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ABSTRACT

Graph Neural Networks (GNNs) have been widely applied to vari-
ous applications across different domains. However, recent studies
have shown that GNNs are susceptible to the membership inference
attacks (MIAs) which aim to infer if some particular data samples
were included in the model’s training data. While most previous
MIAs have focused on inferring the membership of individual nodes
and edges within the training graph, we introduce a novel form
of membership inference attack called the Structure Membership
Inference Attack (SMIA) which aims to determine whether a given
set of nodes corresponds to a particular target structure, such as
a clique or a multi-hop path, within the original training graph.
To address this issue, we present novel black-box SMIA attacks
that leverage the prediction outputs generated by the target GNN
model for inference. Our approach involves training a three-label
classifier, which, in combination with shadow training, aids in en-
abling the inference attack. Our extensive experimental evaluation
of three representative GNN models and three real-world graph
datasets demonstrates that our proposed attacks consistently out-
perform three baseline methods, including the one that employs
the conventional link membership inference attacks to infer the
subgraph structure. Additionally, we design a defense mechanism
that introduces perturbations to the node embeddings thus influ-
encing the corresponding prediction outputs by the target model.
Our defense selectively perturbs dimensions within the node em-
beddings that have the least impact on the model’s accuracy. Our
empirical results demonstrate that the defense effectiveness of our
approach is comparable with two established defense techniques
that employ differential privacy. Moreover, our method achieves a
better trade-off between defense strength and the accuracy of the
target model compared to the two existing defense methods.
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1 INTRODUCTION

In recent years, the proliferation of graph data has led to the wide-
spread adoption of Graph Neural Networks (GNNs) as a powerful
tool for various machine learning tasks [42, 53, 62]. GNNs have
tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a BY

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies 2024(4), 268-290

© 2024 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2024-0116

This work is licensed under the Creative Commons Attribu-

268

Wendy Hui Wang
Stevens Institute of Technology
Hoboken, NJ, USA
hwang4@stevens.edu

demonstrated exceptional capabilities in modeling complex relation-
ships of graph-structured data in various domains and applications
such as social network systems [11, 31], recommendation systems
[13, 14], and biological networks [25, 57].

While GNNs have demonstrated remarkable performance across
diverse applications, recent studies have shown that they are vul-
nerable to various privacy attacks, including attribute inference
attacks [9, 35, 57], property inference attacks [48, 51, 59, 60], and
membership inference attacks [9, 20, 22, 52, 60]. In this paper, we
mainly focus on membership inference attacks (MIAs) targeted at
GNN models.

In general, MIAs against GNNs aim to infer the presence of
specific data objects within the training graphs of the target model.
Many existing MIAs focus on either node-level membership (i.e.,
determining if a particular node exists in the training graph) [22, 36]
or edge-level membership (i.e., establishing a connection between
two nodes in the training graph) [9, 20, 52, 60]. However, none
of these studies have explored structure-level membership, where
structures can be more intricate than mere nodes and edges.

In this paper, we consider two fundamental and critical graph
structures: k-cliques and k-hop paths (k > 1). A clique represents a
subset of nodes within a network that are more densely intercon-
nected among themselves than with the remaining nodes. Mean-
while, a k-hop path indicates that two nodes are connected through
k links in the graph. These two structures have been extensively
used in various applications such as community detection [15, 50],
network measurement [4, 8], and fraud detection [37, 58].

The revelation of the existence of cliques and k-hop paths among
a set of target nodes in the training graph can pose significant pri-
vacy risks to individuals. Let’s consider an online dating network
where edges represent romantic relationships among users as an
example. In this context, an undirected 2-hop path like A - B - C
involving three users A, B, and C can potentially reveal sensitive
information. For instance, it may indicate that user B is engaged
in or pursuing romantic relationships with both users Aand C —a
detail that user B may wish to keep confidential. Similarly, infer-
ring a clique among users could disclose not only their potential
belonging to the same community but also the strength of cohesion
within this group.

Given the extensive application of cliques and k-hop paths in
graph analytics and the importance of their privacy, we introduce
a novel MIA named Structure Membership Inference Attack (SMIA).
Briefly speaking, SMIA aims to discern whether a set of k target
nodes, in the training graph of the target GNN model, forms either
a k-clique or a (k-1)-hop path (i.e., the longest loop-free path).

It is noteworthy that SMIA differentiates from the Subgraph Infer-
ence Attack (SIA) [60], which focuses on establishing the presence
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of a subgraph within the training graph. In contrast, our emphasis
is on determining whether the subgraph formed by the provided
target nodes encompasses either a clique or a k-hop path. We con-
tend that even the inference of a structure’s existence can divulge
sensitive information. For instance, inferring the presence of a multi-
hop path among professionals employed by rival companies could
raise suspicions, even without identifying the specific professionals
comprising the path. Moreover, it is worth noting that SIA [60]
exclusively considers large subgraphs that constitute a substantial
portion of the target graph. It does not address the inference of
small subgraphs like k-cliques (triangles) and k-hop paths.

Our contributions. To the best of our knowledge, this work rep-
resents the inaugural investigation into the vulnerability of GNN
models to SMIAs. We make the following contributions !.

Problem formulation. We formally define the k-SMIA problem
as a three-label classification task that maps a given set of k target
nodes, denoted as Vjy, into one of three labels. Labels 0 and 1
indicate the presence of a k-clique and a (k-1)-hop path respectively,
among the nodes within Vy; in the training graph, while label 2
indicates the absence of either structure in the training graph.

Attack design. We devise the black-box attacks which infer
structure membership using prediction outputs from the target
model. These attacks involve constructing the three-class attack
classifiers via shadow training [44] and extracting attack features
based on the similarity of prediction outputs from the target model.
Furthermore, we extend the black-box SMIAs to white-box ones
which leverage node embeddings for attack inference. We also ex-
tend the scope of SMIAs to encompass SIAs, enabling the inference
of the subgraph structure of the target nodes.

Empirical evaluation. Through extensive empirical assess-
ments involving three representative GNN models and real-world
graph data, we substantiate the effectiveness of SMIA. Notably,
the attack AUC of our attacks can reach up to 0.89 under the non-
transfer setting (where training and shadow graphs originate from
the same dataset), outperforming three baselines. Remarkably, even
in the transfer setting, where shadow and training graphs are drawn
from different domains and data distributions, the attack AUC re-
mains substantial, achieving up to 0.83. Additionally, our proposed
attacks consistently outperform three baseline methods, including
the one that employs the conventional link membership inference
attacks [20, 52] to infer the subgraph structure.

Defense design and evaluation. To mitigate GNNs’ vulnera-
bility to SMIAs, we propose a defense mechanism that introduces
Laplace noise to node embeddings, thereby impacting the posterior
outputs of the target model. Notably, we limit perturbation to em-
bedding dimensions of least significance, minimizing the influence
on target model accuracy. Empirical assessments demonstrate that
our approach achieves defense effectiveness comparable to that of
two existing defense techniques. Moreover, our method achieves a
better trade-off between defense strength and target model accuracy
than the two existing defense methods.
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2 PRELIMINARIES
2.1 Subgraph Structures

Essential characteristics of graphs can be discerned through sub-
groups of nodes/edges represented by subgraphs. Within this con-
text, we explore two fundamental subgraph structures: k-hop paths
and k-cliques.

e K-hop paths: A k-hop path denotes a sequence of k adjacent
edges connecting distinct nodes. In this paper, we only consider
loop-free k-hop paths.

o K-cliques: k-clique represents a subgraph comprising k nodes,
where each node is interconnected with every other node. Note
a 3-clique is occasionally referred to as a triangle. Hence these
two terms will be used interchangeably in the paper.

Figure 1 provides illustrative examples of 2-hop and 3-hop paths,
as well as 3-cliques and 4-cliques.

2.2 Graph Neural Network

Graph Neural Networks (GNNs) have been widely used for learning
over graph-structured data. Given a graph G(V, E, X) where V, E,
and X denote the nodes, edges, and node features, respectively, a
message-passing GNN employs a message-passing mechanism that
involves the exchange of messages amongst nodes and aggregation
of nodes’ neighborhood, which is executed as:

7 =g, P viEh) (1)

v eN(v)

where ¢ is an update function, | is a message function, and € is
an aggregation function (such as sum or max), z5 denotes the em-
bedding of node v at [-th iteration, and N (v) denotes the neighbor
nodes of v. The initial embeddings are set as the node features.

After k iterations, the application of a Readout function aggre-
gates node embeddings for subsequent predictions of downstream
tasks. In the context of node classification, this Readout function,
often implemented as a softmax operation, generates a Posterior
Probability Vector (PPV) for each node, in which the i-th element
indicates the likelihood that the node belongs to the i-th class.

In this paper, our focus is on three prominent GNN models:
Graph Convolutional Network (GCN) [26], SAGE [18], and Graph
Attention Network (GAT) [49]. These GNN models employ various
aggregation mechanisms: GCN employs symmetric normalization,
SAGE employs mean aggregation, and GAT employs attention-
based weights for aggregation.

3 PROBLEM FORMULATION

In this section, we define the scope and goal of our problem.

Learning setting. Given the prevalence of GNN models adher-
ing to the transductive paradigm, our study exclusively revolves
around transductive GNN models for which all graph nodes are
available during training [17]. Furthermore, we consider node clas-
sification as the downstream task, where the GNN models output a
Posterior Probability Vector (PPV) for each node.

Attack goal. We concentrate on the Structure Membership Infer-
ence Attacks (SMIAs) against GNNs. These attacks aim to deduce

10Our code and datasets are available at the link:

https://gitfront.io/r/username/Ww17i3onZ2Ug/SMIA/
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Figure 1: Member and non-member structures of 3-SMIA and 4-SMIA.

whether a set of nodes (attack target) constitute a particular struc-
ture within the training graph. Our focus centers on two funda-
mental subgraph structures: k-hop paths and k-cliques.

Adversary knowledge. We consider the adversary knowledge
K along two dimensions:

o Shadow graph GS: the adversary possesses a shadow graph G°
which contains its own structure and node features. G5 might
originate from a distinct domain than G, featuring different data
distribution as well.

o Target model &: we assume the adversary has only black-box
access to @, which could be in the form of an API for Machine-
Learning-as-a-Service platforms [40, 44]. The adversary can ac-
cess the posterior classification probabilities of specific nodes
when querying the target model.

