise scale values 𝑏 = {0.01, 0.05, 0.1, 0.5, 1, 5, 10}. Equiva-
lent noise scales are employed for the other two baseline methods.

Subsequently, we gauge defense effectiveness and target model

AUC across each configuration. These collected outcomes are then

synthesized into a defense-utility ROC curve, whereby individual

points symbolize paired values of defense effectiveness and target

model accuracy. We quantify the defense-utility trade-off as the

Area Under the Curve (AUC) of the defense-utility ROC curve. A

higher AUC indicates a more favorable trade-off between defense

effectiveness and target model accuracy. The defense-utility ROC

curve can be found in Appendix G.4.

Table 6 presents the results of the defense-utility trade-off for

both 3-SMIA and 4-SMIA. Our defense mechanism consistently

manifests a superior trade-off in comparison to the baseline meth-

ods across all settings. This is expected as our method solely intro-

duces noise to the least influential embedding dimensions.

Additionally, we assess the trade-off between defense effective-

ness and utility using TPR@1%FPR as the attack accuracy metric.

We construct a defense-utility ROC curve, where each point rep-

resents paired values of defense effectiveness and target model

accuracy. The trade-off between defense and utility is quantified

as the Area Under the Curve (AUC) of the defense-utility ROC

curve. The results of the defense-utility ROC curve and the defense-

utility trade-off are presented in Appendix G.4. We observe that

our defense exhibits a superior trade-off compared to the baseline

methods across most the settings.

7 RELATED WORK

Membership inference attacks againstmachine learningmod-

els. Recent studies [7, 46] have shown that ML models are vulnera-

ble to various types of privacy attacks. Among these attacks, the

membership inference attack (MIA) aims to infer whether a data

record was used to train a target model or not. It was first studied in

the context of genomics privacy [23, 41] and mobility privacy [38].

Shokri et al. [44] was the first work to apply MIA against machine

learning. Since then, many endeavors have investigated MIAs in

scope and depth. For example, Yeom et al. [55] analyzed the connec-

tion betweenMIAs andmodel overfitting. Salem et al. [40] proposed

a generic attack that relaxes some assumptions of MIAs. Ye et al.

[54] formally expressed MIAs under a comprehensive hypothesis

testing framework. A line of work designed new MIAs for vari-

ous ML models such as federated learning [34], generative models

[19], language models [45, 47], and contrastive models [28]). And

Meanwhile, a large body of work proposes different membership

inference defenses to counter the threat of MIAs. We recommend

the audience a number of surveys [3, 24, 27] for further reading.

Membership inference attacks against GNNs. A line of work

has investigated the vulnerability of GNNs against MIAs [9, 20, 22,

36, 52]. The existing MIAs on GNNs can be categorized into three

types: node-level MIAs, link-level MIAs, and subgraph-level MIAs.
The node-level MIAs [22, 36] aim to infer the existence of particular

nodes in the training graph, The subgraph-level MIA (SIA) [60]

aims to infer if a subgraph is included in the target graph. However,

as SIA utilizes the graph embedding (i.e., the embedding of the

whole graph) not posteriors of individual nodes to derive attack

features, it cannot be directly applied to our setting. To the best of

our knowledge, ours is the first to investigate MIAs in the context

of inference of cliques and multi-hop paths.

8 CONCLUSION

In this paper, we investigated the privacy vulnerabilities of GNN

models through the lens of Structure Membership Inference Attacks
(SMIAs). We introduced novel black-box SMIAs capable of predict-

ing the presence of 𝑘-cliques and 𝑘-hop paths within a designated

set of target nodes in the training graph. Our empirical study demon-

strates the effectiveness of SMIAs against three representative GNN

models. Moreover, we designed a new defense mechanism to coun-

teract GNN susceptibility to SMIAs. Through empirical analysis,

we showcased that our defense approach provides strong defense

against SMIA while maintaining target model accuracy.

Looking ahead, we will explore SMIAs’ effectiveness across di-

verse adversary knowledge settings, including scenarios with white-

box access to the target model and availability of node features.

We will also extend the scope of SMIAs to the inference of other

graph structures, such as strongly connected components and stars.

These extensions will contribute to a comprehensive understanding

of GNN privacy and open up new avenues for safeguarding graph

data against potential threats.
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APPENDIX

A PSEUDO CODE OF OUR ATTACK

Algorithm 1 shows the pseudo code of our attack.

