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ABSTRACT

Graph contrastive learning (GCL) has emerged as a successful
method for self-supervised graph learning. It involves generating
augmented views of a graph by augmenting its edges and aims to
learn node embeddings that are invariant to graph augmentation.
Despite its effectiveness, the potential privacy risks associated with
GCL models have not been thoroughly explored. In this paper, we
delve into the privacy vulnerability of GCL models through the lens
of link membership inference attacks (LMIA). Specifically, we focus
on the federated setting where the adversary has white-box access
to the node embeddings of all the augmented views generated by
the target GCL model. Designing such white-box LMIAs against
GCL models presents a significant and unique challenge due to
potential variations in link memberships among node pairs in the
target graph and its augmented views. This variability renders mem-
bers indistinguishable from non-members when relying solely on
the similarity of their node embeddings in the augmented views. To
address this challenge, our in-depth analysis reveals that the key dis-
tinguishing factor lies in the similarity of node embeddings within
augmented views where the node pairs share identical link member-
ships as those in the training graph. However, this poses a second
challenge, as information about whether a node pair has identical
link membership in both the training graph and augmented views
is only available during the attack training phase. This demands the
attack classifier to handle the additional “identical-membership”
information which is available only for training and not for test-
ing. To overcome this challenge, we propose GCL-LEAK, the first
link membership inference attack against GCL models. The key
component of GCL-LEAK is a new attack classifier model designed
under the “Learning Using Privileged Information (LUPI)” para-
digm, where the privileged information of “same-membership” is
encoded as part of the attack classifier’s structure. Our extensive set
of experiments on four representative GCL models showcases the
effectiveness of GCL-LEAK. Additionally, we develop two defense
mechanisms that introduce perturbation to the node embeddings.
Our empirical evaluation demonstrates that both defense mecha-
nisms significantly reduce attack accuracy while preserving the
accuracy of GCL models.
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1 INTRODUCTION

Graph learning has gained significant popularity in various fields.
However, training graph learning models with limited labeled data
poses a significant challenge, especially in domains like biology
and chemistry, where task-specific labels are scarce [21, 87]. To
address this issue, self-supervised learning (SSL) graph models
[24, 30, 64, 66] have emerged as a promising approach.

Among various types of SSL graph models, graph contrastive
learning (GCL) models have become prevalent [58, 64, 84]. At a high
level, given a training graph G, a GCL model generates multiple
augmented views of G through graph augmentation, aiming to learn
the graph representation (node embedding) of G that is invariant to
augmentation. Typical augmentation functions modify the graph
topology by adding or deleting edges in the augmented views [14,
85, 86]. Recently, GCL has been extended to the federated setting
[4, 59, 68] where the clients share the node embeddings of the
augmented views obtained from their local graphs with the server,
while the server aggregates these local embeddings to learn the
global embedding.

Threat model. While substantial efforts have been dedicated
to enhancing the performance of GCL models [14, 71, 75, 85], the
privacy vulnerabilities associated with these models have been
largely overlooked. This paper primarily focuses on Link Mem-
bership Inference Attacks (LMIAs) against GCL models which aim
to infer whether a specific node pair is connected in the training
graph of the target model. We consider an adversary situated in the
federated setting, potentially an honest-but-curious server [55, 68].
The adversary leverages node embeddings within all augmented
views obtained through white-box access to the target model for
LMIA inference. Given that graph links can represent sensitive
information such as private social relationships and associations
between diseases and specific patients, the disclosure of these links
raises significant privacy concerns.

Analysis: Several existing methods [8, 17, 63, 80] have investi-
gated the privacy vulnerabilities of supervised graph models, par-
ticularly Graph Neural Networks (GNNs), against LMIAs. These
investigations commonly rely on the similarity of node embeddings
to discern between linked node pairs (members) and non-linked
ones (non-members). However, through an extensive analysis of
four mainstream GCL models and three real-world graphs, we re-
vealed that these existing methods cannot be directly applied or
easily adapted to GCL models. This is because the differentiation
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between member and non-member links cannot be solely based
on the similarity of their embeddings in augmented views (refer
to Section 4). Instead, the attack model should account for the
edge membership in both the training graph and the augmented
views. Our analysis specifically indicates that the distinguishabil-
ity between members and non-members relies exclusively on the
embedding similarity within augmented views featuring “identical-
membership"—meaning the node pairs in these augmented views
share identical link memberships as those in the training graph.

Attack: Building upon the insights obtained from our analysis,
we introduce GCL-LEAK, the first LMIA tailored for GCL models.
GCL-LEAK leverages a “shadow graph", acquired from external
sources, providing access to augmented views and the correspond-
ing node embeddings within these views through white-box access
to the target GCL model. In the subsequent steps, it generates attack
training data, extracting features from the embedding similarity
of node pairs within augmented views that have the “identical-
membership" with the shadow graph. However, this raises a new
challenge in designing the attack classifier. During the inference
phase, the adversary cannot extract the “identical-membership"
information for the target node pairs without access to the original
training graph and its associated augmented views. To address this
challenge, we design a new attack classifier model under the Learn-
ing Using Privileged Information (LUPI) paradigm [42, 56] which
enables learning from the privileged information available during
training but not during testing. Specifically, the attack features
take the contrastive nature of GCL models into consideration, with
the “identical-membership” information encoded as part of the
structure of the attack classifier.

Evaluation: We evaluate the effectiveness of GCL-LEAK through
extensive empirical evaluations. The results demonstrate that GCL-
Leak outperforms the existing LMIAs across various settings, achiev-
ing an attack accuracy in the range of 0.83 to 1. Moreover, GCL-LEAK
remains effective in the transfer setting where the shadow and tar-
get graphs are sampled from different domains and distributions.
Moreover, our empirical assessment reveals that GCL-LEAK sur-
passes not only attacks lacking LUPI but also those incorporating
LUPI through alternative methodologies [6, 61].

Defense: We propose two defense mechanisms named FNoise
and PNoise to mitigate the vulnerabilities of GCL models against
GCL-Leak. Both defense methods introduce Laplace noise to node
embeddings. However, FNoise incorporates full noise across all
dimensions of the embedding, whereas PNoise selectively adds
noise to dimensions considered of lesser importance to the model.
Through evaluation, we demonstrate that both defense methods
significantly reduce the attack accuracy while preserving the ac-
curacy of GCL models. In addition, both methods outperform the
existing defense solutions in terms of the trade-off between defense
power and model accuracy.

Our contributions. Our main contributions are as follows !

o We conduct empirical studies and analysis to uncover the reasons
behind the limitations of existing LMIAs when targeting GCL
models. We also gain new insights that can be utilized to improve
the effectiveness of LMIAs against GCL models.

!0ur code and datasets are available at the link: https://gitfront.io/r/user-
8658281/66TPGy4ACgzd/MIA-GCL/
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Figure 1: An overview of GCL models.

o We design GCL-LEAK, the first LMIA against GCL models. Our
empirical evaluation demonstrates that GCL-LEAK is highly ac-
curate in link inference against GCL models.

o We devise two defense mechanisms against GCL-LEAK and con-
duct a thorough empirical evaluation to demonstrate their effec-
tiveness.

2 PRELIMINARIES

2.1 Graph Contrastive Learning

Given a graph G(V, E), where V and E denote the vertices and edges
respectively, a Graph Contrastive Learning (GCL) model aims to
learn graph representations of G that are invariant to a set of man-
ually specified transformations known as augmentations. A GCL
framework typically consists of the following key components:
(1) the graph augmentation function that generates multiple views
from the given graph; (2) an encoder fy (parameterized by 6) that
is responsible for learning low-dimensional representations (em-
beddings) of the graph; (3) a pretext decoder py (parameterized by
¢) that estimates the agreement between any two augmentations;
and (4) the contrastive objective that encourages consistency among
positive pairs and inconsistency among negative pairs. Figure 1
illustrates the GCL framework. Next, we briefly explain the details
of each component.

Graph augmentation functions. Given a graph sample G,
the GCL model generates a number of augmented views of G by
applying the graph augmentation function on G. The existing graph
augmentation functions can be categorized into two types: topology
augmentation and feature augmentation [7, 81].

e Topology augmentation: Topology augmentation functions
encompass three categories: (1) node augmentation involves re-
moving a set of nodes and their associated edges or inserting
fake nodes into the graph; (2) edge augmentation entails adding
new edges that do not exist in the original graph and/or remov-
ing a fraction of edges from the original graph; and (3) subgraph
augmentation is a hybrid approach that combines node and edge
augmentation techniques.

o Feature augmentation: there are two types of feature augmen-
tation functions: (1) node feature masking that randomly masks
a fraction of features in the graph by setting them to a neutral
value; (2) node feature shuffle involves swapping the features of
some nodes in the graph.

In this paper, we mainly focus on edge augmentation as it has
been used by most of the GCL models. While only a few existing
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GCL models incorporate both edge removal and addition, we con-
sider either edge removal or edge addition, but not both, as the
edge augmentation method. The degree of edge augmentation is
determined by an augmentation ratio, where a higher ratio indicates
a greater number of edges to be inserted or deleted.

The encoder-decoder framework with the contrastive ob-
jective. To capture crucial global graph information, GCL aims
to learn graph representations that are invariant to small pertur-
bations. This is achieved by maximizing the agreement between
augmented views of the same input graph through a contrastive
loss in the latent space. Given a training graph G, a minibatch of
n graphs {G!, ..., G"} is randomly sampled from G and processed
using contrastive learning. In this paper, we follow the literature
and consider two augmented views (denoted as G>! and G*2) for
each input graph sample G'.

For any input graph sample G' and any node v € G, its em-
bedding generated in the augmented view G>! is treated as the
anchor. The embedding of v € G%2 forms the positive sample of
0, while the embedding of any node v’ (v” # v) in the two views
is regarded as a negative sample of v. GCL can be formalized as
an encoder-decoder framework in which the encoder fy can be
any GNN model [13, 25, 57] that learns a low-dimensional node
representation (embedding) for each input augmented view. The
decoder py distinguishes the embeddings of positive and negative
pairs. The contrastive objective of the GCL models is to maximize
the agreement between positive pairs and minimize the agreement
between negative pairs, formalized as follows:

0", ¢" = rgglli([)qs (fo(G™1), fo(G™))), @
A commonly used loss function £ is the mutual-information based
loss (Jensen-Shannon divergence [52]).

In this paper, we investigate four representative contrastive-
based GCL models, namely GRACE [85], CGA-SSG [75], GCA
[86] and MVGRL [14]. Table 1 provides an overview of the major
differences between these models. These models employ different
contrastive objectives. In particular, GRACE, MVGRL, and GCA
focus on the node-level contrastive loss, while CCA-SSG considers
the contrastive objectives at both node and feature levels. In Section
6, we will discuss how different contrastive objectives impact the
attack performance.