It is worth noting that in practice, the adversary might possess
knowledge of a partial graph which is a subset of the training graph
[9, 20, 51]. However, we view this partial graph as a special case
of the shadow graph. Additionally, the adversary might have a
white-box access to GNN models , i.e., the adversary can access the
GNN parameters such as gradients and node embeddings (e.g., in
a Federated setting) [9, 51, 60]. The white-box access enables the
adversary to derive attack features from GNN parameters, such as
node embeddings, as opposed to using posterior probabilities as
in black-box attacks. How to extend our attack to the white-box
setting will be discussed in Section 5.6.

Problem definition. Given a graph G(V, &), a GNN model ®
trained on G, a set of k target nodes Vait C V, and the adversary’s
background knowledge K, the adversary’s objective is to infer if
Vatt forms either a clique or a multi-hop path in G. The formal
k-node Structure Membership Inference Attack (k-SMIA) problem is
defined as follows:

Definition 3.1 (K-node structure membership inference (k-SMIA)).

Given graph G(V, E), GNN model ® trained on G, and attack tar-
get comprising a k-node set Vit = {01, ..., 0|01, ..., 0% € V}, the
K-SMIA problem is formulated via the mapping function:

f:®(01),...,0(vp), K — {0,1,2}, ()

where label 0 denotes the absence of both structures within Vg,
label 1 denotes that Vyi; constitutes a k-clique in G, and label 2
denotes that Vjyt lacks a k-clique but contains a (k-1)-hop path in
G. Structures containing either a k-clique or a (k-1)-hop path are
termed member structures, while the rest are labeled as non-member
structures.
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We do not assume that the adversary must possess any prior
knowledge of the structure of G to make the selection of V;;. Figure
1 illustrates member and non-member structures for 3-SMIA and
4-SMIA. 1t is important to clarify that we exclude the last three
non-member structures of 4-SMIA containing any 3-hop paths, as
our consideration is confined to loop-free k-hop paths.

Notably, we solely infer the membership of the targeted structure,
without delving into the specific subgraph structure composed by
the target nodes within the training graph. As an example, we do
not differentiate between the nine non-member structures within
4-SMIA (Figure 1). The extension from the Structure Membership
Inference Attack (SMIA) to the Structure Inference Attack (SIA)
will be discussed in Section 5.7.

It is noteworthy that both (k-1)-hop paths and k-cliques necessi-
tate the complete utilization of the given k nodes. The (k-1)-hop
path signifies the longest loop-free multi-hop path among the k
nodes, while the k-clique represents the largest clique within these
k nodes. Notably, we exclude structures with fewer nodes, such
as k’-cliques and (k’-1)-hop paths with any k’ < k, as these can
be addressed by launching k’-SMIA, utilizing an input node set
containing k” < k nodes.

4 ATTACK DESIGN

Intuitively, a straightforward approach for performing an SMIA
would involve adapting a link membership inference attack [20, 52]
to deduce the link status for each node pair within the attack target
node set Vyir. With the predicted link statuses of all node pairs, it
becomes possible to reconstruct the structure of V,tt probabilisti-
cally, allowing the inference of whether a multi-hop path or a clique
is present within the reconstructed structure. While conceptually
sound, this method’s effectiveness, as our empirical study (Section
5) will demonstrate, is limited by the accumulation of uncertainties
of the predicted edges.

Attack overview. The intrinsic message-passing mechanism of
GNN models leads to the nodes’ prediction outputs heavily relying
on their local neighborhoods. Distinct subgraph structures within
these neighborhoods can induce unique behaviors among target
nodes, which the attacks can leverage to differentiate between mem-
ber and non-member structures. Built upon this insight, our SMIAs
are designed to bypass the use of link membership inference attacks
entirely. Instead, these SMIAs directly infer structure membership
from the posterior probabilities of all nodes within the attack target.
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Figure 2: Overview of K-SMIA.

In particular, we define our attack model A as a supervised classi-
fier equipped with three labels (label definitions found in Definition
3.1). Training the 3-label classifier A necessitates obtaining labeled
training data — the ground truth of membership of cliques and
multi-hop paths. The primary challenge arises in generating such
attack training data, particularly when the adversary lacks white-
box access to the target GNN model. To address this challenge, we
adopt the widely employed shadow training technique, utilized by
existing link membership inference attacks [20, 44]. This involves
training a set of shadow models to simulate the target model’s be-
havior. It is important to note that, when the adversary possesses
knowledge of a subset of the training graph, the attack model can
be directly trained using the target model’s predictions on those
known samples [33, 34].

Figure 2 illustrates the framework of AThe attack is designed
as a three-phase process described as below:

e Shadow model training phase: The adversary trains a set of
shadow models on shadow graphs to mimic the behaviors of the
target model.

o Attack model training phase: The adversary generates a train-
ing dataset A" from the output of the shadow models on the
shadow graph, and trains an attack classifier A on A",

o Attack inference phase: The adversary employs the trained
classifier A to predict the membership status of the target node
set Vatt-

Next, we explain the details of each phase.

Shadow model training phase. In this phase, the adversary
trains multiple shadow models, denoted as @3, . . ., @“;. The training
dataset for each shadow model GiS is generated by random sampling
a subset of the shadow graph GS. To ensure an accurate emulation
of the target model’s behavior, we train the shadow models in the
way that their performance closely matches that of the target model
on the same training dataset. We achieve this by using the output
of the target model as the input of the shadow models.

Attack model training phase. In this phase, the adversary con-
structs the attack training dataset, A" The generation of ATain
follows four steps. The pseudo code of generation of A" can be
found in Appendix A. First, for each shadow graph Gl.s , the adver-
sary selects a set of k-node sets S. Each node set Vg € S comprises k
nodes randomly selected from Gf. Second, for each node set V5 € S,
the adversary obtains the Posterior Probability Vector (PPV) for
each node in Vs output by the shadow model <I>i5 which was trained
on the shadow graph G? . There will be k PPVs for V. Third, these
k PPVs are “aggregated” into a single vector which will serve as
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the attack feature vector x. Specifically, the adversary measures the
pairwise similarity of the k PPVs and obtains (I;) pairwise similar-
ity values accordingly. Next, the adversary sorts these similarity
values in ascending order, and concatenates the sorted values into
a vector v. We will demonstrate in Appendix B that the time cost
associated with the sorting operation is negligible compared to that
of training the attack classifier. To fully capture the distinction
between different subgraph structures, we consider d > 1 multiple
similarity metrics to measure the distance between the PPVs. In this
paper, we consider three similarity metrics (i.e., d = 3), namely, Dot
product, Cosine similarity, and Euclidean distance, that have been
widely used for measurement of vector similarity. Therefore, there
will be d sorted vectors accordingly, where each vector corresponds
to a similarity metric. These d vectors are then concatenated into
one vector, acting as the attack feature x. Therefore, for any given
k-node set V; the dimension of its corresponding attack feature
X is (g) x d, where d is the number of similarity metrics. As the
dimension of x is independent of the number of labels, this fea-
ture construction method enables the attack to be launched under
the transfer setting where the shadow graph and the target graph
originating from different domains are associated with different
numbers of labels. After the adversary generates the feature x of
the node set Vs, he associates x with its label y. In particular, y = 1
if Vs forms a k-clique in the shadow graph Gf, y = 2if V; contains a
(k-1)-hop path, and y = 0 otherwise. Finally, the adversary adds the
newly formed data sample (x, y) to A" In our empirical study,
we ensure A0 js balanced, i.e., each class has the same number
of samples.

After A0 jg generated, the adversary proceeds to train the
attack classifier A on A" In this paper, we consider three types
of classifiers, namely Multi-layer Perceptron (MLP), Random For-
est (RF), and Linear Regression (LR). Their performance will be
presented later (Section 5).

Attack inference phase. At inference time, the adversary em-
ploys the same methodology as the generation of training dataset
AMIN 6 derive the feature x4+ for the target node set Vyyy, utilizing
the same similarity functions. It is important to note that, unlike
the attack features of the training data V that uses the probability
output by the shadow model, the adversary employs the posterior
probability output of Vyit by the target model to calculate x4;¢-

Finally, the adversary feeds x4+ into A to obtain predictions.
The label associated with the highest probability will be selected as
the inference output.
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5 EVALUATION OF ATTACK PERFORMANCE

In this section, we assess the performance of SMIA. For simplicity,
we focus on two specific input configurations of Vyytt in our experi-
ments: (1) 3-SMIA where Vit comprises three nodes, and the goal
is to infer if Vatt forms either a 3-clique (triangle) or a 2-hop path;
(2) 4-SMIA where Vyit involves four nodes, intending to infer if
Vatt constitutes either a 4-clique or a 3-hop path.

5.1 Experimental Setup

All the experiments are executed on NVIDIA A100-PCIE-40GB. All
the algorithms are implemented in Python along with PyTorch.
All the reported results are averaged over 10 repetitions of the
experiments.

Datasets. We use three real-world graph datasets, namely Cite-
seer, Google+, and Lastfm datasets, which are popularly used for
graph learning [29, 53, 56]. Table 1 provides the statistical informa-
tion of these datasets. More details of these datasets can be found
in Appendix C.

Target GNN models. We consider three representative GNN
models, namely GCN [26]%, SAGE [18], and GAT [49]3. Each model
is equipped with two hidden layers, with each hidden layer con-
taining 64 neurons. We conduct training for 1,500 epochs with the
early stopping tolerance value set as 50.

Shadow graphs. We consider two different settings of the shadow
graph: (1) Single-dataset setting — both the shadow graph and the
target graph are sampled from the same dataset; (2) Data transfer
setting — the shadow graph and the target graph are drawn from
different datasets, which may possess varying distributions and
domains. For instance, the target dataset might be derived from
the Citeseer dataset, which represents a citation graph, while the
shadow dataset could originate from the Lastfm dataset, character-
izing a social network graph of music users.

Shadow models. We consider two settings of the shadow model:
(1) Non-transfer setting — both the shadow model and the tar-
get model have the same GNN architecture; (2) Model transfer
setting — the shadow model and the target model have different
architectures. For example, the target model and the shadow GNN
model can be GCN and SAGE, respectively. For each shadow model,
we randomly sampled a subgraph from the shadow graph as its
training data, ensuring the performance of the shadow model is
similar to that of the target model on the same shadow graph.