B TIME COST OF SIMILARITY SORTING FOR

ATTACK FEATURE GENERATION

Recall that our attack feature derivation necessitates sorting proba-

bility similarity values, raising concerns about potential computa-

tional overhead. To investigate this, we measured the time required

for sorting probability similarities during attack feature derivation

and compared it with the time needed for attack classifier training.

The results are presented in Table 7, revealing that the sorting time

is minimal compared to attack classifier training. In other words,

sorting probability similarity values does not impose significant

computational overhead on the training of the attack classifier.

Algorithm 1: Generating attack training data 𝐴train

Input: A set of shadow graphs𝐺𝑆 = {𝐺𝑆
1
,𝐺𝑆

2
, ...}, the target

node set 𝑉att, the number of node sets in each class

𝑁 .

Output: Attack training data 𝐴train
.

1 𝐴train
={};

2 𝑆 = {};
3 Initialize the membership label y=0;

4 for each shadow graph 𝐺𝑆
𝑖
in 𝐺𝑆

do

5 Train a shadow model Φ𝑆
𝑖
on 𝐺𝑆

𝑖
;

6 Randomly sample 𝑁 > 1 k-cliques and add to 𝑆 ;

7 Randomly sample 𝑁 > 1 (k-1)-hop paths and add to 𝑆 ;

8 Randomly sample 𝑁 > 1 node sets that are neither

k-cliques nor (k-1)-hop paths and add to 𝑆 ;

9 for each k-node set 𝑉𝑠 in 𝑆 do

10 x =<> //x: the feature vector of 𝑉𝑠 ;
11 for each similarity metric 𝑓𝑠 do
12 Initialize ®𝑣 as an empty vector;

13 for ∀𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉𝑠 do
14 Add 𝑓𝑠 (Φ𝑆𝑖 (𝑣𝑖 ),Φ

𝑆
𝑖
(𝑣 𝑗 )) to ®𝑣 ;

15 end

16 Sort all values in ®𝑣 in descending order ;

17 x = x| |®𝑣 ;
18 end

19 Assign the membership label 𝑦 of 𝑉𝑠 : y=1 if 𝑉𝑠 is a

clique, y=2 if 𝑉𝑠 is a (k-1)-hop path, and y=0

otherwise;

20 Add the sample (x, 𝑦) to 𝐴train
;

21 end

22 end

23 return Attack training set 𝐴train
.

C DETAILS OF DATASETS

We conduct our experiments on three datasets, each possessing its

own unique characteristics:

• Google+ dataset
5
: The graph consists of 4,417 nodes and 119,582

edges in total. Each node is associated with a set of features

including gender, institution, job title, last name, place, and uni-

versity.

• Lastfm dataset
6
: The Lastfm dataset represents a social network

of users of the Lastfm music platform. The edges in the dataset

indicate the mutual follower relationships between users.

• Citeseer dataset: The Citeseer dataset is a citation network

where the nodes represent scientific documents, and the edges

represent citation links between documents. It consists of 3,312

nodes and 4,732 citation links.

5
https://snap.stanford.edu/data/ego-Gplus.html

6
http://snap.stanford.edu/data/feather-lastfm-social.html
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Attack 3-SMIA 4-SMIA

Settings MLP RF SVM MLP RF SVM

Lastfm 0.62 0.61 0.58 0.59 0.59 0.55

Google+ 0.52 0.5 0.5 0.53 0.5 0.5

Citeseer 0.75 0.75 0.73 0.54 0.53 0.52

Table 8: Impact of type of attack classifiers on attack accuracy

(GCN model). The best attack accuracy for each dataset and

each attack classifier is highlighted with olive color.

Sim. metric 3-SMIA 4-SMIA

C D E GCN SAGE GAT GCN SAGE GAT

✓ 0.56 0.48 0.56 0.53 0.43 0.47

✓ 0.61 0.55 0.48 0.58 0.4 0.37

✓ 0.61 0.57 0.53 0.59 0.52 0.46

✓ ✓ 0.6 0.54 0.56 0.58 0.43 0.46

✓ ✓ 0.6 0.57 0.55 0.59 0.52 0.47

✓ ✓ 0.61 0.57 0.51 0.59 0.52 0.45

✓ ✓ ✓ 0.62 0.58 0.56 0.59 0.53 0.48

Table 9: Balanced attack accuracy (BA) for various combi-

nations of similarity metrics. "C", "D", "E" represent Cosine

similarity, Dot Product, and Euclidean distance respectively.