Impact of edge augmentation on edge membership. The
four representative GCL models (GRACE, CGA-SSG, GCA, MVGRL)
employ different edge augmentation functions. Specifically, GRACE
& CCA-SSG randomly remove edges, assuming equal importance of
all edges. GCA removes edges based on their weights, with lower-
weight edges having a higher probability of removal. And MVGRL
performs edge addition by connecting indirectly connected node
pairs. The selection of new edges is based on their weights, with
higher-weighted node pairs having a higher probability of connec-
tion. The weight of each node pair is computed using personalized
PageRank [41].

Different augmentation functions cause distinct changes in edge
membership within augmented views: edge removal augmenta-
tion converts member edges in the original training graph to non-
members in the augmented views, while edge addition augmenta-
tion changes non-member edges in the training graph to members
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in the augmented views. We will analyze the impact of different
augmentation functions on the attack performance in Section 6.

2.2 GCL under Federated Setting

Recently, GCL models have been extended to the federated learning
(FL) setting [4, 53, 59, 68]. In this framework, multiple clients and a
central server are involved. Each client possesses a private graph
that cannot be shared with other clients or the server due to privacy
concerns. The server holds a global GCL model and distributes it
to all clients as the initialization for their local GCL models. Each
client trains its local GCL model using its private graph and obtains
the embeddings of all the augmented views. Then each client sends
these local embeddings to the server. The server aggregates the
clients’ local embeddings to generate the global embedding by uti-
lizing an aggregation mechanism such as FedAvg [34], self-adaptive
method [59], and clustering [65]. Next, the server sends the updated
global embeddings back to the clients. This learning process iterates
until the global model reaches convergence.

2.3 Learning Using Privileged Information

Learning Using Privileged Information (LUPI) is a novel learning
paradigm that extends traditional training examples by incorporat-
ing additional privileged information. This privileged information,
which may include qualities, properties, or contextual details of
the training instances, is available during the training phase but
not during testing. In the LUPI paradigm, along with the standard
training data, the learner is provided with privileged information
x*. The learning goal is to utilize the privileged information x* to
learn a better classifier than one would learn without it.

Several approaches have been proposed for classifier learning
under the LUPI paradigm [3, 56, 61, 62]. These approaches represent
privileged information in different ways: (1) the privileged informa-
tion is represented as a set of slack functions. The learner simultane-
ously estimate the decision function h and the slack functions [56];
(2) the privileged information is combined with the classifier as
regularization terms. The model is penalized if its loss, considering
the privileged information, exceeds the loss when the privileged
information is not considered [62, 69]; and (3) the privileged infor-
mation is represented as secondary targets. The classifier model
first classifies the secondary targets and then uses the predictions
to classify with primary features [61]. However, these approaches
are closely tied to convex optimization problems. We will discuss
how to handle the privileged information in our setting (Section 5).

3 PROBLEM FORMULATION

3.1 Threat Model

Given a GCL model @, its training graph G(V, E), where V and E
denote the vertices and edges respectively, for any node pair v;
and v (vj,0x € V), the adversary aims to infer if there is an edge
(vj,vg) in G. In this paper, we consider the server as the adversary,
and assume he has the following adversary knowledge:

e White-box access to target model ®: Under the federated
setting, the adversary has the white-box access to @, including
the architecture of both encoders and decoders, parameters, and
the contrastive loss function of ®. The adversary also can access
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GCL Model Edge Augmentation Contrastive objective | Change of edge membership in aug. views
GRACE [85] . Node-level .
CCA-SSG [75] Edge removal (uniformly) Node & feature-level Member (Input.G) — non-member (view)
GCA [86] Edge removal (non-uniform) Node-level Member (Input.G) — non-member (view)
MVGRL [14] | Edge addition (non-uniform) Node-level Non-member (Input.G) — member (view)

Table 1: Comparison of the four GCL models used in the paper.

the local node embeddings of all the augmented views generated
by each client.

e Shadow graph G: the adversary has access to a shadow graph
(or multiple graphs) G° which contains its own structure and
node attributes. G5 may be sampled from a different domain
and distribution from those of G. The shadow graphs can be
obtained from the data repositories that are publicly available. 2

In addition to the shadow graph, the adversary may also possess
knowledge of a subgraph within the target graph G, which can be
considered as a special case of the shadow graph.

An example of a white-box attack is the federated GCL paradigm,
where clients share the node embeddings of their local augmented
views with a server (acting as the adversary). The server aims
to infer the structural information present in the clients’ private
graphs [4, 53, 55, 68]. Even in situations where the requirements for
a white-box attack may not be practical for an adversary, the ability
to launch a more powerful attack could be valuable for designing
more robust defenses [26].

Formally, given a training graph G, a GCL model ® trained on G, a
target node pair v}, vg (0,0 € G) and their embeddings {z;}, {zx}
in all the augmented views of G, as well as the adversary’s auxiliary
knowledge Ky, the link membership inference attack (LMIA) can
be defined as a mapping function f:

fiZJj,Uk, {Zj}» {Zk}:KAug - {0,1} (2)
where 1 (0, resp.) indicates the edge (vj,vx) € G ((vj,v) ¢ G, resp).

4 PRE-ATTACK ANALYSIS:
DISTINGUISHABILITY OF MEMBERSHIP

There are notable distinctions between the GCL setting and the
supervised setting in terms of edge membership. In supervised
learning, all node pairs have fixed membership during training.
Conversely, for GCL models, the link membership of node pairs
can vary across different augmented views and may differ from the
original training graph. This introduces two types of link member-
ship: (1) the ground-truth membership which represents the link
membership of a node pair in the original training graph; and (2)
the augmented membership which denotes the link membership
of a node pair in a particular augmented view. Each node pair pos-
sesses a fixed ground-truth membership, but it can have different
augmented memberships across different augmented views due to
edge augmentation.

There is a relationship exists between augmented and ground-
truth membership. Since most GCL models only introduce minimal
perturbations to the graph topology, the majority of augmented
memberships across all augmented views remain consistent with
the ground-truth membership for each node pair. Consequently,
ZExamples of public graph data repositories include Stanford’s SNAP

dataset (http://snap.stanford.edu/data/index.html) and UCI graph repository
(http://networkdata.ics.uci.edu/index.html).
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the ground-truth membership can be inferred from the augmented
memberships using majority voting: the augmented membership
type that appears most frequently across all augmented views is
considered the ground-truth membership.

The existing LMIA [8] that leverages node embeddings for infer-
ence has identified an important property of edge membership for
the supervised graph learning models: member and non-member
links can be distinguished by the similarity of node embeddings as
the connected nodes (members) tend to have more similar embed-
dings compared to disconnected nodes (non-members) on average.
However, as the adversary only has access to the embeddings of the
augmented views, two crucial questions arise: (1) Are ground-truth
member/non-member links distinguishable by the embedding similar-
ity of node pairs in the augmented views? (2) If (1) does not hold, as the
ground-truth membership can be inferred from the augmented mem-
bership, are augmented member/non-member links distinguishable
by the embedding similarity of node pairs in augmented views?

To answer these two questions, we trained the four represen-
tative GCL models (GRACE, CGA-SSG, GCA, MVGRL) on three
real-world datasets 3 and measured the Cosine similarity between
the embeddings of the node pairs in the augmented views. Then we
assign either the ground-truth membership label or the augmented
membership label to each node pair and visualize the distribution of
embedding similarity for each membership type. Figure 2 visualizes
the distribution of members/non-members when GRACE is the
target model. The results of other GCL models can be found in
Appendix A. We have the following four observations.

Obs.1 - Augmented member/non-member edges are not
distinguishable by embedding similarity in the augmented
views. Figure 2 (a) visualizes the embedding similarity of the aug-
mented member and non-member edges for the Cora dataset. It is
evident that members and non-members in the augmented views
cannot be distinguished based on their embedding similarity. This
observation can be attributed to the nature of GCL models, which
aim to learn graph representations that are invariant to small topol-
ogy perturbations. As a result, the node embeddings and their
similarity are expected to remain unchanged despite membership
variations in the augmented views.

Obs.2 - Ground-truth member/non-member edges are par-
tially distinguishable by embedding similarity in the aug-
mented views. Figure 2 (b) visualizes the embedding similarity of
the node pairs in all the augmented views where each node pair is
associated with its ground-truth membership label. While ground-
truth members/non-members exhibit better distinguishability than
augmented members/non-members (as observed in Observation 1),
there are still overlaps in certain regions. In other words, the simi-
larity between some member node pairs is close to or smaller than
that of some non-member node pairs. This observation aligns with

3The three datasets are Cora, Citeseer, and Facebook datasets. More details of the
datasets can be found in Section 6.1.
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Figure 2: Distribution of augmented/ground-truth members/non-members by embedding similarity (Cora dataset). Members
and non-members are denoted in blue and red respectively. X-axis: member and non-member samples, y-axis: Cosine similarity

between node embeddings.

our intuition. Although graph representations should be invariant
to small topology perturbations, the embedding similarity in the
augmented views still contains noise due to edge augmentation.
Thus, in an augmented view, a member node pair (vj,v;) can be
similar to a non-member node pair (v’ UI/C) in terms of their embed-
ding similarity, due to the removal of the edge (v, vy) or insertion
of a new edge (v;., v,’c),

Obs.3 — Ground-truth members/non-members are well dis-
tinguishable by the embedding similarity of those whose
augmented membership is the same as their ground-truth
membership. Figure 2 (c) visualizes the embedding similarity of
the node pairs in the augmented views where their augmented mem-
bership is the same as their ground-truth membership. Each node
pair is associated with its ground-truth membership. We observe
that, by removing those similarity values of node pairs of inconsis-
tent augmented and ground-truth membership, the ground-truth
members/non-members are well distinguishable by the embedding
similarity in the augmented views. We will utilize this observation
to design the attack features.

Obs.4 — Obs.1 - 3 hold for both edge removal and edge addi-
tion augmentations. While Figure 2 (a) - (c) shows the embedding
of the GRACE model (edge removal as augmentation), we observe
the same phenomenon on the embedding of MVGRL model (edge
addition as augmentation) (Figure 13 in Appendix A).

5 DETAILS OF GCL-LEAK

Our pre-attack analysis (Section 4) reveals important observations.
First, Obs.1 suggests using the ground-truth membership as the la-
bel for training the attack model instead of the augmented member-
ship. Second, Obs.2 & 3 indicate that only node pairs with consistent
augmented and ground-truth memberships should be selected for
feature extraction. Based on these insights, we design GCL-LEAK,
the first LMIA against GCL models. In this section, we present the
details of GCL-LEAK.