Attack classifier setup. In our experiments, we employ three
types of distinct attack classifiers: Multi-layer Perceptron (MLP),
Random Forest (RF), and Support Vector Machine (SVM). The MLP
model comprises three hidden layers, each consisting of 64, 32, and
16 neurons, respectively. We employ the Rectified Linear Unit (Relu)
as the activation function for the hidden layers, while the Sigmoid
function governs the output layer. Our training regimen spans
1,000 epochs, employing a learning rate of 0.001, the cross-entropy
loss, and the Adam optimizer. For the RF classifier, we cap the
maximum depth at 150. For the SVM classifier, we leverage the radial
basis function (RBF) kernel that is coupled with a regularization
parameter set to 1. Additionally, we set the degree of the polynomial

2We use the implementation of GCN available at https://github.com/tkipf/pygen
3We wuse the implementation of both SAGE and GAT available at
https://github.com/dmlc/dgl
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kernel to three, and set the kernel coefficient y as 1. We implemented
the three classifiers using the sklearn package?, a toolkit that is
widely utilized for machine learning.

Attack training and testing data. First, we create a data pool
that contains the labeled data samples. The data samples of each
class are generated as follows:

Non-member samples (Class 0): We randomly sample a set of

node sets from the given dataset, where each sampled node set
includes neither a clique nor a (k — 1)-hop path (k = 3 for 3-SMIA
and k = 4 for 4-SMIA). These node sets are associated with the
label 0 and are included in the data pool.

Member samples (Classes 1 and 2): We randomly sample a num-
ber of node sets (triples for 3-SMIA and quadruples for 4-SMIA)
from the training graph, where each node set is either a clique or a
k-hop path. Each node set is labeled with 1 if it is a clique in the
training graph and 2 otherwise. These node sets are added to the
data pool.

Once the data pool is constructed, we divide it into the attack
training dataset A" and the attack testing data set A*St, using
a 7:3 split ratio. We ensure that both A" and A% are balanced,
with an equal number of samples in all classes. Additionally, we
guarantee an equal number of samples for all non-member struc-
tures in both A" and Afest,

Metrics. Regarding the target model performance, we utilize
the Area Under the Curve (AUC) for node classification.

As for assessing the attack’s effectiveness, we employ the fol-
lowing three metrics to evaluate the performance of the attack
classifier: (1) Balanced accuracy (BA): BA is a well-known metric
for multi-class classification. It is computed as the average of re-
calls of all the classes. Given our balanced testing data, BA tends to
align closely with the classification accuracy, which is the ratio of
correctly predicted samples to the total number of tested samples.
(2) Area Under the Curve (AUC): The AUC metric is measured over
various threshold settings of the attack classifier, using the true
positive rate (TPR) and false positive rate (FPR). (3) True-Positive
Rate at False-Positive Rates (TPR@FPR): This metric, as introduced
in [6], measures the true positive rate when the false positive rate
is set at a specific value. In our experiments, we set the FPR at 1%.

It is worth noting that our evaluation goes beyond the overall per-
formance of the attack classifier; we also measure the performance
of each individual class.

Baselines. We consider three baseline methods for comparison
with our approach:

¢ Baseline-1 (Ensemble of sub-attacks with single similar-
ity metric). This baseline employees an ensemble of three sub-
attack classifiers, each utilizing a single similarity metric. The
sub-attack features are derived from one of the three similarity
metrics (Dot product similarity, Cosine similarity, and Euclidean
distance) that are used by our approach. The prediction label for
each testing sample is determined by majority voting among the
labels generated by the three sub-attack classifiers.

e Baseline-2 (Concatenation of posterior vectors). In this base-
line, the attack features are obtained by directly concatenating
the posterior vectors of the nodes, rather than concatenating the
similarity of posterior vectors as in our approach.

*https://scikit-learn.org/
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Dataset Domain Nodes | Edges | Classes | 2-hop paths | 3-cliques | 3-hop paths | 4-cliques
Google+ Social network 4,417 119,582 2 16,670,586 1,551,859 32,468,232 15,388,770
Lastfm Social network 7,624 27,806 18 679,080 40,433 1,201,750 65,442
Citeseer | Citation network | 3,312 4,732 7 27,174 1,547 185,706 514

Table 1: Description of datasets

e Baseline-3 (Link inference attack). Intuitively, whether a
subgraph exists in the training graph can be accomplished by
reconstructing the subgraph structure. As a subgraph can be
reconstructed by inferring all of its links, we design Baseline 3
which employs a Link Inference Attack (LMIA) [21] for subgraph
reconstruction. Specifically, first, we construct all the “possible
worlds” of the subgraphs that can be constituted from the nodes
in Vuit. Each possible world W is constructed by randomly as-
signing a 0 or 1 value to each node pair v;,0; € Vagt, where 1
indicates that v; and v; are linked in W (denoted as (v;,0;) € W),
and 0 otherwise (denoted as (v;,vj) ¢ W). Then for each possible
world W of the subgraph, we compute its probability Prob as:

Prob =11(y, o) ewPi,j X W (,.0)ew (1 = pij)s
where p; ; is the link prediction probability inferred by LMIA
[21]. After we compute the probability of all the possible worlds,
we pick the one with the highest probability as the inferred
structure, and assign the membership label (0, 1, or 2) based on
the structure of the picked one.

Attack setup. Among the three categories of attack classifiers
explored in our experiments (MLP, SVM, RF), we observed that
the MLP attack consistently exhibits the highest attack accuracy
across most settings. Therefore, we primarily showcase the results
obtained using the MLP attack classifier in the following discussions.
The details regarding the performance of the three attack classifiers
can be found in Appendix D.1.

Additionally, as we observed that the attacks leveraging the con-
catenation of all three similarity metrics (Cosine similarity, Dot
Product, and Euclidean distance) outperform those employing ei-
ther a single metric or the combination of any two metrics, we
present the results of the attacks that concatenate the three similar-
ity metrics in the following discussions. More details can be found
in Appendix D.2.

We also observed that the number of shadow models does not
impact the attack accuracy. Therefore, we used only one shadow
model in the experiments. The results of attack performance for
various number of shadow models can be found in Appendix D.3.

5.2 Attack Effectiveness

Before initiating the attacks, we assess the performance of the
GNN models to confirm their suitability as targets. The outcomes
reveal the strong performance of the three GNN models, with their
AUC values ranging from 0.73 to 0.95. Detailed results are available
in Appendix E. With the GNN models demonstrating satisfactory
performance, they are deemed suitable for the ensuing attacks.

5.2.1 Non-transfer Setting. In this section, we present the attack
performance for the non-transfer setting.

Overall attack performance. Figure 3 (a) - (c) presents the
balanced accuracy (BA) of 3-SMIA. A glance at the results shows
that the attack accuracy falls in the range [0.52, 0.75], which is
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substantially above the random guessing threshold of 0.33 across
all settings. This demonstrates the efficacy of 3-SMIA against GNNs.
Furthermore, 3-SMIA outperforms all three baseline methods in
terms of BA across all settings. Notably, it significantly surpasses
Baseline-3, whose BA ranges from 0.25 to 0.37, a largely unaccept-
able range. This provides strong evidence that the link membership
inference attacks cannot be directly employed to handle SMIA. We
attribute the suboptimal performance of Baseline-3 to its inability to
effectively capture the high-order connectivity among nodes. While
link membership inference attacks can infer first-order connectivity
between nodes, extending this inference to higher-order connec-
tivity proves challenging. The straightforward multiplication of
link inference probabilities exacerbates the uncertainty inherent
in first-order connectivity inference, resulting in significant errors
when inferring the membership of subgraphs.

It is worth noting that even though the superiority of 3-SMIA
over Baseline-1 and Baseline-2 in terms of attack performance is
marginal, 3-SMIA still holds distinct advantages over both. First,
Baseline-1 is more time-consuming than ours as it requires the
training of three sub-attack classifiers, while ours only requires
one. Furthermore, unlike our method, Baseline-2 cannot be applied
in the transfer setting. This limitation arises because the features
of the attack training dataset and attack testing dataset would
have different dimensions if the target and shadow graphs have a
different number of class labels.

Figures 3 (d) - (f) present the BA of 4-SMIA. Similar to 3-SMIA,
4-SMIA demonstrates considerable effectiveness, maintaining a BA
range of 0.46 to 0.6, well above the random guessing threshold
(0.33) in all scenarios. Moreover, 4-SMIA outperforms the three
baseline methods in terms of attack accuracy in most of the settings,
particularly excelling in comparison to Baseline-3.

Beyond BA, we measure both AUC and TPR@1%FPR of 3-SMIA
and 4-SMIA. Further details can be found in Appendix F.1. We
observe that both AUC and TPR@1%FPR results are remarkably
high. For instance, the AUC of 3-SMIA falls within the range of 0.67
to 0.89, significantly surpassing the AUC of random guessing (0.5).
Furthermore, both 3-SMIA and 4-SMIA consistently outperform the
baseline in terms of both AUC and TPR@1%FPR across all settings.

Attack performance of individual classes. So far we have
demonstrated the overall performance of the attack classifiers. Next,
we take a closer look of the attack performance by assess the accu-
racy of individual classes.

Table 2 presents the balanced attack accuracy (BA) of both 3-
SMIA and 4-SMIA for each class. We have the following observa-
tions.

2-hop path members: The 2-hop path class obtains the lowest
accuracy for 3-SMIA. This can be attributed to the fact that when
two out of the three given nodes are connected, they are likely to
have similar prediction outputs, resulting in the third node being




Proceedings on Privacy Enhancing Technologies 2024(4)

Xiuling Wang and Wendy Hui Wang

Lastfm  Google+ Citeseer 0.0 Lastfm  Google+ Citeseer 0.0 Lastfm  Google+ Citeseer
(a) GCN (b) SAGE (c) GAT
4-SMIA
HEE Ours Baseline-1 I Baseline-2 I Baseline-3

3-SMIA
Emm Ours Baseline-1 I Baseline-2 I Baseline-3
0.6 0.7
g 30.6
©0.5 Y

0.6 05
205 0.5 3

e e g 0.4
50.4 50.4 3

9 o 503
®0.3 ©0.3 &
v =~ $0.2
20.2 0.2 e
£ = b=
<0.1 <0.1 < 0.1

Lastfm

(d) GCN

Google+ Citeseer

3

g 0.4 § 04
¥ 0.3 %03
g 0.2 g 0.2
<01 <01

So05

Lastfm  Google+ Citeseer

() SAGE

Lastfm

Google+ Citeseer

(f) GAT

Figure 3: Balanced attack accuracy of 3-SMIA and 4-SMIA (Non-transfer setting).