The best attack performance for each GNN model is high-

lighted in olive color. (Lastfm dataset).

D ATTACK PERFORMANCE UNDER VARIOUS

ATTACK SETTINGS

D.1 Varying Type of Attack Classifier

To evaluate the impact of the type of attack classifiers on the per-

formance attacks, we evaluate the attack performance by three

types of attack classifiers, namely, Multi-layer Perceptron (MLP),
Random Forest (RF), and Support Vector Machine (SVM). Table 8

presents the attack accuracy of the three attack classifiers when

GCN model is used as the target model. All the three classifiers

exhibit their effectiveness, with their attack accuracy exceeding the

random guess (0.5). In particular, MLP outperforms RF and SVM

consistently. Therefore, in our experiments, we mainly use MLP as

the attack classifier.

D.2 Varying Similarity Metric(s)

To measure the impact of various similarity metrics on attack per-

formance, we consider all the seven combinations of the three

similarity metrics (Cosine similarity, Dot product similarity, and

Euclidean distance), and measure the balanced accuracy of 3-SMIA

and 4-SMIA under each combination. As reported in Table 9, the

attack leveraging the concatenation of all three similarity metrics

consistently outperforms or achieves the same attack performance

as those employing either a single metric or the combination of any

two metrics. Therefore, we adopt the concatenation of Cosine simi-

larity, Dot Product, and Euclidean distance to generate the attack

features.

D.3 Varying the Number of Shadow Models

Figure 8 presents the attack accuracy (BA) for various number of

shadowmodels. The main observation is that the number of shadow
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Figure 8: Impact of the number of shadow models on attack

accuracy (BA), GCN model.

Dataset GCN SAGE GAT

Google+ 0.93 0.93 0.95

Lastfm 0.75 0.76 0.73

Citeseer 0.94 0.95 0.92

Table 10: Node classification AUC performance of the GNN

models.

models does not impact the attack accuracy, which remains stable

when the number of shadow models varies. Therefore, we use only

one shadow model in our experiments.

E TARGET MODELS: SETUP AND

PERFORMANCE

We assess the GNNmodels’ performance through the measurement

of node classification AUC. The results are presented in Table 10. It

is evident that across all three datasets, the AUC values for the three

GNN models are significantly superior to random classification,

spanning the range of [0.73, 0.95]. This observation demonstrates

the commendable performance of the target GNN models.

F ADDITIONAL RESULTS OF ATTACK

PERFORMANCE

F.1 Non-transfer Setting

In this part of empirical evaluation, we measure both AUC and

TPR@1%FPR of 3-SMIA and 4-SMIA. We also include the results

of Baseline-2 for comparison. We did not consider Baseline-1 and

Baseline-3 because their AUC and TPR@1%FPR are not measurable

as they do not use a threshold.

AUC performance of attack classifier. Table 11 shows the

AUC performance of 3-SMIA and 4-SMIA under Setting 1 (non-

transfer setting). We have the following observations. First, the

AUC values of our attacks across all settings consistently surpass

the random guess threshold of 0.5. Specifically, the attack AUC of

3-SMIA ranges from 0.67 to 0.89, while the attack AUC of 4-SMIA

ranges from 0.69 to 0.8. Second, our attacks outperform Baseline-2

in terms of attack AUC in all the settings.

TPR@1%FPR performance of attack classifier. Table 12

shows the TPR@1%FPR performance of 3-SMIA and 4-SMIA. The

TPR@1%FPR of 3-SMIA ranges from 0.08 to 0.41, and the attack

TPR@1%FPR of 4-SMIA ranges from 0.08 to 0.21. Furthermore, both
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3-SMIA 4-SMIA

Dataset GCN SAGE GAT GCN SAGE GAT

Ours Baseline-2 Ours Baseline-2 Ours Baseline-2 Ours Baseline-2 Ours Baseline-2 Ours Baseline-2

Lastfm 0.80 0.79 0.71 0.69 0.73 0.72 0.79 0.73 0.72 0.71 0.69 0.67

Google+ 0.70 0.67 0.67 0.65 0.71 0.70 0.74 0.72 0.71 0.70 0.70 0.68

Citeseer 0.89 0.84 0.83 0.82 0.84 0.81 0.80 0.74 0.76 0.72 0.71 0.69

Table 11: Attack AUC of 3-SMIA and 4-SMIA under Setting 1 (non-transfer setting). We did not consider Baseline-1 and

Baseline-3 because their AUC is not measurable as they do not use a threshold. The best attack AUC for each dataset and each

GNN model is highlighted with olive color.