Attack overview and challenges. At a high level, GCL-LEAk
employs a shadow graph, denoted as G5, to train the membership
inference attack model. The adversary leverages its white-box ac-
cess to the target model to input G¥ and retrieve the embeddings
of all node pairs in the augmented views of G5, along with their
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augmented and ground-truth memberships. Subsequently, the ad-
versary conducts supervised training of the attack model using
node pairs and their membership labels extracted from G°. Finally,
the trained attack model is utilized to infer the membership of nodes
as members or non-members in the target graph, denoted as G.

A naive approach is to extract attack features from the embed-
ding similarity of those node pairs which have consistent aug-
mented and ground-truth memberships. While this is a valid ap-
proach for generating the attack training data (denoted as A2i),
it poses a challenge on generating the attack testing data (denoted
as A, as the adversary lacks the “same-membership” informa-
tion for the target node pairs. This absence of “same-membership”
information information during testing prevents its combination
with the input features to predict the membership label.

To address this challenge, we design our attack classifier under
the Learning Using Privileged Information (LUPI) paradigm [42, 56].
At a high level, LUPI leverages the privileged information that is
available during training but not during testing. In our context,
privileged information refers to the “same-membership” informa-
tion. Specifically, we encode this “same-membership” information
into the attack classifier features to construct an effective attack
classifier.

Essentially, GCL-LEAK includes three phases: (1) generating MIA
training data, (2) attack model training, and (3) membership inference.
Figure 3 illustrates the framework of GCL-LEAK. In the following
subsections, we delve into the details of each phase of GCL-LEAK.

5.1 Notations and Definitions

Before we delve into the details of the attack, we define some
concepts and notations that will be commonly used in the paper.
Given a graph sample G and an augmented view G’ of G', we
use z, to denote the embedding of a node v € G'. Given a graph
sample G!, two nodes 0,0 € G, and an augmented view Gl of
Gi, we say the node pair (v}, 05) has consistent membership in Gt
if the augmented membership of (v, v;) in G' is identical to the
ground-truth membership of (vj,vx) in G'. We say the node pair
(vj,g) is a true positive member in Glif vj and vy are connected
in both G! and G!, and (v, k) is a true negative member in Glif
v and vy are connected in either G' or G, but not both. We say a
node pair (v}, vy) is a consistent true positive member if v; and vy are
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Figure 3: An overview of GCL-LEAK.

connected (member) in not only G but also all the augmented views
of G*, and a consistent true negative member if they are disconnected
(non-member) in neither G* nor any augmented view of G*.

5.2 Phase 1: Generating Attack Training Data

We present two types of methods to construct the attack training
datasets: (1) The basic method that constructs the attack training
data from the node pairs in all augmented views; and (2) the en-
hanced method that constructs the attack training data from the
node pairs in the augmented views that respect an additional con-
trastive constraint of the target GCL model. For simplicity, we
denote the attack training dataset constructed by the basic and
enhanced methods as A" and A" respectively.

Basic method. The adversary performs the following steps to
generate A" First, N graphs are randomly sampled from the
shadow graph G°. Additionally, a set of node pairs S = {(v 7, 0k) } is
selected from G°. A node pair (vj,vx) € S is classified as a member
node pair if it is connected in the shadow graph G°, otherwise,
it is classified as a non-member node pair. To ensure a balanced
distribution of member and non-member samples in A1, S has
the same number of member and non-member edges.

Second, for each selected node pair (vj,vx) € S, the adversary
computes the similarity between their embeddings in the aug-
mented view G, denoted as sim(z;., Zlic)' Multiple similarity metrics
can be used to evaluate the similarity between node embeddings.
In this paper, we consider two widely-used similarity functions (i.e.,
t = 2): Cosine similarity and Dot Product.

Third, for each node pair (v;,v;) € S, the adversary constructs
its concatenated similarity value in the augmented view G’ (denoted
as Ci(vj, vy)) as follows:

C'(vj,0x) = simy (2 z )|l . |Isime (2], 2) (3)
By concatenating ¢ similarity values, C*(v 7,0k ) is of length t.

Next, for each selected node pair (vj,v;) € S, the adversary
assigns all the augmented views into two groups, P™ and P~, based
on the membership of (v}, vx) in these views. Specifically, the aug-
mented views in which (v}, v) is a true positive member are as-
signed to P*, and those where (v}, vy) is true negative member are
assigned to P~.

Finally, for each member node pair (vj,v;) € P*, the adversary
generates its attack feature x by concatenating its similarity values
of all of its true positive members across different augmented views:

©

X = ||VéieP+Cl(Uj’ U),
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And the adversary inserts a data sample (x, “1”) into A™™ for the
node pair (vj, vg).

Similarly, for each non-member node pair (vj,05) € P, the
adversary generates its attack feature x as follows:

©)

where C(v 7, vg) follows Eqn. (3). The adversary then inserts a data
Atrain.

X = ||véi€P,Cl(vj,Uk),

sample (x, “0”) into

As the vector length of x is determined by either |P*| or |P7|,
it varies for different node pairs. This poses a potential problem
for training of the attack model as the feature vector length can
vary across different samples. To address this problem, we align
the length of the feature vector of all samples in A™™ to ensure
consistency. To explain the details, we first define the minimum
size £ as follows:

(6)

where |P*| and [P~ | are the number of augmented views in P* and
P~, respectively. The value of ¢, is determined by the augmenta-
tion ratio y. More discussions of £,i, and how its value is impacted
by different graph augmentation methods will be provided later in
this section. After computing £, the adversary randomly samples
fmin similarity values from P* and P~ respectively for each node
pair (v}, vy ), and generates x (Eqns. (4)) and (5)) from the sampled
similarity values. This alignment ensures that the length of the
feature vector is consistent across all samples, which is equal to
t X fmin, where t represents the number of similarity metrics.

Enhanced method. As GCL aims to maximize the agreement
between any pair of G and G of the same input graph G', it is
expected that node pairs with the same augmented membership
in both G and G?! should exhibit higher similarity compared
to those with different augmented membership. This introduces a
contrastive constraint on the node pairs in the augmented views,
where only node pairs with the same augmented membership in
the two contrastive augmented views should be considered for
extraction of attack features.

We incorporate the contrastive constraint with the procedure

of generating the attack training data and consequently construct
Atrain®

[min = minv(vj’uk) EAtrain(|P+|, |P_ |),

. The construction of A" follows a similar approach to
, with the only difference being that training samples are gen-
erated only from node pairs with consistent membership across
both contrastive views generated from the same graph sample.
Specifically, for each sampled node pair (vj, vy ), the adversary gen-
erates a corresponding training sample only when (vj,05) is a

Atrain



GCL-LeAk: Link Membership Inference Attacks against Graph Contrastive Learning

Augmentations Membership label

. ALL wyr
G G

c12 “g

) A2 wyr
G { G

G22 “1”

3 ’\3'1 KK0”
G G

6‘3,2 ((On

Figure 4: An example of the membership of a node pair
(vj,vx) in three augmentations. The pair (vj,v;) is a member
edge in the original training graph.

consistent true positive/negative member in any input graph sam-
ple G'. The ground-truth membership of (v 7,0k ) is still used as the
membership label in Arain® The feature alignment process remains
the same as in A7,

To illustrate the construction of and , let’s consider
a GCL model that samples three input graphs G', G2, G* from the
training graph and constructs six augmented views from these
samples. We focus on a node pair (vj,vx) that is an edge in the
training graph (i.e., it is a member). Figure 4 depicts the membership

of (vj,vx) in the six augmented views. The following data samples
Atrain

Atrain Atrain*

are constructed by GCL-LEAK for (v}, v) in and Atrain”;

o AMain. there js one member sample for (vj,01):
1,1 2,1 2,2 »qw
(C™ (0, ) 1C™ (0, vi)IC* (v, 0k ), "17).

There is no non-member sample for (v}, vg).
ok
o A'3I07: there is one member sample for (v 7, Uk):

(C*1 (0, o) IC*2 (0, 0),"17)
There is no non-member sample for (v}, vy).

Atrain yergyg Atrain® gtrain o Atrain® exhibit variations in the
length of the feature vector. Moreover, different graph augmentation
methods can impact the distribution of member and non-member
samples in A" and A" We explain the details below.

AMain_ Recall that A" only considers the similarity values of
true positive/negative members. When edge removal is used as
the graph augmentation method with an augmentation ratio of y,
each member edge will have one corresponding data sample with
an expected feature vector length of N(1 — y), labeled as “1”. On
the other hand, all non-member node pairs will continue to be
non-members in all augmented views. Hence, each non-member
node pair will have one corresponding data sample with a feature
vector length of N. The expected length of the feature vector after
alignment is t X £yin, where

bmin = min (N(1-y),N) = N(1-y). ™

Furthermore, as A" exclusively contains true positive and neg-
ative members, it includes a total of s data samples, with s/2 as
members and s/2 as non-members.

When edge addition is used as the graph augmentation method,
AYaIN retains the same expected feature vector length (N(1 - y))
and sample size (s), following a similar reasoning as above. Due to
space constraints, we omit the detailed explanation.
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A2in”. When edge removal is used as the graph augmentation
method, the probability that a true positive member edge is consis-
tent in both augmented views of the same input graph is (1 — y)2.
Hence, the expected feature vector length of member samples is
(1 - y)?, while the length of the feature vector for all non-member
samples is N. Therefore, the expected length of the feature vector
after alignment is t¢, where

®)

Similar to comprises s data samples (s/2 members
and s/2 non-members). When edge addition is used as the graph

Cmin = min (N(l - y)Z,N) =N(1-y)2.

Atrain Atrain*

augmentation method, AWaIn® maintains the same expected feature
vector length (N (1 — y)?) and the same number of samples (s) as
when edge removal is used for augmentation.

5.3 Phase 2: Attack Model Training

Once the training data is generated, the adversary proceeds to
train a binary classifier A for edge membership prediction. Sev-
eral options for binary classifiers are available, such as Multi-layer
Perceptron (MLP), Random Forest (RF), and Linear Regression (LR).
In our experiments, we consistently observe that the MLP attack
achieves the highest attack accuracy compared to MLP, RF, and LR
in the majority of settings. Therefore, we employ an MLP as the
attack classifier. The output of the MLP classifier is a probability
vector that indicates the likelihood of an instance being a member
or non-member. Additional details regarding the setup of the MLP
classifier can be found in Section 6.