Class Lastfm Google+ Class Lastfm Google+
GCN | SAGE | GAT | GCN | SAGE | GAT GCN | SAGE | GAT | GCN | SAGE | GAT
3-clique 0.67 0.61 0.64 | 0.59 0.52 0.68 4-clique
2-hop path | 0.37 | 0.44 | 035 | 0.36 | 0.39 0.5 3-hoppath | 0.62 | 043 | 0.51 | 049 | 042 | 0.49
Non-member Non-member | 0.35 | 0.42 04 | 038 | 039 | 037
(a) 3-SMIA (b) 4-SMIA

Table 2: Balanced attack accuracy of individual classes (non-transfer setting). The highest and lowest attack accuracy for each

GNN model and each class is marked with olive color and

perceived as similar to both. This phenomenon reduces the accuracy
of the 2-hop path class in 3-SMIA.

4-Clique members: The 4-clique class exhibits the highest accu-
racy for the 4-SMIA attack. This is because 4-cliques require all
nodes to be connected, leading to the high similarity among all
node pairs. Consequently, 4-cliques are more distinguishable and
recognizable by 4-SMIA compared to the other two classes.

Non-members: The non-member class exhibits the highest ac-
curacy for 3-SMIA across all the settings. However, it receives the
lowest accuracy for 4-SMIA. This difference in behavior is likely due
to the characteristics of the non-member structures for both attacks.
In 3-SMIA, the non-member structures have at most one edge (and
thus one pair of nodes with higher similarity), making them distin-
guishable from member structures. In 4-SMIA, some non-member
structures have the same number of edges as member structures,
making them less distinguishable from member structures based
on the similarity of node pairs.

Beyond BA, we measure both AUC and TPR@1%FPR of member
classes. In line with the results from BA, both 3-SMIA and 4-SMIA
demonstrate superior AUC and TPR@1%FPR performance on k-
cliques compared to k-hop paths. Further details and discussions
can be found in Appendix F.1.
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color respectively.

5.2.2  Transfer Setting. We consider two different transfer settings:
(1) the database transfer setting where the target data and the
shadow data are sampled from different datasets; and (2) the model
transfer setting where the target model and shadow model are of
different architecture. We report the attack performance for both
transfer settings below.

Dataset transfer setting. Figure 4 (a) - (c) present the attack
performance of 3-SMIA under the dataset transfer setting. The
results of 4-SMIA under the dataset transfer setting can be found
in Appendix F.2. The results demonstrate the attack’s continued
effectiveness under the data transfer setting. For instance, the attack
AUC of 3-SMIA spans a range of 0.62 to 0.89 when the shadow graph
is different from the target graph. Notably, even in scenarios where
the target graph and the shadow graph originate from different
domains, such as the target graph sampled from the Citeseer dataset
and the shadow graph sampled from the Lastfm dataset, the AUC
of 3-SMIA can be up to 0.83 (Figure 4 (a)). This demonstrates that
3-SMIA can learn the knowledge of distinguish member and non-
member structures from the shadow graph and effectively transfer
this acquired knowledge to the target graph.
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Figure 4: Attack AUC of 3-SMIA under dataset and model transfer setting.
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Figure 5: Imapct of GNN model complexity on attack accu-
racy of 3-SMIA and 4-SMIA (Lastfm dataset).

Model transfer setting. Figure 4 (d) - (f) illustrate the attack
performance of 3-SMIA in the context of model transfer. Addition-
ally, the results of 4-SMIA under the model transfer scenario can
be found in Appendix F.2. Our observations indicate that the attack
AUC of 3-SMIA varies from 0.61 to 0.83 when the shadow model
differs from the target model across all the settings. These findings
serve to highlight the continued effectiveness of our attack under
the model transfer setting.

5.3 Impact of Model Complexity on Attack
Performance

Given that message-passing GNNs capture information from neigh-
boring nodes up to a maximum of K hops, where K corresponds
to the number of GNN layers, an important question arises: Does
SMIA’s performance vary with the number of GNN layers, given that
subgraph membership inference essentially involves inferring neigh-
borhoods within a specific number of hops? To address this question,
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and non-member structures. A similar trend of increasing attack
accuracy persists when the number of layers increases from two to
three, as it becomes more accurate at inferring 3-cliques. However,
this trend stabilizes when the number of layers exceeds three.

Nevertheless, this pattern is not observed for the GAT model.
The discrepancy may be attributed to the fundamental distinction in
the neighborhood aggregation mechanism of GAT compared to the
other two GNN models. While GCN and SAGE employ MEAN oper-
ations for neighborhood aggregation, GAT employs attention-based
weights for aggregation. This attention-based mechanism reduces
the accumulation effects of large neighborhoods, contributing to
the differing behavior observed in the GAT model.

5.4 Impact of Node Importance on Attack
Performance

Thus far, we have effectively demonstrated the efficacy of both
3-SMIA and 4-SMIA across all attack targets present in the testing
data. However, are these attacks more accurate if the adversary
has some prior knowledge of the target graph and thus targets
specific nodes, such as those of higher importance (e.g., nodes of
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Figure 6: Impact of node degree, node closeness, betweenness centrality, and node feature similarity on attack accuracy of
3-SMIA and 4-SMIA (GCN, Lastfm dataset). "LO", "ML", "ME", "MH", "HI" represent the node group of low, medium low, medium,
medium high, and high average node degree/closeness/betweenness centrality/feature similarity respectively.

high degrees), compared to nodes of lesser significance? In this part
of experiments, we will investigate if our attacks have disparate
performance of the target node sets that have distinct properties in
their structure and features.

Node importance. We consider three metrics that are com-
monly employed for gauging node importance in graph analytics:

e Node degree: This metric quantifies the number of edges con-
nected to a node.

o Node closeness centrality: This metric quantifies the number
of the shortest paths that traverse through the node. Nodes with
a higher closeness centrality score exhibit shorter distances to
other nodes.

e Node betweenness centrality: This metric computes the re-
ciprocal of the sum of shortest path lengths between the node
in question and all other nodes in the graph. Nodes with higher
betweenness centrality wield more control over the network, as
more information passes through them.

Importance score of target node set. Given a node set Vayt, we
measure its importance score by four distinct metrics: node degree
importance, node closeness centrality importance, node betweenness
centrality importance, and feature similarity importance. The first
three types of importance scores are measured as the average of
the node degree, node closeness centrality, and node betweenness
centrality of all nodes in Vuyt, and feature similarity importance
score is measured as the average of the cosine similarity of node
features for all node pairs in V.

In our assessment, we determine the importance score of each
node set in A*St. Then we rank the node sets within A*st in as-
cending order of their importance scores and evenly partition these
ranked samples into five distinct groups: Low (LO), Medium Low
(ML), Medium (ME), Medium High (MH), and High (HI). For each
group, we measure its attack accuracy as the average of the attack
accuracy of all samples within the group.

Figure 6 illustrates the influence of four types of importance
scores on the attack accuracy of 3-SMIA and 4-SMIA against the
GCN model trained on the Lastfm dataset. Detailed outcomes for
other settings can be found in Appendix F.3. We have several note-
worthy observations. First, the accuracy of clique inference (triangle
and 4-cliques) consistently increases for targets of higher impor-
tance scores for all the four types of importance. This signifies that
SMIAs yield greater success when inferring cliques among nodes
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Dataset 6-SMIA 10-SMIA
GCN | SAGE | GAT | GCN | SAGE | GAT
Lastfm 0.54 0.52 0.48 | 0.49 0.45 0.44
Google+ | 0.51 0.48 0.50 | 0.47 0.46 0.45

Table 3: Balanced attack accuracy of 6-SMIA and 10-SMIA
under Setting 1 (non-transfer setting). The balanced attack
accuracy for random guess is 0.33.

of heightened significance. This phenomenon is likely attributable
to the target model’s tendency to memorize more information from
the more pivotal nodes, owing to the message-passing and neigh-
borhood aggregation mechanisms intrinsic to GNNs. However, such
a trend does not manifest for k-hop path inference. We guess that
it is because the presence of disconnected node pairs within Vgt
introduces additional uncertainty into attack inference, potentially
explaining the lack of a uniform pattern.

5.5 Inference of Large Subgraphs

In this section, we assess the effectiveness of our attack on
larger subgraphs, namely 6-SMIA and 10-SMIA whose attack tar-
get contains six and ten nodes, respectively. The three class labels
of 6-SMIA correspond to a 6-clique, a 5-hop path, and any other
structure, respectively, while the three class labels for 10-SMIA
correspond to a 10-clique, a 9-hop path, and any other structure,
respectively. The experimental setup is the same as that of 3-SMIA
and 4-SMIA (Section 5.1).

Table 3 reports the balanced accuracy (BA) of 6-SMIA and 10-
SMIA under the non-transfer setting. The results show that our
attacks remain highly effective in inferring these larger subgraphs,
achieving an attack accuracy ranging from 0.48 to 0.54 for 6-SMIA
and between 0.44 and 0.49 for 10-SMIA. These results significantly
outperform the baseline accuracy of 0.33, which represents a ran-
dom guess scenario. This underscores the capability of our attack
to successfully infer large subgraphs.

5.6 Extension to White-box Attacks

In this part of the empirical study, we expand the scope of SMIAs
to the white-box setting, wherein the adversary can access the
architecture and internal parameters of the target model. Unlike
the black-box setting where the attack features are derived from the
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Dataset 3-SMIA 4-SMIA
GCN | SAGE | GAT | GCN | SAGE | GAT
Lastfm 0.64 0.62 0.61 | 0.64 0.57 0.67
Google+ | 0.73 0.61 0.62 | 0.55 0.55 0.56
Citeseer | 0.79 0.68 0.72 | 0.62 0.59 0.58

Table 4: Balanced attack accuracy of white-box attacks under
Setting 1 (non-transfer setting).

posterior probabilities, the attack features of the white-box attack
will be derived from node embeddings.

Attack design. As the adversary under the white-box setting
has direct access to the parameters of the target model, there is no
need to utilize shadow models. Consequently, the white-box attacks
involve only two primary phases: attack model training and attack
inference. Both phases closely resemble the phases of attack model
training and attack inference of our black-box approach (Section 4)
with a minor modification: the attack features are now derived from
the similarity of final node embeddings instead of the similarity
of posterior outputs. Specifically, for a given similarity metric, the
pairwise similarity values of all pairs of the nodes in the sampled
graph are sorted in ascending order. There will be d sorted lists for
d metrics. These d vectors are then concatenated into one vector,
acting as the attack feature x. We use the same three similarity
metrics (Cosine similarity, Dot product, and Euclidean distance) as
the black-box setting.