3-SMIA 4-SMIA

Dataset GCN SAGE GAT GCN SAGE GAT

Ours Baseline-2 Ours Baseline-2 Ours Baseline-2 Ours Baseline-2 Ours Baseline-2 Ours Baseline-2

Lastfm 0.22 0.21 0.25 0.22 0.17 0.17 0.21 0.14 0.13 0.13 0.12 0.10

Google+ 0.12 0.11 0.08 0.07 0.19 0.18 0.12 0.09 0.12 0.11 0.13 0.12

Citeseer 0.40 0.30 0.24 0.23 0.41 0.38 0.18 0.11 0.13 0.10 0.08 0.05

Table 12: TPR@1%FPR of 3-SMIA & 4-SMIA under Setting 1 (Non-transfer setting). We did not consider Baseline-1 and Baseline-

3 for comparison because their TPR@1%FPR is not measurable as they do not use a threshold. The best attack AUC for each

dataset and each GNN model is highlighted with olive color.

Attack AUC TPR@1%FPR

3-SMIA 4-SMIA 3-SMIA 4-SMIA

Class GCN SAGE GAT Class GCN SAGE GAT Class GCN SAGE GAT Class GCN SAGE GAT

3-clique 0.66 0.63 0.71 4-clique 0.82 0.83 0.79 3-clique 0.12 0.08 0.11 4-clique 0.2 0.18 0.23

2-hop path 0.65 0.62 0.65 3-hop path 0.79 0.68 0.72 2-hop path 0.05 0.05 0.06 3-hop path 0.07 0.11 0.1

Table 13: Attack AUC and TPR@1%FPR of member classes of 3-SMIA and 4-SMIA under Setting 1 (Non-transfer setting).

3-SMIA and 4-SMIA outperform Baseline-2 in all the settings. This

demonstrates the effectiveness of our attacks.

Attack AUC and TPR@1%FPR performance of member

classes. To better understand how the attack performs over the

member classes (i.e., cliques and paths), next, we measure the attack

performance for each member class (i.e., 3-clique and 2-hop paths

for 3-SMIA, and 4-cliques and 3-hop paths for 4-SMIA). For the eval-

uation, we only consider one subgraph structure (e.g., the clique) as

the member, and the remaining structures (e.g., the paths and other

structures that are neither paths and cliques) as the non-member.

Table 13 presents the AUC and TPR@1%FPR for each member class.

For both attack accuracy metrics, 3-SMIA and 4-SMIA are shown

to be more effective to infer cliques than the paths.

F.2 Transfer Setting

Attack Performance of 4-SMIA under Transfer Setting Figure

9 presents the attack AUC of 4-SMIA under both dataset transfer

and model transfer settings. First, we observe that 4-SMIA is still

effective under the data transfer setting. The attack AUC spans a

range of 0.59 to 0.72 (Figure 9 (a) - (c)), which is much higher than

the random guess (0.5). 4-SMIA also remains effective under model

transfer setting, with the attack AUC ranges between 0.58 and 0.76

(Figure 9 (d) - (f)).

Why do transfer attacks work? To understand why the trans-

fer attacks remains effective under both data transfer and model

transfer settings, we plot the distribution of three classes (clique,

path, and non-members) by the attack features derived from the

shadow model and the target model respectively for both dataset

transfer and model transfer settings in Figure 10. We observe that,

despite the varying distributions of attack features in both the

shadow and target models, the three classes remain discernible

from each other. We attribute this phenomenon to the inherent

similarity among connected nodes within subgraphs compared to

disconnected nodes outside them, owing to the intrinsic message-

passing mechanisms of GNN models. These results demonstrate

that our attack has acquired and effectively transferred this knowl-

edge across diverse datasets and models.

F.3 Impact of Node Importance on Attack

Performance

Figure 11 illustrates the impact of node degree, closeness centrality,

betweenness centrality, and node feature similarity on the attack

accuracy of 3-SMIA and 4-SMIA targeting the GCN model using

the Google+ dataset. We observe comparable trends to those in

Figure 6. Specifically, the attack accuracy of clique inference steadily

increases for the target nodes of higher importance across all the

four types of importance metrics. This trend is likely attributable

to the target model’s tendency to memorize more significant nodes,

influenced by the message passing and neighborhood aggregation

mechanisms inherent in GNNs. However, a consistent pattern is
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Figure 9: Attack AUC of 4-SMIA under dataset and model transfer setting.