Unfortunately, as most of the existing LUPI solutions [56, 61, 62]
are only applicable to the convex optimization problems, none
of them can be applied to our setting. Thus we take a different
approach by encoding the identical-membership information within
the structure of the attack classifier. Specifically, we utilize A2
to extract attack features so that the attack classifier learns from the
embeddings of node pairs with identical membership exclusively.
This enables the attack classifier to infer the membership of the node
pairs in the testing data even though these pairs do not have such
information of identical-membership. We will show that GCL-LEAK
outperforms the attack models that utilize other LUPI approaches
[6, 61] in terms of the attack accuracy (Section 6.5).

5.4 Phase 3: Membership Inference

During the inference stage, for each target pair (vj,vx), the ad-
versary extracts its attack feature from the embeddings in all aug-
mented views and inserts a corresponding sample into the attack
testing dataset A*St. Since the adversary does not possess knowl-
edge about whether (v, vy ) is a true positive/negative member in
the target graph, £ augmented views are randomly selected, where ¢
represents the length of the attack feature. Subsequently, the attack
feature of (v}, vy) is extracted by concatenating its similarity values
in these selected views. As the information of identical-membership
is not available, the attack feature is constructed by following Eqn.
(4) and (5). This ensures that the MIA testing data maintains the
same feature size as the MIA training data. Finally, the adversary
inputs A" into the attack classifier A and obtains a probability
vector for all node pairs in the testing data. For each node pair, the
class with the higher probability is selected as the predicted class.
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5.5 Extension to Node Augmentation based GCL
Models

Similar to edge augmentation methods, node augmentations in
GCL models can involve either removing nodes along with their
edges from augmented views or introducing synthetic nodes as
new entities in these views [15, 71, 72, 74]. In cases where node
insertion is employed for augmentation, the membership status of
all node pairs in the initial training graph remains unchanged in the
augmented views. In simpler terms, the augmented membership
and ground-truth membership consistently align for each node
pair. Consequently, the adversary can straightforwardly leverage
the similarity of node pairs in the augmented views to infer their
membership in the original graph. Conversely, when node deletion
is applied for augmentation, the membership of each node pair
becomes inconsistent across different augmented views, mirroring
the challenges posed by edge augmentation. As a result, our GCL-
LEAK can be readily adapted to infer edge membership for GCL
models undergoing these forms of node augmentation.

6 PERFORMANCE EVALUATION

We perform an extensive set of experiments, aiming to answer
the following three questions: (Q1): how does GCL-LEAK perform
against the representative GCL models and real-world datasets;
(Q2): How do various augmentation configurations impact the per-
formance of GCL-LEAK? (Q3): How do various graph properties
impact the performance of GCL-LEAK? and (Q4):How does the
choice of LUPI techniques impact the performance of GCL-LEAK?

6.1 Experimental Setup

All the experiments are executed on a server with NVIDIA A100
GPU and 40GB memory. All the algorithms are implemented in
Python along with PyTorch.

Datasets. we utilized three real-world datasets, namely Cora,
Citeseer, and Facebook, that are widely used in graph learning
research to evaluate the effectiveness of our attack. The statistical
information of these datasets can be found in Appendix B.

Target models. We use four state-of-the-art GCL models, namely
GRACE [85], MVGRL [14], GCA [86], and CGA-SSG [75]. The de-
tails of the parameter setup of these four models and their perfor-
mance on node classification can be found in Appendix C.

Implementation of attack classifier. We utilize a Multi-layer
Perceptron (MLP) consisting of three hidden layers with 64/32/16
neurons at each layer as the attack classifier. ReLU is used as the
activation function for the hidden layers, while the Sigmoid function
is used for the output layer. The attack classifier is trained for 1,000
epochs with a learning rate of 0.001. We employ cross-entropy loss
as the loss function and Adam optimizer.

Training and testing data of attack classifier. To construct
the attack training dataset, we partition the original graph’s edges
into two sets: 70% are randomly assigned as member edges (Emem),
and the remaining 30% are designated as non-member edges (Epnon).
The attack training dataset consists of members that are randomly
sampled from E e, and non-members that are randomly sampled
from Ej,p,,. The number of members and non-members is the same,
which equals [|Epon| X 0.7]. The attack testing dataset is generated
in a similar way as the training data: it consists of the same number
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of members and non-members that are randomly sampled from the
set of edges that were not sampled for the training data. The testing
data is also balanced across members and non-members. The size
ratio between the training and testing is 7:3. The actual number of
training/testing samples can be found in Appendix D.

Attack evaluation metrics. To assess the attack effectiveness
of GCL-LEAK, we employ three metrics: (1) Attack accuracy —it mea-
sures the ratio of the correctly predicted edges (for both members
and non-members) by GCL-LEAK over the total number of node
pairs in the testing data; (2) Area Under the Curve (AUC) - it mea-
sures AUC of the ROC curve comprising the true positive rate (TPR)
and false positive rate (FPR) of the attack classifier at various thresh-
olds; and (3) True-Positive Rate at False-Positive Rates (TPR@FPR)
[1] - It measures TPR of the attack at various FPR values.

Baseline approaches. We compare GCL-LEAK with four base-
line methods:

¢ Baseline-A (Existing LMIA). We adapt LMIA [8] to our setting
which extracts the attack features from the final node embed-
dings of the training graph instead of the node embeddings of
all the augmented views.

¢ Baseline-B (Without LUPI). By this approach, each data sam-
ple in A corresponds to a node pair, with its attack features
extracted by concatenating the similarity values of the node pair
in all the augmented views, and its membership label indicating
the ground-truth membership of the node pair.

e Baseline-C (Concatenation of embeddings). By this method,
the attack feature is extracted from the concatenation of embed-
dings instead of the concatenation of embedding similarity. The
ground-truth membership is used as the membership label.

e Baseline-D (Threshold-base attack). This method consists of
an ensemble of three threshold-based sub-attacks, each using a
different similarity metric (Dot product similarity, Cosine simi-
larity, and Euclidean distance). For each sub-attack, a threshold-
based LMIA [8] is used to infer the membership of the given node
pairs. All node pairs whose embedding similarity is higher than
the threshold are considered members, otherwise non-members.
The final member/non-member decision is obtained by majority
voting over the three attack classifiers.

To ensure a fair comparison between GCL-LEAK and the baselines,
we ensure the training and testing datasets used by GCL-LEAK and
the baselines are of the same size.

6.2 Attack Performance (Q,)

Effectiveness of GCL-LEAK. Figure 5 illustrates the attack accu-
racy of GCL-LEAK for different GCL models trained on the three
datasets. The shadow graph is sampled from the same graph as the
target graph. First, the results demonstrate the high effectiveness
of GCL-LEAK whose attack accuracy is consistently above 0.83 for
all settings, significantly surpassing the random guess accuracy
of 0.5. Indeed, GCL-LEAK can achieve a perfect attack accuracy of
1 in some settings (e.g., with CCA-SSG model as the target GCL
model on Cora and Citeseer datasets, Figure 5 (d)). Second, GCL-
LEAKk outperforms all four baseline approaches in all settings. In
particular, GCL-LEAK outperforms Baseline-A by a margin (ranging
from 0.08 to 0.33). GCL-LEAK also notably outperforms Baseline-
B on GRACE, GCA, and CCA-SSG models, while achieving only
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Figure 5: Attack accuracy of GCL-LEAK and baseline approaches.

a marginal victory over Baseline-B on the MVGRL model. Simi-
larly, GCL-LEAK outperforms Baseline-D by a margin of 0.04 to
0.22. Notably, Baseline-C exhibits the poorest attack performance
among the five methods. These results underscore the advantages
of GCL-LEAK over the baseline methods.

Besides the attack accuracy results, we also measure the TPR@FPR
with FPR=0.1% and AUC performance of our GCL-LEAK and the
four baselines. The observations from these results are consistent
with the attack accuracy results (Figure 5): GCL-LEAK outperforms
the three baselines in all the settings. We include these results in
Appendix E due to limited space.

GCL-LEAK is effective under transfer setting. We consider
the transfer setting where the shadow graph and target graph are
sampled from different data distributions and domains. We evaluate
the attack performance of GCL-LEAK under the transfer setting,
and present the results in Figure 6. Our main observations are as
follows. First, GCL-LEAK remains effective in the transfer setting,
with the attack accuracy higher than 0.5 (random guess). In cer-
tain settings, the attack accuracy reaches as high as 0.8 (e.g., when
Cora is the target graph and Citeseer dataset is the shadow graph,
Figure 6 (a)). This demonstrates that GCL-LEAK has successfully
learned the knowledge of how to distinguish between members and
non-members from the shadow graph and effectively transfers this
knowledge for the inference attack against the target graph. Fur-
thermore, we observe that GCL-LEAK achieves higher effectiveness
in transferring knowledge across datasets from the same domain
compared to those from different domains. For instance, when the
target and shadow datasets are sampled from Cora and Citeseer
datasets (both are citation graphs) respectively (Figure 6 (a)), the
attack accuracy can reach as high as 0.8. However, when the target
dataset is sampled from the Facebook dataset (a social graph) while
retaining the shadow dataset sampled from the Citeseer dataset (a
citation graph), the attack accuracy drops to 0.61.

Impacts of similarity metrics on GCL-LEAK. We consider
various combinations of the three similarity metrics (Cosine similar-
ity, Doc product, and Euclidean distance). Additionally, we consider
four distinct aggregation methods (concatenation, average, max
pooling, and min pooling) to integrate the similarity values com-
puted by different metrics. The performance of GCL-LEAK is eval-
uated across these diverse settings, and the results are detailed in
Appendix E.3. Our analysis reveals two significant findings. Firstly,
attacks employing a combination of similarity metrics outperform
those relying solely on a single similarity metric. This improve-
ment is attributed to the enhanced classification capabilities of MLP
classifiers, leveraging complementary information from different
similarity metrics. Secondly, among the four aggregation methods
studied, attacks utilizing the concatenation of combined similarity
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metrics demonstrate superior performance. Consequently, in subse-
quent discussions, we exclusively consider the setting of GCL-LEAK
where the attack features are derived from the concatenation of
Cosine similarity and Dot Product.

6.3 Impact of Augmentation Configurations (Q;)

In this section, we explore the impact of four types of GCL augmen-
tation configurations on attack accuracy, namely, augmentation
ratio, number of augmented views, edge augmentation methods
(edge drop vs. edge addition) and contrastive objectives, on the
performance of GCL-LEAK. Beyond these configurations, we also
evaluate the impact of feature augmentation on attack performance,
and found that feature augmentation does not significantly impact
the attack accuracy. Thus we include the results of the feature
augmentation in Appendix F.