Evaluation. Table 4 presents the balanced attack accuracy of the
white-box attack under Setting 1 (non-transfer setting). The results
reveal that the accuracy of the white-box attack surpasses that of the
black-box attack (Figure 3). For instance, when considering SAGE
as the target model and utilizing the Citeseer dataset as the training
data, the black-box 3-SMIA attack achieves an attack accuracy of up
to 0.65 (Figure 3 (b)), while the white-box attack achieves an even
higher attack accuracy of 0.68 (Table 4). The higher accuracy of
the white-box attack is anticipated, as the attack can extract more
information from the original training data through their access to
node embeddings.

Beyond the non-transfer setting, we measure the attack AUC of
the white-box attack under both data transfer and model transfer
settings. The results can be found in Appendix F.4.

5.7 Extension to Structure Inference Attack
(SIA)

Up to this point, we have demonstrated the effectiveness of our
K-SMIA approaches in inferring whether the given target nodes
contain a clique or a multi-hop path (for instance, whether there
exists a multi-hop path among the nodes Vy4, Vg, V). However, in
some cases, the adversary might seek to discover specific details
of the structure itself (for example, whether the multi-hop path is
structured as V4 — Vg — Vo or Vo — V4 — Vp).

Unfortunately, the existing subgraph inference attack [60] cannot
be directly applied to our setting as it utilizes the graph embedding
(i.e., the embedding of the whole graph) but not posteriors of indi-
vidual nodes to derive attack features. Thus, we extend the scope of
SMIAs to the Structure Inference Attacks (SIAs), which aim to infer
the subgraph formed by the target nodes in the training graph.

Attack design. Our SIA attack consists of two major steps:
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Dataset 3-5IA 4-SIA
GCN | SAGE | GAT | GCN | SAGE | GAT
Lastfm 0.41 0.44 0.4 0.2 0.23 0.19
Google+ | 0.36 0.42 0.34 | 0.19 0.18 0.18
Citeseer | 0.41 0.43 0.42 | 0.21 0.26 0.23

Table 5: Balanced attack accuracy of the Structure Inference
Attack (SIA).

¢ Inference of number of edges: the adversary first infers the
number of edges in the subgraph of V.

o Inference of edges: based on the inferred number of edges, the
adversary further infers the edges (and thus the structure) of
Vatt~

Next, we describe the details of each step.
Inference of number of edges. Intuitively, given k target nodes,

there are (g) + 1 possibilities of the number of edges among them.
Thus, we build a ¢-class classifier to predict the number of edges
among the given target nodes, where ¢ = (g) + 1. This way, the
3-label classifier of k-SMIA can be easily extended to k-SIA. The
training data A" will be reconstructed to accommodate (];) +1
classes for k-SIA, while the features remain the same as k-SMIA.

Inference of edges. Building upon the inferred number of edges
from Step 1, the adversary proceeds to identify these edges. Specif-
ically, for each node pair (v;,v;) of Vatt, the adversary computes
the similarity between the posterior probability vectors of v; and
v; using a distance function. We use three distance functions (Dot
product similarity, Cosine similarity, and Euclidean distance), which
are the same ones used by SMIA. These node pairs are then ranked
based on their similarity scores, and the top-t node pairs with the
highest similarity values are selected, where t is the number of
edges estimated by Step 1.

Compare with the link membership inference attack (LMIA) [20],
our SIA attack is fundamentally different from [20]. First, LMIA
and SIA have different attack goals. While LMIA aims to infer
if two nodes were connected in the training graph, SIA aims to
infer the specific structure among a set of k > 2 nodes. Second,
the design of LMIA and SIA differs fundamentally. LMIA trains a
binary classifier using features derived from the similarity between
the posteriors of nodes for inference. In contrast, SIA follows a
different approach: it first infers the number of edges t among the k
target nodes and then selects the top t node pairs from the k nodes
with the highest similarity between their posteriors as these edges,
thereby constructing the inferred subgraph structure.

Empirical evaluation. Similar to SMIA, we investigate two
variants of the SIA attacks: 3-SIA and 4-SIA which differ in the
number of target nodes (3 or 4). We evaluate the performance using
three distance functions: Dot product similarity, Cosine similarity,
and Euclidean distance for Step 2. And we observe Cosine similarity
yields the best attack performance among these functions. Hence
we only report the results of using Cosine similarity. The training
and testing data for the white-box attacks are generated in a similar
way as to the black-box attacks, ensuring balance and a 7:3 split
ratio between A" and Atest,

Table 5 displays the attack accuracy of 3-SIA and 4-SIA. No-
tably, both attacks showcase substantial effectiveness, with attack
accuracy ranging from [0.36, 0.44] for 3-SIA and [0.18, 0.26] for



Proceedings on Privacy Enhancing Technologies 2024(4)

4-SIA. These values are significantly higher than the random guess.
Furthermore, SIAs demonstrate lower attack accuracy compared
to SMIAs across all settings, as SIAs have to explicitly identify the
subgraph structure itself, rather than inferring the inclusion of a
structure only.

6 A POSSIBLE DEFENSE

To enhance the privacy of GNN models, a potential solution is
to introduce noise into the models. Existing defense mechanisms
against the link-level MIAs against GNNs typically inject noise into
GNN parameters [1], or embeddings [43, 60], or posteriors [20].
However, our empirical evaluation (will be present in Section 6.3)
demonstrates that these methods suffer from significant accuracy
degradation in node classification tasks.

To address this challenge, we propose a novel noise mechanism
to defend against SMIA. At a high level, our approach introduces
noise into the final node embeddings generated by the target model.
However, unlike existing methods that add noise across all dimen-
sions of node embeddings [43, 60], our approach selectively adds
noise only to dimensions of node embeddings that are considered
least significant for the downstream task (node classification). By
introducing noise selectively, our approach strikes a balance be-
tween maintaining target model accuracy and ensuring privacy
protection against SMIAs.

In the following, we present the details of the defense. We begin
with the measurement of feature importance (Section 6.1), followed
by the discussion of our defense mechanism (Section 6.2). The
results of the defense mechanism will be presented in Section 6.3.

6.1 SHAP-based Feature Importance
Measurement

To measure the importance of embedding dimensions, we utilize
Interpretable Machine Learning (IML) methods [2, 5, 12, 16, 30, 32]
which can offer insights into the relevance of features for a model’s
performance. In our approach, we specifically employ the SHapley
Additive exPlanations (SHAP) value-based method [30] to measure
the importance of embedding dimensions.

SHAP is a technique used to interpret and explain predictions
of individual data samples by quantifying the contribution of each
feature to the predictions. The computed feature importance takes
the form of Shapley values [30], where higher values indicate greater
contribution (i.e., importance) to the model’s output.

To employ SHAP for computing the importance of individual
features in node embeddings, we treat the final node embeddings
generated by the target model as the underlying features for the
downstream task (i.e., node classification). We calculate the Shapley
value for each dimension of the node embeddings and identify the
dimensions with the top-¢ lowest Shapley values as the least im-
portant dimensions of the node embeddings. In our empirical study,
we experiment with different values of ¢ (in the format of perturba-
tion ratio) and analyze their impact on defense performance. More
details can be found in Section 6.3.

6.2 Details of Defense

Intuitively, while injecting noise into node embeddings (and thus
the posterior probabilities) can deter SMIA’s attack capabilities, ran-
dom noise injection may lead to significant accuracy loss in GNN
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models. Therefore, the primary aim of our defense mechanism is
to provide effective protection against SMIA while preserving the
accuracy of the target model. To achieve this objective, we pro-
pose a perturbation-based strategy that introduces noise to the
node embeddings, thereby altering the posterior probabilities and
subsequently the attack features derived from these probabilities.
However, indiscriminately adding noise to all dimensions of the
node embeddings could result in a substantial loss in model accu-
racy. To mitigate this, we suggest adding noise only to the least
important dimensions of the node embeddings. Even with noise
introduced in these less important dimensions, node embeddings
and their posterior probabilities can still undergo alteration. As
will be demonstrated in our empirical study, these modifications
can change the distribution of attack features between members
and non-members, making them less distinguishable. Furthermore,
targeting a subset of dimensions for noise injection helps minimize
the degradation in model accuracy.

Our defense mechanism follows a three-step process. In Step 1,
we compute the importance of each embedding dimension using
SHAP (Section 6.1). We assume that the defender, possibly the
model owner, has knowledge of the downstream task for conducting
SHAP-based evaluation of dimension importance. Step 2 involves
ranking the embedding dimensions in ascending order based on
their SHAP values and selecting the top-¢ dimensions from this
ranking. Here, £ = [d X r], where d is the number of dimensions in
the embedding and r € (0, 1] is the perturbation ratio. Increasing r
perturbs more dimensions, resulting in a higher accuracy loss for
the target model. In Step 3, we add noise to the dimensions chosen
by Step 2. Specifically, we follow [43, 61] and introduce noise s that
follows the Laplace distribution:

1 _xup
= %e b
Here, b represents the noise scale, and y is the location parameter
of the Laplace distribution. A larger b signifies a more potent noise
scale, leading to increased defense against SMIAs.

Unfortunately, our method cannot offer a formal privacy guar-
antee like Differential Privacy (DP) [10], as it does not utilize the
concept of adjacency between datasets to determine the amounts
of noise. Thus instead of theoretical analysis, we will empirically
assess the defense effectiveness of our method. Our aim is to illus-
trate that our approach can provide comparable level of defense
power to DP while minimizing the loss in model accuracy.

An alternative perturbation scheme is to add Gaussian noise
instead of Laplace noise on the embeddings [39]. We assess both the
defense effectiveness and model accuracy of the two noise schemes
and found that both schemes have similar defense performance.
The detailed results can be found in Appendix G.1. Therefore, we
mainly employ Laplace noise in our paper.

©)

S

6.3 Performance of Defense

In this section, we provide an assessment of the performance of our
defense mechanism. We use the same GNN models and datasets as
those for the attack evaluation (Section 5).

Setup. We configure the perturbation ratio r = {0.2, 0.4, 0.6, 0.8}
and noise scale b = {0.01,0.05,0.1,0.5, 1,5, 10} in our experiments.
Larger values of r and b indicate stronger privacy protection.
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Figure 7: Defense performance (GAT, Citeseer dataset). The solid and dotted lines in (b) and (c) denote the defense effectiveness

and node classification AUC respectively.
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(c) Various noise scale b for 4-SMIA (r=0.6)

3-SMIA 4-SMIA
Dataset GCN SAGE GAT GCN SAGE GAT
NP | DP | Ours | NP | DP | Ours | NP | DP | Ours | NP | DP | Ours | NP | DP | Ours | NP | DP
Lastfm 0.16 | 0.15 0.15 | 0.14 0.19 | 0.17 0.15 | 0.13 0.13 | 0.13 0.19 | 0.17
Google+ 0.19 | 0.12 0.22 | 0.17 0.17 | 0.12 0.2 | 0.13 0.21 | 0.18 0.17 | 0.14
Citeseer 0.24 | 0.18 0.22 | 0.18 0.2 | 0.15 0.22 | 0.19 0.19 | 0.16 0.2 | 0.16

Table 6: Trade-off between defense effectiveness and the accuracy of the target model measured as the AUC of the defense-utility
ROC curve. The best trade-off for each GNN model and each dataset is marked with olive color.