3-clique 2-hop path Non-members

(a) Distribution of three classes by

the attack features derived from

shadow model (GCN trained on

Lastfm dataset)

(b) Distribution of three classes by

attack features derived from target

model (GCN trained on Google+

dataset)

(c) Distribution of three classes

by attack features derived from

shadow model (GCN trained on

Citeseer dataset)

(d) Distribution of three classes by

attack features derived from target

model (SAGE trained on Citeseer

dataset)

Data transfer setting Model transfer setting

Figure 10: Distribution of attack features under both dataset transfer and model transfer settings (3-SMIA).

not observed for 𝑘-hop paths. We guess it could be attributed the

introduction of additional uncertainty in attack inference due to

the presence of disconnected node pairs within 𝑉att. In particular,

we observe a drop of the attack accuracy on the inference of 3-hop

paths. Such drop was minor for node sets that contain nodes of

higher degrees, closeness centrality, and betweenness centrality

(Figure 11 (a) - (c)). But the drop became substantial for node sets

of similar node features (Figure 11 (d)). We guess the reason behind

this phenomenon is that node features become less influential on

attack accuracy compared to node structure when inferring higher-

order connectivity.

F.4 White-box Attacks under Transfer Setting

Data transfer setting. Figure 12 presents the AUC performance of

white-box attacks under the data transfer setting. We observe that

the attack AUC ranges from 0.61 to 0.87 for 3-SMIA and 0.6 to 0.74

for 4-SMIA across the three datasets and three GNN models. This

indicates the effectiveness of our attack under the white-box data

transfer setting. Additionally, similar to the non-transfer setting, the

performance of the white-box attack under the data transfer setting

generally outperforms the black-box attack in most of the settings.

However, there are a few exceptions. For example, the attack AUC

of the white-box attacks is lower than that of the black-box attacks
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Figure 11: Impact of node degree, node closeness, betweenness centrality, and node feature similarity on attack accuracy (BA)

of 3-SMIA and 4-SMIA (GCN, Google+ dataset). "LO", "ML", "ME", "MH", "HI" represent the node group of low, medium low,

medium, medium high, and high average node degree/closeness/betweenness centrality respectively.
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Figure 12: White-box attack AUC of 3-SMIA and 4-SMIA under dataset transfer setting.

for both 3-SMIA and 4-SMIA when Google+ is used as the shadow

model and the Lastfm dataset is used as the target dataset. This

phenomenon implies that, under rare cases, the similarity between

node embeddings may not be as effective as the similarity between

posterior probabilities for knowledge transfer.

Model transfer setting. Figure 13 presents the AUC perfor-

mance of white-box attacks under the model transfer setting. We

observe that the attack AUC ranges from 0.6 to 0.89 for 3-SMIA

and 0.54 to 0.76 for 4-SMIA across the three datasets. This indicates

the effectiveness of our white-box attack under the model transfer

setting.

We have also noted that, although uncommon, the AUC of white-

box attacks can be lower than that of black-box attacks in specific

configurations. An example of this is seen when using GAT as

the shadow model and SAGE as the target model on the Citeseer

dataset for the 3-SMIA attack. To delve into this phenomenon, we

present in Figure 14 the distribution of the three classes (k-cliques,

(k-1)-hops, and non-members) by their attack features for both

white-box and black-box attacks in the aforementioned setting.

Our analysis reveals that under this particular setup, the black-

box attack features derived from posterior probabilities exhibit a

better ability to distinguish between the three classes compared

to the white-box attack features derived from node embeddings.

Consequently, this leads to a higher attack performance by the

black-box approach compared to the white-box method in this

specific scenario.
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Figure 13: White-box attack AUC of 3-SMIA and 4-SMIA under model transfer setting.
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Figure 14: Distribution of attack features for both white-box and black-box attacks (3-SMIA, Citeseer dataset).