GCL model with a lower augmentation ratio is more vul-
nerable. We vary the augmentation ratio, which represents the
percentage of the perturbed edges to the total number of edges in
the original graph, to train the GCL models. Then we measure the
attack accuracy of GCL-LEAK against these models, and present
the results in Figure 7. We make the following key observations: (i)
In most settings, a higher augmentation ratio consistently leads to
lower attack accuracy. This trend holds for all four models, irrespec-
tive of their augmentation methods. The observation aligns with
our intuition, as a higher augmentation ratio results in a larger num-
ber of edges with changed membership across augmented views.
Consequently, the feature size of samples in the attack training
dataset decreases (Section 5), leading to an expected degradation
in attack accuracy. (ii) The attack accuracy exhibits the most sig-
nificant change on the Facebook dataset compared to the other
two datasets as the augmentation ratio increases. We attribute this
to the lower homophily of the Facebook dataset compared to the
other datasets. Additional details on how graph homophily impacts
attack accuracy can be found in Section 6.4. (iii) The attack accuracy
demonstrates a more pronounced change for the CCA-SSG model
compared to the other models as the augmentation ratio varies. We
believe this is partially connected with the contrastive loss func-
tions of the GCL models (more details on the impact of contrastive
loss on attack accuracy are discussed later in this section).

GCL model with more augmented views is more vulnera-
ble. Figure 8 presents the attack performance for the GCL models
with various numbers of augmented views. As the results indicate,
all three datasets exhibit a noticeable increase in attack accuracy
with a greater number of augmented views. This observation is eas-
ily explained since the number of augmented views determines the
size of the attack features (Section 5). With more augmented views,
the information encoded in the attack feature increases, resulting
in higher attack accuracy.
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Figure 8: Impact of number of augmented views on attack accuracy.

Edge removal augmentation has a higher impact on pri-
vacy vulnerability than edge addition augmentation. As sum-
marized in Table 1, the four GCL models employ different edge
augmentation methods, which leads to varying degrees of privacy
vulnerability to GCL-LEAK. As shown in both Figures 7 and 8, MV-
GRL consistently exhibits the lowest attack accuracy among the
four models in most settings. We suspect this is because the edge
addition augmentation method used by MVGRL adds edges that
are indirectly linked [7]. Since MVGRL utilizes a 2-layer GCN as
its encoder, the node embeddings aggregate information beyond
the 1-hop neighbors. Consequently, adding an edge between two
indirectly connected nodes results in less change in the embeddings
of these nodes compared to removing the edge between them. Thus,
edge addition augmentation has a smaller impact on embedding
similarity and incurs fewer privacy risks compared with edge re-
moval augmentation. Furthermore, as observed from both Figures 7
and 8, among the three GCL models (GRACE, GCA, CCA-SSG) that
employ edge removal for augmentation, GCA consistently demon-
strates the lowest attack accuracy in most settings. We believe this
is because GCA selectively removes the least important edges, while
GRACE and CCA-SSG remove edges randomly. As a result, GCA’s
augmentation has a lesser impact on embedding similarity in the
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augmented views compared to the other two models, resulting in
lower vulnerability to privacy attacks.

Node-level contrastive objective has less impact on pri-
vacy vulnerability than the objective at both node-level and
feature-level. As summarized in Table 1, the four GCL models
adopt different contrastive objectives. Specifically, GRACE, MVGRL,
and GCA only consider node-level contrastive loss, while CCA-SSG
incorporates contrastive loss at both node and feature levels. Since
all the models include feature augmentation, CCA-SSG is more
significantly affected by the augmentation compared to the other
three models. As a result, CCA-SSG exhibits the highest variation
in attack accuracy when the augmentation ratio changes.

6.4 Impacts of Graph Properties (Qs)

Graph properties can have an impact on the performance of GCL
models. Previous research [72, 84] has identified three graph prop-
erties that affect GCL model performance: graph density, graph type,
and graph homophily. In this section, we focus on investigating the
impact of these properties on attack performance. Our empirical
results reveal that graph density and graph type do not significantly
impact attack accuracy. Thus we include the results of graph den-
sity and graph type in Appendix G, and only present the results of
graph homophily in this section.
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At its core, graph homophily refers to the tendency of nodes
to connect with others that share similarities [35]. Following the
approach of [39], we measure graph homophily using network mod-
ularity. Formally, given a graph G, suppose all nodes in G are divided
into two groups (Groups 0 & 1). Let ¢; = 1 if a node v; belongs to
Group 1 and ¢; = —1 otherwise. Then the network modularity Q of
G is measured as follows:

did;
Q= i Z (Aij - #)Cicj-

vj,0j

&)

where m represents the number of edges in G, A; ; denotes the
number of edges between nodes v; and v; (typically 0 or 1), and
d; and d; represent the degrees of nodes v; and v;, respectively.
Generally, Q falls within the range of [-1, 1]. A higher value of Q
indicates a higher likelihood of nodes within the same group being
connected compared to nodes from different groups.

For this part, we use two new graphs, Facebook Ego graph*
and Google+ graph® [27]. The statistics information of these two
graphs can be found in Appendix B. For each graph, we generate
five graph samples of various network modularity by randomly
adding/deleting edges. Then we measure the performance of GCL-
LAk on the GCL models trained on these graph samples.

Figure 9 presents the attack performance of GCL-LEAK on the
graphs with varying modularity. We make the following observa-
tions. First, higher homophily generally results in higher attack
accuracy across most settings. For instance, the attack performance
for CCA-SSG is only 0.66 when the homophily of the Facebook Ego
graph is -0.5. However, the attack accuracy increases to 0.83 when
the graph homophily grows to 0.5. Second, graph modularity af-
fects different GCL models to varying degrees. Specifically, MVGRL
and CCA-SSG demonstrate more pronounced changes in attack
accuracy in response to changes in graph homophily compared to
GRACE and GCA. Next, we explain these two observations.

Why graph modularity can affect attack performance? Intuitively,
in the graphs with higher homophily, the connected nodes are more
likely to exhibit similarities. As a result, these graphs are less sen-
sitive to edge augmentation compared to graphs with lower ho-
mophily. Consequently, the embedding similarity between member
and non-member edges becomes more distinguishable in higher
homophily graphs, leading to higher attack accuracy.

Why GRACE and GCA are less sensitive than MVGRL and CCA-
SSG? We believe this is partly because the extent of change in graph
homophily caused by edge addition augmentation in MVGRL is
smaller compared to the edge removal augmentation employed by
4Facebook Ego graph is a social network graph sampled from Facebook dataset [27].
It is different from the Facebook dataset that we used in the previous experiments as it

has higher network modularity.
Shttps://snap.stanford.edu/data/ego-Gplus.html
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Figure 10: Attack accuracy of GCL-LEAK under various LUPI
paradigms.

GRACE and GCA. Consequently, the effect of graph homophily on
the attack performance is less pronounced in MVGRL. In addition,
CCA-SSG utilizes a node-level contrastive objective, which places
greater emphasis on node features compared to GRACE and GCA.
Thus the impact of edge augmentation on the attack performance
is diminished in CCA-SSG. Furthermore, it is possible that the
attack accuracy for GRACE and GCA is already sufficiently high
even when the graph homophily is as low as -0.5. This suggests
that these models are inherently more robust to variations in graph
homophily, leading to a reduced sensitivity of GCL-LEAK to changes
in this graph property.

6.5 Impacts of Various LUPI Methods (Q4)

LUPI encompasses various learning strategies, each with distinct
methods for handling privileged information [3, 56, 61, 62]. These
methods typically involve the representation of privileged infor-
mation through slack functions [56], regularization terms or a sec-
ondary feature [62, 69], and secondary targets [61]. Given that
slack functions are commonly employed in Support Vector Ma-
chine (SVM)-based models, they cannot be directly applied to the
neural network based models such as GCL. Therefore, we mainly
consider the other two categories of LUPI approaches. Specifically,
we adapt two LUPI algorithms [6, 61] to our problem setting:

Secondary feature [61]: The basic idea of [61] is to represent the
privileged information as a secondary feature. The learning model
encompasses training a secondary classifier with the secondary
feature, whose output is introduced as the regularizer term to the
loss function of the primary classifier. To adapt this method to our
setting, we treat the augmented membership of each node pair as a
secondary feature. More details of how to add the secondary feature
to our attack model can be found in Appendix H.

Secondary target [6]: Basically, [6] treats the privileged infor-
mation as the secondary target. The learning model’s objective is
to minimize the loss associated with both the primary target and
the secondary target. To adapt [6] to our setting, we treat the attack
model as a multi-learning task. The objective of this multi-learning
task is to include the loss of membership discrimination (evaluated
over the ground-truth memberships) and the loss from the sec-
ondary target (evaluated over the memberships in the augmented
views). More details on how to add the secondary feature to our
attack model can be found in Appendix H.

Comparison between different LUPI approaches. Figure 10
presents the accuracy of the attack models equipped with the three
different LUPI methods. The main observation is that, although
the three methods have comparable attack accuracy, GCL-LEAK
outperforms the other two methods across all the settings. In par-
ticular, the attack accuracy of GCL-LEAK can be as high as 1, while
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the attack accuracy of the other two methods is 0.87 and 0.95 re-
spectively. This demonstrates the effectiveness of GCL-LEAK in
effectively handling the “identical-membership" information.

7 POSSIBLE DEFENSES

Given the effectiveness of GCL-LEak against GCL models, in this
section, we design countermeasures to mitigate the privacy risk of
GCL models.

Details of defense mechanisms. Intuitively, as GCL-LEAK
utilizes the node embeddings as the input, adding perturbations
to node embeddings can diminishing the attacker’s ability to infer
edge membership. In this paper, we follow the basic idea of [48] and
incorporate noise directly to the node embeddings. Specifically,
for each augmented view G and each node v; € G, we add noise
to its embedding z;. The noise follows the Laplace distribution of
the density function %ef% where b is the noise scale and y is
the location parameter of the Laplace distribution. Intuitively, a
higher value of b indicates more noise added to the embedding. On
the other hand, adding more noise can lead to higher accuracy loss
of the GCL models. To address the trade-off between privacy and
model accuracy, we consider two different methods to inject noise:

o Full noise (FNoise): Given a node embedding z, the noise is
injected to all the dimensions of z.

Partial noise (PNoise): Given a node embedding z, the noise is
injected selectively only to the dimensions of z that are least im-
portant to the target model. For the node embeddings from each
augmentation, we evaluate the importance of each embedding
dimension in terms of the effectiveness of node classification,
which is measured by the SHapley Additive exPlanations (SHAP)
method [32]. We sort the dimensions by their SHAP values, and
perturb [d X r] dimensions of the lowest importance, where d is
the total number of dimensions, and r € (0, 1) is the perturbation
ratio. A higher perturbation ratio leads to more dimensions to
be perturbed. When r = 1, it is equivalent to FNoise.