Metrics. We quantify the defense effectiveness as the percentage
reduction in attack AUC achieved by the defense mechanism:

AU Cpefore = AU Cafter
AU Cpefore

Here, AU Cpefore and AU C,fer represent the attack AUC before and
after applying the defense, respectively. A higher reduction in attack
AUC indicates stronger defense.

For the target model, we assess its accuracy using the AUC
of node classification (Section 5.1). A higher AUC implies better
accuracy for the target model.

Baselines. For comparative analysis, we compare our defense
mechanism with the following two baselines:

e Baseline-1: Differential privacy (DP). We adopt DP-SGD, a
state-of-the-art differentially private deep learning method [1],
as our first baseline. To ensure a fair comparison between DP-
SGD and our defense mechanism, we introduce Laplace noise to
the gradients during each iteration, where the noise follows the
same distribution as our defense mechanism (Eqn. (3)).
Baseline-2: Noisy posteriors (NP). Since attack features stem
from the target model’s posteriors, we consider the defense
method [20, 60] that introduces noise to the posterior probabili-
ties as our second baseline. Specifically, for any given node and
its associated posterior probability vector output by the target
model, we incorporate Laplace noise into each posterior in the
vector, using the same distribution as ours (Eqn. (3)) for the noise
distribution.

Defense effectiveness =

©

Defense effectiveness. Figure 7 (a) (the y-axis at left) presents
the attack AUC after the deployment of our defense mechanism
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with various perturbation ratios when GAT is used as the target
model. The performance results for the other GNN models can
be found in Appendix G.2. We did not compare our method with
the two baselines as they have a fixed perturbation ratio of 1 (i.e.,
perturbation on all dimensions). We observe that our defense can
effectively reduce the attack AUC. Remarkably, even with the per-
turbation ratio as small as 0.2 (i.e., 20% of embedding dimensions
are perturbed), the accuracy of 3-SMIA is reduced by 14.3% (Figure
7 (a)). The defense power becomes stronger as the perturbation
ratio r increases.

Why adding noise only to the less important dimensions of node
embeddings still enable effective privacy protection? To answer this
question, we visualize the distribution of attack features for each
class before and after applying our defense method by using the
t-SNE projection. The results are presented in Appendix G.3. We
notice a significant increase in the indistinguishability of the three
classes after introducing noise to the embedding. This observation
highlights that, despite being added solely to the least important
dimensions of the embedding, the noise has led to alterations in the
posterior probabilities and their corresponding similarities. Conse-
quently, it has effectively modified the distribution of attack features
across all classes, thereby reducing the accuracy of the attack.

Next, we compare the performance of our defense method with
the two baselines under various noise scales (b), and present the
results in Figure 7 (b) & (c) (y-axis at right). First, the defense effec-
tiveness of our method increases with a higher noise scale value. As
the noise scale becomes as large as 10, our approach exhibits compa-
rable defense effectiveness to NP. This observation aligns with our
expectations, as the NP defense technique directly introduces noise
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to the posteriors, while our method adds noise selectively to a subset
of dimensions of the embeddings. Second, our approach showcases
the capability to surpass the DP baseline in terms of defense effec-
tiveness, as illustrated in Figure 7 (b). This can be attributed to the
fact that, although Laplace noise is integrated into the gradient, the
DP baseline continues to employ the unaltered adjacency matrix
during node embedding computations. Consequently, GNN models
still encapsulate some underlying structural information within
node representations and the subsequent posteriors. This explains
why our method can outperform the DP baseline, despite solely
introducing noise to a subset of embedding dimensions.

Model accuracy. Figure 7 (a) (the y-axis at right) presents the
model accuracy (node classification AUC) under various perturba-
tion ratios. We observe an insignificant amounts of model accuracy
loss (up to 0.04%) even when the perturbation ratio increases to
0.8. Furthermore, Figure 7 (b) & (c) (the y-axis at right) compare
the model accuracy of our defense solution and the two baselines
when the noise scale b increases. Our method outperforms both
baselines in terms of model accuracy when b exceeds 0.1.

defense-utility trade-off. To assess the trade-off between de-
fense effectiveness and target model accuracy, we establish a range
of settings that utilizes a consistent perturbation ratio (r = 0.4) and
varying noise scale values b = {0.01, 0.05,0.1,0.5, 1,5, 10}. Equiva-
lent noise scales are employed for the other two baseline methods.
Subsequently, we gauge defense effectiveness and target model
AUC across each configuration. These collected outcomes are then
synthesized into a defense-utility ROC curve, whereby individual
points symbolize paired values of defense effectiveness and target
model accuracy. We quantify the defense-utility trade-off as the
Area Under the Curve (AUC) of the defense-utility ROC curve. A
higher AUC indicates a more favorable trade-off between defense
effectiveness and target model accuracy. The defense-utility ROC
curve can be found in Appendix G.4.

Table 6 presents the results of the defense-utility trade-off for
both 3-SMIA and 4-SMIA. Our defense mechanism consistently
manifests a superior trade-off in comparison to the baseline meth-
ods across all settings. This is expected as our method solely intro-
duces noise to the least influential embedding dimensions.

Additionally, we assess the trade-off between defense effective-
ness and utility using TPR@1%FPR as the attack accuracy metric.
We construct a defense-utility ROC curve, where each point rep-
resents paired values of defense effectiveness and target model
accuracy. The trade-off between defense and utility is quantified
as the Area Under the Curve (AUC) of the defense-utility ROC
curve. The results of the defense-utility ROC curve and the defense-
utility trade-off are presented in Appendix G.4. We observe that
our defense exhibits a superior trade-off compared to the baseline
methods across most the settings.

7 RELATED WORK

Membership inference attacks against machine learning mod-
els. Recent studies 7, 46] have shown that ML models are vulnera-
ble to various types of privacy attacks. Among these attacks, the
membership inference attack (MIA) aims to infer whether a data
record was used to train a target model or not. It was first studied in
the context of genomics privacy [23, 41] and mobility privacy [38].
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Shokri et al. [44] was the first work to apply MIA against machine
learning. Since then, many endeavors have investigated MIAs in
scope and depth. For example, Yeom et al. [55] analyzed the connec-
tion between MIAs and model overfitting. Salem et al. [40] proposed
a generic attack that relaxes some assumptions of MIAs. Ye et al.
[54] formally expressed MIAs under a comprehensive hypothesis
testing framework. A line of work designed new MIAs for vari-
ous ML models such as federated learning [34], generative models
[19], language models [45, 47], and contrastive models [28]). And
Meanwhile, a large body of work proposes different membership
inference defenses to counter the threat of MIAs. We recommend
the audience a number of surveys [3, 24, 27] for further reading.

Membership inference attacks against GNNs. A line of work
has investigated the vulnerability of GNNs against MIAs [9, 20, 22,
36, 52]. The existing MIAs on GNNs can be categorized into three
types: node-level MIAs, link-level MIAs, and subgraph-level MIAs.
The node-level MIAs [22, 36] aim to infer the existence of particular
nodes in the training graph, The subgraph-level MIA (SIA) [60]
aims to infer if a subgraph is included in the target graph. However,
as SIA utilizes the graph embedding (i.e., the embedding of the
whole graph) not posteriors of individual nodes to derive attack
features, it cannot be directly applied to our setting. To the best of
our knowledge, ours is the first to investigate MIAs in the context
of inference of cliques and multi-hop paths.

8 CONCLUSION

In this paper, we investigated the privacy vulnerabilities of GNN
models through the lens of Structure Membership Inference Attacks
(SMIAs). We introduced novel black-box SMIAs capable of predict-
ing the presence of k-cliques and k-hop paths within a designated
set of target nodes in the training graph. Our empirical study demon-
strates the effectiveness of SMIAs against three representative GNN
models. Moreover, we designed a new defense mechanism to coun-
teract GNN susceptibility to SMIAs. Through empirical analysis,
we showcased that our defense approach provides strong defense
against SMIA while maintaining target model accuracy.

Looking ahead, we will explore SMIAs’ effectiveness across di-
verse adversary knowledge settings, including scenarios with white-
box access to the target model and availability of node features.
We will also extend the scope of SMIAs to the inference of other
graph structures, such as strongly connected components and stars.
These extensions will contribute to a comprehensive understanding
of GNN privacy and open up new avenues for safeguarding graph
data against potential threats.
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APPENDIX

A PSEUDO CODE OF OUR ATTACK
Algorithm 1 shows the pseudo code of our attack.

B TIME COST OF SIMILARITY SORTING FOR
ATTACK FEATURE GENERATION

Recall that our attack feature derivation necessitates sorting proba-
bility similarity values, raising concerns about potential computa-
tional overhead. To investigate this, we measured the time required
for sorting probability similarities during attack feature derivation
and compared it with the time needed for attack classifier training.
The results are presented in Table 7, revealing that the sorting time
is minimal compared to attack classifier training. In other words,
sorting probability similarity values does not impose significant
computational overhead on the training of the attack classifier.

Xiuling Wang and Wendy Hui Wang

Algorithm 1: Generating attack training data A2

Input: A set of shadow graphs G° = {G?, Gg, ...}, the target
node set Vyit, the number of node sets in each class
N.
Output: Attack training data AT,
1 Atrain:{};
2 §={}
3 Initialize the membership label y=0;
4 for each shadow graph GiS in G5 do

5 Train a shadow model <I>l.5 on G? ;
6 Randomly sample N > 1 k-cliques and add to S;

7 Randomly sample N > 1 (k-1)-hop paths and add to S;
8 Randomly sample N > 1 node sets that are neither
k-cliques nor (k-1)-hop paths and add to S;

9 for each k-node set Vs in S do

10 x =<> //x: the feature vector of Vg;

11 for each similarity metric f; do

12 Initialize g as an empty vector;

13 for Yu;,0; € Vs do

14 | Add fi(05 (0;), @7 (v))) to 7 ;

15 end

16 Sort all values in ¥ in descending order ;

17 x = x||7;

18 end

19 Assign the membership label y of Vi: y=1if Vs isa
clique, y=2 if Vs is a (k-1)-hop path, and y=0
otherwise;

ko Add the sample (x,y) to Atrain,

p1 end

p2 end

b3 return Attack training set A0,

C DETAILS OF DATASETS

We conduct our experiments on three datasets, each possessing its
own unique characteristics:

e Google+ dataset °: The graph consists of 4,417 nodes and 119,582
edges in total. Each node is associated with a set of features
including gender, institution, job title, last name, place, and uni-
versity.

e Lastfm dataset %: The Lastfm dataset represents a social network
of users of the Lastfm music platform. The edges in the dataset
indicate the mutual follower relationships between users.

o Citeseer dataset: The Citeseer dataset is a citation network
where the nodes represent scientific documents, and the edges
represent citation links between documents. It consists of 3,312
nodes and 4,732 citation links.