G ADDITIONAL RESULTS OF DEFENSE

PERFORMANCE

G.1 Defense Performance under Gaussian noise

We evaluate the defense performance of adding Gaussian noise

to node embeddings. The Gaussian noise 𝑠 follows the density

distribution of

𝑠 =
1

𝜎
√
2𝜋

exp

1

2
( 𝑥−𝜇

𝜎
)2 , (5)

with the expectation of 𝜇 and the standard deviation of 𝜎 . In our

experiments, we set 𝜇 = 0, and 𝜎 = {0, 0.01, 0.05, 0.1, 0.5, 1, 5, 10},
which is the same as the noise scale of Laplace noise.

Figure 15 presents both defense performance andmodel accuracy

when Gaussian noise or Laplace noise is employed for defense. We

have observed that employing Gaussian noise for defense yields

similar performance to using Laplace noise in terms of both defense

effectiveness andmodel accuracy. Consequently, we primarily focus

on presenting the performance results of the defense mechanism

utilizing Laplace noise in the main body of the paper.

G.2 Defense Performance Results for More

Settings

Figure 16 (a) evaluates the impact of the perturbation ratio 𝑟 on

SAGEmodel and Citeseer dataset. The trends observed align closely

with those in Figure 7 (a). First, our perturbation techniques effec-

tively curtail the attack AUC. For instance, even with a minimal

perturbation ratio of 0.2 (perturbing 20% of embedding dimensions),

the attack AUC of 3-SMIA can be reduced from 0.83 to 0.70 (15.7%

reduction). Second, an increase in the perturbation ratio (𝑟 ) notably

enhances defense efficacy. As 𝑟 escalates, the defense power expe-

riences substantial improvement. Notably, when the perturbation

ratio reaches 0.8 for both attacks, the attack AUC can be diminished

to a level close to the random guess threshold of 0.5.
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(a) GAT model, Citeseer datatset
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(b) SAGE model, Lastfm dataset
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(c) GCN model, Google+ dataset
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(d) GAT model, Citeseer datatset
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(e) SAGE model, Lastfm dataset
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(f) GCN model, Google+ dataset

Figure 15: Gaussian noise vs. Laplace noise in terms of defense performance and model accuracy.

Furthermore, we observe a discrepancy in the defense perfor-

mance of our method across GAT, GCN and SAGE. Specifically,

our method demonstrates a stronger defense capability for GAT

(Figure 7) and GCN compared to SAGE. We attribute this discrep-

ancy to the differing aggregation functions employed by these

models. Specifically, both GAT and GCN utilize the entire neigh-

borhood for aggregation during training, whereas SAGE adopts a

sampling-based approach resulting in partial neighborhood aggre-

gation. Consequently, our method introduces less perturbations for

GAT and GCN than for SAGE, thereby rendering it less effective in

the former case.

Figure 16 (b) and Figure 16 (c) evaluate the impact of the noise

scale 𝑏 on 3-SMIA and 4-SMIA, alongside comparison with two

baseline methods. Firstly, our method’s defense effectiveness rises

proportionally with increasing noise scale values. Our approach’s

performance becomes comparable to NP’s efficacy when the noise

scale reaches 10 for both 3-SMIA and 4-SMIA. This correlation

aligns with our expectations, given NP’s direct introduction of

noise into posteriors, contrasted with our method’s selective noise

addition to specific embedding dimensions. Additionally, our ap-

proach achieves similar performance to DP when the noise scale

expands to 10 for both attacks.

Figure 16 (d) evaluates the impact of the perturbation ratio 𝑟

on GCN model and Citeseer dataset. The trends observed align

closely with those in Figure 7 (a). First, our perturbation techniques

effectively restrain the attack AUC. A compelling instance is evident

when considering a modest perturbation ratio of 0.2, corresponding

to the perturbation of just 20% of embedding dimensions, the attack

AUC of 3-SMIA undergoes a reduction of 12.4% (from 0.89 to 0.78).

Second, an increase in the perturbation ratio (𝑟 ) notably enhances

defense efficacy. As 𝑟 escalates, the defense power experiences

substantial improvement. Notably, when the perturbation ratio

reaches 0.8 for both attacks, the attack AUC can be diminished to a

level close to the random guess threshold of 0.5.

Figure 16 (e) & (f) evaluate the impact of the noise scale 𝑏 on

3-SMIA and 4-SMIA and two baselines. Our observations are similar

to those from Figure 7 (b) & (c); thus we omit the detailed discussion

for simplicity.