Unfortunately, as both FNoise and PNoise do not utilize the
concept of adjacency of datasets to determine the amounts of noise,
they cannot offer a formal guarantee of differential privacy (DP)
[9]. However, our empirical evaluation will demonstrate that both
FNoise and Noise outperform a DP-based GNN [44] in terms of the
trade-off between defense effectiveness and model accuracy.

Baselines. We adapt two existing defense mechanisms to our
setting as the baseline approaches: (1) GAP [44]: GAP was originally
designed to provide both node-level and edge-level differential
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Figure 12: Defense-utility trade-off of our defense methods
and the two baseline methods against both GCL-LEAK and
W-LMIA [8] attacks (GRACE model, Cora dataset, r = 0.4 for
PNoise). The x symbol indicates no defense.

privacy for GNNs. We adapted GAP to GCL models ¢ to add the
Gaussian noise to node embeddings in the augmented views. In our
experiments, we follow the same setup of GAP and calibrate the
noise scale with the given privacy budget e = {0.01,0.1, 1,5, 10}.
(2) Dropout: We adopt the dropout technique, which has been
demonstrated as an effective defense against MIA for the non-
graph classification models [45]. We adapted this technique to GCL
models by randomly halting the update of & percentage of neurons
within the GCL model during each training iteration, where o €
[0,100%) is the dropout ratio. In our experiments, we use ¢ =
{20%, 40%, 60%, 80%}.

Evaluation metrics. To evaluate the effectiveness of the defense
mechanism, we measure both attack accuracy and target model
accuracy after deploying the defense mechanisms. Regarding attack
accuracy, we use the same evaluation metric as defined in Section
6. In terms of target model accuracy, we measure the target model
accuracy as the accuracy of node classification: AC = nj /n;, where
n; is the number of nodes in the testing data that are correctly
classified, and n; is the total number of nodes in the testing data.

Performance of our defenses. Figure 11 presents the perfor-
mance of FNoise and PNoise across various noise levels on the
GRACE model. First, both FNoise and PNoise are effective against
LMIAs by witnessing a decrease in the attack accuracy. The ef-
fectiveness of both methods improves with higher noise scales.
When the noise scale b reaches 0.9, both methods can reduce the
attack accuracy to approximately 0.5. Indeed, there exists a trade-
off between defense effectiveness and target model accuracy. As it
adds the noise across all dimensions, FNoise is more effective than
PNoise to protect against LMIA, but it incurs higher accuracy loss
of the target model. The additional results for other target models
and datasets can be found in Appendix L

Comparison with baselines. As our defense methods and the
two baselines use different parameters to control the defense power,
it is difficult to compare these methods in terms of their attack
effectiveness. Thus, we compare these methods in terms of their
trade-off between the defense power and target model accuracy. In
particular, we generate the defense-utility curve in which each point
presents a pair of attack accuracy and target model accuracy (utility)
values. To generate the curve, we vary the parameter setting of our
defense methods and the two baselines, and measure both attack
accuracy and target model accuracy for each setting. Intuitively, a

®We use the implementation of GAP available at https://github.com/sisaman/GAP
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defense method that has lower attack accuracy and higher target
model accuracy has a better defense-utility trade-off.

Figure 12 (a) presents the defense-utility curve of our defense
mechanisms and the two baselines. We observe that, although both
FNoise and PNoise cannot provide a formal privacy guarantee as
GAP, they can provide comparable amounts of protection against
both attacks as GAP. Furthermore, both FNoise and PNoise out-
perform the two baselines in the trade-off between defense effec-
tiveness and target model accuracy, especially when the attack
accuracy is reduced to be lower than 0.75. Both FNoise and PNoise
achieve lower attack accuracy than the baselines under the same
target model accuracy, while they deliver higher target model accu-
racy than the baselines under the same attack accuracy. In addition,
PNoise exhibits the best defense-utility trade-off among the four
methods. The results for other datasets can be found in Appendix I.

Defense against other attacks. To have a better understanding
of the defense power of our methods, besides GCL-LEAK, we evalu-
ate the performance of our defense methods against the white-box
LMIA attack (W-LMIA) [8], whose attack features were derived
from the final node embeddings learned from the embeddings of all
augmented views. Figure 12 (b) presents the defense-utility curve
of our defense mechanisms and the two baselines against LMIA.
Our observation is similar to GCL-LEAK attack: both FNoise and
PNoise are effective against W-LMIA, as they are able to reduce
the attack accuracy to around 0.5. Furthermore, both FNoise and
PNoise outperform the two baselines in terms of the defense-utility
trade-off as the defense strength increases.

Factor analysis of defense-utility trade-off. For a compre-
hensive understanding of the trade-off between defense effective-
ness and model accuracy, we investigate the impact of two graph
properties—graph density and graph homophily—along with one
specific type of data distribution, namely class distribution, on the
defense-utility trade-off. We consider these three factors due to their
recognized impact on LMIA performance [17, 83]. We present the
results in Appendix G. The key observation is that the graph density
exerts a substantial impact on the defense-utility trade-off, as our
defense method achieves better defense-utility trade-off on sparse
graphs than dense ones. On the other hand, we do not observe any
discernible impact of graph homophily and class distribution on
the defense-utility trade-off.

8 RELATED WORK

Membership inference attacks and defense. Shokri et al. [49]
initialized the research on membership inference attacks (MIAs)
against ML models. Yeom et al. [70] studied the relationship be-
tween overfitting and MIA in general. Salem et al. [45] relaxed the
assumptions of MIA in these initial works. MIA has been designed
in both black-box and white-box settings. In the black-box setting,
the adversary utilizes either the prediction probabilities (posteri-
ors) [17, 49, 70, 73] or the prediction labels [5, 28], while in the
white-box setting, the adversary utilizes the access to the target
model parameters [17, 73], the loss [43, 70], and the gradients [37].
Recently, MIAs have been extended to various application scenar-
ios, including generative models [16], language models [50, 51],
recommender system [76], and graph neural networks [17, 40].
Numerous defense mechanisms have been proposed to counter
MIA, falling into four main categories: (1) Confidence score masking
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[23, 49] adds noise to the confidence scores generated by the target
model. (2) Regularization techniques [16, 19, 28, 36] incorporate a
regularization term into the objective function to enhance privacy.
(3) Knowledge distillation approaches [47, 82] transfer knowledge
from a larger model to a smaller one while minimizing information
leakage about data membership. (4) Differential privacy methods
[2, 5, 16, 49] offer a rigorous privacy guarantee by quantifying
the privacy of individual samples. For an in-depth survey of MIA
attacks and defenses, we refer readers to [20].

Privacy attacks against graph learning models. Various
types of privacy attacks have been designed recently to attack graph
learning models. These attacks can be classified into the following
categories: (1) The membership inference attacks (MIA) [8, 17, 18,
48, 63, 79]; (2) the attribute inference attacks (AIA) [8, 12, 77] that
aim to infer the sensitive attributes in the training graph; and (3) the
property inference attacks (PIA) [54, 60, 78, 80] that try to infer the
sensitive property of the training graph. MIA has been investigated
at node level [18] (i.e., whether a node is included in the training
graph), link level [8, 17, 48, 63, 79], and subgraph level [80], with
GNNss as the attack target. While most of the existing link-level MIA
share the same goal as ours, none of them can be directly adapted
to GCL models, due to the disappearance of the distinguishability
of members and non-members by their embedding similarity. Thus
we design new LMIA attacks against GCL models.

Privacy attacks against self-supervised learning models.
There has been limited research on the privacy vulnerabilities of
self-supervised learning models. Liu et al. [29] designed the first
membership inference attack against the contrastive learning mod-
els. However, [29] only considered the image data. Due to the fun-
damental difference between augmentation methods on graphs and
images, these attacks cannot be launched against the GCL models.
Liu et al. [31] proposed an attack to recover the target encoder
used in self-supervised learning models. While they focus on model
privacy, we focus on training data privacy.

9 CONCLUSION

This paper initializes the study of privacy risks of GCL models
through the lens of membership inference attacks. We design GCL-
LEAK, the first white-box link inference attacks against GCL mod-
els. Our experiments demonstrate the effectiveness of GCL-LEAK
against four representative GCL models. We also design a defense
mechanism against GCL-LEAK and empirically demonstrate the
effectiveness of the defense mechanism.

Future work. This paper only investigated the privacy vulner-
ability of GCL models against the membership inference attack.
Examining the privacy risks of GCL models by other types of at-
tacks such as attribute inference attacks [11, 12, 22] and property
inference attacks [10, 38, 67] is one interesting direction to explore.
Another direction of future work is to design alternative effective
defense mechanisms against GCL-LEAK.
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APPENDIX

A DISTRIBUTION OF MEMBERS AND
NON-MEMBERS

Distribution of augmented/ground-truth members/non-members
by embedding similarity in augmented views. Figure 13 visu-
alizes the distribution of members and non-members by the Cosine
similarity of their node embeddings when the MVGRL model is
used as the target GCL model. The main observations are similar

to Section 4 and thus are omitted.

Distribution of ground-truth members/non-members by
their attack features. Figure 14 depicts the t-SNE distribution
of member and non-member node pairs in the Cora dataset. We
observe that the member and non-member links are distinguishable
for all four GCL models. This observation explains why GCL-LEAK
can accurately infer the membership of node pairs.

B DESCRIPTION OF DATASETS

We conduct our experiments using five datasets, each with its own
characteristics:

e Cora [46] is a citation graph where nodes represent scientific
publications and edges represent citation links. It consists of
2,708 publications categorized into seven classes, with a total of
5,429 links.

o Citeseer [46] is a citation graph where nodes represent doc-
uments and edges represent citations. It contains 3,312 nodes
classified into six classes, with 4,732 citation links.

o Facebook [27] is a social graph consisting of Facebook users as
nodes and their friendship relationships as edges. It comprises
4,039 nodes and 88,234 edges.

e Facebook - Ego [27] is a subset of the Facebook social graph,
sampled from the larger dataset. It includes 1,050 nodes and
24,191 edges.
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(a) Distribution of augmented membership
labels by node pairs’ embedding similarity
in augmented views.

(b) Distribution of ground-truth member-
ship labels by Cosine similarity of node
embeddings in augmented views.

(c) Distribution of ground-truth member-
ship labels by Cosine similarity of embed-
dings of nodes with consistent membership
in augmented views and training graph.

Figure 13: Distribution of augmented/ground-truth members/non-members by embedding similarity in augmented views
(Cora dataset, MVGRL model). Members and non-members are denoted in blue and red respectively. X-axis: Member and
non-member samples, y-axis: Cosine similarity between node embeddings.