Shttps://snap.stanford.edu/data/ego-Gplus.html
®http://snap.stanford.edu/data/feather-lastfm-social.html
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Attack

Settings
Lastfm
Google+
Citeseer
Table 8: Impact of type of attack classifiers on attack accuracy
(GCN model). The best attack accuracy for each dataset and
each attack classifier is highlighted with olive color.

3-SMIA

4-SMIA

0.55
0.5

Sim. metric 3-SMIA 4-SMIA
C|D | E | GCN | SAGE GCN | SAGE | GAT
vV 0.56 0.48 0.53 0.43 0.47

v 0.61 0.55 0.4 0.37

v | 0.61 0.57 0.52 0.46

VIV 0.6 0.54 0.43 0.46

Va4 0.6 0.57 0.52 0.47
v v 0.57 0.52
VIV

Table 9: Balanced attack accuracy (BA) for various combi-
nations of similarity metrics. "C", "D", "E" represent Cosine
similarity, Dot Product, and Euclidean distance respectively.
The best attack performance for each GNN model is high-
lighted in olive color. (Lastfm dataset).

D ATTACK PERFORMANCE UNDER VARIOUS
ATTACK SETTINGS

D.1 Varying Type of Attack Classifier

To evaluate the impact of the type of attack classifiers on the per-
formance attacks, we evaluate the attack performance by three
types of attack classifiers, namely, Multi-layer Perceptron (MLP),
Random Forest (RF), and Support Vector Machine (SVM). Table 8
presents the attack accuracy of the three attack classifiers when
GCN model is used as the target model. All the three classifiers
exhibit their effectiveness, with their attack accuracy exceeding the
random guess (0.5). In particular, MLP outperforms RF and SVM
consistently. Therefore, in our experiments, we mainly use MLP as
the attack classifier.

D.2 Varying Similarity Metric(s)

To measure the impact of various similarity metrics on attack per-
formance, we consider all the seven combinations of the three
similarity metrics (Cosine similarity, Dot product similarity, and
Euclidean distance), and measure the balanced accuracy of 3-SMIA
and 4-SMIA under each combination. As reported in Table 9, the
attack leveraging the concatenation of all three similarity metrics
consistently outperforms or achieves the same attack performance
as those employing either a single metric or the combination of any
two metrics. Therefore, we adopt the concatenation of Cosine simi-
larity, Dot Product, and Euclidean distance to generate the attack
features.

D.3 Varying the Number of Shadow Models

Figure 8 presents the attack accuracy (BA) for various number of
shadow models. The main observation is that the number of shadow
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Figure 8: Impact of the number of shadow models on attack
accuracy (BA), GCN model.

Dataset | GCN | SAGE | GAT
Google+ | 0.93 0.93 0.95
Lastfm 0.75 0.76 0.73
Citeseer | 0.94 0.95 0.92

Table 10: Node classification AUC performance of the GNN
models.

models does not impact the attack accuracy, which remains stable
when the number of shadow models varies. Therefore, we use only
one shadow model in our experiments.

E TARGET MODELS: SETUP AND
PERFORMANCE

We assess the GNN models’ performance through the measurement
of node classification AUC. The results are presented in Table 10. It
is evident that across all three datasets, the AUC values for the three
GNN models are significantly superior to random classification,
spanning the range of [0.73, 0.95]. This observation demonstrates
the commendable performance of the target GNN models.

F ADDITIONAL RESULTS OF ATTACK
PERFORMANCE

F.1 Non-transfer Setting

In this part of empirical evaluation, we measure both AUC and
TPR@1%FPR of 3-SMIA and 4-SMIA. We also include the results
of Baseline-2 for comparison. We did not consider Baseline-1 and
Baseline-3 because their AUC and TPR@1%FPR are not measurable
as they do not use a threshold.

AUC performance of attack classifier. Table 11 shows the
AUC performance of 3-SMIA and 4-SMIA under Setting 1 (non-
transfer setting). We have the following observations. First, the
AUC values of our attacks across all settings consistently surpass
the random guess threshold of 0.5. Specifically, the attack AUC of
3-SMIA ranges from 0.67 to 0.89, while the attack AUC of 4-SMIA
ranges from 0.69 to 0.8. Second, our attacks outperform Baseline-2
in terms of attack AUC in all the settings.

TPR@1%FPR performance of attack classifier. Table 12
shows the TPR@1%FPR performance of 3-SMIA and 4-SMIA. The
TPR@1%FPR of 3-SMIA ranges from 0.08 to 0.41, and the attack
TPR@1%FPR of 4-SMIA ranges from 0.08 to 0.21. Furthermore, both
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3-SMIA 4-SMIA
Dataset GCN SAGE GAT GCN SAGE GAT
Baseline-2 | Ours | Baseline-2 | Ours | Baseline-2 | Ours | Baseline-2 | Ours | Baseline-2 | Ours | Baseline-2
Lastfm 0.79 0.69 0.72 0.73 0.71 0.67
Google+ 0.67 0.65 0.70 0.72 0.70 0.68
Citeseer 0.84 0.82 0.81 0.74 0.72 0.69

Table 11: Attack AUC of 3-SMIA and 4-SMIA under Setting 1 (non-transfer setting). We did not consider Baseline-1 and
Baseline-3 because their AUC is not measurable as they do not use a threshold. The best attack AUC for each dataset and each

GNN model is highlighted with olive color.

3-SMIA 4-SMIA
Dataset GCN SAGE GAT GCN SAGE GAT
Baseline-2 | Ours | Baseline-2 Baseline-2 Baseline-2 Baseline-2 Baseline-2
Lastfm 0.21 0.22
Google+ 0.11 0.07
Citeseer 0.30 0.23

Table 12: TPR@ 1%FPR of 3-SMIA & 4-SMIA under Setting 1 (Non-transfer setting). We did not consider Baseline-1 and Baseline-
3 for comparison because their TPR@ 1%FPR is not measurable as they do not use a threshold. The best attack AUC for each

dataset and each GNN model is highlighted with olive color.

Attack AUC TPR@1%FPR
3-SMIA 4-SMIA 3-SMIA 4-SMIA
Class GCN | SAGE | GAT Class GCN | SAGE | GAT Class GCN | SAGE | GAT Class GCN | SAGE | GAT
3-clique 0.66 0.63 0.71 4-clique 0.82 0.83 0.79 3-clique 0.12 0.08 0.11 4-clique 0.2 0.18 0.23
2-hop path | 0.65 0.62 0.65 || 3-hop path | 0.79 0.68 0.72 || 2-hop path | 0.05 0.05 0.06 || 3-hop path | 0.07 0.11 0.1

Table 13: Attack AUC and TPR@ 1%FPR of member classes of 3-SMIA and 4-SMIA under Setting 1 (Non-transfer setting).

3-SMIA and 4-SMIA outperform Baseline-2 in all the settings. This
demonstrates the effectiveness of our attacks.

Attack AUC and TPR@1%FPR performance of member
classes. To better understand how the attack performs over the
member classes (i.e., cliques and paths), next, we measure the attack
performance for each member class (i.e., 3-clique and 2-hop paths
for 3-SMIA, and 4-cliques and 3-hop paths for 4-SMIA). For the eval-
uation, we only consider one subgraph structure (e.g., the clique) as
the member, and the remaining structures (e.g., the paths and other
structures that are neither paths and cliques) as the non-member.
Table 13 presents the AUC and TPR@1%FPR for each member class.
For both attack accuracy metrics, 3-SMIA and 4-SMIA are shown
to be more effective to infer cliques than the paths.

F.2 Transfer Setting

Attack Performance of 4-SMIA under Transfer Setting Figure
9 presents the attack AUC of 4-SMIA under both dataset transfer
and model transfer settings. First, we observe that 4-SMIA is still
effective under the data transfer setting. The attack AUC spans a
range of 0.59 to 0.72 (Figure 9 (a) - (c)), which is much higher than
the random guess (0.5). 4-SMIA also remains effective under model
transfer setting, with the attack AUC ranges between 0.58 and 0.76
(Figure 9 (d) - (f)).

Why do transfer attacks work? To understand why the trans-
fer attacks remains effective under both data transfer and model
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transfer settings, we plot the distribution of three classes (clique,
path, and non-members) by the attack features derived from the
shadow model and the target model respectively for both dataset
transfer and model transfer settings in Figure 10. We observe that,
despite the varying distributions of attack features in both the
shadow and target models, the three classes remain discernible
from each other. We attribute this phenomenon to the inherent
similarity among connected nodes within subgraphs compared to
disconnected nodes outside them, owing to the intrinsic message-
passing mechanisms of GNN models. These results demonstrate
that our attack has acquired and effectively transferred this knowl-
edge across diverse datasets and models.