Model accuracy. Figure 16 (a) & (d) (with the y-axis on the right)

illustrate the model accuracy (node classification AUC) across vari-

ous perturbation ratios.We observe that there is a negligible amount

of model accuracy loss (up to 0.05%) even as the perturbation ratio

increases to 0.8. Additionally, Figure 16 (b) & (c) & (e) & (f)(the

y-axis at right) compare the model accuracy of our defense solution

and the two baselines when the noise scale 𝑏 increases. Our method

consistently outperforms both baselines in terms of model accuracy

when 𝑏 exceeds 0.05.
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(a) Various perturbation ratio r (b=1)
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(b) Various noise scale b (3-SMIA, r=0.6)
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(c) Various noise scale b (4-SMIA, r=0.6)
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(d) Various perturbation ratio r (b=1)
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(e) Various noise scales b (3-SMIA, r=0.6)
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(f) Various noise scale b (4-SMIA, r=0.6)

Figure 16: Defense performance when GCN and SAGE models are the target models (Citeseer dataset). The solid and dotted

lines in (b) and (c) denote the defense effectiveness and node classification AUC respectively.
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Figure 17: Visualization of the distribution of attack features of different member classes before and after applying our defense

(GCN model, Lastfm dataset).

G.3 Visualization of Attack Features’

Distribution before and after Defense

Figure 17 illustrates the distribution of the attack features of

all the classes before and after applying our defense method. We

notice a significant increase in the indistinguishability of the three

classes after introducing noise to the embedding. This observation

highlights that, despite being added solely to the least important

dimensions of the embedding, the noise has led to alterations in the

posterior probabilities and their corresponding similarities. Conse-

quently, it has effectivelymodified the distribution of attack features

across all classes, thereby reducing the accuracy of the attack.

G.4 Defense-utility Trade-off

First, to illustrate the trade-off between defense and utility, we

plot the defense-utility ROC curve of our defense and the two
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(a) 3-SMIA, Attack AUC
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(c) 3-SMIA, TPR@1%FPR
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(d) 4-SMIA, -TPR@1%FPR

Figure 18: The defense-utility ROC curve (SAGE model, Lastfm dataset). The ★ symbol indicates no defense.

Dataset

3-SMIA 4-SMIA

GCN SAGE GAT GCN SAGE GAT

Ours NP DP Ours NP DP Ours NP DP Ours NP DP Ours NP DP Ours NP DP

Lastfm 0.59 0.59 0.5 0.6 0.52 0.5 0.45 0.45 0.42 0.63 0.57 0.5 0.61 0.6 0.51 0.51 0.53 0.32

Google+ 0.48 0.42 0.42 0.7 0.56 0.41 0.65 0.67 0.58 0.51 0.5 0.45 0.65 0.64 0.58 0.73 0.61 0.63

Citeseer 0.87 0.73 0.67 0.83 0.72 0.67 0.85 0.81 0.75 0.92 0.85 0.81 0.86 0.85 0.74 0.91 0.8 0.72

Table 14: Defense-utility trade-off score of the three defense methods. The reduction in TPR@1%FPR is used to measure the

defense effectiveness. The best trade-off for each GNN model and each dataset is marked with olive color.

baseline methods in Figure 18. We establish a set of experimental

configurations that vary the noise scale values 𝑏 across {0.01, 0.05,

0.1, 0.5, 1, 5, 10} with a constant perturbation ratio (𝑟 = 0.4). Equiv-

alent noise scales are applied to the other two baseline methods.

Following this, we evaluate the defense effectiveness and target

model AUC for each configuration. These results are consolidated

into a defense-utility ROC curve, capturing the interplay between

defense effectiveness and target model accuracy across different

settings. We consider two different metrics of defense effectiveness,

namely the percentage of attack AUC and TPR@1%FPR that is re-

duced after the defense, respectively. A higher reduction indicates a

stronger defense. We observe that our defense method outperforms

the two baselines in the trade-off between defense performance

and target model performance. For example, in Figure 18 (a), when

the defense effectiveness is 30% (the attack accuracy is reduced to

0.56), the model performance of our attack is significantly higher

than NP and DP.

Next, to quantify the defense-utility trade-off, we measure the

trade-off score as the Area Under the Curve (AUC) of the defense-

utility ROC curve. Table 14 shows the defense-utility trade-off score

when the defense effectiveness is measured as the reduction in

TPR@1%FPR. Our defense mechanism surpasses the two baseline

methods in terms of the defense-utility trade-off in most of the

settings.
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