(a) GRACE (b) MVGRL

(c) GCA

(d) CCA-SSG

Figure 14: Distribution of MIA input features of A" for four GCL models. embers and non-members are denoted in blue

and red respectively.

Dataset V| |E| |C| | Density | Modularity
Cora 2,708 5,429 6 0.0014 0.29
Citeseer 3,312 4,732 7 0.0006 0.36
Facebook 4,039 | 88,234 2 0.011 0.09
Facebook - Ego | 1,050 | 24,191 2 0.044 0.1
Google+ 4,417 | 119,582 2 0.012 0.22

Table 2: Description of datasets (|V|: number of nodes, |E|:
number of edges, |C|: number of of classes).

Dataset | GRACE | MVGRL | GCA | CCA-SSG
Cora 0.84 0.84 0.83 0.84
Citeseer 0.72 0.74 0.75 0.73
Facebook 0.72 0.73 0.73 0.73

Table 3: Performance of the four GCL models.

e Google+ [27] is a social graph comprising 4,417 nodes and
119,582 edges. Each node is associated with features such as
gender, institution, job title, last name, place, and university.

Table 2 presents the statistics of these five datasets.

C SETUP AND PERFORMANCE OF TARGET
GCL MODELS

We adhere to the parameter setup described in the publications of
the four GCL models: GRACE [85], MVGRL [14], GCA [86], and
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CCA-SSG [75]. Specifically, we utilize the same encoder model,
which is a 2-layer Graph Convolutional Network (GCN), for all four
GCL models. The embedding sizes for Cora, Citeseer, and Facebook
are set as follows: 128/256/128 for GRACE, 512/512/512 for MVGRL
and CCA-SSG, and 256/256/256 for GCA.

For the downstream task of the GCL models, we consider node
classification and use the accuracy of node classification as the
performance metric. The results of node classification performance
for these GCL models are presented in Table 3. We compare the
GCL models’ performance with different augmentation approaches
(node degree, eigenvector, and pagerank centrality-based), and ob-
serve that the highest performance is achieved using pagerank
centrality-based augmentation for Cora, Citeseer, and Facebook
datasets, respectively. Hence, we employ the augmentation ap-
proach that yields the highest node classification performance for
performing MIA on different datasets. Since the accuracy of all
three models is significantly higher than the random guess, these
models are susceptible to MIA.
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Dataset Attack Training Data | Attack Testing Data
Members | Non-mem | Members | Non-mem
Cora 3,800 3,800 1,628 1,628
Citeseer 3,312 3,312 1,419 1,419
Facebook 61,763 61,763 26,470 26,470
Facebook - Ego 16,933 16,933 7,257 7,257
Google+ 83,707 83,706 35,874 35,874

Table 4: Number of training/testing samples for the attack
classifier (Non-mem represents Non-members).

D DETAILS OF ATTACK TRAINING AND
TESTING DATA

Table 4 presents the number of training/testing samples for the
attack classifier. We ensure balanced data in both the training and
testing phases of the attack.

E ADDITIONAL PERFORMANCE RESULTS OF
GCL-LEAK

E.1 TPR@FPR Performance of Attacks

For this part, we do not consider Baseline-D as it is not a supervised
LMIA attack and thus cannot be evaluated with TPR and FPR. Table
5 shows the TPR@0.1%FPR performance of our attack and the three
baseline approaches. Overall, GCL-LEAK outperforms the three
baselines in all the settings in terms of TPR@0.1% FPR.

E.2 AUC Performance of Attacks

Table 6 shows the AUC performance of GCL-LEAK. We observe
that the attack AUC of GCL-LEAK ranges in [0.84, 1], significantly
surpassing the value of 0.5 (random guess). In certain settings,
the AUC approaches 1, indicating the effectiveness of GCL-LEAK
against the GCL models.

E.3 Attack Performance of Various
Combinations and Aggregations of
Similarity Metrics

In this part of experiments, we investigate the impact of different
combinations of similarity metrics as well as various aggregation
methods of these similarity metrics on the performance of GCL-
LEAk.

Various combinations of similarity metrics. In Table 7, we
present the attack accuracy of GCL-LEAK under different combina-
tions of similarity metrics. The results show that the attacks that
leverage multiple similarity metrics outperform those reliant on
a single similarity metric. Specifically, the attack that utilizes all
the three similarity metrics exhibits the best attack performance.
Furthermore, the attack that utilizes the combination of Cosine
similarity and Dot Product exhibits close attack performance as
the one that uses the three similarity functions. This suggests a
degree of redundancy in these combinations with regard to their
effectiveness.

Various aggregation methods. To better understand the im-
pact of the different similarity aggregation methods on attack per-
formance, we consider four distinct aggregation methods, namely
concatenation, average, min-pooling, and max-pooling. As shown
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in Table 8, the attack employing similarity concatenation outper-
forms the ones that employ the other three aggregation methods.
This superiority can be attributed to the fact that the concatena-
tion method preserves a more comprehensive set of information
regarding the similarity between node embeddings.

Given these observations, we opt to employ the concatenation
of Cosine similarity and Dot Product as our chosen attack input
feature.

F IMPACT OF FEATURE AUGMENTATION ON
ATTACK PERFORMANCE

Table 9 presents the results of attack performance on GCL mod-
els with and without feature augmentation. We observe that the
attack accuracy of the four GCL models remains stable regardless
of the usage of feature augmentation. This suggests that feature
augmentation has little impact on the attack performance.

G ADDITIONAL RESULTS OF IMPACT OF
GRAPH PROPERTIES

Graph density. Graph density measures the proportion of con-
nected node pairs in the graph. It is formally calculated as den =

%, where |V| and |E| are the number of nodes and edges,
respectively. To assess the impact of graph density on the attack
performance, we scale up/down the density (den = den X 7) of the
original graph by inserting or deleting edges while keeping |V| and
graph homophily unchanged. We consider density scale values of ¢
=0.2,0.5, 2,5, and 10.

Table 10 presents the attack performance results for different
density scale values. In most settings, the attack performance re-
mains insensitive to changes in graph density. Specifically, for the
GRACE, GCA, and CCA-SSG models, the attack accuracy remains
stable regardless of the graph density. However, the attack accuracy
against the MVGRL model drops dramatically from 0.91 to around
0.5 when the graph density increases, starting from 7 = 2. To un-
derstand the reason behind this performance drop, we visualize the
distribution of member and non-member node pairs for the GRACE
and MVGRL models with varying graph densities, and observe that
for the GRACE model, member and non-member node pairs remain
well distinguishable by their embedding similarity in graphs with
different densities. However, for the MVGRL model, while member
and non-member node pairs are distinguishable for small densities,
they become indistinguishable for dense graphs (z > 2). The reason
behind this is that the performance of MVGRL approaches that of
random guessing for these dense graphs. This suggests that the
embeddings generated by MVGRL do not accurately encode the
graph structure information and are of poor quality. Consequently,
the attack cannot perform well on these embeddings.

Graph type. Previous studies have indicated that edge augmen-
tation of GCL models has a greater impact on social network graphs
compared to other types of graphs, such as biochemical graphs [72].
Therefore, we investigate whether graph types can influence the
attack performance. Intuitively, the level of graph homophily de-
pends on the type of the graph. Social network graphs may exhibit
higher graph homophily than biochemical graphs. To study the
impact of graph homophily on attack accuracy, we consider six
graph datasets that belong to three different types with varying
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Settings Cora Citeseer Facebook
Ours | BL-A | BL-B | BL-C | Ours | BL-A | BL-B | BL-C | Ours | BL-A | BL-B | BL-C
GRACE 0.181 | 0.258 | 0.007 0.313 | 0.354 | 0.009 0.189 | 0.293 | 0.01
MVGRL 0.026 | 0.075 | 0.003 0.071 | 0.081 | 0.003 0.022 | 0.054 | 0.002
GCA 0.051 | 0.083 | 0.022 0.07 | 0.111 | 0.036 0.096 | 0.153 | 0.034
CCA-SSG 0.127 | 0.213 | 0.074 0.134 | 0.277 | 0.089 0.101 | 0.19 | 0.067

Table 5: TPR@0.1%FPR results of GCL-LEAK and the three baselines. The best TPR@0.1% FPR performance for each GCL
model and each dataset is highlighted with olive color. (BL-A, BL-B, and BL-C represent Baseline-A, Baseline-B, and Baseline-C

respectively.)
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Figure 15: Performance of FNoise and PNoise defense (Cora dataset, r = 0.4 for PNoise). b = 0 indicates no defense.

GCL model | Cora | Citeseer | Facebook
GRACE 1 0.99 1
MVGRL 0.92 0.9 0.84

GCA 0.98 0.98 0.9
CCA-SSG 1 1 0.98

Table 6: AUC performance of GCL-LEAK.

CsetgngsE GRACE | MVGRL | GCA | CCA-SSG
7 0.93 074 | 059 0.96
v 0.73 082 | 0.79 0.95
/| 058 061 | 058 0.57
| v 1 091 | 097 1
v 099 091 | 0.96 0.99
v 7| 099 089 | 0.97 0.97
v v 1 091 | 097 1

Table 7: Attack accuracy for different combinations of simi-
larity metrics. "C", "D", "E" represent Cosine similarity, Dot
Product and Euclidean distance respectively. (Aggregation
method: concatenation, Cora dataset).

Settings Concate- Min Max
. Average . .
C|D|E nation pooling | pooling
v |V 1 0.76 0.73 0.58
V|V 0.99 0.73 0.73 0.72
v v 0.99 0.76 0.74 0.62
VIV 1 0.78 0.74 0.71

Table 8: Attack accuracy for different similarity aggrega-
tion methods. "C", "D", "E" represent Cosine similarity, Dot
Product and Euclidean distance respectively. (GRACE model,
Cora dataset).

levels of graph homophily: (1) Social network graphs: We use the
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GCL model Cora Citeseer Facebook
w/oF | withF | w/oF | withF | w/o F | with F
GRACE 1 1 1 1 1 1
MVGRL 0.91 0.91 0.9 0.9 0.82 0.83
GCA 0.97 0.97 0.97 0.98 091 0.91
CCA-SSG 1 1 1 1 0.95 0.97

Table 9: Attack accuracy of four GCL models with and with-
out feature augmentations. F denotes feature augmentation.

Density scale | 0.2 | 0.5 1 2 5 10
GRACE 1 1 1 1 1 1
MVGRL 0.93 | 091 | 0.91 | 0.56 | 0.53 | 0.52

GCA 1 0.98 | 0.97 | 0.98 1 0.99
CCA-SSG 1 0.9 | 0.99 | 0.96 | 0.94 | 0.82

Table 10: Impact of graph density on performance of GCL-
LeAK (Cora dataset).