F.3 Impact of Node Importance on Attack
Performance

Figure 11 illustrates the impact of node degree, closeness centrality,
betweenness centrality, and node feature similarity on the attack
accuracy of 3-SMIA and 4-SMIA targeting the GCN model using
the Google+ dataset. We observe comparable trends to those in
Figure 6. Specifically, the attack accuracy of clique inference steadily
increases for the target nodes of higher importance across all the
four types of importance metrics. This trend is likely attributable
to the target model’s tendency to memorize more significant nodes,
influenced by the message passing and neighborhood aggregation
mechanisms inherent in GNNs. However, a consistent pattern is
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Attack AUC of 4-SMIA under dataset and model transfer setting.
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(a) Distribution of three classes by (b) Distribution of three classes by
the attack features derived from attack features derived from target
shadow model (GCN trained on model (GCN trained on Google+
Lastfm dataset) dataset)

Data transfer setting

(c) Distribution of three classes (d) Distribution of three classes by
by attack features derived from attack features derived from target
shadow model (GCN trained on model (SAGE trained on Citeseer
Citeseer dataset) dataset)

Model transfer setting

Figure 10: Distribution of attack features under both dataset transfer and model transfer settings (3-SMIA).

not observed for k-hop paths. We guess it could be attributed the
introduction of additional uncertainty in attack inference due to
the presence of disconnected node pairs within Vjyt. In particular,
we observe a drop of the attack accuracy on the inference of 3-hop
paths. Such drop was minor for node sets that contain nodes of
higher degrees, closeness centrality, and betweenness centrality
(Figure 11 (a) - (c)). But the drop became substantial for node sets
of similar node features (Figure 11 (d)). We guess the reason behind
this phenomenon is that node features become less influential on
attack accuracy compared to node structure when inferring higher-
order connectivity.
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F.4 White-box Attacks under Transfer Setting

Data transfer setting. Figure 12 presents the AUC performance of
white-box attacks under the data transfer setting. We observe that
the attack AUC ranges from 0.61 to 0.87 for 3-SMIA and 0.6 to 0.74
for 4-SMIA across the three datasets and three GNN models. This
indicates the effectiveness of our attack under the white-box data
transfer setting. Additionally, similar to the non-transfer setting, the
performance of the white-box attack under the data transfer setting
generally outperforms the black-box attack in most of the settings.
However, there are a few exceptions. For example, the attack AUC
of the white-box attacks is lower than that of the black-box attacks
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Figure 12: White-box attack AUC of 3-SMIA and 4-SMIA under dataset transfer setting.

for both 3-SMIA and 4-SMIA when Google+ is used as the shadow
model and the Lastfm dataset is used as the target dataset. This
phenomenon implies that, under rare cases, the similarity between
node embeddings may not be as effective as the similarity between
posterior probabilities for knowledge transfer.

Model transfer setting. Figure 13 presents the AUC perfor-
mance of white-box attacks under the model transfer setting. We
observe that the attack AUC ranges from 0.6 to 0.89 for 3-SMIA
and 0.54 to 0.76 for 4-SMIA across the three datasets. This indicates
the effectiveness of our white-box attack under the model transfer
setting.

We have also noted that, although uncommon, the AUC of white-
box attacks can be lower than that of black-box attacks in specific
configurations. An example of this is seen when using GAT as
the shadow model and SAGE as the target model on the Citeseer

dataset for the 3-SMIA attack. To delve into this phenomenon, we
present in Figure 14 the distribution of the three classes (k-cliques,
(k-1)-hops, and non-members) by their attack features for both
white-box and black-box attacks in the aforementioned setting.
Our analysis reveals that under this particular setup, the black-
box attack features derived from posterior probabilities exhibit a
better ability to distinguish between the three classes compared
to the white-box attack features derived from node embeddings.
Consequently, this leads to a higher attack performance by the
black-box approach compared to the white-box method in this
specific scenario.
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Figure 13: White-box attack AUC of 3-SMIA and 4-SMIA under model transfer setting.
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Figure 14: Distribution of attack features for both white-box and black-box attacks (3-SMIA, Citeseer dataset).

G ADDITIONAL RESULTS OF DEFENSE
PERFORMANCE

G.1 Defense Performance under Gaussian noise

We evaluate the defense performance of adding Gaussian noise
to node embeddings. The Gaussian noise s follows the density
distribution of

Xpy2
s = a),

3(
ooz ®)
with the expectation of y and the standard deviation of ¢. In our
experiments, we set 4 = 0, and ¢ = {0,0.01,0.05,0.1,0.5, 1, 5, 10},
which is the same as the noise scale of Laplace noise.

Figure 15 presents both defense performance and model accuracy
when Gaussian noise or Laplace noise is employed for defense. We
have observed that employing Gaussian noise for defense yields
similar performance to using Laplace noise in terms of both defense
effectiveness and model accuracy. Consequently, we primarily focus
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on presenting the performance results of the defense mechanism
utilizing Laplace noise in the main body of the paper.

G.2 Defense Performance Results for More
Settings

Figure 16 (a) evaluates the impact of the perturbation ratio r on
SAGE model and Citeseer dataset. The trends observed align closely
with those in Figure 7 (a). First, our perturbation techniques effec-
tively curtail the attack AUC. For instance, even with a minimal
perturbation ratio of 0.2 (perturbing 20% of embedding dimensions),
the attack AUC of 3-SMIA can be reduced from 0.83 to 0.70 (15.7%
reduction). Second, an increase in the perturbation ratio (r) notably
enhances defense efficacy. As r escalates, the defense power expe-
riences substantial improvement. Notably, when the perturbation
ratio reaches 0.8 for both attacks, the attack AUC can be diminished
to a level close to the random guess threshold of 0.5.
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Figure 15: Gaussian noise vs. Laplace noise in terms of defense performance and model accuracy.

Furthermore, we observe a discrepancy in the defense perfor-
mance of our method across GAT, GCN and SAGE. Specifically,
our method demonstrates a stronger defense capability for GAT
(Figure 7) and GCN compared to SAGE. We attribute this discrep-
ancy to the differing aggregation functions employed by these
models. Specifically, both GAT and GCN utilize the entire neigh-
borhood for aggregation during training, whereas SAGE adopts a
sampling-based approach resulting in partial neighborhood aggre-
gation. Consequently, our method introduces less perturbations for
GAT and GCN than for SAGE, thereby rendering it less effective in
the former case.

Figure 16 (b) and Figure 16 (c) evaluate the impact of the noise
scale b on 3-SMIA and 4-SMIA, alongside comparison with two
baseline methods. Firstly, our method’s defense effectiveness rises
proportionally with increasing noise scale values. Our approach’s
performance becomes comparable to NP’s efficacy when the noise
scale reaches 10 for both 3-SMIA and 4-SMIA. This correlation
aligns with our expectations, given NP’s direct introduction of
noise into posteriors, contrasted with our method’s selective noise
addition to specific embedding dimensions. Additionally, our ap-
proach achieves similar performance to DP when the noise scale
expands to 10 for both attacks.

Figure 16 (d) evaluates the impact of the perturbation ratio r
on GCN model and Citeseer dataset. The trends observed align
closely with those in Figure 7 (a). First, our perturbation techniques
effectively restrain the attack AUC. A compelling instance is evident
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when considering a modest perturbation ratio of 0.2, corresponding
to the perturbation of just 20% of embedding dimensions, the attack
AUC of 3-SMIA undergoes a reduction of 12.4% (from 0.89 to 0.78).
Second, an increase in the perturbation ratio (r) notably enhances
defense efficacy. As r escalates, the defense power experiences
substantial improvement. Notably, when the perturbation ratio
reaches 0.8 for both attacks, the attack AUC can be diminished to a
level close to the random guess threshold of 0.5.

Figure 16 (e) & (f) evaluate the impact of the noise scale b on
3-SMIA and 4-SMIA and two baselines. Our observations are similar
to those from Figure 7 (b) & (c); thus we omit the detailed discussion
for simplicity.

Model accuracy. Figure 16 (a) & (d) (with the y-axis on the right)
illustrate the model accuracy (node classification AUC) across vari-
ous perturbation ratios. We observe that there is a negligible amount
of model accuracy loss (up to 0.05%) even as the perturbation ratio
increases to 0.8. Additionally, Figure 16 (b) & (c) & (e) & (f)(the
y-axis at right) compare the model accuracy of our defense solution
and the two baselines when the noise scale b increases. Our method
consistently outperforms both baselines in terms of model accuracy
when b exceeds 0.05.
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Figure 16: Defense performance when GCN and SAGE models are the target models (Citeseer dataset). The solid and dotted
lines in (b) and (c) denote the defense effectiveness and node classification AUC respectively.
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Figure 17: Visualization of the distribution of attack features of different member classes before and after applying our defense

(GCN model, Lastfm dataset).

G.3 Visualization of Attack Features’
Distribution before and after Defense

Figure 17 illustrates the distribution of the attack features of
all the classes before and after applying our defense method. We
notice a significant increase in the indistinguishability of the three
classes after introducing noise to the embedding. This observation
highlights that, despite being added solely to the least important
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dimensions of the embedding, the noise has led to alterations in the
posterior probabilities and their corresponding similarities. Conse-
quently, it has effectively modified the distribution of attack features
across all classes, thereby reducing the accuracy of the attack.

G.4 Defense-utility Trade-off

First, to illustrate the trade-off between defense and utility, we
plot the defense-utility ROC curve of our defense and the two
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Figure 18: The defense-utility ROC curve (SAGE model, Lastfm dataset). The x symbol indicates no defense.
3-SMIA 4-SMIA
Dataset GCN SAGE GAT GCN SAGE GAT
Ours DP | Ours | NP DP | Ours | NP | DP | Ours | NP | DP Dp
Lastfm 0.5 0.52 0.42 0.57 | 0.5 0.6 | 0.51 0.32
Google+ 0.42 0.56 0.58 0.5 | 0.45 0.64 | 0.58 0.63
Citeseer 0.67 0.72 0.75 0.85 | 0.81 0.85 | 0.74 0.72

Table 14: Defense-utility trade-off score of the three defense methods. The reduction in TPR@ 1%FPR is used to measure the
defense effectiveness. The best trade-off for each GNN model and each dataset is marked with olive color.

baseline methods in Figure 18. We establish a set of experimental
configurations that vary the noise scale values b across {0.01, 0.05,
0.1, 0.5, 1, 5, 10} with a constant perturbation ratio (r = 0.4). Equiv-
alent noise scales are applied to the other two baseline methods.
Following this, we evaluate the defense effectiveness and target
model AUC for each configuration. These results are consolidated
into a defense-utility ROC curve, capturing the interplay between
defense effectiveness and target model accuracy across different
settings. We consider two different metrics of defense effectiveness,
namely the percentage of attack AUC and TPR@1%FPR that is re-
duced after the defense, respectively. A higher reduction indicates a
stronger defense. We observe that our defense method outperforms
the two baselines in the trade-off between defense performance
and target model performance. For example, in Figure 18 (a), when
the defense effectiveness is 30% (the attack accuracy is reduced to
0.56), the model performance of our attack is significantly higher
than NP and DP.

Next, to quantify the defense-utility trade-off, we measure the
trade-off score as the Area Under the Curve (AUC) of the defense-
utility ROC curve. Table 14 shows the defense-utility trade-off score
when the defense effectiveness is measured as the reduction in
TPR@1%FPR. Our defense mechanism surpasses the two baseline
methods in terms of the defense-utility trade-off in most of the
settings.
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