Facebook Ego graph’ and the Google+ graph [27], where nodes
represent individual users and edges represent social connections;
(2) E-commerce graphs: We consider the Amazon Computer [33]
and Amazon Photo [33] datasets, where nodes represent products
and edges indicate frequent co-purchases; and (3) Biomedical mol-
ecule graphs: We use the ENZYMES® and COX2° graphs, where
nodes represent atoms and edges represent chemical bonds between
atoms.

Table 11 presents the results of attack performance on these
seven graphs, ordered by their modularity in ascending order. We
observe that the attack accuracy increases with increasing modular-
ity. Particularly, for graphs with high modularity (e.g., modularity
> 0.3), the attack accuracy is close to 1. However, when the mod-
ularity drops to 0.05 and below, the attack accuracy approaches
0.5 (random guess). We further examine if these observations are

"The Facebook Ego graph is a social network graph sampled from the Facebook dataset
[27].

8We use the pre-processed ENZYMES dataset provided by [17].

“We use the pre-processed COX2 dataset provided by [17].
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Dataset Type Homophily | GRACE | MVGRL | GCA | CCA-SSG
Amazon Computer | E-commerce 0.04 1 0.54 0.97 1
Amazon Photo E-commerce 0.05 1 0.55 1 1
Facebook ego Social network 0.1 1 0.62 0.98 0.72
Google+ Social network 0.22 1 0.64 0.99 0.99
ENZYMES Biochemical 0.3 0.99 0.87 1 0.98
COX2 Biochemical 0.32 0.99 0.84 0.92 0.96

Table 11: Impact of graph type on attack performance of GCL-LEAK.

consistent with the previous results on the Cora, Citeseer, and Face-
book datasets (Table 5). It turns out that these three datasets also
exhibit high homophily values (0.29 for Cora, 0.36 for Citeseer, and
0.09 for Facebook).

H DETAILS OF TWO ALTERNATIVE LUPI
APPROACHES

Secondary feature: We adopt the LUPI approach in [61] to our
setting to represent the privileged information as regularization
terms. Specifically, this approach consists of two classifiers, namely
the primary classifier that aims to discern edge membership using
the similarity-based input features, and the secondary classifier
that intends to identify edge membership through the use of the
secondary feature.

The augmented membership of each node pair is treated as a
secondary feature to the secondary classifier. Specifically, the sec-
ondary feature X; ;. of the node pair (v, vy) is designed as follows:

(10)

Xjk = ||VAugi(vj,Uk)Augi(vj’Uk)’
where Augi(oj, o) = y;’k||...||y;’k, with y;’k the mt.ambership label
of the node pair (vj,x) in the augmented view G*. The length of
Aug' (v 7,0k ) is the same as the number of similarity metrics, i.e.,
the same as the length of Csimi(vj, o), Csimi(oj, vy ) follows Eqn.
®3)-

Based on both classifiers, the loss of the secondary classifier is

added to the primary classifier as the penalty. The objective function
of the primary classifier is formulated as follows:

argmin
w,W

Z Lpri(Yj ks Xj oo W) + 1 Lsec(Yj k> Xjp W), (11)

(v,0k €GY)

where w and w denote the parameters of the primary classifier
and the secondary classifier respectively, x; ;. and X; ;. denote the
primary and secondary features of the primary classifier and the sec-
ondary classifier respectively, where x; ;. follows either Eqn. (4) or
Eqn. (5), depending on whether x; ;. is a member or a non-member,
and Xy follows Eqn. (10). Furthermore, y; ; and y;,k in Eqn. (11)
denote the ground-truth membership label and augmented mem-
bership label of (v, vy), Lpy; and Lge. denote the loss function of
the primary and secondary classifier, and n denotes a scaling pa-
rameter. A higher value of 1 indicates a greater penalty imposed by
the secondary classifier. In this paper, we use Binary-Cross-Entropy
(BCE) loss for both Lp,; and Lge,. By introducing the loss of the
secondary classifier as the regularizer term to the loss function of
the primary classifier, the “identical-membership" information is
incorporated with the attack classifier.
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Secondary target: We employ the LUPI approach in [6] to repre-
sent the privileged information as a secondary target. Specifically,
we view the learning of the attack classifier as a multi-learning task,
where one of the tasks is to discriminate the membership of node
pairs based on ground truth memberships, and the other task is to
discriminate the membership of node pairs based on memberships
in various augmentations. Thus the objective function of the attack
classifier is formulated as follows:

N
argmin A Lo Csim' (v, vp),
gmin Z ZL(y]’k sim (v, vg), W)
(v),0 €GS) =0
(12)
N . .
+(1-2) Z Z L(g},k’ Csim' (vj,vg), w),

(vj,0p €G®) =0

where Csim! (v}, vy.) follows Eqn. (3), yj.,k and g;k denote the ground
truth membership label and augmented membership label of (v}, vy)
respectively, £ denotes the loss function of the attack classifier, M
denotes the total number of the augmented views, and A is a scaling
parameter. In this paper, we use Binary-Cross-Entropy (BCE) loss
for L. The learning objective is to learn the parameters w of the
attack classifier, with g; « as the secondary label for the training

instances, with the loss from the secondary label g; . as a penalty
term of the attack classifier. A higher A value indicates a greater
penalty imposed by the secondary target.

As the classifier will predict a label for each augmented view, we
employ majority voting of the labels of all the augmented views to
determine the membership of (v}, vx) in the training graph.

I ADDITIONAL RESULTS ON DEFENSE
MECHANISMS

I.1 Defense performance for Four GCL Models

Figure 15 showcases the performance of FNoise and PNoise
across various noise levels on four GCL models. Regarding FNoise,
we have the following observations. First, FNoise proves to be
effective, reducing the attack accuracy to approximately 0.5 for all
four GCL models. Second, while all models exhibit the same trend
of lower attack accuracy with higher noise scale, their sensitivity
to the defense varies. For instance, MVGRL’s attack accuracy can
be reduced to 0.5 with a noise scale of b = 0.005, while CCA-SSG
requires b = 0.05, and GRACE necessitates b = 0.5. GCA is the least
sensitive to the defense mechanism, requiring a noise scale as large
as 0.9 to achieve an attack accuracy of around 0.5. Third, there exists
a trade-off between privacy and GCL model accuracy. A stronger
defense comes with the lower target model accuracy. However, the
target model accuracy remains significantly higher than random
guess (which is % ~ 0.17 for the Cora dataset) even when the attack
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(a) Attack performance
Figure 16: Performance of FNoise and PNoise (GRACE model,

Citeseer dataset, r = 0.4 for PNoise). b = 0 indicates no de-
fense.

(b) Target model accuracy

accuracy is reduced to around 0.5. For instance, for FNoise when the
attack accuracy is approximately 0.5 (b = 0.005, Figure 15 (b)), the
target model accuracy for MVGRL is 0.73. Similarly, when the attack
accuracy is around 0.5 (b = 0.05, Figure 15 (d)), the target model
accuracy for CCA-SSG is 0.41. This indicates that FNoise effectively
addresses the trade-off between defense and target model accuracy.
As for PNoise, the observations align closely with FNoise. However,
FNoise demonstrates a stronger defense capability than PNoise, as
PNoise requires greater noise to achieve an attack accuracy near
0.5 than FNoise. On the contrary, PNoise offers a more favorable
trade-off compared to FNoise due to its approach of selectively
introducing noise into embedding dimensions of lesser importance.

1.2 Defense Performance for Citeseer Dataset

Figure 16 illustrates the defense performance of FNoise and
PNoise on the Citeseer dataset. We make the following observations:
First, both FNoise and PNoise defense mechanisms successfully
reduce the attack accuracy to approximately 0.5. This confirms the
effectiveness of the proposed defense mechanism. Second, although
FNoise and PNoise exhibit the same trend of lower attack accuracy
with a higher noise scale, their sensitivity to the defense varies that
FNoise is more effective than PNoise with the same noise scale b.
These variations in sensitivity are also observed in Figure 11 (a).
Third, a trade-off exists between privacy and embedding quality on
both FNoise and PNoise defense mechanisms, however, the PNoise
method exhibits a lower target model loss compared to the FNoise
method when the attack accuracy is close to 0.5. This difference can
be attributed to the PNoise approach selectively introducing noise
to the embedding dimensions of lesser importance. Consequently,
this results in a reduced loss when compared to the FNoise method.

1.3 Defense-utility Trade-off on Citeseer Dataset

Figure 17 illustrates the defense-utility trade-off of our two de-
fense methods and the two baseline approaches on the Citeseer
dataset. The observations are similar to Figure 12 and thus we omit
the discussions.

I.4 Factor Analysis of Defense-utility Trade-off

We investigate how various factors such as graph density, graph
homophily, and class distribution impact the defense-utility trade-
off performance of our defense method. We only consider PNoise
in this set of experiments as it has a better defense-utility trade-off
than FNoise (Figure 11 and Figure 16)
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Figure 17: Target-attack trade-off of the defense mechanisms
against GCL-LEak and W-LMIA [8] (GRACE model, Citeseer
dataset, r = 0.4 for PNoise). x indicates no defense.

Impact of graph density. Graph density has been shown as one
of the factors that affect LMIA accuracy [83]. Thus, we investigate
whether it can impact on defense-utility trade-off too. We change
the graph density d’ = d X 7 by inserting/deleting edges while
keeping the graph homophily unchanged, where 7 is the scale
factor. We use 7 = 0.2, 0.5, 2, 5 in the experiments, and illustrate the
defense-utility ROC curve for each 7 value in Figure 18 (a). Notably,
graphs with lower density exhibit higher target model accuracy
when subjected to the same level of attack accuracy. In other words,
our defense method achieves better defense-utility trade-off on
sparse graphs than dense ones.

Impact of graph homophily. We vary the network modu-
larity (Eqn. 9) by adding/deleting edges. Figure 18 (b) illustrates
the defense-utility ROC curve for five different network modular-
ity values. It shows that graph homophily has a minimal impact
on the defense-utility trade-off. Specifically, our defense method
demonstrates slightly improved trade-off on graphs with higher
homophily compared to those with lower homophily, particularly
when the attack accuracy is below 0.6.

Impact of class distributions. We consider the dataset that
includes only two classes, and change the distributions of these two
classes by randomly flipping the labels. Figure 18 (c) illustrates the
defense-utility ROC curve for five distinct class distributions, with
size ratios between the two classes set at 5:5, 6:4, 7:3, 8:2, and 9:1.
We do not observe any discernible impact of class distribution on
the trade-off between attack accuracy and model accuracy.
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Figure 18: Defense-utility Trade-off performance of our defense (Cora dataset)
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